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ABSTRACT

REDUCING LEARNING COMPLEXITY
IN MULTI-VIEW CLASSIFICATION MODELS

KAYA, Heysem

Computer Engineering

Supervisor: Asst. Prof. Dr. Olcay KISRIN

August 2009, 48 Pages

In pattern recognition, using all the availabletfieas as a single input vector to a
classifier is known to worsen the generalizationthad learning algorithm due to the
phenomenon known as the curse of dimensionalityclwktands for the diminishing
coverage of the feature space with fixed numbedath points as the feature set size
increases. Most studies so far concerned with featindividually, however some high
dimensional datasets do contain features natuoadjgnized into several groups, which
are known as “views” in the literature. Techniquasmulti-view learning exploit
multiple views of the data samples, one of thedgpexamples of which is the audio
versus video of a human speaking. Such differerdaiiies as audio and video could
help each other in making improved classificatibtheir decisions are fused. Multi-
view methods can be more successful than single Marning techniques in that they
can exploit independent properties of each view @awde effectively learn complex

distributions. As the features in a view is a naturombination, feature selection



technigues are not directly applicable to such s#dtabecause that would involve
picking some features from each view and fusingntheto a single feature vector,
resulting in the aforementioned curse of dimendibnar over-learning considerations.
In this thesis, several methods for feature selacéire tailored to fit to the context of
multi-view classification so as to avoid the cucdéenigh input dimensionality. Aim of
the study was to find efficient methods for selegtthose views, which cooperatively
perform as well as or better than the single-viewnterpart (i.e. the whole set of
features fused into a single feature vector fohesample of the dataset) and besides,
extracting features from those views to enhancesexylent learning process. The
results of these methods are compared to drawdamag in multi-view classification

problems.

Keywords: Feature Selection; Feature Extraction; Curse ahddisionality; Multi-
View ARTMAP; Multi-View Nearest Neighbor; Multi-Vier Naive Bayes; Protein Sub-
nuclear Location Classification; Diagnosis of Paskin’s Disease; Data Mining; Pattern

Recognition.



OZET

COK BAKISLI SINIFLANDIRMA MODELLER INDE
OGRENME KARMASIKLI GININ AZALTIMI

KAYA, Heysem

Bilgisayar Muhendisfi

Tez Dangmani: Yard. Dog. Dr. Olcay KURUN

Agustos 2009, 48 Sayfa

Oriinti tanimada, mevcut butiingddenlerin bir siniflandiriciya tek bir girdi vektor
olarak verilmesi grenme algoritmasinin geneiteme yetengini boyutsallgin laneti
olarak bilinen olgudan dolayr zayiflatir ki bu olgigsisken kimesinin buyukigii
arttikca, dgisken uzayinin sabit sayida veri noktasiyla daha azl&nmasini ifade
eder.Su ana kadarki gau calsma dgiskenler ile bireysel olarak ilgilendi, ancak bazi
yuksek boyutlu verikimeleri literatirde “bgkiolarak bilinen c¢sitli dogal gruplara
ayrilmis degiskenler icerir. Cok-bakl 6grenmedeki teknikler veri 6rneklerinin farkl
bakslarindan, ki bir insan kogmasinin gorunti ve sesi buna tipik bir drnektir,lsih
dizeyde faydalanir. Gorintl ve ses gibi farkll hiayueser kararlari birlgtirilirse
birbirine daha iyi siniflandirma yapmak icin yaramnolabilir. Cok-bakgh yontemler
her bakgin bgzsimsiz dgiskenlerinden yararlanabilmeleri ve kargriadasilimlari daha
etkin bir sekilde @renmeleri noktalarinda tek bakiyontemlerden daha faydalidir.
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Bir bakss icindeki deiskenler dgal bir kombinasyon oldtundan dgisken segim
teknikleri bu tdr verikiimelerine goudan uygulanamaz cinkid her badn bazi
degsiskenleri secip bunlar tek bir deken vektorl icinde birkgirmek ©6nceden
bahsedilen boyutsafn laneti hususu ile sa1 6grenme hususundan dolayl verimsiz
olabilir. Bu tezde, da&sken secimi icin kullanilan éli yontemler yuksek girdi
boyutsallginin lanetinden sakinmak amaciyla cok-kiksiniflandirma bglamina
uyarlanmstir. Bu calsmanin amaci, birarada olglunda en az verikiimesinin tek bgki
hali (verikimesindeki her 6rnek icin butingddenlerin tek bir dgisken vektori tekil
edeceksekilde birlestiriimesi) kadar iyi balglari segmek ve bunun yaninda bir sonraki
ogrenme surecinde kullaniimak Uzere bu bkiakdan dgisken Ozitlemektir. Bu
yontemlerin sonuclari ¢cok-baki siniflandirma problemlerinde bir yol haritasemiek

icin kassilastiriimistir.

Anahtar Kelimeler: Degisken Secimi; Dgisken Ozitleme; Boyutsaflin Laneti; Cok
Bakisli ARTMAP; Cok Baksli En Yakin Komgu; Cok Baksl Naive Bayes; Protein
Cekirdekalti Yer Siniflandirma; Parkinson Hagiahn Teshisi; Veri Madencilgi;

Oriintil Tanima.
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1. INTRODUCTION

Feature selection/extraction is a preprocessing feubsequent pattern
recognition/machine learning tasks. This is neetledause as the feature set size
increases, reliable classification is impaired bg tdiminished coverage of the feature
space with the fixed number of data points obtaimgdostly experimental processes,
which is a phenomenon known as the curse of dimaabty (Bishop, 1995).
Reducing the feature space dimensionality to anmahiyet descriptive size is crucial

for effective classification/regression models (Guyand Elisseeff, 2003).

In some datasets, features are naturally orgamitedeveral groups, which are known
as “views” in the literature (Yarowsky, 1995; Bluand Mitchell, 1998; Christoudias et
al., 2008). Just like in the single-view problemghwhigh input dimensionality that
need feature selection as preprocessing, the wiaiti-methods also need mechanisms
to fuse information from different views to overcenthe problems with high input
dimensionality. In this thesis, several methodsféature selection and extraction are
adapted to the multi-view classification settingcdogse single-view feature selection
techniques are not directly applicable to such nwidtv datasets. Single-view feature
selection methods can pick some features from e@eth and merge them into a single
feature vector. However, this approach would nto the curse of dimensionality and

over-learning problems.

In some areas, such as chemistry, medicine, andfdimatics it is hard and time

consuming to attain data samples, and moreoverdalte samples may have a huge
number of features. Therefore the results of thuslys especially apply to the latter
where data is limited in samples and whose higirMyedsional feature space contains

natural groups of variables (views).

Replacing single-view feature selection with usimgltiple views, it is possible to
dramatically lower computational demands to commtgrilassifiers (Okun and Priisalu,

2005). When having to work with, for example, thauds of variables naturally



organized into tens of views, the computational glexity reduces from millions to
only hundreds by several orders of magnitude. Tumaler of feature subsets chosen
heuristically and evaluated by feature selectionthods will have to increase by
merging all the views to get a single feature veatat of which feature selection to be
applied. This would cause the danger of overfitiiegause it is more likely to find a
feature subset that fits well with the datasetaatch However, the success which stems
from this probable overfitting will be controversidue to under-sampled, unevenly
distributed, multivariate nature of data. Therefamglications of feature selection

methods which are also computationally very cosili/not have a scientific validity.

Secondly, the views can correspond to very differeadalities such as video data and
audio data, in such a case fusing the low leveewiteatures with low level audio
features is not desirable because the low levdurfes in each view must first be
combined within their own views in order to yieldeful high-level descriptors, which
can then be fused with the high-level descriptoosnfthe other views, hierarchically.
On the other hand, an example of a bad low le\atlfe combination can be an attempt
to evaluate a pixel feature together with an amgétfeature, neither of which is yet
high-level. This is not just an inefficiency caderation caused by fusing all the views,
this unnecessary expansion of the input space, ic@alwith small sample sizes which
are typical of experimental sciences, would greatiynplicate the learning task (the

curse of dimensionality).

Moreover, in some cases views may contain featwbkgh have many-to-many
interrelations. This notion is referred &g ew Conditional Independend®lum and
Mitchell, 1998; Christoudias et al., 2008). Iresle cases input fusion (combining data
without any evaluation process) will require mongles for generalization than
output fusion which is the case for multi-view exation. This problem takes us back to
curse of dimensionality problem in under-samplethsiats.

In this study, a series of methods and techniquese welaborated for selection,
extraction, and classification purposes for muiéw datasets. The experimental

datasets used in this study are two biomedicalsdtgal) Protein Structure Prediction



dataset which was introduced in the work of Nanawd Seker (2008), 2) Parkinson’s
Disease Diagnosis from Vocal Features (Little et 2008). The datasets under study
were classified using Fuzzy ARTMAP Neural Netwdtk\earest Neighbor and Naive
Bayes. Also, k-Medoids clustering algorithm was duge provide an intermediate
output for classification by Naive Bayes and FUARTMARP. These stacking settings
are called K-MNB and K-MART, respectively. Fuzzy ARAP and k-NN were also
used to rank views according to their individuassification power. The views are
sorted according to their individual classificatiaccuracy and loaded as input into the
classifier iteratively. After incremental loadingidh testing, the set of views with
maximum performance was selected. Forward Seled@med as a benchmark to
compare with both total set (all views fused intsirggle view) and only selected views.
Other non-heuristic selection techniques such asloma selection and brute force
(evaluation of all subsets, exponentially) (Okunl &riisalu, 2005) are not covered in
this thesis. A simple and well known method, namleldN, was firstly used for
classification. The performance of k-NN with fuletsof features considered as a
baseline. Then | exploited variants of ARTMAP methon the fused features of
individually best views. | applied Naive Bayes aggeh as the multi-view technique.
Each view is evaluated individually using a simpledoids approach or a more
complex Support Vector Machines (SVM) approach.nTtlee classifications of these
methods on all the views are given to Naive Bay#B) (for fusing these probability
estimates. Although, even as its name impliesNBeapproach is very simple, it was
found to be very effective because it used allviegs independently and then merged
their prediction outputs. Investigation of K-MNBdld¢o design of K-MART stacking
network which provided the best results in thisdgtuSuccessful stacking methods
suggest that fusing several views into a singlevvig not as effective as fusing the

classifier outputs of the views.

The thesis layout is as follows. In Section 2, titerature on combining multiple

learners is reviewed pointing out to similaritieglaifferences of ensemble and multi-
view. In Section 3, the methods and techniques usdHis study are introduced. In
Section 4 the experimental studies and resultgiaen. In Section 5 the conclusions

are provided and recommendations for future workdecussed.



2. LITERATURE REVIEW

2.1. Combining Multiple Learners

Machine learning studies elaborated on several gmtibn techniques which benefits
from decisions of multiple learners with differemigorithms, hyperparameters,
subproblems and training sets (Alpaydin, 2004). fEttenale depends on the fact that
there is no algorithm that is always accurate (KeeFunch Theorem).

Most commonly used learner combining methods argngp bagging, boosting,

mixture of experts, stacking and cascading.
When used in classification, voting is a weightathmation for each class label where

weights should sum up to 1. For example, weightshmaassigned to be identical (1/n)

or determined empirically by using the classifiec@acy on a validation set.

— \'N
Vi = Lj=1Wjdj; 2.1

Classifief Classifiep | Classifief
V]_ V2 VN

Figure 2.1 Voting Mechanism



While boosting iteratively handles misclassifieanpées in order to form a composite
classifier by a weighted vote (Alpaydin, 2004), ¢iag creates a set of aggregate
classifiers with bootstrapping (random samplinghwieéplacement) whose votes are
equally weighted.

In stacking, the combiner is another learner (Athay2004), as it is shown in Figure
2.2, the outputs of individual learners are givenirgout to it. Note that individual

learners need not be supervised learners.

________________________________________

Learneg Learnes . | Learneg
Vi V2 S Vi

Figure 2.2: Stacking Mechanism

2.2.Comparison of Multi-View with Ensemble

2.2.1. Ensemble

Ensemble learning refers to a collection of methtd® learn a target function by
training a number of individual learners and conmigrtheir predictions. Ensembles can



be generated by subsampling the training examphesipulating the input features,
and modifying the learning parameters of the classilt is also possible to generate

ensembles using views inherent in the dataset.

Accuracy and efficiency are advantages of ensemlreterms of accuracy, a more
reliable mapping can be obtained by combining thpwat of multiple experts due to No
Free Lunch Theorem. On behalf of efficiency, a ptax problem can be decomposed
into multiple sub-problems that are easier to usid@d and solve (divide-and-conquer
approach).

Uncorrelated errors of individual classifiers cas ddiminated through averaging. The
desired target function may not be implementabli widividual classifiers, but may

be approximated by ensemble averaging.

From [Dietterich, 1997] /’:

Class 1 Class 1

!
i
I
i

s | - -

|

I

}/ i Class 2
L

I 1

Figure 2.3 Smoothing by Ensemble Averaging

Dietterich (1997) explains the success of ensemiitle statistical, computational and
representational reasons. The statistical reasdmaisthere is no sufficient data. The
computational reason is the trap in local minimidie representational reason is the

same with No Free Lunch Theorem.



Although the terminology differs in ensemble andtimuew, in this thesis they will be

used interchangeable since the ensembles will bergted from independent views.

2.2.2. Multi-View

Multi-view learning refers to learning the targemncept from several disjoint subsets
(views) of features each of which are sufficientdarn the target concept. Multi-view
learning is useful when examples are not all labédentically by classification from
each view and given the label of any example, #scdptions in each view are
independent (Blum and Mitchell, 1998; Muslea et2002; Christoudias et al., 2008).

Increasing the classification accuracy is the commaoal in both ensemble and multi-
view learning techniques. However multi-view is @splly used when the dataset has
natural views and when learning is semi-supervisédble 2.1 summarizes the

differences between the two.

Ensemble Multi-view
Problem setting | Partition feature into multi-view Given multi-view
Framework Supervised learning Semi-supervised learning

Table 2.1 Difference between Ensemble and Multi-View LeagiMethods

2.3. Prominent Studies in Multi-View Learning

The techniques using multiple views in learninglexpndependent properties of each

view and more effectively learn complex distribuso In other words, the reason to use



multiple views instead of using one view is thambinations of views are able to

explain more than single view (Bickel and Schef&&04; Okun and Priisalu, 2005).

Empirical success of multi-view approaches has lme¢ed in many areas of computer
science including Natural Language Processing, Q@oenpVision, and Human
Computer Interaction (Christoudias et al., 2008)tiMview classification attracts many
researchers recently because there is yet no kfioeat” way of fusing the information
in the views. Works on multi-view machine learniggined importance since
Yarowsky (1995) and Blum and Mitchell (1998) pouhteut that multiple views can
lead to better classification accuracy than thewrof all views. Bickel and Scheffer
(2004) showed that multi-view clustering performester than single view clustering
even though the setting contains only two viewscihhey argued either one suffices

for learning.

Kakade and Foster (2007) also argue that the nmaportance of the multi-view
technique is that weaknesses of one view are congpited by the others. This finding
is also supported by studies of Dietterich (19900®.



3. METHODS

3.1. Forward Selection

Forward selection algorithm for the multi-view sa&ft is implemented similar to its

traditional single-view use (Bishop, 1995), buthwitne exception: a group of variables

(view) is selected at a time instead of a singleatde.

Forward selection starts with an empty set of viewsl loads the view with best
predictive power. In subsequent iterations the vgwng the best predictive power

together with already existing view(s) is mergei ithe set if the total prediction rate is

increasing.

Al gorithm Forward Sel ection of views

| nput :
CQut put :

D: a data set containing mviews

A set of selected views

Met hod:

18.
19.
20.

Add all views to vector unselvw
Instanti ate vector selvw
float maxsc= 0.0
r epeat
vw= nul |
for each v in unsel vw do
vector curvw= selvw U v
train(train_set, curvw)
fl oat sc=test(test_set, curvw)
if (sc>maxsc)

MaXsSCc=sc
VW=V
end if
end for
if (vw!= null)

sel vw. add( vw)
unsel vw. r enove( vw)
i ncrease=true
end if
until no increase;

Figure 3.1: Forward Selection Algorithm used in the study



3.2. Selection by Ranking

Ranking of views was provided by filter method mRMReng et al., 2005), and
classifier methods ARTMAP and k-NN. Ordered by theank, views are fused
incrementally and classifier performances wereutated. In this method set of views

with best performance was to be selected.

Selection and fusion - merge

Ranking in the order of features of top three views: Final

individual classification {V1, Vs, Vy}

sufficiency: {V1, Vs, Va4, V3 V2}

Classification

View
View

Selectiol

Ranking

A

Vi Vo V3 V4 Vs

Figure 3.2: An lllustration of Ranking Selection Mechanism witlput Fusion

Figure 2.2 illustrates a RS mechanism with a hygtathl problem setting comprising
five views. View ranking process results as showthe figure: \{, Vs, V4, VzandVa.
Then view selection process fuses these viewseigitlen order one by operforming
a classification task for the resultant view set. (@t first {\i}, next{V 1, Vs}, then {V4,
Vs, V4} and so on). Prediction rates of fused sets aradedcso that the view set with
highest prediction success is proposed for subsedgerning. In the figure the view set

{V1, Vs, V4} is proposed. In output fusion, the only differenis that feature vectors of

10



views are evaluated by a method and then informatiech as cluster indices or class

membership distribution is provided for selectilassification.

3.3.k-Nearest Neighbor

k-NN is a widely used pattern recognition algorithiimere are multi-view variants of
this method which utilize boosting and bagging.cé&ly other boosted k-NN variants
are introduced. Koon (2007) proposes direct bogstising local warping of distance
metric, in which incorrectly classified samples agithe weights of their neighbors.
The algorithm used in this study is an adaptatiaih® simple k-NN algorithm.

Al gorithm Modified sinple k-NN
| nput :
k: number of nearest neighbors used for majority voting
D: set of training sanples
prob: training set |abel distribution (prior probability),
conpl enmentary par anet er
0: sanple object to classify
Qutput: class | abel of sample
Met hod:

1. vector nn = get_nearest_nei ghbors(k,D,0) //gets nearest k
nei ghbors of o fromD

2. vector elected= mmjority vote(nn) // does a nmjority
voting and returns the class |abels having the nax vote

3. if (elected.size() > 1) //if there is a tie get the
el ected | abel having max prior prob

4. return get_max_prior_prob(el ected, prob)
5. el se
6. return el ected. get(0)

Figure 3.3: k-NN algorithm used in the study

There could be tie among class labels having maximotes for k>1. Inspired by
decision tree generation algorithms, | have intoeduan additional majority voting

mechanism to handle such ties.

11



Ensemble of k-NN classifiers were not used in gtigdy as in the work of Okun and
Priisalu. However, data patterns of selected viemes merged before entering this

process.

3.4.Fuzzy ARTMAP Neural Network

Fuzzy ARTMAP is a fast and stable classificatiogoathm which is capable of
incremental learning (Carpenter et al., 1992) hesugeerior to Multi Layer Perceptron
(Busque & Parizeau, 1997). Fuzzy ARTMAP achievesyrthesis of fuzzy logic and
adaptive resonance theory (ART) neural networks elploiting a close formal

similarity between the computations of fuzzy subsetl and ART category choice,
resonance, and learning (Carpenter et al., 199@23zyF ARTMAP also realizes a
minimax learning rule that concointly minimizes gictive error and maximizes code
compression, or generalization (Carpenter et 802} Fuzzy ARTMAP is composed
of two Fuzzy ARTs. Fuzzy ART is an ANN for unsupeed learning which was
introduced by Carpenter, Grossberg and Reynold9%1.

3.4.1. Fuzzy ARTMAP Architecture

The Fuzzy ARTs contained in ARTMAP ANN are iderdias ART and ART,. The
parameters of these networks are designated resggdiy the subscripts a and b. The
two Fuzzy ARTs are interconnected by a series nheotions between the Ryers of
ART, and ART,. The connections are weighted, i.e. a weightbetween 0 and 1 is
associated with each one of them. These connedibomswhat is called the map field
F?* The map field has two parametefs,( - learning rate anga.s- vigilance) and an
output vector xfCarpenter at al.,1992; Busque & Prizeau, 1997yilafice can be
defined as sensitivity to new data patterns. Wisiteall vigilance values increase code
compression (generalization) leading to larger gratg boxes, bigger vigilance values
result in increased number of categories. Categmoliferation is hindered by

normalizing input vectors at preprocessing stage{€nter at al.,1992).
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During supervised learning ARTreceives an a stream & of input patterns, and
ART receives a stream §} of input patterns, whereis the correct prediction given
adP). These modules are linked by an associative legrmietwork and an internal
controller that ensures autonomous system operatiaeal time. The controller is
designed to create the minimal number of AR3cognition categories, needed to meet
accuracy criteria using a mechanism calhedtch tracking(Carpenter, Grossberg &
Reynolds, 1991).

File

Show Class -

[ ]Low-Res
[ ] Multi Displays

ARTMAP | -

i® Fuzzy ARTMAP

i Default ARTMAP
i Instance Counting

Show Categories

Train Vigilance (0.0)

-

Figure 3.4: Fuzzy ARTMAP lllustration wittp = 0.0
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File

Show Class -
[ |Low-Res

(] Multi Displays
ARTMAP | -

i Fuzzy ARTMAP
i Default ARTMAP
i Instance Counting

Show Categories

Train Vigilance (1.0)

[ 1

Reset

Figure 3.5: Fuzzy ARTMARP lllustration witlp = 1.0

For an illustration of ARTMAP with varying baselitr@in vigilance and network types,
| created a toy dataset using the java applet @eaviby Boston University
(http://techlab.bu.edu/classer/artmap_appletThe applet enables testing the

spontaneously created dataset with k-NN along w#tlzzy, Default and Instance
Counting (IC) ARTMAP. In k-NN, k value is allowed tmanipulation in 1-9 discrete
range, while for ARTMAP networks train vigilance utd be set in 0-1 continuous

range.

lllustrations in Figure 3.4 and 3.5 point out te gharp difference in learning. In the toy
dataset, there are two classes labeled with redblsdsquares. While in Figure 3.4 all
samples of both classes belong to the same cadsg@spectively, in Figure 3.5 each
sample represents a category. With 0.0 vigilance, have a rough generalization,

14



whereas with 1.0 vigilance over-learning occurshwio generalization (also known as
memorization).

Intermediate values show that baseline train wigéa can be tuned to overcome
category clash without giving rise to over-learnig in all ANNs tuning of this
parameter depends on the dataset nature. Figurglus®ates learning with 0.5 and

0.75 vigilance values which seem better then themes.

/ARTMAP ARTMAP
® Fuzzy ARTMAP
) Defauit ARTMAP

) Instance Counting

@ Fuzzy ARTMAP
(0 Default ARTMAP
) Instance Counting

Show Categories

Show Categories

Train Vigilance (0.5)

—_—

Train Vigilance (0.75)

Figure 3.6: Fuzzy ARTMAP lllustration with Intermediatevalues

ARTMAP family has members apart from Fuzzy ARTMARamely, Default
ARTMAP, Distributed ARTMAP and ARTMAP Instance Cding. In Fuzzy
ARTMAP although the input is fuzzy, the output @t.nThis implies that there is no a
fuzzy class membership function of a test pattétowever, other ARTMAP family
members allow new input tuple to have a fuzzy mesibp. As it is seen in Figure 3.7,
the network type does not affect the categorizabibtraining samples, but the domain
boundaries. It is also apparent that Default anché@vork types do not significantly
differ in their decisions.

Despite the fact that k-NN and ANNs are complettifferent in terms of algorithm,
they are closely comparable in their decisions. #@t reason ARTMAP applet

implements a k-NN classifier.
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control-bar in the respective panels).



When k is set to 1 the output is very close to FUBRTMAP with baseline train
vigilance = 1.0. In both cases over-learning isngrent. Higher k values yield

smoother generalization as shown in Figure 3.8.

3.5.K-Medoids

K-medoids is a well known clustering method. It wasferred to k-means since it is
more resistant to noise. The implemented algorittradapted from J. Han and M.

Kamber’s Data Mining book p. 435.

Al gorithm k- nedoi ds. PAM a k- medoi ds algorithm for
partitioning based on nmedoid or central objects.
| nput :
k: the number of clusters,
D: a data set containing n objects.
Qutput: A set of k clusters.

Met hod:

1. arbitrarily choose k objects in D as the initial

representative objects or seeds;

2. repeat

3. assign each remaining object to the cluster wth the

nearest representative object;

4, random y sel ect a non-representative object, Orandom

5. compute the mnimal total cost, S, of swapping each
representative object, 0o;, Wth 0Orangom

6. if S < 0 then swap 0o; With Oianaomt0 fOrm the new set of k

representative objects;
7. until no change;

where
=35, peiIp = o 3.1
S: En+1'En 3.2

Figure 3.9: PAM', the k-medoids partitioning algorithm used in sedy

' In order to avoid misunderstanding, underlined dsoin the figure were added by Dr. Selim
MIMAROGLU in the Introduction to Data Mining course in F2008 at Bahggehir University.
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As stated earlier, k-M was exploited as a compon@ntk-MNB method. The
preprocessing task of k-M before NB classificati®more than discretization. Features
constituting one view are collapsed into one regmestive variable via k-M clustering.
Thereof, this data-summary information (clusterexyis provided to NB. Unlike

ARTMAP and k-NN, the selected views were not mergettreated separately.

Training set was clustered according to given dlgar. However, in order to avoid
bias, test set was not involved in clustering. Sampf test set were assigned to closest

medoids for each view.

3.6. Naive Bayes

Another commonly used classifier is NB. Bayesiaassifiers are based on Bayes’
Theorem. The theory is attributed to”‘leentury English clergyman Thomas Bayes.
The naive adjective comes from the assumption that attrdoates independent. This

property simplifies computations, leading to vemstf outcomes. Despite its naive
nature NB is very accurate. Due to these advantid@§ebas a wide range of use, such
as spam filtering.

3.6.1. Bayes Theorem

NB is a statistical classifier. It predicts memibgosprobabilities.

X: an evidence, object

H: hypothesis, class

P(H | X): conditional probability (posterior probability H conditioned on X)
P(H): prior probability

P(H,X)
P(X)

P(H | X) = 3.3
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P(X ,H)

P(X|H) = P(H) 3.4
Therefore Bayes Theorem gives us the following $ifred equation

_ P(X|H) P(H)
P |X)=——F 35

3.6.2. Naive Bayesian Classification

Jiawei and Kamber describe Naive Bayes Classificas follows:
1. Let D be a training set of tuples and their esded class labels. As usual, each tuple
is represented by an n-dimensional attribute vector (x1, Xz, ... , %), depicting n

measurements made on the tuple from n attribudspectively, Al, A2, ... , An.

2. Suppose that there are m classes(%; ... , Gn. Given a tuple, X, the classifier will

predict that X belongs to the class having the ésgjiposterior probability, conditioned
on X. That is, the Naive Bayesian classifier predibat tuple X belongs to the class C
if and only if

P(C|X) > P(CIX) for 1 <j<m;j #1. 3.6

Thus we maximize P{X). The class (for which P(GX) is maximized is called the

maximum posteriori hypothesis. By Bayes’ theorem,

P(X|C{)P(C;
i =PI

3. As P(X) is constant for all classes, only P(Y$QC) need be maximized. If the class
prior probabilities are not known, then it is cormhoassumed that the classes are

equally likely, that is,
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P(G) =P(Q) =...=P(&) 3.8

and we would therefore maximize P(X|@therwise, we maximize P(X)@(G). Note

that the class prior probabilities may be estimded

|CiD|
() |D|

where |Gp| is the number of training tuples of clagsrCD.

4. Given data sets with many attributes, it woulel éxtremely computationally
expensive to compute P(X)CIn order to reduce computation in evaluating ()X the
naive assumption of class conditional independesamade. This presumes that the
values of the attributes are conditionally indepmridof one another, given the class
label of the tuple (i.e., that there are no deprodeelationships among the attributes).
Thus,

PIXIG) =P(x11C) - P(xz| Ci) ~...r P(xn] C), 3.10

and we can easily estimate the probabilities|E()x P(%|C), ... , P(x|G) from

the training tuples.

NB implementation is adapted from utility librargeveloped by Basu, Melville, and
Mooney from University of Texas. In order to avaero conditional probability which
could be caused by a missing feature value inrtheing set, Laplacian smoothing was
applied. Laplacian smoothing is done via addingimaginary) sample for each
possible value of corresponding feature. If we haveamples and attributes for a

featurex then prior probability for clasS after Laplacian correction becomes

2 Available: http://www.cs.utexas.edu/users/mooneyl/ir-course/
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P(x|C) =

ni+1 ]
for1<i<t 3.11
n+t

3.7. mRMR (maximum Relevance Minimum Redundancy)

MRMR is a feature ranking method which suggestsementally selecting the
maximally relevant variables while avoiding the uadant ones with the aim of
selecting a minimal subset of variables that reprssthe problem (Peng et al., 2005
Sakar, 2008). mRMR ranking, decides to includéfeature/view into the selected set,

S upon satisfaction of the following condition:

1
max | | (x.,c)——— I (X ;X
max. (%;,¢) m_lxéﬂ( %) | 3.12

which means the feature having maximum differenesvben its mutual information

(MI) with the target variable and its Ml with theeady selected set is to be selected.

3.8. K-MNB

K-MNB is a setting consisting of k-Medoid clustagiand Naive-Bayes classification.
The two components are commonly used. This setngkin to RBF ANNS in

principle. Radial Basis Function (RBF) Networks argversal approximators of any
continuous functions in regression and classificatiSkomorokhov, 2002). RBFs are
usually chosen as radially-symmetric functions wattsingle maximum at the origin
(Berthold & Hand, 1999). They tend to approximatdtimariate data muting the effects
of noise. We know that k-Medoids is a centroid blaskistering algorithm which is
resistant to noise in nature. Therefore in both svkyMedoids extraction as a

preprocessing for Naive Bayes is akin to RBF Nekaor
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In short, K-MNB first divides the samples into sitend then conquers these sites over
representatives. The clusters shaped around tmesergatives are naively associated

with labels. Prior statistics of those associatielst posterior predictions.

In this setting, each view of training samples sabjected to clustering separately.
Then test samples of corresponding view are adsdciaith the closest medoid. After
this extraction process, nominal view values (eéusndices) were used for NB

classification.

3.9.K-MART

K-MART is a learning network arranged by stackihgss probabilities obtained from

view based K-Medoids clustering to Fuzzy ARTMAP.this setting, each view was

compressed by an individual K-M clustering. Latelass distributions within each

cluster were calculated for each view based clugjeiThe process of extracting class
distributions from K-M clustering was repeated mainyes (with randomly selected k

value at each) the average result of which proseg®ught to increase reliability. The
value range of k parameter was dependent on thebewrof classes in the

corresponding dataset. As a final step, the avedigjebutions were fused for Fuzzy
ARTMAP stacking.

For an illustration, suppose that we have 7 vievith & total of 21 variables. Also
suppose that the dataset has 2 classes. In fecistthe case with Tele-monitoring of
Parkinson’s disease dataset. If we compress thesss wsing k-M clustering, we will
have 7 clusterings. Since we had 2 classes thedknater value of k-M will be selected
from 10-59 range (in case range shift coefficienb, and range width is 50). For each
view the class distribution of clusters are caltada Cluster information is replaced by
this 2 (number of class labels) dimensional distidn information. Since a distribution
is a ratio in 0-1 range, it does not require furthermalization before stacking to Fuzzy
ARTMAP ANN. The clustering and distribution calctitm is repeated sufficiently
many times (studies revealed that there is no fetgnit difference between 50 and 100

repetitions). The average distribution informatisralculated as the last process before
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classification. At this point we have ¥ 2 = 14 variables, where 7 is the number of

views and 2 is the number of class labels.

Algorithm K-MART, a nethod for stacking class posterior
probabilities obtained from view based k-Medoids clustering to
Fuzzy ARTMAP

| nput :
nV: the nunber of views,
nL: the nunber of classes (| abels),
rw the range width value for k param of K-M
rS: the range shift coefficient for k paramof K-M
nC. the nunber of clusterings for each view,
D: the dataset arranged as conbi nati on of views,
trE: the rowindex to nark end of training dataset within D

Qut put: Test dataset classification results

Met hod:

1. double[][] trns_ds = double[D. length][nV*nL]; //transforned
dat aset

2. for i=0 to nC1

3 k= rand(rW +nL*rS;

4. for v=0 to nV

5. clustering= K-Medoids.find_Custers(k,D,v,trE);

6. doubl e[ ][] distrib=
get _class_distrib(clustering,D.I|abels,trE);

7. for t=0 to D.length-1

8. for ¢=0 in nL-1

9. trns_ds[t][nV*v+c]+= distrib[t][c];

10. end

11. end

12. end

13. end

14. cal c_avg(trns_ds, nQ);
15. train and test transforned dataset in Fuzzy ARTMVAP
16. return test results;

Figure 3.10 K-MART, a method for stacking k-M clustering tafzy ARTMAP

It is important to note that since we have 2 clabsls class distribution data is going to
be complement of the other. Since Fuzzy ARTMAP AN&L internal complement
coding this information becomes redundant. So fdataset with 2 class labels and K-

MART specific setting, the information could comtainly one class label information.

23



Therefore in Parkinson’s dataset, the dimensionatit extracted feature vector
becomes 7. The tests proved that the performant&ooélternatives is the same. The

algorithm used in the study is given in Figure 3.10
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4. EXPERIMENTAL RESULTS

Due their appropriate nature for multi-view pattegnognition, two biomedical datasets
were used in the study. One of them is known akifson Dataset and the other is a

recently collected Protein Dataset.

Both datasets were normalized at preprocessinge.stage of the reasons for such
process was that Fuzzy ARTMAP requires analog tlatae in 0-1 range. Besides,
normalization was expected to provide more reliatédculations in EUCLIDIAN

distance metric used in the study.

All algorithms were implemented in Java. Memorpedtion provided by Eclipse IDE
was sufficient for Parkinson Dataset. However, sineews of Protein Dataset were
very high dimensional (especially view number 2hw#00 dimensions), running
ARTMAP ANN, which creates multitude of categoriegpmiting heap memory, gave
“lava.lang.OutOfMemoryError: Java heap space” ekoaep In order to be fair in

testing, all methods used for Protein Dataset wamevith 1024 MB memory allocation

(using —Xmx Java option) which was sufficient fdRAMAP.

4.1 PARKINSON DATASET

Parkinson’s disease (PD) is a serious neural desoiglecently a study conducted by
Little et al. (2008) revealed the relationship betw vocal signals and PD. The
corresponding dataset is available at UCI Machiearhing Repository 2008 Archite

It was created by Max Little of the University oiford, in collaboration with the

National Centre for Voice and Speech, Denver, @Galor who recorded the speech
signals. The original study published the featutaetion methods for general voice
disorders. Dataset is multivariate and features h@atural groups. Therefore, it was

feasible to apply view-based machine learning sses on the dataset.

3 Available athttp://archive.ics.uci.edu/ml/datasets/Parkinsdviay,2009)
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4.1.1 Dataset Description

Parkinson dataset is composed of a range of biaakdoice measurements from 32
people, 24 with Parkinson's disease. Each featui particular voice measure, and
each row corresponds one of 195 voice recording fittese individuals (6-7 recordings
per individual). The main aim of the data is tocdiminate healthy people from those

with PD, according to their class label which istee0 for healthy and 1 for PD.

Features have a natural grouping under 7 categories

ViewlID | Description Feature Label FEATURE
0 MDVP:Fo(Hz) 1
Basic vocal fundamental freq. statisticdVIDVP:Fhi(Hz) 2
MDVP:Flo(Hz) 3
1 MDVP:Jitter(%) 4
Several measures of variation in MDVP-Jitter(Abs) >
fundamental frequency MDVP:RAP 6
MDVP:PPQ 7
Jitter:DDP 8
2 MDVP:Shimmer 9
MDVP:Shimmer(dB) 10
Several measures of variation in Shimmer:APQ3 11
amplitude Shimmer:APQ5 12
MDVP:APQ 13
Shimmer:DDA 14
3 Two measures of ratio of noise to tonaNHR 15
components in the voice HNR 16
4 Two nonlinear dynamical complexity | RPDE 17
measures D2 18
5 Signal fractal scaling exponent DFA 19
6 . Spreadl 20
Three nonlinear measures of
fundamental frequency variation (Last SPread2 21
one, PPE, is the proposed measurement
of dysphonia by Little et al.) PPE 22

Table 4.1: Parkinson Dataset Feature Descriptions
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4.1.1.1How to Avoiding Misinterpretation of Data

Each client, no matter whether he/she is healttsial; has a vocal pattern. Any pattern
recognition algorithm can more easily match thostepns in speech recordings of the
client, if any other speech recording of that sastient is already available in the
training set. Therefore one should be careful wing leave-one-out testing to avoid
bias. In other words, leavimgne recordout is not sufficient for fair testing. Any client
should totally be in or totally out which implidsat all recordings for a client can either
be in training set or in test set. This issue was@alized in the work of Little et al. but

pointed out by Sakar and Kursun (2009).

4.1.2 View Ranking/Selection

Due to fact that the data is not highly dimensicaslit will be in the protein dataset,
ranking views through mRMR was not found so feasiblowever, view ranking was
done via ARTMAP ANN classifiers where it is appnape. For those ranked views, RS
technique was applied as it is described in secBorrorward Selection (FS) was

applied in all classification methods.

4.1.3 Quantitative Comparison using K-MNB

Composed by k-Medoids and Naive Bayes, K-MNB hashgtstic nature. Hence, tests
for each technique and k value consisted 10 rungraige values are considered for

comparison. Variance found to be less than orlaqu40.1.

For this dataset, K-MNB was run without view select(using all views) and with

feature selection. The results obtained with vay¥irvalues are given below.

% Success over k
Method / k 3 4 5 6 7 8 9 10 11 12 13 14 15

Forward
Selection 78.9| 81.2|80.6|82.7| 82.8| 83.2| 83.6|84.9| 83.6| 82.2|83.8|83.1| 82.4

All Views 7471758 775]|769|79.1|789|782|77.0]/789]76.9|78.1|78.0|77.6

Table 4.2: Average K-MNB Results for Varying k Values
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As it can be read in Table 4.2 and clearly seerthenFigure 4.1, the views selected

using FS technique show significant difference fromselected set of views. The

sharpest difference was observed at k=10 (%7.8)average difference was 5.0%.

86,0%
84,0%
2,0%
0,0%
8,0%
6,0%
4,0%
2,0%
0,0%
8,0%

Average Success
o)~~~ =~ 0000

Comparison of View Selection for k-MNB

Classification

3 456 7 8 9101112131415

k

OForward Selection
BAIl Views

Figure 4.1: Comparison Graph of Average K-MNB Results for iagyk Values

Since the output list is long and tiring, runs tiwo k values were selected.

k=4 k=10

Run Selected Views Pred. Success | Selected Views Pred. Success
11]]0, 1] 82.26% | [3, 6] 82.04%

21[6,1, 3] 87.48% | [O] 81.60%

31[2] 77.42% ([0, 1, 6, 4] 89.90%

4112, 4] 78.39% | [0, 6, 4] 86.90%

5[0, 1] 80.56% | [0, 4, 6, 1] 85.95%

6|[6, 4,5, 0] 84.18% | [0, 6, 5] 82.62%

71[6,0, 4] 82.24% | [O] 82.09%

8|[4, 3] 79.43% | [1, 6, O] 86.50%

91[2] 77.42%|[6,0, 1, 5] 87.09%

10|[2, 0, 4, 6] 82.21% | [0, 6, 4] 84.37%
Average 81.16% 84.91%
Variance 0.10% 0.08%

Table 4.3: Sample Summary Results of K-MNB Forward Selection
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Run k: 4 k=10
1 74.03% 74.11%
2 75.90% 76.94%
3 74.32% 80.68%
4 75.76% 79.08%
5 71.94% 79.63%
6 76.80% 74.07%
7 85.21% 77.91%
8 76.25% 76.62%
9 69.42% 74.34%
10 78.43% 76.88%
Average 75.81% 77.03%
Variance 0.18% 0.06%

Table 4.4: Sample Summary Results of K-MNB with All Views

Views Loaded Success
[6] 77.5%
[5] 77.4%
[4] 77.4%
[2] 77.4%
[0] 77.4%
[1] 77.4%
[3] 77.4%
[6, 5] 77.0%
[6, 4] 76.4%
[6, 2] 75.3%
[6, O] 76.5%
[6, 1] 79.0%
[6, 3] 70.8%
[6,1, 5] 76.8%
[6,1, 4] 80.0%
[6,1, 2] 73.3%
[6,1, 0] 82.6%
[6, 1, 3] 87.5%
[6,1, 3, 5] 72.7%
[6,1, 3, 4] 79.9%
[6,1, 3, 2] 70.2%
[6,1,3,0] 76.8%
Selected Views [6, 1, 3] 87.5%

Table 4.5:Sample Forward Selection run of K-MNB (k=4 2un)
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For further analysis of derivation mechanism, thegle run given in Table 4.4 can be
traced. Note that Table 4.4 shows one run for spording k value out of 10 runs

whose average was taken as performance index.

4.1.4 Quantitative Comparison using k-Nearest Neighbors @ssification

In addition to FS technique, ARTMAP based RS wae aked in k-NN testing.
Both selection techniques excelled the set of acseti views. The ARTMAP RS
technique performed equal to or below FS. Howe&h&s much higher computational

complexity compared to RS.

Method % Success over k

1 3 5 7 9 11 13
Forward Selection 80.8 81.2 82.3 81.3 82.3 82.8 82.8
ARTMAP RS 80.8 79.2 79.7 79.8 82.3 81.2 81.3
All Views 77.1 76.1 76.0 75.0 74.5 74.5 76.0

Table 4.6:k-NN Results for Varying k Values

Figure 4.2 depicts Table 4.6. Apparently, selectets outperformed the total dataset
(used as single view). The best technique was fdontle FS. On the other hand
ARTMAPT RS performance was not found to be sigaifity lower than FS

performance.
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Comparison of View Selection Techniques
for k-NN Classification
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Figure 4.2: Comparison of View Selection Techniques for k-NN

Further insight can be gained through tracing vs&ection mechanism given in Table
4.7. Note that the order or views is not importaetause algorithm always selects the

view with best individual performance first.

Views Loaded Success
[6] 80.2%
[0] 75.2%
[1] 79.2%
[5] 61.5%
[4] 71.4%
[2] 63.7%
[3] 63.2%
[6, 0] 80.2%
[6, 1] 79.2%
[6, 5] 82.8%
[6, 4] 80.7%
[6, 2] 81.2%
[6, 3] 77.7%
[6, 5, O] 78.1%
[6,5, 1] 81.8%
[6, 5, 4] 81.8%
[6, 5, 2] 81.3%
[6, 5, 3] 81.8%
Selected Views [6, 5] 82.8%

Table 4.7: Sample Forward Selection run of k-NN (k=11)
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In the first iteration view 6 (Spreadl, Spreadd BE) is selected. The next iteration
calculated the combined performance of remainimyvsi with view 6. View 5FA)
was selected at this step. Since there was no wraprent in the subsequent iteration,

the algorithm terminated selecting views 6 and 5.

4.1.5 Quantitative Comparison using Fuzzy ARTMAP Classifcation

Similar to k-NN setting, ARTMAP classification wasarried out using FS and
ARTMAP RS techniques. Prediction success of allvgigvas used here for comparison,

too.

A preliminary study revealed that prediction suscearies due to train vigilance)(
resulting in a fluctuating graph. On the other hatietre was a gradual increase in
success ag increases. Hence, thesis study did not involvinigsvith small increments

of p. Testing was carried out using four differentalues.

Results obtained from ARTMAP classification weragwsimilar to those of k-NN. In

both methods ARTMAP RS performed much better thaselected set of views. In all
methods, (hamely K-MNB, k-NN, and ARTMAP) FS wase thest technique. If
maximum performance attained in all three methodsewto be compared, the
descending ordering is K-MNB, ARTMAP and k-NN witt?o difference between
successive methods (84.9; 83.9; 82.8). Classifinatesults of ARTMAP are shown in

Table 4.8 and depicted in the following Figure #hBease of analysis.

Method / p 0.25 0.5 0.75 0.99
Forward Selection 71.0% 78.6% 83.9% 82.3%
ARTMAP RS 71.0% 74.3% 79.2% 82.3%
All Views 58.6% 68.9% 73.7% 74.0%

Table 4.8: Comparison of Selection Methods for ARTMAP Classifion
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As it can be seen in Table 4.8 and Figure 4.3 vibe/s proposed by both selection
methods were able to significantly outperform tblt dataset. Two selection methods
performed equal at 0.25 and 0.99 baseline vigilaratees, on the other handpt0.5
andp=0.75 FS prediction success was also significangier than ARTMAP RS.

Comparison of View Selection Methods for
ARTMAP Classification

90,0%
80,0%
70,0%
60,0% |
50,0% |
40,0%
30,0%
20,0%
10,0% |
0,0%

] ] — —{ |@BForward Selection

BARTMAP RS

Success

] — — — | = All Views

0,25 0,5 0,75 0,99

Vigilance

Figure 4.3 Comparison of View Selection Methods for ARTMARaSSification

4.1.6 Further Investigation using K-MART

Relative success of simple setting K-MNB led tatier analysis of class distribution of
view based clusters. Thus, several tests usingdate, class distribution probabilities
and fusing of both raw data and class probabilitiese carried out using Fuzzy
ARTMAP neural network. K-MART denotes Fuzzy ARTMARacking of cluster class
posterior probabilities which were averaged fromr&0s using randomly selected k

values from 10-59 range.
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Contrary to the argument stated in Section 4.1thd Parkinson dataset was handled
similar to Little at al. (2008) for comparabilityugposes. The dataset was randomly
shuffled disregarding client feature. Then it waktdalf and one fold was trained and
the other was used for testing. It can be viewed 2gold cross-validation setting. The

tests were carried out with baseline vigilance gati0.99.

Fold/Method All Views K-MART
1 91.75% 95.88%
2 84.69% 81.63%
Average 88.22% 88.75%

Table 4.9:Comparison of Fuzzy ARTMAP and K-MART

As it can be observed in Table 4.9, K-MART slighithcreased the prediction rate of
Fuzzy ARTMAP with raw features. The high predictiate attained in Fold 1 by K-
MART could be attributed to this method however sheuld also consider the testing

bias which is explained in Section 4.1.1.1.
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4.2PROTEIN DATASET

One of the most commonly studied subjects in baimitics is in fact Protein fold
classification. Due to the fact that proteins aredpced over genetic coding and are
responsible for controlling vital functions, proteifolds have great interest.
Understanding protein structures will also leadappropriate drug production hence

better treatment of diseases.

A recent study to form a highly dimensional ProtBataset was carried out by Nanuwa
and Seker (2008) in De Montfort University, Lei@stUneven distribution of class

samples combined with multivariate and under-sacthgiga posed a great challenge.

4.2.1 Dataset Description

Dataset is composed of 714 samples having 149résatategorized in 53 views. Each
sample had a label out of 9 available classes. Msing values existed in the dataset.
However the distribution was so uneven that while most frequent class had 307
samples in total, the least frequent class had balgamples. Though this case worsens

pattern recognition/data mining studies, it is veoynmon in bioinformatics.

Split half method was used to train and test sasafleaining set was favored when a
class has odd number of samples. Class descripsindsheir corresponding sample

distribution are shown in Table 4.10.

ClassID |Description Training Test Total
1| Chromatin proteins 50 49 99
2 | Heterochromatin proteins 11 11 22
3 | Nuclear Envelope proteins 31 30 61
4 | Nuclear Matrix proteins 15 14 29
5 | Nuclear Pore Complex proteins 40 39 79
6 | Nuclear Speckle proteins 34 33 67
7 | Nucleolus proteins 154 153 307
8 | Nucleoplasm proteins 19 18 37
9 | Nuclear PML Body proteins 7 6 13

Total 361 353 714

Table 4.10:Class Distribution of Protein Dataset
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Views of this dataset are sub-categories of thiedahg main set of views: (1)Amino
acid composition, (2) Dipeptide composition, (3)riMalized moreau-borto correlation,
(4) Moran autocorrelation, (5) Geary autocorrelatigc) Composition, Transition &
Distribution, (7) Sequence Order and (8) Pseudm@iacid composition. Compared to
multi-view protein fold recognition study or OkunaPriisalu (2005), this set contains
almost the same number of samples however the nuohleherent views is almost 9
times. Pointing out to the importance of propemweelection, they utilized a selection
algorithm based on cross-validation errors insteidandom selection and validation
error based selection. They have calculated theessoof k-NN ensemble success over
test errors, while this study dealt directly withtggrn prediction success. On the hand,
the research group, where this dataset is originatported that the best prediction
success achieved using 10-fold cross validationamasnd 65%.

4.2.2 View Ranking/Selection

Data is challenged by three ranking methods mRMRTMAP ANN and k-NN for RS
technique as well as FS which works with self fesdtb In order to increase prediction
accuracy, combinations of ranking methods were a$ted certain reductions of views

which decrease the cumulative performance.

4.2.3 Quantitative Comparison using K-MNB

Since the dominant process is feature extractitimerathan selection, view-selection
was not intended in K-MNB. Each view was represgntéth the extracted cluster
indexes. However, in order to gain understandirguabehavior of view combinations,

FS and RS techniques were used for specific valtiks

Similar to results obtained with Parkinson datagmediction success gradually

increased and then started to decrease after aircerilue of k. Therefore it was
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possible to find an optimum value for k. In ParkinsDataset there were only two
classes and a total of 7 views, so incrementingth I was viable. However Protein

Dataset contains 9 classes and 53 views, thergforementing was decided to be 10.

Prediction success results of all views with vagyinare shown in Table 4.11. Recall

that success of each k value was calculated ovanri<)

K 10 20 30 40 50 60 70 80 90 100

Max 43.98%48.74%|53.22%| 52.66%| 55.46%| 55.18%| 57.22%)| 56.09%] 55.81%| 56.37%

Average [43.03%|46.89%|51.62%|51.48%|52.72%|53.28%)|55.16%| 54.48%(53.31%|53.97%

Variance | 0.02%| 0.02%| 0.02%| 0.01%] 0.02%| 0.03%] 0.01%, 0.01%| 0.01%)| 0.03%

Table 4.11:Prediction Success of K-MNB with Varying k

On the hand, FS did not perform well in this dates® it did in Parkinson’s. FS

performance fell below performance of the set afalected views with increasing k. In
fact, as we shall see later in this section, necsiein technique using K-MNB method

performed better than the set of all views for EirotDataset. In Table 4.12 average
prediction performances of FS and All Views coudddompared.

Method / k 10 20 30 40 50 60 70

FS 47.05%| 47.11%| 46.71%| 46.32%| 47.99%| 47.45%| 48.36%

All Views 43.03%| 46.89%| 51.62%)| 51.48%| 52.72%| 53.28%| 55.16%

Table 4.12:Comparison of Average Prediction Success of FSAdindiews

Studies concerning mRMR ranking with K-MNB revealdt the number of views
loaded has positive correlation with performandeisTsteady increase implies that all
possible view combinations would fell below All Wis performance. Preliminary work
on dataset (where 500 samples were used for tgpand remaining 214 samples were
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used for testing) using MRMR RS is shown in Tabl34It seemed as if K-MNB was

expecting more views to perform better.

load / k 30 70

10| 44.81% | 49.91%
20| 47.90% | 53.69%
30| 48.60% | 55.09%

40| 49.72%| 56.54%

53| 53.83% | 56.68%

Table 4.13:Average Success Results of K-MNB mRMR RS

Parallel results were found in ARTMAP RS as weksRlts shown in Table 4.14 were

gathered after samples were split half.

load / k 70
10| 48.22%
20| 51.27%
30| 52.89%
40| 53.09%
53| 55.16%

Table 4.14:Average Success Results of K-MNB ARTMAP RS

In this dataset, K-MNB behaved quite different thaNIN and ARTMAP in terms of
view selection performance. While, k-NN and ARTMARcreased All Views
performance around %5 using selection techniqueS|NB did not. However, best
prediction success of K-MNB, even with All Viewsas better than the best scores in

other methods.
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4.2.4 Quantitative Comparison using k-Nearest Neighbors @ssification

Several RS techniques applied using k-NN for Pnofeataset. k-NN, mRMR and
ARTMAP RS made significant difference over All ViswHowever, no RS technique
was found to outperform FS. It seemed that k-NN ke&drbest at k=1 for FS. FS
success was 3-7% higher than All Views successsiwbalidates the fact that reducing
learning complexity and selecting appropriate vieinsrease pattern recognition

performance. Comparative FS success can be adakgieg Table 4.15 and 4.16.

Method / k 1 3 5 7 9 11
All Views 48.44% | 48.44% 47.59% | 47.03%| 47.88%| 49.29%
FS 55.52% | 53.26% 53.26% | 54.39% | 50.99% | 53.54%

Table 4.15:Comparison of FS with All Views for k-NN Classiétion

As Table 4.15 shows success rates with correspgridimlues, Table 4.16 additionally

lists the selected views which could be used fahr data mining processes.

k Selected Views using Forward Selection |Success
1 [51, 42, 37,0, 33] 55.52%
3 [51, 45, 35, 8] 53.26%
5 [51, 45, 30, 33] 53.26%
/ [0, 48, 33, 30, 3, 32] 54.39%
9 [51, 45, 30] 50.99%
11 [51, 16, 3, 4, 14, 36] 53.54%

Table 4.16:Set of Selected Groups using FS with Varying KN

Using k-NN for ranking, a success of 52.41% waaiatd with k=7, selected view set
={52, 1, 45, 49, 51, 42, 47, 44, 25, 41, 19, 11,80 53, 6, 7, 16, 21, 17, 23}. Using
ARTMAP ranking withp =0.75, k-NN classification success was 50.42% wie k=7
and selected view set ={38, 34, 2, 3, 1, 52, 4013647, 37, 48, 49, 22, 10, 21, 43, 45,
46, 41, 50, 4 }. Without changing k parameter fédM classification, using mMRMR for
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ranking resulted in a success ratio of 48.44% walected view set = { 2, 52, 15, 32,
41, 35, 33, 20, 43, 13, 4, 31, 29, 22, 49, 39,383,38, 26, 27, 44,53, 11, 1, 47, 24, 7,
37, 5, 40, 28, 10, 8, 12, 9, 46, 18, 45, 19, 16183, As stated in section 2 these were
the best results obtained incrementally loadindk@dnviews. Therefore mMRMR RS was
found to be well behind other selection techniggigsg less than 1.5% difference over
All Views.

4.2.5 Quantitative Comparison using ARTMAP Classification

Performing forward selection in ARTMAP with varyinggilance values, the best
pattern recognition success for the protein dataget attained (ap=0.99). Not

surprisingly, performance was found to increasedharhand withp. This was also the
case for the parkinson’s dataset. The other impoiait familiar fact was that FS
performed better than newly introduced RS meth&®s performance compared with
All Views is shown in Table 4.17. Selected viewsresponding varying vigilance

values are designated in Table 4.18.

Method / p 0.25 0.50 0.75 0.99
All Views 41.08% | 44.76% | 48.16%| 52.12%
FS 45.61% 51.84% | 53.54% | 58.07%

Table 4.17:Comparison of FS with All Views for ARTMAP Classiation

p FS Selected Groups Success
0,25 | [33, 26] 45.61%
0,500, 2, 21] 51.84%
0,75 [51, 31] 53.54%
0,99 | [51, 40, 50, 30, 33] 58.07%

Table 4.18:Set of Selected Groups using FS for ARTMAP withyiag p

40



MRMR ranking for ARTMAP classification performedttes than it was for k-NN.
MRMR RS led to a success of 53.54% with=0.75 and selected view set = {
2,52,15,32,41,35,33,20,43,13,4,31,29,22,49 }. Wes equal to success of FS at the
same vigilance. On the other hand, ARTMAP rankifgy (ts own classification)
reached a success of 51.84% in the presence of \@gitaece value and selected view
set of { 39,35,3,4,2,53,41,37,14,48,38,49,50,222,44,46 }.

4.2.6 Further Investigation using K-MART

Parallel to the K-MART study with Parkinson datage®-fold cross-validation setting
was prepared. The folds were training and testseéédaused in previous studies with the

same dataset.

Test results, as designated in Table 4.19, show KRRIART method performs
significantly better than simple use of Fuzzy ARTRIAn highly dimensional Protein
dataset. Here simple use refers to utilizationhef taw features without any selection

and/or extraction process.

Fold/Method | All Views K-MART

1 52.12% 57.22%
2 57.06% 60.94%
Average 54.59% 59.08%

Table 4.19:Comparison of Fuzzy ARTMAP and K-MART

K-MART results were the best attained with Prot@ataset. All other methods used in
the study that do not exploit view selection weignificantly below K-MART
performance. Extended studies using SVM yieldedwanage classification accuracy of
44%. Therefore detailed SVM results were not inethich this paper.
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5. CONCLUSIONS

In this thesis, two biomedical datasets were diaskiusing different multi-view
methods for reducing the learning complexity anddoeaccuracy was achieved than of
the single-view methods. Mainly, | tried two stawdisettings in this study that | named
K-MNB and K-MART, respectively, which both utilized simple form of feature-
extraction via centroid based clustering methodyl KK-Medoids). K-MNB uses NB
(Naive Bayes) and K-MART uses ART (Adaptive Resaearheory) for fusion
(stacking network) of K-M outputs. More specifigalthese two methods fuse the class-
posterior probabilities in clusters outputed by @ien K-M method, where K-M
clusterings are setup independently for each vielave shown that such fusion of
clustering outputs works better than not only ngkew classification by merging all
the variables of all views together but also singéawv classification by merging a few
of individually most potent views. In other word§;MNB and K-MART techniques
compare favorably to the single-view methods thettose and merge the most useful
views into a single feature vector. Such a selecie@ fusion (for the selection
process, | used variants of Ranking and SequeRtislvard Selection techniques), as
expected, worked better than the whole set of viewesged together; however, could
not surpass the multi-view extension. The resuks amply that K-MART, being a
more sophisticated stacking network, is signifibafitetter than K-MNB; and more
generally, even a simple within-view clusteringextract class-posterior-probability-
features from each view helps obtain better premhstthan single-view methods.
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