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Abstract

The nonlocal boundary value problem for elliptic difference equations in an arbitrary
Banach space is considered. The well-posedness of this problem is investigated. The sta-
bility, almost coercive stability and coercive stability estimates for the solutions of dif-
ference schemes of the second order of accuracy for the approximate solutions of the
nonlocal boundary value problem for elliptic equation are obtained. The theoretical
statements for the solution of these difference schemes are supported by the results of
numerical experiments.
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1. Introduction. The nonlocal difference problem

Coercivity inequalities in Hölder norms with a weight for the solutions of an
abstract differential equation of elliptic type were established for the first time
in [1]. Further in [2–11,14–19] the coercive inequalities in Hölder norms with a
weight and without a weight were obtained for the solutions of various local
and nonlocal boundary value problems for differential and difference equations
of elliptic type. In the present paper we consider the nonlocal boundary value
problem

� 1
s2 ðukþ1 � 2uk þ uk�1Þ þ Auk ¼ uk; 1 6 k 6 N � 1;

u0 ¼ uN ; �u2 þ 4u1 � 3u0 ¼ uN�2 � 4uN�1 þ 3uN ; Ns ¼ 1

�
ð1Þ

for elliptic difference equation in an arbitrary Banach space E with a positive
operator A.

It is known (see [3]) that for a positive operator A it follows that
B ¼ 1

2
ðsAþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að4þ s2AÞ

p
Þ is strongly positive and R = (I + sB)�1 which is de-

fined on the whole space E is a bounded operator. Furthermore, we have that

kRkkE!E 6 Mð1þ dsÞ�k
; kskBRkkE!E 6 M ; k P 1; d > 0; ð2Þ

kBbðRkþr � RkÞkE!E 6 MðrsÞaðksÞ�a�b
; ð3Þ

1 6 k < k þ r 6 N ; 0 6 a; b 6 1;

where M does not depend on s.
First of all let us give some lemmas that will be needed below.

Lemma 1. The estimates hold:

kðI � RN Þ�1kE!E 6 M ;

kðI � ð2I � sBÞð2I þ 3sBÞ�1RN�2Þ�1kE!E 6 M ;

(
ð4Þ

where M does not depend on s.

The proof of this lemma is based on the estimates (2) and (3).

Lemma 2. For any uk, 1 6 k 6 N � 1 the solution of the problem (1) exists and

the following formula holds:

uk ¼
XN�1

j¼1

Gðk; jÞujs; 0 6 k 6 N ; ð5Þ

where

Gðk; 1Þ ¼ Gðk;N � 1Þ ¼ C
2
½ðRN�3ð4R� IÞ þ R� 4I �B�1ðI � DRN�2Þ�1
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for k = 0 and k = N;

Gðk; jÞ ¼ �CðR2 � 4Rþ IÞðRj�2 þ RN�j�2Þð2BÞ�1ðI � DRN�2Þ�1

for 2 6 j 6 N � 2 and k = 0, k = N;

Gðk; 1Þ ¼ CC1ð2BÞ�1fRk�1ð2ðRþ 3IÞ þ R2ðR� 3IÞÞ
þ RN�kð4I � RÞðI þ RÞ þ RNþk�3ðI � 4RÞðI þ RÞ
þ R2N�k�3ð3R� I � 2R2ð3Rþ IÞÞgðI � RN Þ�1ðI � DRN�2Þ�1

;

Gðk;N � 1Þ ¼ �CC1ð2BÞ�1fRkðR� 4IÞðRþ IÞ þ RN�k�1ð�2ðRþ 3IÞ
þ R2ð3I � RÞÞ þ RNþk�3ðI � 3Rþ 2R2ð3Rþ IÞÞ

þ R2N�k�3ð4R� IÞðRþ IÞgðI � RN Þ�1ðI � DRN�2Þ�1
;

Gðk; jÞ ¼ CC1ð2BÞ�1fðR� IÞ3ðRjþk�2 þ R2N�2�j�kÞ þ ð�I þ 3R
þ R2ð3I � RÞÞðRN�kþj�2 þ RNþk�j�2Þ þ 2ðI � 3RÞðR2N�2þj�k

þ R2N�2�jþkÞ þ 2Rjj�kjðRN � IÞðR� 3I þ RN�2ð�I þ 3RÞÞg
� ðI � RN Þ�1ðI � DRN�2Þ�1

for 2 6 j 6 N � 2 and 1 6 k 6 N � 1. Here

C ¼ ðI þ sBÞð2I þ 3sBÞ�1
; C1 ¼ ðI þ sBÞð2I þ sBÞ�1

;

D ¼ ð2I � sBÞð2I þ 3sBÞ�1
;

where I is the unit operator.
Proof. We see that the problem (1) can be obviously rewritten as the equivalent
nonlocal boundary value problem for the first order linear difference equations

uk � uk�1

s
þ Buk ¼ zk; 1 6 k 6 N ;

uN ¼ u0; �u2 þ 4u1 � 3u0 ¼ uN�2 � 4uN�1 þ 3uN ;

� zkþ1 � zk

s
þ Bzk ¼ ð1þ sBÞuk; 1 6 k 6 N � 1.

8>><
>>:

From that there follows the system of recursion formulas

uk ¼ Ruk�1 þ sRzk; 1 6 k 6 N ;

zk ¼ Rzkþ1 þ suk; 1 6 k 6 N � 1.

�

Hence

uk ¼ Rku0 þ
Pk
i¼1

Rk�iþ1szi; 1 6 k 6 N ;

zk ¼ RN�kzN þ
PN�1

j¼k
Rj�ksuj; 1 6 k 6 N � 1.

8>>><
>>>:
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From the first formula and the condition uN = u0 it follows that

uN ¼ RN u0 þ
XN

i¼1

RN�iþ1szi

and

uN ¼ u0 ¼ ðI � RN Þ�1
XN

i¼1

RN�iþ1szi ¼
1

1� RN sRzN þ
XN�1

i¼1

RN�iþ1szi

( )

¼ ðI � RN Þ�1 sRþ
XN�1

i¼1

R2N�2iþ1s

 !
zN þ

XN�1

i¼1

sRN�iþ1
XN�1

j¼i

Rj�isuj

( )

¼ ðI � RN Þ�1 ðR� R2Nþ1ÞðI � R2Þ�1szN þ
XN�1

j¼1

s2
Xj

i¼1

RNþj�2iþ1uj

( )

¼ ðI � RN Þ�1ðI � R2Þ�1 Rð1� R2N ÞszN þ
XN�1

j¼1

s2½RN�jþ1 � RNþjþ1�uj

" #
;

ð6Þ

and for k, 1 6 k 6 N � 1:

uk ¼ ðI � RN Þ�1 hRkþ1zN þ
XN�1

i¼1

RkþN�iþ1hzi

( )
þ
Xk

i¼1

Rk�iþ1szi

¼ ðI � RN Þ�1ðI � R2Þ�1Rk ðR� R2Nþ1ÞðI � R2Þ�1szN þ
XN�1

j¼1

s2 RN�jþ1 � RNþjþ1
� �

uj

( )

þ
Xk

i¼1

RNþk�2iþ1szN þ
Xk

i¼1

XN�1

j¼i

s2Rkþj�2iþ1uj

¼ ðI � R2Þ�1 Rkþ1 þ RN�kþ1
� �

szN þ ðI � RN Þ�1ðI � RN�1Þ�1
XN�1

j¼1

s2 RN�jþ1 � RNþjþ1
� �

uj

þ
Xk

j¼1

s2
Xj

i¼1

Rkþj�2iþ1fj þ
XN�1

j¼kþ1

s2
Xk

i¼1

Rkþj�2iþ1uj

¼ ðI � R2Þ�1 Rkþ1 þ RN�kþ1
� �

szN þ ðI � RN Þ�1ðI � R2Þ�1Rk
XN�1

j¼1

s2 RN�jþ1 � RNþjþ1
� �

uj

þ ðI � R2Þ�1
XN�1

j¼1

s2 Rjk�jjþ1 � Rkþjþ1
� �

uj. ð7Þ

By using the formulas (6), (7), and the condition �u2 + 4u1 � 3u0 = uN�2 �
4uN�1 + 3uN, we obtain (5). Lemma 2 is proved. h
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2. Well-posedness of the nonlocal difference problem

Let Fs(E) be the linear space of mesh functions us ¼ fukg
N�1
1 with values in

the Banach space E. Next on Fs(E) we denote by Cs(E) and Ca
sðEÞ Banach

spaces with the norms

kuskCsðEÞ ¼ max
16k6N�1

kukkE;

kuskCa
s ðEÞ ¼ ku

skCsðEÞ þ max
16k<kþr6N�1

kukþr � ukkE

1

ðrsÞa .

The nonlocal boundary value problem (1) is said to be stable in Fs(E) if we
have the inequality

kuskF sðEÞ 6 MkuskF sðEÞ;

where M is independent not only of us but also of s.
We denote Ea = Ea(B, E) as the fractional spaces consisting of all v 2 E for

which the following norm is finite:

kvkEa
¼ sup

k>0

kakBðkþ BÞ�1vkE.

Theorem 1. The nonlocal boundary value problem (1) is stable in Cs(E) norm.
Proof. By [2],

kuskCsðEÞ 6 M ½kukEk þ kwkE þ kuskCsðEÞ�;

for the solutions of the boundary value problem

� 1
s2 ½ukþ1 � 2uk þ uk�1� þ Auk ¼ uk;

1 6 k 6 N � 1; u0 ¼ u; uN ¼ w

�
ð8Þ

of the elliptic difference equations in an arbitrary Banach space E with a posi-
tive operator A. Using the estimates (2)–(4) and the formula (5), we obtain

ku0kE 6 M1kuskCsðEÞ.

Hence, we obtain an estimate of the form

kuskCsðEÞ 6 M2kuskCsðEÞ.

Theorem 1 is proved. h

The nonlocal boundary value problem (1) is said to be coercively stable (well
posed) in Fs(E) if we have the coercive inequality

kfs�2ðukþ1 � 2uk þ uk�1ÞgN�1
1 kF sðEÞ 6 MkuskF sðEÞ;

where M is independent not only of us but also of s.
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Since the nonlocal boundary value problem

�u00ðtÞ þ AuðtÞ ¼ f ðtÞ ð0 6 t 6 1Þ; uð0Þ ¼ uð1Þ; u0ð0Þ ¼ u0ð1Þ ð9Þ
in the space C(E) of continuous functions defined on [0,1] and with values in E
is not well posed for the general positive operator A and space E, then the well-
posedness of the difference nonlocal boundary value in Cs(E) norm does not
take place uniformly with respect to s > 0. This means that the coercive norm

kuskKsðEÞ ¼ kfs
�2ðukþ1 � 2uk þ uk�1ÞgN�1

1 kCðs;EÞ þ kAuskCsðEÞ

tends to1 as s! +0 . The investigation of the difference problem (1) permits
us to establish the order of growth of this norm to 1.

Theorem 2. For the solution of the difference problem (1) we have almost

coercive inequality

kuskKsðEÞ 6 M min ln
1

s
; 1þ j ln kBkE!Ej

� �
kuskCsðEÞ; ð10Þ

where M does not depend on uk, 1 6 k 6 N � 1 and s.
Proof. By [2],

kuskKsðEÞ 6 M kAukEk þ kAwkE þmin ln
1

s
; 1þ j ln kBkE!Ej

� �
kuskCsðEÞ

	 

;

for the solutions of the boundary value problem (8). Using the estimates (2)–(4)
and the formula (5), we obtain

kAu0kE 6 M1 min ln
1

s
; 1þ ln kBkE!E

�� ��� �
kuskCsðEÞ.

Hence, from last two estimates it follows (10). Theorem 2 is proved. h
Theorem 3. The nonlocal boundary value problem (1) is well posed in Cs(Ea).
Proof. By [8],

kfs�2ðukþ1 � 2uk þ uk�1ÞgN�1
1 kCsðEaÞ

6 M kAukEa
k þ kAwkEa

þ 1

að1� aÞ ku
skCsðEaÞ

	 


for the solutions of the boundary value problem (8). Using the estimates (2)–(4)
and the formula (5), we obtain



A. Ashyralyev, N. Altay / Appl. Math. Comput. 175 (2006) 49–60 55
kAu0kEa
6

M1

að1� aÞ ku
skCsðEaÞ.

Hence, we obtain an estimate of the form

kfs�2ðukþ1 � 2uk þ uk�1ÞgN�1
1 kCsðEaÞ 6

M2

að1� aÞ ku
skCsðEaÞ.

Theorem 3 is proved. h

Note that the coercivity inequality

ukþ1 � 2uk þ uk�1

s2

� �N�1

1

�����
�����

Ca
s

6
M

að1� aÞ ku
skCa

s

fails for the general positive operator A and space E. Nevertheless, we have the
following result.

Theorem 4. Let uN�1 � u1 2 Ea. Then the coercivity inequality holds:

ukþ1 � 2uk þ uk�1

s2

� �N�1

1

�����
�����

Ca
s

6 M
M

a2ð1� aÞ ku
skCa

s
þ 1

a
ku1 � uN�1kEa

	 

;

ð11Þ

where M does not depend on uk, 1 6 k 6 N � 1, a and s.
Proof. By [8],

ukþ1 � 2uk þ uk�1

s2

� �N�1

1

�����
�����

Ca
s

6 M
1

a
ðkAu� u1kEa

k þ kAw� uN�1kEa
Þ þ 1

að1� aÞ ku
skCa

s

	 


for the solutions of the boundary value problem (8). Using the estimates (2)–(4)
and the formula (5), we obtain

kAu0 � u1kEa
6

M1

að1� aÞ ku
skCa

s
.

From last two estimates it follows (11). Theorem 4 is proved. h

Note that by passing to the limit for s! 0 one can recover Theorems of the
paper [11] on the well-posedness of the nonlocal-boundary value problem (9) in
the spaces of smooth functions.

Now we consider the applications of Theorems 1–4. We consider the bound-
ary-value problem on the range f0 6 y 6 1; x 2 Rng for elliptic equation
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� o2u
oy2
þ
X
jrj¼2m

arðxÞ
ojsju

oxr1
1 � � � oxrn

n

þ duðy; xÞ ¼ f ðy; xÞ;

0 < y < 1; x; r 2 Rn; jrj ¼ r1 þ � � � þ rn;

uð0; xÞ ¼ uð1; xÞ; uyð0; xÞ ¼ uyð1; xÞ; x 2 Rn;

8>>>><
>>>>:

ð12Þ

where ar(x) and f(y, x) are given sufficiently smooth functions and d > 0 is the
sufficiently large number.

We will assume that the symbol

BxðnÞ ¼
X
jrj¼2m

arðxÞ in1ð Þr1 � � � innð Þrn ; n ¼ ðn1; . . . ; nnÞ 2 Rn

of the differential operator of the form

Bx ¼
X
jrj¼2m

arðxÞ
o
jrj

oxr1
1 � � � oxrn

n

ð13Þ

acting on functions defined on the space Rn, satisfies the inequalities

0 < M1jnj2m
6 ð�1ÞmBxðnÞ 6 M2jnj2m

<1
for n 5 0.

The discretization of problem (12) is carried out in two steps. In the first step
let us give the difference operator Ax

h by the formula

Ax
huh

x ¼
X

2m6jrj6S

bx
rD

r
huh

x þ duh
x . ð14Þ

The coefficients are chosen in such a way that the operator Ax
h approximates in

a specified way the operator

X
jrj¼2m

arðxÞ
ojrj

oxr1
1 � � � oxrn

n

þ d.

We shall assume that for jnkhj 6 p the symbol A(nh, h) of the operator Ax
h � d

satisfies the inequalities

ð�1ÞmAxðnh; hÞP M1jnj2m
; j arg Axðnh; hÞj 6 / < /0 <

p
2

. ð15Þ

With the help of Ax
h we arrive at the boundary value problem

� d2vhðy; xÞ
dy2

þ Ax
hvhðy; xÞ ¼ uhðy; xÞ; 0 < y < 1; ð16Þ

vhð0; xÞ ¼ vhð1; xÞ; vh
yð0; xÞ ¼ vh

yð1; xÞ; x 2 Rn
h;

for an infinite system of ordinary differential equations.
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In the second step we replace problem (16) by the difference scheme

� 1

s2
½uh

kþ1 � 2uh
k þ uh

k�1� þ Ax
huh

k ¼ uh
k ; 1 6 k 6 N � 1;

uh
0 ¼ uh

N ; �uh
2 þ 4uh

1 � 3uh
0 ¼ uh

N�2 � 4uh
N�1 þ 3uh

N ; Ns ¼ 1.

8<
: ð17Þ

Let us give a number of corollaries of the abstract theorems given in the above.

Theorem 5. Let s and h be a sufficiently small numbers. Then the solutions of the

difference schemes (17) satisfy the following stability estimates:

kus;hkCs Cb
hð Þ 6 Mkus;hkCs Cb

hð Þ; 0 6 b < 1;

where M does not depend on us,h, b, h and s.

The proof of Theorem 5 is based on the abstract Theorem 1, the positivity of
the operator Ax

h in Cb
h .

Now, we consider the coercive stability of (17).

Theorem 6. Let s and h be a sufficiently small numbers. Then the solutions of the

difference schemes (17) satisfy the following almost coercive stability estimates:

kfs�2ðuh
kþ1 � 2uh

k þ uh
k�1Þg

N�1
1 kCs Chð Þ 6 M ln

1

sþ h
kus;hkCs Chð Þ;

where M does not depend on us,h, h and s.

The proof of Theorem 6 is based on the abstract Theorem 2, the positivity of
the operator Ax

h in Ch and on the estimate

min ln
1

s
; 1þ j ln kBx

hkCh!Ch
j

� �
6 M ln

1

sþ h
.

Theorem 7. Let s and h be a sufficiently small numbers. Then the solutions of the

difference schemes (17) satisfy the coercivity estimates:

kfs�2ðuh
kþ1 � 2uh

k þ uh
k�1Þg

N�1
1 kCa

s Cb
hð Þ

6 Mða; bÞ½kus;hkCa
s Cb

hð Þ þ ku
h
1 � uh

N�1kCbþma
h
�;

0 6 a < 1; 0 < bþ ma < 1;

where M(a, b) does not depend on us,h, h and s.

The proof of Theorem 7 is based on the abstract Theorems 3 and 4, the pos-
itivity of the operator Ax

h in Cb
h and the well-posedness of the resolvent equation

of Ax
h in Cb

h ; 0 < b < 1 and on the fact that for any 0 < b < 1
2m the norms in the

spaces EbðAx
h;ChÞ and C2mb

h are equivalent uniformly in h (see [12,13]) and on

the following theorem on the structure of the fractional spaces EaðA
1
2;EÞ.
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Theorem 8 [8]. Let A is a strongly positive operator in a Banach space E with

spectral angle /ðA;EÞ < p
2 . Then for 0 < a < 1

2 the norms of the spaces EaðA
1
2;EÞ

and Ea
2
ðA;EÞ are equivalent.
3. Numerical analysis

We have not been able to obtain a sharp estimate for the constants figuring
in the stability inequality and coercivity inequality. Therefore we will give the
following results of numerical experiments of the nonlocal boundary-value
problem for elliptic equation:

� o
2uðy; xÞ
oy2

� o
2uðy; xÞ
ox2

¼ ½�12y2 þ 12y � 2þ y2ð1� yÞ2� sin x;

0 < y < 1; 0 < x < p;

uð0; xÞ ¼ uð1; xÞ; uyð0; xÞ ¼ uyð1; xÞ; 0 6 x 6 p;

uðy; 0Þ ¼ uðy; pÞ ¼ 0; 0 6 y 6 1.

8>>>>><
>>>>>:

ð18Þ

The exact solution is

uðy; xÞ ¼ y2ð1� yÞ2 sin x.

For approximate solutions of the nonlocal boundary-value problem (18), we
will use the first and the second order of accuracy difference schemes with
Table 3.1
Numerical analysis

tknxn 0 0.63 1.26 1.89 2.52 3.14

0.2 0 0.0150 0.0243 0.0243 0.0150 0
0 0.0380 0.0621 0.0628 0.0392 0
0 0.0172 0.0279 0.0281 0.0174 0

0.4 0 0.0339 0.0548 0.0548 0.0339 0
0 0.0544 0.0905 0.0923 0.0586 0
0 0.0343 0.0576 0.0590 0.0377 0

0.6 0 0.0339 0.0548 0.0548 0.0339 0
0 0.0544 0.0905 0.0923 0.0586 0
0 0.0343 0.0576 0.0590 0.0377 0

0.8 0 0.0150 0.0243 0.0243 0.0150 0
0 0.0380 0.0621 0.0628 0.0392 0
0 0.0172 0.0279 0.0281 0.0174 0

1.0 0 0 0 0 0 0
0 0.0260 0.0412 0.0410 0.0248 0
0 0.0036 0.0043 0.0036 0.0013 0
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s ¼ 1
50
; h ¼ p

50
. We have the second order difference equations with respect in n

with matrix coefficients. To solve this difference equations we have applied a
procedure of modified Gauss elimination method. The exact and numerical
solutions are given in Table 3.1.

The first line is the exact solution, the second line is the solution of the first
order of accuracy difference scheme and the third line is the solution of second
order of accuracy difference scheme.

Thus, the second order of accuracy difference scheme is more accurate com-
paring with the first order of accuracy difference scheme.
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for difference equations in weighted Hölder norms, Qualitative Methods of the Theory of
Dynamical Systems, Dal�nevost. Gos. Univ., Vladivostok, 1982, pp. 27–37 (in Russian).

[6] A.E. Polichka, M.E. Tiunchik, Some estimates of solutions of difference schemes of a
Neumann problem and a mixed problem, Zh. Vychisl. Mat. i Mat. Fiz. 22 (3) (1982) 735–738
(in Russian).

[7] S.I. Primakova, P.E. Sobolevskii, The coercive solvability of fourth order difference schemes,
Differ. Uravn. 10 (9) (1974) 1699–1713 (in Russian).

[8] A. Ashyralyev, Method of positive operators of investigations of the high order of accuracy
difference schemes for parabolic and elliptic equations, Doctor Sciences Thesis, Kiev, 1992,
312p (in Russian).

[9] P.E. Sobolevskii, Well-posedness of difference elliptic equations, Discrete Dyn. Nat. Soc. 1 (4)
(1997) 219–231.

[10] A. Ashyralyev, Well-posed solvability of the boundary value problem for difference equations
of elliptic type, Nonl. Anal. Theor. Meth. Appl. 24 (2) (1995) 251–256.

[11] A. Ashyralyev, B. Kendirli, Well-posedness of the nonlocal boundary value problem for
elliptic equations, Funct. Differ. Equat. 9 (1–2) (2002) 35–55.

[12] A. Ashyralyev, P.E. Sobolevskii, Well-posedness of parabolic difference equations, in:
Operator Theory Advances and Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 1994.
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