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ABSTRACT 

 

 

REDUCING LEARNING COMPLEXITY  

IN MULTI-VIEW CLASSIFICATION MODELS 

 

 

KAYA , Heysem 

 

 

Computer Engineering 

 

 

Supervisor: Asst. Prof. Dr. Olcay KURŞUN 

 

 

August 2009, 48 Pages 

 

 

In pattern recognition, using all the available features as a single input vector to a 

classifier is known to worsen the generalization of the learning algorithm due to the 

phenomenon known as the curse of dimensionality, which stands for the diminishing 

coverage of the feature space with fixed number of data points as the feature set size 

increases. Most studies so far concerned with features individually, however some high 

dimensional datasets do contain features naturally organized into several groups, which 

are known as “views” in the literature. Techniques in multi-view learning exploit 

multiple views of the data samples, one of the typical examples of which is the audio 

versus video of a human speaking. Such different modalities as audio and video could 

help each other in making improved classification if their decisions are fused. Multi-

view methods can be more successful than single view learning techniques in that they 

can exploit independent properties of each view and more effectively learn complex 

distributions. As the features in a view is a natural combination, feature selection 
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techniques are not directly applicable to such datasets because that would involve 

picking some features from each view and fusing them into a single feature vector, 

resulting in the aforementioned curse of dimensionality or over-learning considerations. 

In this thesis, several methods for feature selection are tailored to fit to the context of 

multi-view classification so as to avoid the curse of high input dimensionality.  Aim of 

the study was to find efficient methods for selecting those views, which cooperatively 

perform as well as or better than the single-view counterpart (i.e. the whole set of 

features fused into a single feature vector for each sample of the dataset) and besides, 

extracting features from those views to enhance subsequent learning process. The 

results of these methods are compared to draw a road map in multi-view classification 

problems.  

 

 

Keywords: Feature Selection; Feature Extraction; Curse of Dimensionality; Multi-

View ARTMAP; Multi-View Nearest Neighbor; Multi-View Naïve Bayes; Protein Sub-

nuclear Location Classification; Diagnosis of Parkinson’s Disease; Data Mining; Pattern 

Recognition.   
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ÇOK BAKIŞLI SINIFLANDIRMA MODELLER ĐNDE  
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Bilgisayar Mühendisliği 

 

 

Tez Danışmanı: Yard. Doç. Dr. Olcay KURŞUN 

 

 

Ağustos 2009, 48 Sayfa 

 

 

Örüntü tanımada, mevcut bütün değişkenlerin bir sınıflandırıcıya  tek bir girdi vektörü 

olarak verilmesi öğrenme algoritmasının genelleştirme yeteneğini boyutsallığın laneti 

olarak bilinen olgudan dolayı zayıflatır ki bu olgu değişken kümesinin büyüklüğü 

arttıkça, değişken uzayının sabit sayıda veri noktasıyla daha az karşılanmasını ifade 

eder. Şu ana kadarki çoğu çalışma değişkenler ile bireysel olarak ilgilendi, ancak bazı 

yüksek boyutlu verikümeleri literatürde “bakış” olarak bilinen çeşitli doğal gruplara 

ayrılmış değişkenler içerir. Çok-bakışlı öğrenmedeki teknikler veri örneklerinin farklı 

bakışlarından, ki bir insan konuşmasının görüntü ve sesi buna tipik bir örnektir, en üst 

düzeyde faydalanır. Görüntü ve ses gibi farklı boyutlar eğer kararları birleştirilirse 

birbirine daha iyi sınıflandırma yapmak için yardımcı olabilir. Çok-bakışlı yöntemler 

her bakışın bağımsız değişkenlerinden yararlanabilmeleri ve karmaşık dağılımları daha 

etkin bir şekilde öğrenmeleri noktalarında  tek bakışlı yöntemlerden  daha faydalıdır. 



vii 

 

Bir bakış içindeki değişkenler doğal bir kombinasyon olduğundan değişken seçim 

teknikleri bu tür verikümelerine doğrudan uygulanamaz çünkü her bakıştan bazı 

değişkenleri seçip bunları tek bir değişken vektörü içinde birleştirmek önceden 

bahsedilen boyutsallığın laneti hususu ile  aşırı öğrenme hususundan dolayı verimsiz 

olabilir. Bu tezde, değişken seçimi için kullanılan çeşitli yöntemler yüksek girdi 

boyutsallığının lanetinden sakınmak amacıyla çok-bakışlı sınıflandırma bağlamına 

uyarlanmıştır. Bu çalışmanın amacı, birarada olduğunda en az verikümesinin tek bakışlı 

hali (verikümesindeki her örnek için bütün değişkenlerin tek bir değişken vektörü teşkil 

edecek şekilde birleştirilmesi) kadar iyi bakışları seçmek ve bunun yanında  bir sonraki 

öğrenme sürecinde kullanılmak üzere bu bakışlardan değişken özütlemektir. Bu 

yöntemlerin sonuçları çok-bakışlı sınıflandırma problemlerinde bir yol haritası çizmek 

için karşılaştırılmıştır.  

 

 

Anahtar Kelimeler:  Değişken Seçimi; Değişken Özütleme; Boyutsallığın Laneti; Çok 

Bakışlı ARTMAP; Çok Bakışlı En Yakın Komşu; Çok Bakışlı Naïve Bayes; Protein 

Çekirdekaltı Yer  Sınıflandırma; Parkinson Hastalığının Teşhisi; Veri Madenciliği; 

Örüntü Tanıma.   
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1. INTRODUCTION 

 

Feature selection/extraction is a preprocessing for subsequent pattern 

recognition/machine learning tasks. This is needed because as the feature set size 

increases, reliable classification is impaired by the diminished coverage of the feature 

space with the fixed number of data points obtained by costly experimental processes, 

which is a phenomenon known as the curse of dimensionality (Bishop, 1995).  

Reducing the feature space dimensionality to a minimal yet descriptive size is crucial 

for effective classification/regression models (Guyon and Elisseeff, 2003).   

 

In some datasets, features are naturally organized into several groups, which are known 

as “views” in the literature (Yarowsky, 1995; Blum and Mitchell, 1998; Christoudias et 

al., 2008). Just like in the single-view problems with high input dimensionality that 

need feature selection as preprocessing, the multi-view methods also need mechanisms 

to fuse information from different views to overcome the problems with high input 

dimensionality. In this thesis, several methods for feature selection and extraction are 

adapted to the multi-view classification setting because single-view feature selection 

techniques are not directly applicable to such multi-view datasets.  Single-view feature 

selection methods can pick some features from each view and merge them into a single 

feature vector.  However, this approach would run into the curse of dimensionality and 

over-learning problems.  

 

In some areas, such as chemistry, medicine, and bioinformatics it is hard and time 

consuming to attain data samples, and moreover, the data samples may have a huge 

number of features. Therefore the results of this study especially apply to the latter 

where data is limited in samples and whose highly-dimensional feature space contains 

natural groups of variables (views).  

 

Replacing single-view feature selection with using multiple views, it is possible to 

dramatically lower computational demands to combining classifiers (Okun and Priisalu, 

2005). When having to work with, for example, thousands of variables naturally 
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organized into tens of views, the computational complexity reduces from millions to 

only hundreds by several orders of magnitude. The number of feature subsets chosen 

heuristically and evaluated by feature selection methods will have to increase by 

merging all the views to get a single feature vector, out of which feature selection to be 

applied. This would cause the danger of overfitting because it is more likely to find a 

feature subset that fits well with the dataset at hand. However, the success which stems 

from this probable overfitting will be controversial due to under-sampled, unevenly 

distributed, multivariate nature of data. Therefore implications of feature selection 

methods which are also computationally very costly will not have a scientific validity.  

 

Secondly, the views can correspond to very different modalities such as video data and 

audio data, in such a case fusing the low level video features with low level audio 

features is not desirable because the low level features in each view must first be 

combined within their own views in order to yield useful high-level descriptors, which 

can then be fused with the high-level descriptors from the other views, hierarchically. 

On the other hand, an example of a bad low level feature combination can be an attempt 

to evaluate a pixel feature together with an amplitude feature, neither of which is yet 

high-level.   This is not just an inefficiency consideration caused by fusing all the views, 

this unnecessary expansion of the input space, combined with small sample sizes which 

are typical of experimental sciences, would greatly complicate the learning task (the 

curse of dimensionality).  

 

Moreover, in some cases views may contain features which have many-to-many 

interrelations. This notion is referred as View Conditional Independence (Blum and 

Mitchell, 1998;  Christoudias et al., 2008).  In these cases input fusion (combining data 

without any evaluation process) will require more samples for generalization than 

output fusion which is the case for multi-view evaluation. This problem takes us back to 

curse of dimensionality problem in under-sampled datasets. 

 

In this study, a series of methods and techniques were elaborated for selection, 

extraction, and classification purposes for multi-view datasets.  The experimental 

datasets used in this study are two biomedical datasets: 1) Protein Structure Prediction 
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dataset which was introduced in the work of Nanuwa and Seker (2008),  2) Parkinson’s 

Disease Diagnosis from Vocal Features (Little et al., 2008).  The datasets under study 

were classified using Fuzzy ARTMAP Neural Network, k-Nearest Neighbor and Naïve 

Bayes. Also, k-Medoids clustering algorithm was used to provide an intermediate 

output for classification by Naïve Bayes and Fuzzy ARTMAP. These stacking settings 

are called K-MNB and K-MART, respectively. Fuzzy ARTMAP and k-NN were also 

used to rank views according to their individual classification power. The views are 

sorted according to their individual classification accuracy and loaded as input into the 

classifier iteratively. After incremental loading and testing, the set of views with 

maximum performance was selected. Forward Selection served as a benchmark to 

compare with both total set (all views fused into a single view) and only selected views. 

Other non-heuristic selection techniques such as random selection and brute force 

(evaluation of all subsets, exponentially) (Okun and Priisalu, 2005) are not covered in 

this thesis. A simple and well known method, namely k-NN, was firstly used for 

classification. The performance of k-NN with full set of features considered as a 

baseline. Then I exploited variants of ARTMAP method on the fused features of 

individually best views.  I applied Naïve Bayes approach as the multi-view technique. 

Each view is evaluated individually using a simple k-Medoids approach or a more 

complex Support Vector Machines (SVM) approach. Then the classifications of these 

methods on all the views are given to Naïve Bayes (NB) for fusing these probability 

estimates.  Although, even as its name implies, the NB approach is very simple, it was 

found to be very effective because it used all the views independently and then merged 

their prediction outputs. Investigation of K-MNB led to design of K-MART stacking 

network which provided the best results in this study. Successful stacking methods 

suggest that fusing several views into a single-view is not as effective as fusing the 

classifier outputs of the views.  

 

The thesis layout is as follows. In Section 2, the literature on combining multiple 

learners is reviewed pointing out to similarities and differences of ensemble and multi-

view. In Section 3, the methods and techniques used in this study are introduced. In 

Section 4 the experimental studies and results are given. In Section 5 the conclusions 

are provided and recommendations for future works are discussed. 
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2. LITERATURE REVIEW    

 

2.1. Combining Multiple Learners 

 

Machine learning studies elaborated on several combination techniques which benefits 

from decisions of multiple learners with different algorithms, hyperparameters, 

subproblems and training sets (Alpaydın, 2004). The rationale depends on the fact that 

there is no algorithm that is always accurate (No Free Lunch Theorem).  

 

Most commonly used learner combining methods are voting, bagging, boosting, 

mixture of experts, stacking and cascading.  

 

When used in classification, voting is a weighted summation for each class label where 

weights should sum up to 1. For example, weights can be assigned to be identical (1/n) 

or determined empirically by using the classifier accuracy on a validation set. 

 

�� � ∑ �����
�
�	
             2.1 

 

 

 

Figure 2.1: Voting Mechanism 
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While boosting iteratively handles misclassified samples in order to form a composite 

classifier by a weighted vote (Alpaydın, 2004), bagging creates a set of aggregate 

classifiers with bootstrapping (random sampling with replacement) whose votes are 

equally weighted. 

 

In stacking, the combiner is another learner (Alpaydın, 2004), as it is shown in Figure 

2.2, the outputs of individual learners are given as input to it. Note that individual 

learners need not be supervised learners. 

 

 

 

 

Figure 2.2: Stacking Mechanism 

 

 

2.2. Comparison of Multi-View with Ensemble 

2.2.1. Ensemble 

 

Ensemble learning refers to a collection of methods that learn a target function by 

training a number of individual learners and combining their predictions. Ensembles can 
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be generated by subsampling the training examples, manipulating the input features, 

and modifying the learning parameters of the classifier. It is also possible to generate 

ensembles using views inherent in the dataset.  

 

Accuracy and efficiency are advantages of ensembles. In terms of accuracy, a more 

reliable mapping can be obtained by combining the output of multiple experts due to No 

Free Lunch Theorem.  On behalf of efficiency, a complex problem can be decomposed 

into multiple sub-problems that are easier to understand and solve (divide-and-conquer 

approach).  

 

Uncorrelated errors of individual classifiers can be eliminated through averaging. The 

desired target function may not be implementable with individual classifiers, but may 

be approximated by ensemble averaging.  

 

 

 

Figure 2.3: Smoothing by Ensemble Averaging 

 

 

Dietterich (1997) explains the success of ensemble with statistical, computational and 

representational reasons. The statistical reason is that there is no sufficient data. The 

computational reason is the trap in local minimal. The representational reason is the 

same with No Free Lunch Theorem. 
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Although the terminology differs in ensemble and multi-view, in this thesis they will be 

used interchangeable since the ensembles will be generated from independent views. 

 

2.2.2. Multi-View 

 

Multi-view learning refers to learning the target concept from several disjoint subsets 

(views) of features each of which are sufficient to learn the target concept. Multi-view 

learning is useful when examples are not all labeled identically by classification from 

each view and given the label of any example, its descriptions in each view are 

independent (Blum and Mitchell, 1998; Muslea et al., 2002; Christoudias et al., 2008). 

 

Increasing the classification accuracy is the common goal in both ensemble and multi-

view learning techniques. However multi-view is especially used when the dataset has 

natural views and when learning is semi-supervised. Table 2.1 summarizes the 

differences between the two. 

 

 

 Ensemble Multi-view 

Problem setting Partition feature into multi-view  Given multi-view 

Framework Supervised learning Semi-supervised learning 

 

Table 2.1: Difference between Ensemble and Multi-View Learning Methods 

 

 

2.3. Prominent Studies in Multi-View Learning 

 
The techniques using multiple views in learning exploit independent properties of each 

view and more effectively learn complex distributions. In other words, the reason to use 
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multiple views instead of using one view is that combinations of views are able to 

explain more than single view (Bickel and Scheffer, 2004; Okun and Priisalu, 2005).  

 

Empirical success of multi-view approaches has been noted in many areas of computer 

science including Natural Language Processing, Computer Vision, and Human 

Computer Interaction (Christoudias et al., 2008). Multi-view classification attracts many 

researchers recently because there is yet no known “best” way of fusing the information 

in the views.  Works on multi-view machine learning gained importance since 

Yarowsky (1995) and Blum and Mitchell (1998) pointed out that multiple views can 

lead to better classification accuracy than the union of all views. Bickel and Scheffer 

(2004) showed that multi-view clustering performs better than single view clustering 

even though the setting contains only two views which they argued either one suffices 

for learning.  

 

Kakade and Foster (2007) also argue that the main importance of the multi-view 

technique is that weaknesses of one view are complemented by the others. This finding 

is also supported by studies of Dietterich (1997; 2000).  
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3. METHODS  

 

3.1. Forward Selection  

Forward selection algorithm for the multi-view setting is implemented similar to its 

traditional single-view use (Bishop, 1995), but with one exception: a group of variables 

(view) is selected at a time instead of a single variable. 

Forward selection starts with an empty set of views and loads the view with best 

predictive power. In subsequent iterations the view giving the best predictive power 

together with already existing view(s) is merged into the set if the total prediction rate is 

increasing.  

 

Algorithm: Forward Selection of views 

Input: D: a data set containing m views 

Output: A set of selected views 

Method: 

1. Add all views to vector unselvw  
2. Instantiate vector selvw 
3. float maxsc= 0.0 
4. repeat 
5.   vw= null 
6.   for each v in unselvw do 
7.    vector curvw= selvw U v 
8.     train(train_set,curvw) 
9.    float sc=test(test_set,curvw)   
10.    if (sc>maxsc) 
11.     maxsc=sc 
12.     vw=v 
13.    end if 
14.   end for 
15.   if (vw != null) 
16.    selvw.add(vw) 
17.    unselvw.remove(vw) 
18.    increase=true 
19.   end if 
20. until no increase; 

 
 
Figure 3.1: Forward Selection Algorithm used in the study 
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3.2. Selection by Ranking 

 
Ranking of views was provided by filter method mRMR (Peng et al., 2005), and 

classifier methods ARTMAP and k-NN. Ordered by their rank, views are fused 

incrementally and classifier performances were calculated. In this method set of views 

with best performance was to be selected. 

 

 

 
Figure 3.2: An Illustration of Ranking Selection Mechanism with Input Fusion 
 

 

Figure 2.2 illustrates a RS mechanism with a hypothetical problem setting comprising 

five views. View ranking process results as shown in the figure: V1, V5,
 V4, V3 and V2. 

Then view selection process fuses these views in the given order one by one performing 

a classification task for the resultant view set (i.e. at first {V1}, next {V 1, V5}, then {V1, 

V5,
 V4}  and so on). Prediction rates of fused sets are recorded so that the view set with 

highest prediction success is proposed for subsequent learning. In the figure the view set 

{V 1, V5,
 V4} is proposed. In output fusion, the only difference is that feature vectors of 

V1 V2 V3 V4 V5 

View 

Ranking 
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View 
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Final 
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views are evaluated by a method and then information such as cluster indices or class 

membership distribution is provided for selective classification. 

 

3.3. k-Nearest Neighbor 

 
k-NN is a widely used pattern recognition algorithm. There are multi-view variants of 

this method which utilize boosting and bagging.  Recently other boosted k-NN variants 

are introduced. Koon (2007) proposes direct boosting using local warping of distance 

metric, in which incorrectly classified samples update the weights of their neighbors. 

The algorithm used in this study is an adaptation of the simple k-NN algorithm. 

 

 

Algorithm:  Modified simple k-NN 

Input:  

 k: number of nearest neighbors used for majority voting 

 D: set of training samples 

 prob: training set label distribution (prior probability), 

complementary parameter 

 o: sample object to classify 

Output: class label of sample 

Method: 

1. vector nn = get_nearest_neighbors(k,D,o) //gets nearest k 
neighbors of o from D 

2. vector elected= majority_vote(nn) // does a majority 
voting and returns the class labels having the max vote 

3. if (elected.size() > 1) //if there is a tie get the 
elected label having max prior prob 

4.   return get_max_prior_prob(elected, prob)  
5. else 
6.   return elected.get(0) 

 
Figure 3.3: k-NN algorithm used in the study 
 

 

There could be tie among class labels having maximum votes for k>1. Inspired by 

decision tree generation algorithms, I have introduced an additional majority voting 

mechanism to handle such ties.  
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Ensemble of k-NN classifiers were not used in this study as in the work of Okun and 

Priisalu. However, data patterns of selected views are merged before entering this 

process.  

 

3.4. Fuzzy ARTMAP Neural Network 

Fuzzy ARTMAP is a fast and stable classification algorithm which is capable of 

incremental learning (Carpenter et al., 1992) hence superior to Multi Layer Perceptron 

(Busque & Parizeau, 1997). Fuzzy ARTMAP achieves a synthesis of fuzzy logic and 

adaptive resonance theory (ART) neural networks by exploiting a close formal 

similarity between the computations of fuzzy subsethood and ART category choice, 

resonance, and learning (Carpenter et al., 1992). Fuzzy ARTMAP also realizes a 

minimax learning rule that concointly minimizes predictive error and maximizes code 

compression, or generalization (Carpenter et al., 1992). Fuzzy ARTMAP is composed 

of two Fuzzy ARTs. Fuzzy ART is an ANN for unsupervised learning which was 

introduced by Carpenter, Grossberg and Reynolds in 1991.  

 

3.4.1. Fuzzy ARTMAP Architecture 

 
The Fuzzy ARTs contained in ARTMAP ANN are identified as ARTa and ARTb. The 

parameters of these networks are designated respectively by the subscripts a and b. The 

two Fuzzy ARTs are interconnected by a series of connections between the F2 layers of 

ARTa and ARTb. The connections are weighted, i.e. a weight wij between 0 and 1 is 

associated with each one of them. These connections form what is called the map field 

Fab. The map field has two parameters (βab  - learning rate and ρab - vigilance) and an 

output vector xab(Carpenter at al.,1992; Busque & Prizeau, 1997). Vigilance can be 

defined as sensitivity to new data patterns. While, small vigilance values increase code 

compression (generalization) leading to larger category boxes, bigger vigilance values 

result in increased number of categories. Category proliferation is hindered by 

normalizing input vectors at preprocessing stage (Carpenter at al.,1992).  
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During supervised learning ARTa receives an a stream {a(p)} of input patterns, and 

ARTb receives a stream {b(p)} of input patterns, where b(p) is the correct prediction given 

a(p). These modules are linked by an associative learning network and an internal 

controller that ensures autonomous system operation in real time.  The controller is 

designed to create the minimal number of ARTa recognition categories, needed to meet 

accuracy criteria using a mechanism called match tracking (Carpenter, Grossberg & 

Reynolds, 1991).   

 

 

 

Figure 3.4: Fuzzy ARTMAP Illustration with ρ  = 0.0   
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Figure 3.5 : Fuzzy ARTMAP Illustration with ρ  = 1.0   

 

 

For an illustration of ARTMAP with varying baseline train vigilance and network types, 

I created a toy dataset using the java applet provided by Boston University 

(http://techlab.bu.edu/classer/artmap_applet). The applet enables testing the 

spontaneously created dataset with k-NN along with Fuzzy, Default and Instance 

Counting (IC) ARTMAP. In k-NN, k value is allowed to manipulation in 1-9 discrete 

range, while for ARTMAP networks train vigilance could be set in 0-1 continuous 

range.  

 

Illustrations in Figure 3.4 and 3.5 point out to the sharp difference in learning. In the toy 

dataset, there are two classes labeled with red and blue squares. While in Figure 3.4 all 

samples of both classes belong to the same categories respectively, in Figure 3.5 each 

sample represents a category. With 0.0 vigilance, we have a rough generalization, 
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whereas with 1.0 vigilance over-learning occurs with no generalization (also known as 

memorization).  

 

Intermediate values show that baseline train vigilance can be tuned to overcome 

category clash without giving rise to over-learning. As in all ANNs tuning of this 

parameter depends on the dataset nature. Figure 3.6 illustrates learning with 0.5 and 

0.75 vigilance values which seem better then the extremes.  

 

 

 

Figure 3.6 : Fuzzy ARTMAP Illustration with Intermediate ρ values  

 

 

ARTMAP family has members apart from Fuzzy ARTMAP, namely, Default 

ARTMAP, Distributed ARTMAP and ARTMAP Instance Counting. In Fuzzy 

ARTMAP although the input is fuzzy, the output is not. This implies that there is no a 

fuzzy class membership function of a test pattern. However, other ARTMAP family 

members allow new input tuple to have a fuzzy membership. As it is seen in Figure 3.7, 

the network type does not affect the categorization of training samples, but the domain 

boundaries. It is also apparent that Default and IC network types do not significantly 

differ in their decisions.  

 

Despite the fact that k-NN and ANNs are completely different in terms of algorithm, 

they are closely comparable in their decisions. For that reason ARTMAP applet 

implements a k-NN classifier.  
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Figure 3.7: Illustrations in Default ARTMAP and ARTMAP IC with ρ= 0.75 

 

 

  

  

 

Figure 3.8: Illustrations in k-NN with varying k values (k = 1,3,7,9 as shown by the 

control-bar in the respective panels).  



17 

 

 

When k is set to 1 the output is very close to Fuzzy ARTMAP with baseline train 

vigilance = 1.0. In both cases over-learning is prominent. Higher k values yield 

smoother generalization as shown in Figure 3.8.  

 

 

3.5. K-Medoids 

 
K-medoids is a well known clustering method. It was preferred to k-means since it is 

more resistant to noise. The implemented algorithm is adapted from J. Han and M. 

Kamber’s Data Mining book p. 435. 

 
 
 
Algorithm: k-medoids. PAM, a k-medoids algorithm for 
partitioning based on medoid or central objects. 
Input:  

k: the number of clusters, 
D: a data set containing n objects. 

Output: A set of k clusters. 
Method: 
1. arbitrarily choose k objects in D as the initial 
representative objects or seeds; 
2. repeat 
3.  assign each remaining object to the cluster with the 
nearest representative object; 
4.  randomly select a non-representative object, orandom; 
5.  compute the minimal total cost, S, of swapping each 

representative object, oj, with orandom; 
6.  if  S < 0 then swap oj with orandom to form the new set of k 

representative objects; 
7. until no change; 
 

where 
E�∑ ∑ |p � o�|� є C�

�
�	
         3.1 

S� En+1-En          3.2 
 

 

Figure 3.9: PAM1, the k-medoids partitioning algorithm used in the study 

                                                 
1 In order to avoid misunderstanding, underlined words in the figure were added by Dr. Selim 

MĐMAROĞLU in the Introduction to Data Mining course in Fall 2008 at Bahçeşehir University.  
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As stated earlier, k-M was exploited as a component of K-MNB method. The 

preprocessing task of k-M before NB classification is more than discretization. Features 

constituting one view are collapsed into one representative variable via k-M clustering. 

Thereof, this data-summary information (cluster index) is provided to NB. Unlike 

ARTMAP and k-NN, the selected views were not merged but treated separately.  

 
Training set was clustered according to given algorithm. However, in order to avoid 

bias, test set was not involved in clustering. Samples of test set were assigned to closest 

medoids for each view.  

 

 

3.6.  Naïve Bayes 

 

Another commonly used classifier is NB. Bayesian classifiers are based on Bayes’ 

Theorem. The theory is attributed to 18th century English clergyman Thomas Bayes. 

The naïve adjective comes from the assumption that attributes are independent. This 

property simplifies computations, leading to very fast outcomes. Despite its naïve 

nature NB is very accurate. Due to these advantages NB has a wide range of use, such 

as spam filtering.  

 

3.6.1. Bayes Theorem 

 
NB is a statistical classifier. It predicts membership probabilities.  

X: an evidence, object 

H: hypothesis, class 

P(H | X): conditional probability (posterior probability H conditioned on X) 

P(H): prior probability 

 

P(H | X) = 
P(H ,X) 

P(X)
         3.3 
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P(X | H) � 
P(X ,H) 

P(H)
          3.4 

 

Therefore Bayes Theorem gives us the following simplified equation 

 

P(H | X) � 
P(X | H) P(H) 

P(X)
        3.5 

 

3.6.2. Naïve Bayesian Classification 

 
Jiawei and Kamber describe Naïve Bayes Classification as follows: 

1. Let D be a training set of tuples and their associated class labels. As usual, each tuple 

is represented by an n-dimensional attribute vector, X = (x1, x2, … , xn), depicting n 

measurements made on the tuple from n attributes, respectively, A1, A2, … , An.  

 

2. Suppose that there are m classes, C1, C2, … , Cm. Given a tuple, X, the classifier will 

predict that X belongs to the class having the highest posterior probability, conditioned 

on X. That is, the Naïve Bayesian classifier predicts that tuple X belongs to the class Ci 

if and only if 

 

P(Ci|X) > P(Cj|X) for 1 ≤ j ≤ m; j ≠ i.     3.6 

 

Thus we maximize P(Ci|X). The class Ci for which P(Ci|X) is maximized is called the 

maximum posteriori hypothesis. By Bayes’ theorem, 

 

P(Ci|X) = 
P(X|C?)P(C?) 

P(X)
       3.7 

 

3. As P(X) is constant for all classes, only P(X|Ci)P(Ci) need be maximized. If the class 

prior probabilities are not known, then it is commonly assumed that the classes are 

equally likely, that is,  
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P(C1) = P(C2) = ... = P(Cm)        3.8 

 

and we would therefore maximize P(X|Ci). Otherwise, we maximize P(X|Ci)P(Ci). Note 

that the class prior probabilities may be estimated by   

 

P(Ci)=
|C?,D| 

|D| 
          3.9 

 

where |Ci,D| is the number of training tuples of class Ci in D. 

 

4. Given data sets with many attributes, it would be extremely computationally 

expensive to compute P(X|Ci). In order to reduce computation in evaluating P(X|Ci), the 

naive assumption of class conditional independence is made. This presumes that the 

values of the attributes are conditionally independent of one another, given the class 

label of the tuple (i.e., that there are no dependence relationships among the attributes). 

Thus, 

 
 P(X|Ci)   = E(F
|G�)  ·  E(FI| G�)  ·. . .·  E(FJ| G�),    3.10 
 

 

and we can easily estimate the probabilities P(x1|Ci), P(x2|Ci), ... , P(xn|Ci) from 

the training tuples. 

 

 

NB implementation is adapted from utility library2 developed by Basu, Melville, and 

Mooney from University of Texas. In order to avoid zero conditional probability which 

could be caused by a missing feature value in the training set, Laplacian smoothing was 

applied.  Laplacian smoothing is done via adding 1 (imaginary) sample for each 

possible value of corresponding feature. If we have n samples and t attributes for a 

feature x then prior probability for class C after Laplacian correction becomes 

 

                                                 
2 Available: http://www.cs.utexas.edu/users/mooney/ir-course/ 
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  E(F | G) �
JKL 


JLM
  for 1 ≤ i ≤ t      3.11 

 

 

3.7.   mRMR (maximum Relevance Minimum Redundancy) 

 

mRMR is a feature ranking method which suggests incrementally selecting the 

maximally relevant variables while avoiding the redundant ones with the aim of 

selecting a minimal subset of variables that represents the problem (Peng et al., 2005 

Sakar, 2008).  mRMR ranking, decides to include mth feature/view into the selected set, 

S, upon satisfaction of the following condition: 

 










−
− ∑

−
− ∈−∈

1
1

);(
1

1
),(max

mi
mj Sx

ijj
SXx

xxI
m

cxI  ,    3.12 

 

which means the feature having maximum difference between its mutual information 

(MI) with the target variable and its MI with the already selected set is to be selected. 

 

3.8.   K-MNB 

 

K-MNB is a setting consisting of k-Medoid clustering and Naïve-Bayes classification. 

The two components are commonly used. This setting is akin to RBF ANNs in 

principle. Radial Basis Function (RBF) Networks are universal approximators of any 

continuous functions in regression and classification (Skomorokhov, 2002). RBFs are 

usually chosen as radially-symmetric functions with a single maximum at the origin 

(Berthold & Hand, 1999). They tend to approximate multivariate data muting the effects 

of noise. We know that k-Medoids is a centroid based clustering algorithm which is 

resistant to noise in nature. Therefore in both ways k-Medoids extraction as a 

preprocessing for Naïve Bayes is akin to RBF Networks.  
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In short, K-MNB first divides the samples into sites, and then conquers these sites over 

representatives. The clusters shaped around the representatives are naïvely associated 

with labels. Prior statistics of those associations elicit posterior predictions. 

 

In this setting, each view of training samples was subjected to clustering separately. 

Then test samples of corresponding view are associated with the closest medoid. After 

this extraction process, nominal view values (cluster indices) were used for NB 

classification. 

 

3.9. K-MART 

 
K-MART is a learning network arranged by stacking class probabilities obtained from 

view based K-Medoids clustering to Fuzzy ARTMAP. In this setting, each view was 

compressed by an individual K-M clustering. Later, class distributions within each 

cluster were calculated for each view based clustering. The process of extracting class 

distributions from K-M clustering was repeated many times (with randomly selected k 

value at each) the average result of which process is thought to increase reliability. The 

value range of k parameter was dependent on the number of classes in the 

corresponding dataset. As a final step, the average distributions were fused for Fuzzy 

ARTMAP stacking.   

 

For an illustration, suppose that we have 7 views with a total of 21 variables. Also 

suppose that the dataset has 2 classes. In fact, this is the case with Tele-monitoring of 

Parkinson’s disease dataset. If we compress these views using k-M clustering, we will 

have 7 clusterings. Since we had 2 classes the k parameter value of k-M will be selected 

from 10-59 range (in case range shift coefficient is 5, and range width is 50). For each 

view the class distribution of clusters are calculated. Cluster information is replaced by 

this 2 (number of class labels) dimensional distribution information. Since a distribution 

is a ratio in 0-1 range, it does not require further normalization before stacking to Fuzzy 

ARTMAP ANN. The clustering and distribution calculation is repeated sufficiently 

many times (studies revealed that there is no significant difference between 50 and 100 

repetitions). The average distribution information is calculated as the last process before 
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classification. At this point we have 7 × 2 = 14 variables, where 7 is the number of 

views and 2 is the number of class labels.  

 

 

Algorithm: K-MART, a method for stacking class posterior 
probabilities obtained from view-based k-Medoids clustering to 
Fuzzy ARTMAP 
 
Input:  

nV: the number of views, 
nL: the number of classes (labels), 
rW: the range width value for k param of K-M 
rS : the range shift coefficient for k param of K-M 
nC: the number of clusterings for each view,  
D: the dataset arranged as combination of views, 
trE: the row index to mark end of training dataset within D 

 
Output: Test dataset classification results  
 
Method: 
1. double[][] trns_ds = double[D.length][nV*nL]; //transformed 
dataset  
2. for i=0 to nC-1  
3  k= rand(rW)+nL*rS; 
4. for v=0 to nV 
5.  clustering= K-Medoids.find_Clusters(k,D,v,trE); 
6.  double[][] distrib= 
get_class_distrib(clustering,D.labels,trE);  
7.  for t=0 to D.length-1 
8.   for c=0 in nL-1 
9.     trns_ds[t][nV*v+c]+= distrib[t][c];  
10.    end  
11.  end 
12. end 
13. end 
14. calc_avg(trns_ds,nC); 
15. train and test transformed dataset in Fuzzy ARTMAP; 
16. return test results; 

 

Figure 3.10: K-MART, a method for stacking k-M clustering to Fuzzy ARTMAP  

 

 

It is important to note that since we have 2 class labels class distribution data is going to 

be complement of the other. Since Fuzzy ARTMAP ANN has internal complement 

coding this information becomes redundant. So for a dataset with 2 class labels and K-

MART specific setting, the information could contain only one class label information. 
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Therefore in Parkinson’s dataset, the dimensionality of extracted feature vector 

becomes 7. The tests proved that the performance of two alternatives is the same.  The 

algorithm used in the study is given in Figure 3.10.  
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4. EXPERIMENTAL RESULTS 

 

Due their appropriate nature for multi-view pattern recognition, two biomedical datasets 

were used in the study. One of them is known as Parkinson Dataset and the other is a 

recently collected Protein Dataset.  

 
Both datasets were normalized at preprocessing stage. One of the reasons for such 

process was that Fuzzy ARTMAP requires analog data to be in 0-1 range. Besides, 

normalization was expected to provide more reliable calculations in EUCLIDIAN 

distance metric used in the study. 

 
All algorithms were implemented in Java.  Memory allocation provided by Eclipse IDE 

was sufficient for Parkinson Dataset. However, since views of Protein Dataset were 

very high dimensional (especially view number 2 with 400 dimensions), running 

ARTMAP ANN, which creates multitude of categories exploiting heap memory, gave 

“java.lang.OutOfMemoryError: Java heap space” exception. In order to be fair in 

testing, all methods used for Protein Dataset were run with 1024 MB memory allocation 

(using –Xmx Java option) which was sufficient for ARTMAP. 

 

 

4.1  PARKINSON DATASET 

 

Parkinson’s disease (PD) is a serious neural disorder. Recently a study conducted by 

Little et al. (2008) revealed the relationship between vocal signals and PD.  The 

corresponding dataset is available at UCI Machine Learning Repository 2008 Archive3. 

It was created by Max Little of the University of Oxford, in collaboration with the 

National Centre for Voice and Speech, Denver, Colorado, who recorded the speech 

signals. The original study published the feature extraction methods for general voice 

disorders. Dataset is multivariate and features have natural groups.  Therefore, it was 

feasible to apply view-based machine learning processes on the dataset. 

                                                 
3 Available at: http://archive.ics.uci.edu/ml/datasets/Parkinsons (May,2009) 
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4.1.1 Dataset Description 

 

Parkinson dataset is composed of a range of biomedical voice measurements from 32 

people, 24 with Parkinson's disease. Each feature is a particular voice measure, and 

each row corresponds one of 195 voice recording from these individuals (6-7 recordings 

per individual). The main aim of the data is to discriminate healthy people from those 

with PD, according to their class label which is set to 0 for healthy and 1 for PD. 

 
Features have a natural grouping under 7 categories.  

 

 

ViewID Description Feature Label FEATURE 
# 0 

Basic vocal fundamental freq. statistics 

MDVP:Fo(Hz)  1 
MDVP:Fhi(Hz) 2 
MDVP:Flo(Hz) 3 

1 

Several measures of variation in 
 fundamental frequency 

MDVP:Jitter(%) 4 
MDVP:Jitter(Abs) 5 
MDVP:RAP 6 
MDVP:PPQ 7 
Jitter:DDP 8 

2 

Several measures of variation in 
amplitude 

MDVP:Shimmer 9 
MDVP:Shimmer(dB) 10 
Shimmer:APQ3 11 
Shimmer:APQ5 12 
MDVP:APQ 13 
Shimmer:DDA 14 

3 Two measures of ratio of noise to tonal 
components in the voice 

NHR 15 
HNR 16 

4 Two nonlinear dynamical complexity 
measures 

RPDE 17 
D2 18 

5 Signal fractal scaling exponent DFA 19 
6 

Three nonlinear measures of 
fundamental frequency variation (Last 
one, PPE, is the proposed measurement 
of dysphonia by Little et al.)  

Spread1 20 
Spread2 21 

PPE 22 

   

Table 4.1: Parkinson Dataset Feature Descriptions  
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4.1.1.1 How to Avoiding Misinterpretation of Data 

Each client, no matter whether he/she is healthy or sick, has a vocal pattern. Any pattern 

recognition algorithm can more easily match those patterns in speech recordings of the 

client, if any other speech recording of that same client is already available in the 

training set. Therefore one should be careful when using leave-one-out testing to avoid 

bias. In other words, leaving one record out is not sufficient for fair testing. Any client 

should totally be in or totally out which implies that all recordings for a client can either 

be in training set or in test set. This issue was not realized in the work of Little et al. but 

pointed out by Sakar and Kursun (2009).  

 

4.1.2 View Ranking/Selection 

 

Due to fact that the data is not highly dimensional as it will be in the protein dataset, 

ranking views through mRMR was not found so feasible. However, view ranking was 

done via ARTMAP ANN classifiers where it is appropriate. For those ranked views, RS 

technique was applied as it is described in section 2. Forward Selection (FS) was 

applied in all classification methods. 

 

4.1.3 Quantitative Comparison using K-MNB 

 

Composed by k-Medoids and Naïve Bayes, K-MNB has stochastic nature. Hence, tests 

for each technique and k value consisted 10 runs. Average values are considered for 

comparison.  Variance found to be less than or equal to %0.1. 

 

For this dataset, K-MNB was run without view selection (using all views) and with 

feature selection. The results obtained with varying k values are given below. 

 
  % Success over k 
Method / k 3 4 5 6 7 8 9 10 11 12 13 14 15 
Forward 
Selection 78.9 81.2 80.6 82.7 82.8 83.2 83.6 84.9 83.6 82.2 83.8 83.1 82.4 
All Views 74.7 75.8 77.5 76.9 79.1 78.9 78.2 77.0 78.9 76.9 78.1 78.0 77.6 
 

Table 4.2: Average K-MNB Results for Varying k Values 
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As it can be read in Table 4.2 and clearly seen on the Figure 4.1, the views selected 

using FS technique show significant difference from unselected set of views. The 

sharpest difference was observed at k=10 (%7.9), the average difference was 5.0%.  

 

  

 

 
Figure 4.1: Comparison Graph of Average K-MNB Results for Varying k Values 
 
 
Since the output list is long and tiring, runs for two k values were selected. 

 

 

 
k=4 k=10 

Run Selected Views Pred. Success Selected Views Pred. Success 
1 [0, 1] 82.26% [3, 6] 82.04% 
2 [6, 1, 3] 87.48% [0] 81.60% 
3 [2] 77.42% [0, 1, 6, 4] 89.90% 
4 [2, 4] 78.39% [0, 6, 4] 86.90% 
5 [0, 1] 80.56% [0, 4, 6, 1] 85.95% 
6 [6, 4, 5, 0] 84.18% [0, 6, 5] 82.62% 
7 [6, 0, 4] 82.24% [0] 82.09% 
8 [4, 3] 79.43% [1, 6, 0] 86.50% 
9 [2] 77.42% [6, 0, 1, 5] 87.09% 

10 [2, 0, 4, 6] 82.21% [0, 6, 4] 84.37% 
 Average 

 
81.16%   84.91% 

 Variance 
 

0.10%   0.08% 
 

Table 4.3: Sample Summary Results of K-MNB Forward Selection 
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Run k: 4  k=10 
1 74.03% 74.11% 
2 75.90% 76.94% 
3 74.32% 80.68% 
4 75.76% 79.08% 
5 71.94% 79.63% 
6 76.80% 74.07% 
7 85.21% 77.91% 
8 76.25% 76.62% 
9 69.42% 74.34% 

10 78.43% 76.88% 
Average 75.81% 77.03% 
Variance 0.18% 0.06% 
 

Table 4.4: Sample Summary Results of K-MNB with All Views 

 

 

 

Views Loaded Success 
 [6] 77.5% 
 [5] 77.4% 
 [4] 77.4% 
 [2] 77.4% 
 [0] 77.4% 
 [1] 77.4% 
 [3] 77.4% 
 [6, 5] 77.0% 
 [6, 4] 76.4% 
 [6, 2] 75.3% 
 [6, 0] 76.5% 
 [6, 1] 79.0% 
 [6, 3] 70.8% 
 [6, 1, 5] 76.8% 
 [6, 1, 4] 80.0% 
 [6, 1, 2] 73.3% 
 [6, 1, 0] 82.6% 
 [6, 1, 3] 87.5% 
 [6, 1, 3, 5] 72.7% 
 [6, 1, 3, 4] 79.9% 
 [6, 1, 3, 2] 70.2% 
 [6, 1, 3, 0] 76.8% 
Selected Views [6, 1, 3] 87.5% 
 

Table 4.5: Sample Forward Selection run of K-MNB (k=4, 2nd run) 
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For further analysis of derivation mechanism, the sample run given in Table 4.4 can be 

traced. Note that Table 4.4 shows one run for corresponding k value out of 10 runs 

whose average was taken as performance index. 

 

4.1.4 Quantitative Comparison using k-Nearest Neighbors Classification 

 
In addition to FS technique, ARTMAP based RS was also used in k-NN testing. 

Both selection techniques excelled the set of unselected views. The ARTMAP RS 

technique performed equal to or below FS. However FS has much higher computational 

complexity compared to RS.  

  

 

Method % Success over k 

  1 3 5 7 9 11 13 

Forward Selection 80.8 81.2 82.3 81.3 82.3 82.8 82.8 

ARTMAP RS 80.8 79.2 79.7 79.8 82.3 81.2 81.3 

All Views 77.1 76.1 76.0 75.0 74.5 74.5 76.0 
 

Table 4.6: k-NN Results for Varying k Values 

 

 

Figure 4.2 depicts Table 4.6. Apparently, selected views outperformed the total dataset 

(used as single view). The best technique was found to be FS. On the other hand 

ARTMAPT RS performance was not found to be significantly lower than FS 

performance. 
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Figure 4.2: Comparison of View Selection Techniques for k-NN 

 

Further insight can be gained through tracing view selection mechanism given in Table 

4.7. Note that the order or views is not important because algorithm always selects the 

view with best individual performance first. 

 
 
 
Views Loaded Success 
[6] 80.2% 
[0] 75.2% 
[1] 79.2% 
[5] 61.5% 
[4] 71.4% 
[2] 63.7% 
[3] 63.2% 
[6, 0] 80.2% 
[6, 1] 79.2% 
[6, 5] 82.8% 
[6, 4] 80.7% 
[6, 2] 81.2% 
[6, 3] 77.7% 
[6, 5, 0] 78.1% 
[6, 5, 1] 81.8% 
[6, 5, 4] 81.8% 
[6, 5, 2] 81.3% 
[6, 5, 3] 81.8% 
Selected Views [6, 5] 82.8% 
Table 4.7: Sample Forward Selection run of k-NN (k=11) 
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In the first iteration view 6 (Spread1,  Spread2 and PPE) is selected. The next iteration 

calculated the combined performance of remaining views with view 6. View 5 (DFA) 

was selected at this step. Since there was no improvement in the subsequent iteration, 

the algorithm terminated selecting views 6 and 5. 

 

4.1.5 Quantitative Comparison using Fuzzy ARTMAP Classification 

 

Similar to k-NN setting, ARTMAP classification was carried out using FS and 

ARTMAP RS techniques. Prediction success of all views was used here for comparison, 

too.  

 

A preliminary study revealed that prediction success varies due to train vigilance (ρ) 

resulting in a fluctuating graph. On the other hand, there was a gradual increase in 

success as ρ increases. Hence, thesis study did not involve testing with small increments 

of ρ. Testing was carried out using four different ρ values. 

 

Results obtained from ARTMAP classification were very similar to those of k-NN. In 

both methods ARTMAP RS performed much better than unselected set of views. In all 

methods, (namely K-MNB, k-NN, and ARTMAP) FS was the best technique. If 

maximum performance attained in all three methods were to be compared, the 

descending ordering is K-MNB, ARTMAP and k-NN with 1% difference between 

successive methods (84.9; 83.9; 82.8). Classification results of ARTMAP are shown in 

Table 4.8 and depicted in the following Figure 4.3 for ease of analysis. 

 

 

 Method / ρ 0.25 0.5 0.75 0.99 
Forward Selection 71.0% 78.6% 83.9% 82.3% 
ARTMAP RS 71.0% 74.3% 79.2% 82.3% 
All Views 58.6% 68.9% 73.7% 74.0% 
 

Table 4.8: Comparison of Selection Methods for ARTMAP Classification  
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As it can be seen in Table 4.8 and Figure 4.3, the views proposed by both selection 

methods were able to significantly outperform the total dataset. Two selection methods 

performed equal at 0.25 and 0.99 baseline vigilance values, on the other hand at ρ =0.5 

and ρ=0.75 FS prediction success was also significantly higher than ARTMAP RS. 

 

 

 

 

Figure 4.3: Comparison of View Selection Methods for ARTMAP Classification 

 

 

4.1.6 Further Investigation using K-MART 

 

Relative success of simple setting K-MNB led to further analysis of class distribution of 

view based clusters. Thus, several tests using raw data, class distribution probabilities 

and fusing of both raw data and class probabilities were carried out using Fuzzy 

ARTMAP neural network. K-MART denotes Fuzzy ARTMAP stacking of cluster class 

posterior probabilities which were averaged from 50 runs using randomly selected k 

values from 10-59 range.  
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Contrary to the argument stated in Section 4.1.1.1, the Parkinson dataset was handled 

similar to Little at al. (2008) for comparability purposes. The dataset was randomly 

shuffled disregarding client feature. Then it was split half and one fold was trained and 

the other was used for testing. It can be viewed as a 2-fold cross-validation setting. The 

tests were carried out with baseline vigilance value of 0.99. 

 

 

Fold/Method All Views K-MART 
1 91.75% 95.88% 
2 84.69% 81.63% 
Average 88.22% 88.75% 

 

Table 4.9: Comparison of Fuzzy ARTMAP and K-MART 

 

 

As it can be observed in Table 4.9, K-MART slightly increased the prediction rate of 

Fuzzy ARTMAP with raw features. The high prediction rate attained in Fold 1 by K-

MART could be attributed to this method however one should also consider the testing 

bias which is explained in Section 4.1.1.1.  
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4.2 PROTEIN DATASET 

 

One of the most commonly studied subjects in bioinformatics is in fact Protein fold 

classification. Due to the fact that proteins are produced over genetic coding and are 

responsible for controlling vital functions, protein folds have great interest. 

Understanding protein structures will also lead to appropriate drug production hence 

better treatment of diseases. 

 

A recent study to form a highly dimensional Protein Dataset was carried out by Nanuwa 

and Seker (2008) in De Montfort University, Leicester. Uneven distribution of class 

samples combined with multivariate and under-sampled data posed a great challenge. 

 

4.2.1 Dataset Description 

Dataset is composed of 714 samples having 1497 features categorized in 53 views. Each 

sample had a label out of 9 available classes. No missing values existed in the dataset. 

However the distribution was so uneven that while the most frequent class had 307 

samples in total, the least frequent class had only 13 samples. Though this case worsens 

pattern recognition/data mining studies, it is very common in bioinformatics. 

 

Split half method was used to train and test samples. Training set was favored when a 

class has odd number of samples. Class descriptions and their corresponding sample 

distribution are shown in Table 4.10.  

 

 ClassID Description Training Test  Total 
1 Chromatin proteins 50 49 99 
2 Heterochromatin proteins 11 11 22 
3 Nuclear Envelope proteins 31 30 61 
4 Nuclear Matrix proteins 15 14 29 
5 Nuclear Pore Complex proteins 40 39 79 
6 Nuclear Speckle proteins 34 33 67 
7 Nucleolus proteins 154 153 307 
8 Nucleoplasm proteins 19 18 37 
9 Nuclear PML Body proteins 7 6 13 

Total  361 353 714 
 

Table 4.10: Class Distribution of Protein Dataset 
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Views of this dataset are sub-categories of the following main set of views: (1)Amino 

acid composition, (2) Dipeptide composition, (3) Normalized moreau-borto correlation, 

(4) Moran autocorrelation, (5) Geary autocorrelation, (6) Composition, Transition & 

Distribution,  (7) Sequence Order and (8) Pseudo amino acid composition. Compared to 

multi-view protein fold recognition study or Okun and Priisalu (2005), this set contains 

almost the same number of samples however the number of inherent views is almost 9 

times. Pointing out to the importance of proper view-selection, they utilized a selection 

algorithm based on cross-validation errors instead of random selection and validation 

error based selection. They have calculated the success of k-NN ensemble success over 

test errors, while this study dealt directly with pattern prediction success. On the hand, 

the research group, where this dataset is originated, reported that the best prediction 

success achieved using 10-fold cross validation was around 65%. 

 

 

4.2.2 View Ranking/Selection 

 

Data is challenged by three ranking methods mRMR, ARTMAP ANN and k-NN for RS 

technique as well as FS which works with self feedback. In order to increase prediction 

accuracy, combinations of ranking methods were used after certain reductions of views 

which decrease the cumulative performance. 

 

 

4.2.3 Quantitative Comparison using K-MNB 

 

Since the dominant process is feature extraction rather than selection, view-selection 

was not intended in K-MNB. Each view was represented with the extracted cluster 

indexes. However, in order to gain understanding about behavior of view combinations, 

FS and RS techniques were used for specific values of k. 

 

Similar to results obtained with Parkinson dataset, prediction success gradually 

increased and then started to decrease after a certain value of k. Therefore it was 
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possible to find an optimum value for k. In Parkinson Dataset there were only two 

classes and a total of 7 views, so incrementing k with 1 was viable. However Protein 

Dataset contains 9 classes and 53 views, therefore incrementing was decided to be 10.  

 

Prediction success results of all views with varying k are shown in Table 4.11. Recall 

that success of each k value was calculated over 10 runs. 

 

  

K 10 20 30 40 50 60 70 80 90 100 

Max 43.98% 48.74% 53.22% 52.66% 55.46% 55.18% 57.22% 56.09% 55.81% 56.37% 

Average 43.03% 46.89% 51.62% 51.48% 52.72% 53.28% 55.16% 54.48% 53.31% 53.97% 

Variance 0.02% 0.02% 0.02% 0.01% 0.02% 0.03% 0.01% 0.01% 0.01% 0.03% 
 

Table 4.11: Prediction Success of K-MNB with Varying k  

 
 
On the hand, FS did not perform well in this dataset as it did in Parkinson’s. FS 

performance fell below performance of the set of unselected views with increasing k. In 

fact, as we shall see later in this section, no selection technique using K-MNB method 

performed better than the set of all views for Protein Dataset. In Table 4.12 average 

prediction performances of FS and All Views could be compared. 

 

  

Method / k 10 20 30 40 50 60 70 

FS 47.05% 47.11% 46.71% 46.32% 47.99% 47.45% 48.36% 

All Views 43.03% 46.89% 51.62% 51.48% 52.72% 53.28% 55.16% 

 

 Table 4.12: Comparison of Average Prediction Success of FS and All Views 

 

 

Studies concerning mRMR ranking with K-MNB revealed that the number of views 

loaded has positive correlation with performance. This steady increase implies that all 

possible view combinations would fell below All Views performance. Preliminary work 

on dataset (where 500 samples were used for training and remaining 214 samples were 
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used for testing) using mRMR RS is shown in Table 4.13. It seemed as if K-MNB was 

expecting more views to perform better. 

 

 

load / k  30 70 
10 44.81% 49.91% 
20 47.90% 53.69% 
30 48.60% 55.09% 
40 49.72% 56.54% 
53 53.83% 56.68% 

 

Table 4.13: Average Success Results of K-MNB mRMR RS 

 

 

Parallel results were found in ARTMAP RS as well. Results shown in Table 4.14 were 

gathered after samples were split half. 

 

 

load / k  70 
10 48.22% 
20 51.27% 
30 52.89% 
40 53.09% 
53 55.16% 

 

Table 4.14: Average Success Results of K-MNB ARTMAP RS 

 

 

In this dataset, K-MNB behaved quite different than k-NN and ARTMAP in terms of 

view selection performance. While, k-NN and ARTMAP increased All Views 

performance around %5 using selection techniques, K-MNB did not. However, best 

prediction success of K-MNB, even with All Views, was better than the best scores in 

other methods. 
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4.2.4 Quantitative Comparison using k-Nearest Neighbors Classification 

Several RS techniques applied using k-NN for Protein Dataset. k-NN, mRMR and 

ARTMAP RS made significant difference over All Views. However, no RS technique 

was found to outperform FS. It seemed that k-NN worked best at k=1 for FS. FS 

success was 3-7% higher than All Views success, which validates the fact that reducing 

learning complexity and selecting appropriate views increase pattern recognition 

performance.  Comparative FS success can be analyzed using Table 4.15 and 4.16. 

 
 
Method / k 1 3 5 7 9 11 
All Views 48.44% 48.44% 47.59% 47.03% 47.88% 49.29% 
FS 55.52% 53.26% 53.26% 54.39% 50.99% 53.54% 

  

Table 4.15: Comparison of FS with All Views for k-NN Classification 

 

 

As Table 4.15 shows success rates with corresponding k values, Table 4.16 additionally 

lists the selected views which could be used for further data mining processes. 

  

 

k Selected Views using Forward Selection Success 
1  [51, 42, 37, 0, 33] 55.52% 
3  [51, 45, 35, 8] 53.26% 
5  [51, 45, 30, 33] 53.26% 
7  [0, 48, 33, 30, 3, 32] 54.39% 
9  [51, 45, 30] 50.99% 
11  [51, 16, 3, 4, 14, 36] 53.54% 
 

Table 4.16: Set of Selected Groups using FS with Varying k for k-NN 

 

 

Using k-NN for ranking, a success of 52.41% was attained with k=7, selected view set 

={52, 1, 45, 49, 51, 42, 47, 44, 25, 41, 19, 11, 14, 50, 53, 6, 7, 16, 21, 17, 23}. Using 

ARTMAP ranking with ρ =0.75,  k-NN classification success was 50.42% with the k=7 

and selected view set ={38, 34, 2, 3, 1, 52, 40, 36, 13, 47, 37, 48, 49, 22, 10, 21, 43, 45, 

46, 41, 50, 4 }. Without changing k parameter for k-NN classification, using mRMR for 
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ranking resulted in a success ratio of 48.44% with selected view set = { 2, 52, 15, 32, 

41, 35, 33, 20, 43, 13, 4, 31, 29, 22, 49, 39, 23, 30, 38, 26, 27, 44, 53, 11, 1, 47, 24, 7, 

37, 5, 40, 28, 10, 8, 12, 9, 46, 18, 45, 19, 16, 3, 48}. As stated in section 2 these were 

the best results obtained incrementally loading ranked views. Therefore mRMR RS was 

found to be well behind other selection techniques giving less than 1.5% difference over 

All Views. 

 

 

4.2.5 Quantitative Comparison using ARTMAP Classification 

 

Performing forward selection in ARTMAP with varying vigilance values, the best 

pattern recognition success for the protein dataset was attained (at ρ=0.99). Not 

surprisingly, performance was found to increase hand in hand with ρ. This was also the 

case for the parkinson’s dataset. The other important but familiar fact was that FS 

performed better than newly introduced RS methods. FS performance compared with 

All Views is shown in Table 4.17. Selected views corresponding varying vigilance 

values are designated in Table 4.18. 

 

 

 Method / ρ     0.25    
                

0.50        0.75        0.99    
All Views 41.08% 44.76% 48.16% 52.12% 
FS 45.61% 51.84% 53.54% 58.07% 
 

Table 4.17: Comparison of FS with All Views for ARTMAP Classification 

 

 

 ρ FS Selected Groups Success 
0,25 [33, 26] 45.61% 
0,50 [0, 2, 21] 51.84% 
0,75 [51, 31] 53.54% 
0,99 [51, 40, 50, 30, 33] 58.07% 

 

Table 4.18: Set of Selected Groups using FS for ARTMAP with Varying ρ 
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mRMR ranking for ARTMAP classification performed better than it was for k-NN. 

mRMR RS led to a success of 53.54% with ρ =0.75 and selected view set = { 

2,52,15,32,41,35,33,20,43,13,4,31,29,22,49 }. This was equal to success of FS at the 

same vigilance. On the other hand, ARTMAP ranking (for its own classification) 

reached a success of 51.84% in the presence of same vigilance value and selected view 

set of { 39,35,3,4,2,53,41,37,14,48,38,49,50,23,11,22,44,46 }.  

 
 

4.2.6 Further Investigation using K-MART 

 
Parallel to the K-MART study with Parkinson dataset, a 2-fold cross-validation setting 

was prepared. The folds were training and test datasets used in previous studies with the 

same dataset.   

 

Test results, as designated in Table 4.19, show that K-MART method performs 

significantly better than simple use of Fuzzy ARTMAP in highly dimensional Protein 

dataset. Here simple use refers to utilization of the raw features without any selection 

and/or extraction process. 

 

 

Fold/Method All Views K-MART 

1 52.12% 57.22% 
2 57.06% 60.94% 
Average 54.59% 59.08% 

 

Table 4.19: Comparison of Fuzzy ARTMAP and K-MART 

 

 

K-MART results were the best attained with Protein dataset. All other methods used in 

the study that do not exploit view selection were significantly below K-MART 

performance. Extended studies using SVM yielded an average classification accuracy of 

44%. Therefore detailed SVM results were not included in this paper. 
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5. CONCLUSIONS 

In this thesis, two biomedical datasets were classified using different multi-view 

methods for reducing the learning complexity and better accuracy was achieved than of 

the single-view methods. Mainly, I tried two stacking settings in this study that I named 

K-MNB and K-MART, respectively, which both utilized a simple form of feature-

extraction via centroid based clustering method, K-M (K-Medoids). K-MNB uses NB 

(Naïve Bayes) and K-MART uses ART (Adaptive Resonance Theory) for fusion 

(stacking network) of K-M outputs. More specifically, these two methods fuse the class-

posterior probabilities in clusters outputed by simple K-M method, where K-M 

clusterings are setup independently for each view. I have shown that such fusion of 

clustering outputs works better than not only single view classification by merging all 

the variables of all views together but also single view classification by merging a few 

of individually most potent views. In other words, K-MNB and K-MART techniques 

compare favorably to the single-view methods that choose and merge the most useful 

views into a single feature vector. Such a selected-view fusion (for the selection 

process, I used variants of Ranking and Sequential Forward Selection techniques), as 

expected, worked better than the whole set of views merged together; however, could 

not surpass the multi-view extension. The results also imply that K-MART, being a 

more sophisticated stacking network, is significantly better than K-MNB; and more 

generally, even a simple within-view clustering to extract class-posterior-probability-

features from each view helps obtain better predictions than single-view methods.  
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