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Abstract

The nonlocal boundary value problem for elliptic difference equations in an arbitrary
Banach space is considered. The well-posedness of this problem is investigated. The sta-
bility, almost coercive stability and coercive stability estimates for the solutions of dif-
ference schemes of the second order of accuracy for the approximate solutions of the
nonlocal boundary value problem for elliptic equation are obtained. The theoretical
statements for the solution of these difference schemes are supported by the results of
numerical experiments.
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1. Introduction. The nonlocal difference problem

Coercivity inequalities in Holder norms with a weight for the solutions of an
abstract differential equation of elliptic type were established for the first time
in [1]. Further in [2-11,14-19] the coercive inequalities in Holder norms with a
weight and without a weight were obtained for the solutions of various local
and nonlocal boundary value problems for differential and difference equations
of elliptic type. In the present paper we consider the nonlocal boundary value
problem

{_rlz(uk+1_2uk+ukl)+Auk_§0k, I<k<N -1, (1)

uyg = uy, —uy+4uy —3ug=uy_» —4uy_1 +3uy, Nt=1

for elliptic difference equation in an arbitrary Banach space E with a positive
operator 4.

It is known (see [3]) that for a positive operator A it follows that
B =1(t4 + \/A(4 + <24)) is strongly positive and R = (I +tB)”" which is de-
fined on the whole space E is a bounded operator. Furthermore, we have that

||Rk||E—»E <M(1+ 5T)7k» kTHBRkHE—»E <M, k=1, 6>0, (2)
1B (R — R e < M(re)" (k) "7, (3)
I1<k<k+r<N, 0<a f<I1,

where M does not depend on t.
First of all let us give some lemmas that will be needed below.

Lemma 1. The estimates hold:

{ I = RY) g <M,
-1 —2y\—1
(1 — (21 —<B)(2I +3tB) R" ) || < M,

where M does not depend on 7.

The proof of this lemma is based on the estimates (2) and (3).

Lemma 2. For any ¢, 1 < k < N — 1 the solution of the problem (1) exists and
the following formula holds:

N-1
we=>»_ Gk, j)p;r, 0<k<N, (5)
=1
where

G(k,1) = G(k,N — 1) == [(R" (4R —I) + R — 4I)B~'(I - DR"?)""

SN
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for k=0 and k= N;
G(k,j) = —C(R* — 4R + 1) (R"> + RV 7"2)(2B)"'(1 — DR"™?)"!
for2<j< N—-2and k=0, k=N,
G(k,1) = CC,(2B) "{R*'(2(R + 3I) + R*(R — 3I))
+RVNMA4I —R)YI + R) + RV (I —4R)(I + R)
+RNFS3BR T —2R*BR+1)Y(I —RY) ' (I = DRV )",

G(k,N — 1) = —CC,(2B) "{R*(R — 4I)(R + I) + R"* ' (=2(R + 3I)
+R*(3I = R)) + RV (I = 3R +2R*(3R + 1))
+ RV HS3AR - DR+ D)} —RY) ' (1 — DRV ),

G(k,j) = CC,(2B) " {(R — 1)’ (R + RN">7"%) 4 (=1 + 3R
—|—R2(3I . R))(RN—k+j—2 +RN+k—j—2) + 2(1 . 3R)(R2N72+j7k
+ RN 7277y L RUH(RY — [)(R — 31 + RV "*(—1 4 3R))}
x (I—R¥)""(1—DR"?)"!
for2<j<N—-2and 1 <k<N-—1. Here

C=(+1tB)(2+3tB)"", Cy=(I+1B)(2+1B)",
D = (21 —tB)(2I 4+ 31B) "',

where I is the unit operator.

Proof. We see that the problem (1) can be obviously rewritten as the equivalent
nonlocal boundary value problem for the first order linear difference equations

U — Up_
S L Buy =z, 1<k<N,

uy = ug, —uy+4du; — 3ug = uy_» — duy_1 + 3uy,
T By — (14 B)g,, 1 <k<N-— I
From that there follows the system of recursion formulas
uy = Ruy_y + tRz;, 1<k<N,
{zk:Rzk+1+r(pk, I<kSN-1.
Hence

k
we = Rfug + > Rz, 1 <k<N,
-1

N-1
ze =RV zy + 3 Rffkr(pj, 1<k<N-1
=k
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From the first formula and the condition uy = ug it follows that

N
uy = RVuy + E RV-iHlz

i=1

and

N N-1
_ ; 1 )
Uy = Uy = ([ — RN) 1 E RN_H—I‘[Z[ = 1 RN {TRZN + E RN_H—ITZ[}

i=1 i=1

=- RN {<1R+ZR2N 2’“'5)2 —|—ZTRN IHZR’ ’r(p/}

N—1 J
= (- RNW{(R — RN =R My + Y7 ZRN“‘”“%}

=1 =l

j=1

N-1
_ (I_RN)—l(]_RZ)fl [R(l —R2N)‘L'ZN _i_ZTZ[RNﬁHl _RN+/+1]qu‘|’

(6)
and for k, ] <A< N - 1:

i=1

N-1 k
=( - RN)—I {th+lZN + ZRkJrNHIhZi} + ZRIH'HTZ
i=1

N-1
— ([ 7RN)—1(1 RZ)IRk{(R 7R2N+l)([ *Rz)ill’ZN + Z_L_Z [RijJrl RN#HI](pj}

=

k k N-1
+ ZRN-H{—ZH—ITZN + Z Z _L,sz+/—2L+1q)j
i=1 =1 j=i

N-1
_ (1 _RZ)—I [Rk+l —|—RN_k+l}‘CZN + (1 _RN)*I([ _RN—I)*1 .L.2 [RN_’/_H —RNHH]Q/
Jj=1
k J
ey R e,
=1 j=k+1l =1
N-1

_ (1 _Rz)—l [Rk+l +RN7k+1}TZN + (1 _RN)—I([ _Rz)—le T2 [RNf/H _RNHH}%
1

J

N-1
L (-R) -1 ZTZ R\k—jHl _Rk+j+l)(pj. (7)
Jj=1

By using the formulas (6), (7), and the condition —u, + 4u; — 3ug = uy_» —
4un_1 + 3uy, we obtain (5). Lemma 2 is proved. [J
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2. Well-posedness of the nonlocal difference problem
Let F.(E) be the linear space of mesh functions ¢* = {qo,(}]]\F1 with values in

the Banach space E. Next on F,(E) we denote by C,(E) and C*(E) Banach
spaces with the norms

197l =, max oyl
10N = 0 e+ max [ geer — Gxlls ms
P llexe) = NP llear) T 58wy 1Phrr = Prlle oy

The nonlocal boundary value problem (1) is said to be stable in F(FE) if we
have the inequality

[l ey < M| 07|, )

where M is independent not only of ¢ but also of .
We denote E, = E,(B, E) as the fractional spaces consisting of all v € E for
which the following norm is finite:

o D) -1
Ioll, = sup ZlIB(A+ B) "ol
7>

Theorem 1. The nonlocal boundary value problem (1) is stable in C.(E) norm.

Proof. By [2],
lullc. ey < Mlll@llell + 1l + llof
for the solutions of the boundary value problem

{_TLZ[”IH—I = 2u + ] + Aug = @y,
I1<kSN-1, uy=¢, uy=1y

CI(E)]v

®)

of the elliptic difference equations in an arbitrary Banach space E with a posi-
tive operator 4. Using the estimates (2)—(4) and the formula (5), we obtain

[[uoll g < Mill@?

C:(E)"

Hence, we obtain an estimate of the form
||uIHC,(E) < MZH(PT”C,(E)'

Theorem 1 is proved. [

The nonlocal boundary value problem (1) is said to be coercively stable (well
posed) in F(E) if we have the coercive inequality

e (s — 25 + )}y

FuE) S Mllg® FL(E)

where M is independent not only of ¢° but also of .
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Since the nonlocal boundary value problem
(1) 4 Au(t) = (1) (O<r< 1), w(0) =u(l), O =u(1) (9

in the space C(E) of continuous functions defined on [0, 1] and with values in E
is not well posed for the general positive operator 4 and space E, then the well-
posedness of the difference nonlocal boundary value in C(E) norm does not
take place uniformly with respect to T > 0. This means that the coercive norm

T — N—-1 T
(| HK,(E) = |{= 2(uk+1 = 2up + 1)}y ||C(T,E) + || Au HCI(E)

tends to co as T — 40 . The investigation of the difference problem (1) permits
us to establish the order of growth of this norm to oo.

Theorem 2. For the solution of the difference problem (1) we have almost
coercive inequality

T 1 1 T
Il < M {1 21+ 11081l (10)

where M does not depend on @i, 1 <k < N—1andr.

Proof. By [2],

[Ju?

(1 )
o <M Al + 1+ min {in 1+ 81, bl

CI(E):| )

for the solutions of the boundary value problem (8). Using the estimates (2)—(4)
and the formula (5), we obtain

. 1
il <y min {11+ fn 1y o

Ce(E)"
Hence, from last two estimates it follows (10). Theorem 2 is proved. [
Theorem 3. The nonlocal boundary value problem (1) is well posed in C(E,).

Proof. By [8],
{2 (st — 2 + ) 1y .

<M |[|de

+ |4y

1 T
E, g T m o C:(Ex)
for the solutions of the boundary value problem (8). Using the estimates (2)—(4)

and the formula (5), we obtain
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M,

[ Auoll, < mlqullcm'

Hence, we obtain an estimate of the form

M
) N—-1 2 T
{7 (s = 2ux +wr1) by ey < Al —a) lollc,z.)-

Theorem 3 is proved. [
Note that the coercivity inequality

N-1
Uyt — 20y + g
72 .

fails for the general positive operator 4 and space E. Nevertheless, we have the
following result.

< g7
Sl —a) ¢ lle:

c:

Theorem 4. Let ¢y 1 — @1 € E,. Then the coercivity inequality holds:
eyt — 2+ N
72 |

where M does not depend on ¢, 1 <k < N—1, o and 7.

1
c* +;H(P1 - (pN—IHE,( )

<m|-M e
= fxz(lfoc)(P

c

(11)

Proof. By [8],

N-1
U1 — 2uy + Uy
72 |

1
<]} (g o
for the solutions of the boundary value problem (8). Using the estimates (2)—(4)
and the formula (5), we obtain

c:

gl T 4y — oy EA) +

L e
a(l — o) P lle:

M,
Auy — < —|07| .
o = e, < 2 ol

From last two estimates it follows (11). Theorem 4 is proved. [

Note that by passing to the limit for 7 — 0 one can recover Theorems of the
paper [11] on the well-posedness of the nonlocal-boundary value problem (9) in
the spaces of smooth functions.

Now we consider the applications of Theorems 1-4. We consider the bound-
ary-value problem on the range {0 <y < 1,x € #"} for elliptic equation
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azu alr‘u
_a—y2+ lr‘z:;mar(X)W + ou(y,x) = f(y,x), .
O0<y<l, x,re®", |rl=r+-+r,

u(0,x) =u(l,x), u,(0,x) =u,(l,x), xeR,
where a,(x) and f{y, x) are given sufficiently smooth functions and ¢ > 0 is the

sufficiently large number.
We will assume that the symbol

B'(&) =) a)i&)" - (&))", &=(&,...,&) R

[r|=2m
of the differential operator of the form
o
B =Y a (%) s (13)

e T'n
[r|=2m X1 ax”

acting on functions defined on the space %", satisfies the inequalities
0 < Mi[E[" < (=1)"B'(¢) < Ma|¢f™" < o0

for & # 0.
The discretization of problem (12) is carried out in two steps. In the first step
let us give the difference operator 4; by the formula

A = Z bDju + ul. (14)

2m<|r|<S

The coefficients are chosen in such a way that the operator 4; approximates in
a specified way the operator

[r|=2m

We shall assume that for || < m the symbol A(&h, h) of the operator 47 —
satisfies the inequalities

(—1)"A%(eh, ) = My, |argA(Eh )| < ¢ < ¢y < 3. (15)

With the help of 4; we arrive at the boundary value problem

& (y,x)

a7 + 40" (v,x) = ¢"(r,x), 0<y<1, (16)

v"(0,x) = v"(1,x), Uf(O,x) = Uj‘,(l,x), X E R,

for an infinite system of ordinary differential equations.
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In the second step we replace problem (16) by the difference scheme

1 X
‘Ez[ukJrl 2l +ul |+ A=l 1<k<N-—1, (17)

uh =l —uh 44t =3l =l — 4l +3ul, Nt=1.

Let us give a number of corollaries of the abstract theorems given in the above.

Theorem 5. Let t and h be a sufficiently small numbers. Then the solutions of the
difference schemes (17) satisfy the following stability estimates:

||u‘rh

T,h
ety S Mllo™lle,(cry, O<B<L,
where M does not depend on ™", B, h and .

The proof of Theorem 5 is based on the abstract Theorem 1, the positivity of
the operator 4% in Cl .
Now, we consider the coercive stability of (17).

Theorem 6. Let t and h be a sufficiently small numbers. Then the solutions of the
difference schemes (17) satisfy the following almost coercive stability estimates:

1
_ N1
I{e 2 (uyyy — 20} +up )} le.c <M1nr+ )

T,h
AL

where M does not depend on ¢*", h and t.
The proof of Theorem 6 is based on the abstract Theorem 2, the positivity of
the operator 4 in C,, and on the estimate

1
T+ h

. 1
min {ln, 1+ |In |B’,j||cﬁch|} <Mln
< ;

Theorem 7. Let t and h be a sufficiently small numbers. Then the solutions of the
difference schemes (17) satisfy the coercivity estimates:

ey — 20+ ) }1\,7]HC;(C£‘)
< M (e, B)[ll ™" ||c§(cf) + ||(P}11 - (P?v_lllcgw],
0<a<]l, 0<f+ma<l,
where M(a, ) does not depend on ¢*", h and .

The proof of Theorem 7 is based on the abstract Theorems 3 and 4, the pos-
itivity of the operator 4; in C’ and the well-posedness of the resolvent equation
of 45 in clo<p<i and on the fact that for any 0 < f§ < 5= the norms in the
spaces Eg(4;,C,) and C), 2mf are equivalent uniformly in / (see [12,13]) and on

the following theorem on the structure of the fractional spaces E“(AZ, E).
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Theorem 8 [8]. Ler A is a strongly positive operator in a Banach space E }vith
spectral angle ¢(A,E) <%. Then for 0 < o < 1 the norms of the spaces E,(4,E)
and E3(4, E) are equivalent.

3. Numerical analysis

We have not been able to obtain a sharp estimate for the constants figuring
in the stability inequality and coercivity inequality. Therefore we will give the
following results of numerical experiments of the nonlocal boundary-value
problem for elliptic equation:

Quly,x)  u(y.x)
2
0<y<l, O<x<m, (18)
u(0,x) =u(l,x), u,(0,x)=u,(1,x), 0<x<m,

u(y,0) =u(y,n) =0, 0<y<1.

= [—12)* + 12y — 2 +1*(1 — y)*] sinx,

The exact solution is

u(y,x) = y*(1 — y)’sinx.

For approximate solutions of the nonlocal boundary-value problem (18), we
will use the first and the second order of accuracy difference schemes with

Table 3.1

Numerical analysis

1\ Xy 0 0.63 1.26 1.89 2.52 3.14

0.2 0 0.0150 0.0243 0.0243 0.0150 0
0 0.0380 0.0621 0.0628 0.0392 0
0 0.0172 0.0279 0.0281 0.0174 0

0.4 0 0.0339 0.0548 0.0548 0.0339 0
0 0.0544 0.0905 0.0923 0.0586 0
0 0.0343 0.0576 0.0590 0.0377 0

0.6 0 0.0339 0.0548 0.0548 0.0339 0
0 0.0544 0.0905 0.0923 0.0586 0
0 0.0343 0.0576 0.0590 0.0377 0

0.8 0 0.0150 0.0243 0.0243 0.0150 0
0 0.0380 0.0621 0.0628 0.0392 0
0 0.0172 0.0279 0.0281 0.0174 0

1.0 0 0 0 0 0 0
0 0.0260 0.0412 0.0410 0.0248 0
0 0.0036 0.0043 0.0036 0.0013 0
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T =45, h =2 . We have the second order difference equations with respect in n
with matrix coefficients. To solve this difference equations we have applied a
procedure of modified Gauss elimination method. The exact and numerical
solutions are given in Table 3.1.

The first line is the exact solution, the second line is the solution of the first
order of accuracy difference scheme and the third line is the solution of second
order of accuracy difference scheme.

Thus, the second order of accuracy difference scheme is more accurate com-
paring with the first order of accuracy difference scheme.
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