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Abstract. This study presents an investigation of transient local entropy genera-
tion rate in pulsating turbulent flow through an externally heated pipe. The flow
inlet to the pipe pulsates at a constant period and amplitude, only the velocity oscil-
lates. The simulations are extended to include different pulsating flow cases (sinu-
soidal flow, step flow, and saw-down flow) and for varying periods. The flow and
temperature fields are computed numerically with the help of the Fluent compu-
tational fluid dynamics (CFD) code, and a computer program developed by us by
using the results of the calculations performed for the flow and temperature fields.
In all investigated cases, the irreversibility due to the heat transfer dominates. With
the increase of flow period, the highest levels of the total entropy generation rates
increase logarithmically in the case of sinusoidal and saw-down flow cases whereas
they are almost constant and the highest total local entropy is also generated in the
step case flow. The Merit number oscillates periodically in the pulsating flow cases
along the flow time. The results of this study indicate that flow pulsation has an
adverse effect on the ratio of the useful energy transfer rate to the irreversibility rate.

Keywords. Pulsating pipe flow; local entropy generation; exergy; computa-
tional fluid dynamics.

1. Introduction

The study of pulsating flow in pipes has been a subject of interest among many researchers.
A number of analytical and experimental investigations have been reported in recent years.
Pulsating flows in circular pipes enhance heat transfer coefficients. In general, a pulsating
flow field consists of a steady flow part and an oscillating part. The rate of heat transfer is
altered because oscillation changes the thickness of the thermal boundary layer and hence the
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thermal resistance. It was also demonstrated that the Nusselt number increases with increasing
amplitude and frequency of oscillation (Cho & Hyun 1990). Considerable research studies
have been carried out to explore pulsating flow characteristics (Calmen & Minton 1977; Faghri
et al 1979; Kurzweg 1985; Cotta & Ozisik 1986; Peattie & Budwig 1989; Ahn & Ibrahim
1992; Brown et al 1993; Valueva et al 1993; Moschandreou & Zamir 1997; Al-Zaharnah et al
2001).

On the other hand, contemporary engineering thermodynamics uses a parameter called the
rate of entropy generation (or production) to gauge the irreversibilities related to heat transfer,
friction, and other non-idealities within systems. The second law of thermodynamics should be
considered to evaluate the sources of irreversibility in flow and thermal systems. Conserving
useful energy depends on designing efficient thermodynamic heat-transfer processes. Energy
conversion processes are accompanied by an irreversible increase in entropy, which leads
to a decrease in exergy (available energy). Thus, even though the energy is conserved, the
quality of the energy decreases because the energy is converted into a different form of energy,
from which less work can be obtained. Reduced entropy generation results in more efficient
designs of energy systems. Therefore, in recent years, the entropy minimization has become a
topic of great interest in the thermo-fluid area. Bejan (1996a) focused on the different reasons
behind entropy generation in applied thermal engineering where the generation of entropy
destroys the available work (exergy) of a system. Therefore, it makes good engineering sense
to focus on the irreversibility of heat transfer and fluid flow processes, and try to understand
the function of associated entropy generation mechanisms. Bejan (1996b) also carried out
an extensive review on entropy generation minimization. The review traced the development
and adoption of the method in several sectors of mainstream thermal engineering and science.
Furthermore, many researchers carried out studies on the entropy generation in various flow
cases. The second-law analysis of heat transfer in swirling flow through a cylindrical duct
was investigated by Mukherjee et al (1987). They calculated the rate of entropy generation.
They also defined a merit function and discussed the influence of swirling on this merit
function. Mahmud & Fraser (2002, 2003) investigated the second law analysis in fundamental
convective heat transfer problems and the thermodynamic analysis of flow and heat transfer
inside a channel with two parallel plates. Sahin (1998, 1999, 2000, 2002), Yilbas et al (1999),
Shuja et al (1999, 2001b), Demirel & Kahraman (1999), Abbassi et al (2003) and Hyder &
Yilbas (2002) performed many studies on second law analysis and the entropy generation
due to the heat transfer and fluid friction in duct flows under various conditions. Shuja et al
(2002, 2003) and Shuja & Yilbas (2001) analysed the entropy generation in swirling jet
impingement on an adiabatic wall and an impinging jet (Shuja et al 2001a) for various flow
conditions. Furthermore, Haddad et al (2004) studied the entropy production due to laminar
forced convection in the entrance region of a concentric cylindrical annulus, Abu-Hijleh et al
(1999) calculated entropy generation due to natural convection for three radii and a wide
range of Rayleigh numbers for an isothermal cylinder, and Yapici et al (2005) investigated
the local entropy generation in a methane-air burner.

In the problem referred to as conjugate heat transfer, because the thermal boundary con-
ditions along the solid–fluid interface are not known a priori, the energy equations should
be solved under the conditions of continuity in the temperature and/or heat flux. The gen-
eral theory of fluid motion is too difficult to enable the user to tackle arbitrary geometric
configurations. It is possible to apply merely numerical techniques to arbitrary geometries.
Therefore, a suitable numerical method and/or computational fluid dynamics (CFD) code is
frequently used to solve the governing equations in this field. The CFD code is a program by
which fluid flow can be predicted through arbitrary geometries, giving information such as
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flow speed, pressures, residence times, flow patterns etc. The main advantage of this approach
is its potential for reducing the extent and number of experiments required to describe such
types of flow.

Flow pulsation in externally heated pipes generates a pulsating temperature field, which
in turn results in oscillating entropy generation within the pipe. The present study considers
the transient local entropy generation rate due to the temperature and velocity gradients in
pulsating turbulent flow through an externally heated pipe. In order to investigate the effect
of the period of the pulsating flow on the entropy generation rate, pulsating flow is examined
for various periods by using the Fluent CFD code (Fluent 2003).

2. Mathematical model

2.1 Pipe geometry

In this study, the numerical solution of the transient local entropy generation in pulsating
turbulent flow through an externally heated pipe is analysed. Water is selected as fluid. The
radius and length of the pipe are R and L respectively. The thickness of the pipe is neglected
and the thermal boundary condition on the pipe wall is assumed to be uniform heat flux q ′′.
The two-dimensional axisymmetric model of this considered pipe is shown in figure 1. The
flow inlet to the pipe is considered to be pulsating at a constant period and amplitude (only
the velocity oscillates). The numerical calculation is performed for three different pulsating
flow cases: (A) Sinusoidal flow, (B) step flow, and (C) saw-down flow (see figure 2). The
effect of the frequency (or period, τ ) of the pulsating flow on the entropy generation rate is
also investigated.

As is apparent from the above explanations, in this analysis, two phenomena are considered
as follows: (i) the transient heat transfer inside the pipe and (ii) the transient local entropy
generation in the fluid flow. The analysis is based on two-dimensional continuity, momentum,
and energy equations.

2.2 Mathematical model

The assumptions made are as follows:

– the flow is transient two-dimensional axisymmetric, turbulent and incompressible;
– the thickness of the pipe is neglected;
– the no-slip condition is assumed at the pipe wall;
– the thermo-physical properties (except viscosity) of the fluid do not vary with tempera-

ture;
– the viscous heating is neglected.

Figure 1. Coordinate system
and two-dimensional axisymme-
tric model of the pipe (the dimen-
sions are not to scale).
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Figure 2. Variations of inlet
velocity [u(r, t)]: in the
case of sinusoidal flow (case A),

in the case of step flow
(case B), in the case of
saw-down flow (case C).

2.2a The governing conservation equations: The governing equations for the transient tur-
bulent incompressible flow and heat transfer in the flow region (0 ≤ x ≤ L and 0 ≤ r ≤ R)
can be written as follows:
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Energy:
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and λeff is the effective thermal conductivity, and for the standard k-ε model, is given by

λeff = λ+ λt and λt = CPµt/Prt . (3c,d)

Two additional equations for the standard k-ε turbulence model:
The turbulence kinetic energy, k, and the dissipation rate, ε, are determined using the

following transport equations, respectively:
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µt (turbulent viscosity) is computed by combining k and ε as follows:

µt = ρCµ(k
2/ε), (4e)

Cµ,C1ε and C2ε are the model constants, σk and σε are turbulent Prandtl numbers for k and
ε respectively. They have the following default values (Launder & Spalding 1972): Cµ =
0·09, Cε1 = 1·44, Cε2 = 1·92, σk = 1·0 and σε = 1·3.

Furthermore, for the standard k-ε model, the effective viscosity, µeff , is defined as:

µeff = µ+ µt (4f)

Boundary conditions:

At the pipe inlet (x = 0),

u(0, r, t) = u(r, t), v(0, r, t) = 0 and T (0, r, t) = Tin (5a–c)

The inlet velocity, u(r, t), is a pulsatile velocity and consists of two parts as follows:

u(r, t) = U(t)(1 − (r/R))1/7 (5d)
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where U(t) is selected as:
in the case of no pulsating flow,

U(t) = UM; (5e)

in the case of sinusoidal flow (case A),

U(t) = UM + UA cos((2π/τ)t); (5f)

in the case of step flow (case B),

U(t) =
{
UH, if (J − 1)τ < t ≤ 0·5(2J − 1)τ,
UL, otherwise,

J = 1, 2, . . . ; (5g)

in the case of saw-down flow (case C),

U(t) = 2JUA + UL − 2UA
t

τ
, (5h)

where UM,UA,UH and UL are the mean (or vertical shift), amplitude, highest and lowest
levels of the pulsatile velocity respectively. UH and UL can be calculated as follows:

UH,L = UM ± UA.

Since the profiles of velocity and temperature are both symmetric with respect to the axis
of the pipe, the relevant boundary conditions at the pipe axis (r = 0) are

∂φ(x, 0, t)/∂r = 0, (5i)

where φ is any arbitrary variable.
At the pipe wall

(r = R), v(x, R, t) = 0, (5j)

and the no-slip condition is assumed as follows:

u(x, R, t) = 0. (5k)

At the pipe inlet and exit planes (x = 0 and x = L),

∂T (0, r, t)/∂x = 0 and ∂T (L, r, t)/∂x = 0. (5l,m)

At the pipe wall (r = R), a uniform heat flux is imposed,

q ′′ = q0 (5n)

Initial condition:

T (x, r, 0) = T0. (6)
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2.2b Entropy generation rate: In fluid flow, irreversibility arises due to the heat transfer
and the viscous effects of the fluid. In order to obtain the volumetric entropy generation
rate distribution, it is assumed that the pipe reaches thermal equilibrium at the end of each
time step, (
t). In these systems, when both temperature and velocity fields are known, the
volumetric entropy generation rate (S

′′′
gen) at each point in the system can be calculated for

each time step as follows (Bejan 1996a):

S
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)
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The total entropy generation rate over the volume (Ṡgen) can be calculated as follows:

Ṡgen =
∮
V

S
′′′
gen∂θ∂r∂x, (7d)

where V is the volume.
Furthermore, the integration of the total entropy generation rate on the time interval t1 to

t2 gives the total entropy generation in this time interval, Sgen, i.e.:

Sgen =
∫ t2

t1

Ṡgen(t)dt . (7e)

The Bejan number, Be, which compares the magnitude of entropy generation due to heat
transfer to the magnitude of the total entropy generation, is defined by:

Be = (Ṡgen)heat/Ṡgen. (7f)

When Be � 0·5, the irreversibility due to heat transfer dominates, while for Be � 0·5 the
irreversibility due to viscous effects dominates. For Be ∼= 0·5, entropy generation due to heat
transfer is almost of the same magnitude as that due to fluid friction.

The rate of total irreversibility (İ ) is defined as:

İ = Tamb · Ṡgen. (7g)

The rate of exergy transfer (Q̇a) accompanying energy transfer at the rate of Q̇ is given as
(Mukherjee et al 1987):

Q̇a = Q̇ [1 − {Tamb/(Tw)awa}] . (7h)

The Merit number (M) is defined as the ratio of exergy transferred to the sum of exergy
transferred and exergy destroyed (Mukherjee et al 1987), i.e.:

M = Q̇a/(Q̇a + İ ). (7i)



632 Hüseyi̇n Yapici et al

“awa” represents area-weighted average of relevant quantity. The area-weighted average of a
quantity is computed by dividing the summation of the product of the selected field variable
(ψj ) and facet area (Aj ) by the total area of relevant surface, (A):

(ψ)awa = 1

A

n∑
j=1

ψj |Aj |. (8)

To obtain the total entropy generation rate, it is necessary first to solve the governing conser-
vation equations given in section 2·2a. The volumetric local entropy generation rate can be
calculated using the local velocities and temperatures obtained from the calculations of the
governing conservation equations, and the total entropy generation rate over the volume can
be obtained using numerical integration.

3. Computational procedure

3.1 Calculational tools

Even the difficult general differential equations now yield to the approximating technique
known as numerical analysis, whereby the derivates are simulated by algebraic relations
between a finite numbers of grid points in the flow field which are then solved on a digital
computer. A suitable CFD computer code can be used to solve numerically the governing
equations (1)–(4) along with the boundary condition equation (5a–n) and the initial condition
equation (6). The CFD program is a process by which fluid flow can be predicted through
arbitrary geometries giving such information as flow speed, pressures, residence times, flow
patterns etc.

The Fluent 6·1 (Fluent 2003) program was chosen as the CFD computer code for this
work because of the ease with which the analysis model can be created, and because the
software allows users to modify the code for special analysis conditions through the use of user
subroutines. The Fluent computer code uses a finite-volume procedure to solve the governing
equations of fluid flow in primitive variables such as u-velocity, v-velocity, and pressure. A
variety of turbulence models is offered by the Fluent computer code. The standard k–ε model
(Fluent 2003) was used as a turbulence model in this study. The standard k–ε model is a
semi-empirical model based on model transport equations for the turbulent kinetic energy
(k) and its dissipation rate (ε). The model transport equation for k is derived from the exact
equation while the model transport equation for ε is obtained using physical reasoning and
bears little resemblance to its mathematically exact counterpart. In the derivation of the k–ε
model, it was assumed that the flow is fully turbulent, and the effects of molecular viscosity
are negligible. The standard k–ε model is, therefore, valid only for fully turbulent flows. A
detailed description of turbulence models and its application to turbulence can be found in
ref. (Fluent 2003; Launder & Spalding 1972). In the case of the standard k–ε models, two
additional transport equations, (4a,b) with sub-equations (4c–f), (for the turbulent kinetic
energy and the turbulence dissipation rate) are solved, and turbulent viscosity,µt , is computed
as a function of k and ε. The solution method for this study is axisymmetric.

In order to define the pulsating inlet velocities in all cases, an UDF (User-Defined Func-
tion) file was introduced to the prepared Fluent case file. The UDF files provide the capability
to customize boundary conditions, source terms, property definitions (except specific heat),
surface and volume reaction rates, user-defined scalar transport equations, discrete phase
model (e.g. body force, drag, source terms), algebraic slip mixture model (slip velocity and
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particle size), solution initialization, wall heat fluxes and post processing using user-defined
scalars, and thus can significantly enhance the capability of Fluent. Furthermore, a computer
program has been developed to numerically calculate the volumetric entropy generation rate
distributions in equations (7a–c) and other thermodynamic parameters in (7d–i), by using the
results of the calculations performed with the Fluent code. This program, written in FOR-
TRAN 77 language, calculates numerically the axial and radial derivations of the temperature
(T ) and the components (ux and ur ) of velocity, which are the function of the axial and
radial distances. It uses the finite-differences approach, and thus it calculates the volumet-
ric entropy generation rate distributions as two dimensional, and the other thermodynamic
parameters.

3.2 Simulation values

R = 0·02 m and L = 1 m.

Q̇ = 10000 W corresponding to q0 = 79577·5 W/m2.

Tamb = Tin = T0 = 273 K, UM = 0·2 m/s, and UA = 0·1 m/s.

For the numerical integration of the transient equations, the time-step 
t = 0·1.

tmax = 360 s and τ = 30, 45, 60, 90, 120, and 180 s.

For water, ρ = 1000 kg/m3, CP = 4182 J/kg-K, λ = 0·6 W/m-K, and the temperature-
dependent viscosity is given by (Yaws et al 1994):

µ(T ) = 1·788 · 10−3 exp(−1·704 − 5·306(273/T )+ 7·003(273/T )2) (9)

Figure 3. Variations of the average outlet temperature
for the various UMs in the case of no-pulsating flow
depending on flow time.
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At the inlet, the mass flow rate (ṁ) and the total mass (m) in the time interval t1 to t2 can be
calculated as follows:

ṁ(t, r) = ρπ�(r +
r)2 − r2� · u(t, r) and m =
∫ t2

t1

[∑
r

ṁ(t, r)

]
· dt,

(10a,b)

where 
r = 0·001 m.
In all the flow and period cases considered, the total mass in the time interval 0 to tmax has

the same value (75·605 kg).

Figure 4. Temperature contours within the pipe at the times that the inlet velocity reaches (a) its
highest (0·3 m/s) and (b) lowest (0·1 m/s) levels (flow case A).
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Grid size: Grid-independent tests were carried out to ensure grid independence of the cal-
culated results; consequently, the grid size and the grid orientation giving grid independent
results were selected, and thus a total cell number of 10000 cells (500 × 20) was adopted.

4. Numerical results

4.1 Temperature distributions

In order to determine the times converging to the steady-state (the converging time), numerical
calculations were also performed for three different UMs (0·1, 0·2 and 0·3 m/s) in the case of

Figure 5(a). Variations of the maximum fluid temperature and the average outlet temperature depend-
ing on the flow time (the dotted lines in the first sub-graph are for the case of no-pulsating flow).
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no pulsating flow. Figure 3 shows the increase of average outlet temperatures for these UMs
depending on the flow time. The converging times for the UMs are extracted approximately
from these curves. As apparent from this figure, the converging time decreases from about
18 to 7 s with the increase of UM , from 0·1 to 0·3 m/s. The average outlet temperatures
corresponding to the converging times, 18 and 7 s, are 294·5 and 280 K, respectively (for
UM = 0·2 m/s, these values are 9 s and 283·5 K).

The temperatures within the pipe at the times that the inlet velocity reaches its highest
(0·3 m/s) and lowest (0·1 m/s) levels are contoured in figure 4 for the case of sinusoidal flow.

Figure 5(b). Variations of the maximum fluid temperature and the average outlet temperature depend-
ing on the flow time.
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Figure 6. The highest levels of (a) the maximum fluid temperature and (b) the average outlet tem-
perature versus the flow period.

Due to the fact that the pipe wall is exposed to the uniform heat flux, its temperature rises
continuously and heat penetration takes place in the radial direction. However, the centreline
temperature between x = 0 and 0·5 m does not change significantly because sufficient heat
does not penetrate into this region. The constant temperature contours extend further inside
the fluid, and the high temperature contours are developed in the region close to the pipe
wall as the pipe length extends. This is because of the convective heating of the fluid in
the vicinity of the pipe wall. Furthermore, the effect of the inlet velocity variation on the
temperature within the fluid is also apparent in figure 4. As is known, the increase of fluid
velocity in the flow through the externally heated pipe decreases the temperature of the
fluid.

Figures 5 a,b exhibit the variations of the maximum fluid temperature (Tmax) and the aver-
age outlet temperature (Tout) in all considered flow cases with the flow time. In the case
of no pulsating flow (UM = 0·2 m/s), the maximum fluid temperature reaches 297·5 K in
a short time (the converging time belonging to this UM) and then it remains quasi-constant
at this level along the heating process. In the pulsating flow cases, the transient maximum
and average temperature profiles have similar behaviour with periodic variation of the inlet
velocity due to the fact that flow pulsation in externally heated pipes generates a pulsat-
ing temperature field. First, they increase for a short time (6–7 s), then oscillate periodi-
cally with a period equal to that of the inlet velocity. However, periodic variations are the
reverse of the inlet velocity, i.e. as the inlet velocity decreases or increases, the temperature
profile increases or decreases respectively. The lowest levels of Tmax and Tout in all pulsat-
ing flow cases are almost equal to each other (Tmax = 290 K and Tout = 280 K). Their
highest levels are plotted versus the flow period in figure 6. One can see in this figure that
as the flow period increases (from 30 to 180 s), these highest levels increase logarithmi-
cally in the flow cases A (Tmax = 313 to 319 K and Tout = 290 to 294 K) and C (308 to
315 K and 289 to 292 K) whereas they almost do not change in the flow case B (321 K and
295 K). Consequently, the highest temperatures occur in the flow case B, followed by A,
and C.
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Figure 7. Logarithmic volumetric local entropy generation rate contours within the pipe at the times
that the inlet velocity reaches (a) its highest (0·3 m/s) and (b) lowest (0·1 m/s) levels (flow case A).

4.2 The local entropy generation

The heat transferred into the flowing fluid increases the temperature of this fluid, and so it
causes the large temperature gradients, that increase the local entropy generation due to the
heat transfer (see (7b)), within the pipe. In other words, the local entropy generation in a flow
is related to the temperature gradient occurring in that flow. The calculations bring out that in
all investigated cases, the entropy generation rates due to the fluid friction are quite low with
respect to those due to the heat transfer, i.e. the Bejan number, Be, is very close to 1 (about
0·996). As a result, it means that the irreversibility due to the heat transfer dominates.

Figure 7 shows the volumetric local entropy generation rate contours within the pipe at the
times that the inlet velocity reaches its highest (0·3 m/s) and lowest (0·1 m/s) levels for the
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Figure 8(a). Variations of entropy generation rate over the volume depending on the flow time (the
dotted line in the first sub-graph is for the case of no pulsating flow).

case of sinusoidal flow as logarithmic values. The volumetric local entropy generation rate
contours do not resemble the temperature contours. This is because the entropy generation is
proportional to the temperature gradient rather than temperature. As the thermal penetration
takes place along the pipe length, the local entropy generation region widens but the peak
value of volumetric local entropy generation rate decreases. In regions near the wall, the
volumetric local entropy generation rate increases sharply, and then remains quasi-constant
along the pipe length. However, it is very close to zero along the centreline due to the fact
that the radial temperature gradient is zero and the velocity gradients are either very small
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Figure 8(b). Variations of entropy generation rate over the volume depending on the flow time.

or zero. Moreover, the increase of fluid velocity also decreases the volumetric local entropy
generation rate.

The variations of the total entropy generation rate (Ṡgen) and the exergy transfer rate
(Q̇a) with flow time in all the flow cases considered are plotted in figures 8a,b and 9a,b
respectively. In the case of no pulsating flow, after converging to the steady-state, Ṡgen

and Q̇a remain at constant values of 3·3 W/K and 2280 W respectively, along the heat-
ing process. However, their transient variations in all pulsating flow cases exhibit similar
behaviour with the transient temperatures as explained in § 4·1, i.e. they also oscillate peri-
odically with period equal to the period of inlet velocity. The lowest levels of Ṡgen in all
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Figure 9(a). Variations of exergy transfer rate depending on the flow time (the dotted line in the first
sub-graph is for the case of no pulsating flow).

pulsating flow cases are almost equal to each other (about 2·4 W/K). This level is about
2000 W for Q̇a . Their highest levels are plotted versus the flow period in figure 10. It is
apparent from this figure that with the increase of flow period (from 30 to 180 s), these
highest levels increase logarithmically in the flow cases A (Ṡgen = 4·55 to 5·16 W/K and
Q̇a = 2470 to 2530 W) and C (4·46 to 4·99 W/K and 2421 to 2505 W) whereas they almost
do not change in the flow case B (about 5·2 W/K and about 2534 W). These results bring
out that the highest total local entropy is generated in the flow case B, followed by A
and C.
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Figure 9(b). Variations of exergy transfer rate depending on the flow time.

The total entropy generations, Sgens in J/K, obtained from the integration of the total entropy
generation rate on the time intervals 0 to tmax and one period (see (7e)) are given in table 1 for all
the period cases considered. In all the flow and period cases, the total mass in the time interval
0 to tmax is 75·605 kg. In all the pulsating flow cases, the increase of period logarithmically
increases the total entropy generation. Consequently, the pulsating flow increases the entropy
generation more than the no-pulsating flow. The total entropy generation in the time interval
N periods (N is any integer), can be easily estimated by using the values of Sgen per period
given in this table.

Figures 11 a,b depict the variations of the Merit number (M) with flow time in all the flow
cases considered. In the case of no-pulsating flow, the value of M is 0·725. Due to the fact



Transient local entropy generation in pulsating turbulent flow 643

Figure 10. The highest levels of the total entropy generation rate and the exergy transfer rate versus
the flow period.

that the Merit number is the ratio of exergy transferred to the sum of exergy transferred and
exergy destroyed (see (7i) and the variation of Ṡgen has similar behaviour to that of Q̇a , it also
oscillates periodically with their periods. The lowest levels of M are around 0·660 (8% lower
than M = 0·725) whereas its highest levels in all pulsating flow cases are almost equal to
each other, about 0·755 (4% higher than M = 0·725). These values indicate that the pulsing
of the flow negatively influences the useful energy transfer rate to the irreversibility rate.

5. Conclusions

The numerical solution of the transient local entropy generation in pulsating turbulent flow
through a pipe, exposed to a uniform heat flux from its wall, was analysed for three different
flow cases. Water is selected as fluid. The effect of the period of the pulsating flow on the

Table 1. Total entropy generation, Sgen in J/K, in the period cases considered.

Flow case
Period
[s] Sinusoidal Step Saw-down

- 1136a,b - 1136 - 1136 -
30 1215b 102c 1285 108 1157 97
45 1226 154 1315 166 1162 147
60 1231 206 1321 222 1167 196
90 1236 311 1329 336 1176 297

120 1237 415 1335 450 1180 398
180 1240 624 1341 677 1185 599

aIn the case of no-pulse; bin the time intervals 0 to 360 s; cone period
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Figure 11(a). Variations of Merit number depending on the flow time (the dotted line in the first
sub-graph is for the case of no-pulsating flow).

entropy generation rate was also investigated. The specific conclusions derived from this
study can be listed briefly as follows:

• The transient temperatures within the pipe in the pulsating flow cases oscillate periodi-
cally with a period equal to the period of the inlet velocity.

• The highest temperature occurs in the step flow case (Tmax = 321 K).
• In all investigated cases, the irreversibility due to the heat transfer dominates (Bejan

number, Be, is very close to 1).
• The transient total entropy generation rates in all pulsating flow cases also oscillate

periodically with a period equal to that of the inlet velocity.
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Figure 11(b). Variations of Merit number depending on the flow time.

• With the increase of flow period, the highest levels of the total entropy generation rates
increase logarithmically in the case of sinusoidal and saw-down flow cases, whereas
they do not almost change in the step-flow case.

• The highest total local entropy is generated in the step-flow case (5·2 W/K).
• While in the case of no-pulsating flow, the value of Merit number is 0·725, it oscillates

periodically in the range of 0·660 to 0·755 in the pulsating flow cases along with flow
time.

• The results of this study indicate that flow pulsation has an adverse effect on the ratio of
the useful energy transfer rate to the irreversibility rate.
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List of symbols

A area [m2];
Be Bejan number;
CP specific heat [J/kg-K];
Cµ,C1ε, C2ε coefficients in the k–ε turbulence model;
CFD computational fluid dynamics;
G the production of turbulent kinetic energy [kg/m-s3];
İ irreversibility rate [W];
J period number;
k turbulent kinetic energy [m2/s2];
L length of pipe [m];
m mass [kg];
ṁ mass flow rate [kg/s];
M Merit number;
N any integer number;
P pressure [Pa];
Pr Prandtl number;
q ′′ heat flux per unit area [W/m2];
Q̇ heat transfer rate [W];
Q̇a exergy transfer rate [W];
r radial distance [m];

r radial step [m];
R radius of pipe [m];
S modulus of the mean rate-of-strain tensor;
S

′′′
gen volumetric entropy generation rate [W/m3-K];
Ṡgen integrated entropy generation rate [W/K];
Sgen integrated entropy generation [J/K];
t time [s];

t time step [s];
T temperature [K];
u velocity component in the axial direction [m/s];
U axial inlet velocity [m/s];
UDF user defined function;
v velocity component in the radial direction [m/s];
V volume [m3];
x axial distance [m].

Greek symbols

ε turbulent energy dissipation rate [m2/s3];
φ arbitrary variable;
� viscous dissipation;
λ thermal conductivity [W/m-K];
µ dynamic viscosity [kg/m-s];
ρ density [kg/m3];
σk turbulent Prandtl numbers for k;
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σε turbulent Prandtl numbers for ε;
τ period [s];
ψ arbitrary field variable.

Subscripts

0 initial;
amb ambient;
A amplitude;
awa area-weighted average;
eff effective;
fric friction;
H highest;
heat heat transfer;
in inlet;
j cell number;
L lowest;
max maximum;
M mean or vertical shift;
out out;
t turbulent;
w wall.
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