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ÖZET 
 

CORRESPONDENCELESS POINT BASED POSE ESTIMATION 

Ferhat CANBAY 

Bilgisayar Mühendisliği 

Tez Danışmanı: Yrd. Doç. Dr. Sezer GÖREN UĞURDAĞ 

 

Ağustos 2009, 66 

 

Günümüzde, hayatımızı kolaylaştıran teknolojilerden biri hiç kuşkusuz görüntüleme 

sistemleridir. Görüntüleme sistemleri yalnızca görüntüleme işi yapmayıp aynı zamanda bu 

görüntüyü işleyerek anlamlı veriler elde etme yeteneğine sahip sistemlerdir. Herhangi bir 

kamera tarafından elde edilmiş bu görüntülerde bulunan bir nesnenin pozisyon ve 

oryantasyon’u (poz) robotlarda, filmlerde, animasyonlar gibi bir çok alanda ihtiyaç duyulan 

bir bilgidir. Bu tezde poz kestirimi için gerekli olan alt görevlerden öznitelik bulma süreci 

otomatik hale getirilmiştir. Buna ek olarak nokta temelli, karşılıklık bilgisi gerektirmeyen  

Gravitational Pose Estimation (GPE) ve SoftPOSIT algoritmaları birbirlerine entegre 

edilmiştir. Aynı zamanda nesnenin görünmeyen noktalarından kaynaklanan problem de 

belli ölçülerde tolere edilmiştir. Poz kestirim kısmı, gerçek ve sanal resimler kullanılmak 

suretiyle test edilerek başarı oranı da ayrıca kanıtlanmıştır.   

 

 

 

 

 

Anahtar Kelimeler: Görüntüleme, Poz Kestirim, Karşılıklık Otomasyon, Öznitelik Bulma 
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ABSTRACT 
 

CORRESPONDENCELESS POINT BASED POSE ESTIMATION  

Ferhat CANBAY 

Computer Engineering 

Supervisor: Asst. Prof. Dr. Sezer GÖREN UĞURDAĞ 

 

 

August 2009, 66 

 

Today, one of the technologies which ease our lives is vision systems. Vision systems not 

only execute the task of vision but also they have the ability to process these images to 

extract meaningful data. The position and orientation (pose) of an object found in these 

images are useful information required for many fields such as robotics, films and 

animations. In this thesis, we automate the subtasks such as feature extraction and blob 

coloring that are required during the pose estimation. In addition, a correspondenceless 

point-based algorithm which is called Gravitational Pose Estimation (GPE) is proposed and 

implemented. We have also integrated GPE and SoftPOSIT into a single method called 

GPEsoftPOSIT, which finds the orientation within 3 degrees and the position within 10% 

of the object’s diameter even under occlusion-the manner in which an object closer to the 

viewport masks (or occludes) an object further away from the viewport. The algorithm is 

evaluated by a series of synthetic and real images. Results show that GPE is robust, 

consistent, and fast (runs in less than a minute).  

 

 

 

Keywords: Vision, Pose Estimation, Correspondence, Automation, Feature Extraction 
 



  v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT .............................................................................. ii 
ÖZET............................................................................................................... iii 
ABSTRACT .....................................................................................................iv 

TABLES ...........................................................................................................vi 
LIST OF FIGURES ...................................................................................... vii 
1.  INTRODUCTION.......................................................................................1 

1.1.  WHAT IS POSE ESTIMATION .......................................................................... 1 
1.1.1.  Geometry of Picture Taking ...................................................................... 3 

1.2. Application Domain ............................................................................................... 8 
2. LITERATURE SURVEY............................................................................9 
3. FEATURE EXTRACTION.......................................................................13 

3.1.  MANUAL, SEMI-MANUAL, AND AUTOMATED FEATURE 
EXTRACTION ........................................................................................................... 13 
3.2. TRADE-OFFS IN BLOB COLORING ............................................................... 14 

3.2.1.  Rosenfeld and Pfaltz’s Algorithm ........................................................... 15 
3.2.2.  Haralick’s Algorithm............................................................................... 16 
3.2.3.  Lumia’s Algorithm .................................................................................. 16 
3.2.5. Shima’s Algorithm ................................................................................... 17 
3.2.6. Main Color Emphasized Blob Coloring................................................... 17 

3.2.6. Proposed Blob Coloring Algorithm .................................................................. 17 
3.2.7.  Blob Coloring Results ............................................................................. 18 

4. GRAVITATIONAL POSE ESTIMATION.............................................19 
4.1. PROBLEM FORMULATION ............................................................................. 19 
4.2.  OVERALL APPROACH .................................................................................... 21 
4.3.  GPESoftPOSIT.................................................................................................... 28 
4.4.  TRADE-OFFS IN POINT-LINE MATCHING.................................................. 30 

4.4.1.  Regular Method....................................................................................... 30 
4.4.2 Sorting Based Method .......................................................................... 34 
4.4.3.  Point-Line Matching Results................................................................... 40 

5.  GRAVITATIONAL POSE ESTIMATION EXPERIMENTS .............42 
5.1.  RESULTS WITH REAL IMAGES .................................................................... 42 

5.1.1.  Mechanics and Electronics Aspects ........................................................ 47 
5.1.2.  Computing the Relative Angle ................................................................ 47 

5.2.  RESULTS WITH SYNTHETIC IMAGES......................................................... 48 
6.  VISUALIZATION ....................................................................................59 

7. CONCLUSION...........................................................................................62 
REFERENCES ...............................................................................................63 
CURRICULUM VITAE ................................................................................66 



  vi 

LIST OF TABLES 

TABLE 3.1 : Results of blob coloring algorithms ............................................................. 18 
 
TABLE 4.1 : Runtime comparison of the point-line matching algorithms ....................... 41 
 
TABLE 5.1 : Performance of pose estimation algorithm .................................................. 46 
 
TABLE 5.2 : GPEsoftPOSIT results .................................................................................. 53 
 
TABLE 5.3 : GPE  results ...................................................................................................54 
 
TABLE 5.4 : Random start softPOSIT results ................................................................... 55 

 

 

 

 

 

 

 
 
 
 
 
 



  vii

LIST OF FIGURES 

Figure 1.1 : A diagram of a pinhole camera ........................................................................ 4 
 
Figure 1.2 : The geometry of a pinhole camera ................................................................... 4 
 
Figure 1.3 : The geometry of a pinhole camera as seen from the X2 axis ...........................  6 
 
Figure 3.1 : Image that is taken using infrared leds and infrared filter .............................. 14 
 
Figure 3.2 : L-shaped template for blob coloring .............................................................. 15 
 
Figure 4.1 : An object in the gravitational field of the lines of sight ................................. 20 
 
Figure 4.2 : Calculation of 

nextv
r

........................................................................................... 24 
 
Figure 4.3 : Four different views of a 10-point synthetic object ………………………… 25 
 
Figure 4.4 : Trajectory of the above object during GPE’s search for the true pose …...… 26 
 
Figure 4.5 : Energy versus iterations ……………………………………………………. 27 
 
Figure 4.6 : Converging to optimum using GPEsoftPOSIT  ……………………………. 29 
 
Figure 4.7 : The initial values of the elements before the algorithm starts  ....................... 31 
 
Figure 4.8 : First Step of the Algorithm ............................................................................. 32 
 
Figure 4.9 : Second Step of the Algorithm ........................................................................ 32 
 
Figure 4.10 : Third Step of the Algorithm ......................................................................... 33 
 
Figure 4.11 : The situation of the elements after the algorithm runs ................................. 33 
 
Figure 4.12 : The values of the elements before starting algorithm .................................. 35 
 
Figure 4.13 : Sorting Step of the Algorithm ...................................................................... 36 
 
Figure 4.14 : First Step of the Algorithm ........................................................................... 37  
 
Figure 4.15 : Second Step of the Algorithm ...................................................................... 38 
 
Figure 4.16 : Third Step of the Algorithm ......................................................................... 39 



  viii 

 
Figure 4.17 : Last Step of the Algorithm ........................................................................... 40  
 
Figure 4.18 : Performance graphic of the Regular and  
Sorting Based matching algorithms .................................................................................... 41 
 
Figure 5.1 : Images of a real object taken at various angles …………………………….. 43 
 
Figure 5.2 : The fixture used for the real image experiment …………………………….. 44 
 
Figure 5.3 : Estimation of relative angle of the object between  
two image pairs of Figure 5.1 ………………………….………………………………… 45 
 
Figure 5.4 : Absolute error in estimated relative angle in Figure 5.3. ……...…………… 46 
 
Figure 5.5 : Average orientation error …………………………………………………... 57 
 
Figure 5.6 : Average position error ……………………………………………………… 58 
 
Figure 6.1 : Trajectory GPE while finding pose ................................................................ 61 

 

 
 
 
 
 
 
 

 

 
 
 
 
 



  1 

1.  INTRODUCTION 

In computer graphics, robotics, computer and machine vision; position and orientation 

(pose) estimation of a three-dimensional (3D) object in regard to a camera and etc. from 

two-dimensional (2D) image of the object is considered as a subtask. For instance, in 

production applications it is used for robot guidance. It is needed for accurately applying 

computer graphics objects into photographic scenes, in augmented reality. Pose estimation 

is medium for object recognition in computer vision. In machine vision, it is required 

sometimes for making accurate measurements. For many of the tasks, it is used for camera 

calibration before executing the primary task (recognising the pose of the camera regarding 

the world coordinates).  

In this thesis a method that solves the pose estimation problem in real life. Also the 

subtasks are proposed in the thesis that required providing ease of usage for users by 

automating the method as much as possible. In the first part of the thesis, the concepts of 

pose estimation problem are introduced such as image geometry and fields of pose 

estimation. Part two gives an overview on previous works. The phases of feature extraction 

required for automation is given in part three. Pose estimation problem is presented, 

detailed information about Gravitational Pose Estimation (GPE) algorithm and the 

integration of GPE and SoftPosit algorithms are mentioned in part four. Part five comprises 

the test results, and part six explains the program that visually shows the trajectory of the 

object during the GPE runs. 

1.1.  WHAT IS POSE ESTIMATION 

Pose estimation, in computer vision and in robotics, is a usual task to recognise specific 

objects in an image and to settle each object's position and orientation relative to some 

coordinate system (Shapiro and Stockman 2001). For instance, this information, afterwards, 

can be used to enable a robot to control an object or to avoid moving into the object. Even 

though, this concept is occasionally used only to characterize the orientation, the 
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combination of position and orientation is called as the pose of an object. Exterior 

orientation and translation are also used as a synonym to pose. 

The image data where the pose of an object is decided from can be a single image, a stereo 

image pair, or an image sequence where, typically, the camera is in motion with a known 

speed. The objects considered can be quite general, such as and including a living being or 

body parts, e.g., a head or hands. Yet, the methods used for deciding the pose of an object 

are usually particular for a class of objects, and they cannot be expected to work well for 

other types of objects. 

The pose can be characterized through a rotation and translation transformation that 

conveys the object from a reference pose to the observed pose. Hereby rotation 

transformation can be represented in various ways, such as a rotation matrix or a 

quaternion. 

The particular task in deciding the pose of an object in an image (or stereo images, image 

sequence) is referred to as pose estimation. The pose estimation issue can be figured out in 

various ways depending on the image sensor configuration, and choice of methodology. 

Herein, two classes of methodologies can be acclaimed: 

Analytic or geometric methods: Supposing that the image sensor (camera) is calibrated the 

mapping from 3D points in the scene and a 2D point in the image is studied. Provided that 

the geometry of the object is as well known, it means that the projected image of the object 

on the camera image is a familiar function of the object's pose. Characteristically corners or 

other feature points; when a set of control points on the object has been picked out, it is 

then likely to solve the pose transformation from a set of equations, which relate the 3D 

coordinates of the points with their 2D image coordinates.  

Learning based methods: These methods apply the artificial learning-based system which 

learns the mapping from 2D image features to pose transformation. In brief, this implies 

that an adequately large set of images of the object, in different poses, must be put to the 

system during a learning phase. As the learning phase is accomplished, the system should 

sustain presenting a valuation of the object's pose given an image of the object. 
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1.1.1.  Geometry of Picture Taking 

Geometry in computer vision is a sub-field in computer vision dealing with geometric 

relations conventionally by a pinhole camera amidst the 3D world and its projection into 

2D image. The pinhole camera model illustrates the mathematical bond between the 

coordinates of a 3D point and its projection onto the image plane of a model pinhole 

camera (Hartley and Zisserman (2003). Here, the camera aperture is specified as a point 

and no lenses are used to focus light. For instance, the model does not comprise the 

geometric distortions or blurring of unfocused objects which are caused by lenses and finite 

sized apertures, and also does not take into account that most practical cameras have the 

only discrete image coordinates which means that the pinhole camera model can only be 

used as a first order approximation of the mapping from a 3D scene to a 2D image. Its 

validness depends on the quality of the camera and, generally reduces from the centre of the 

image to the edges as lens distortion effects increase (Forsyth and Ponce 2003). 

Considering of the some effects that the pinhole camera model does not take into account 

can be compensated for, by applying suitable coordinate transformations on the image 

coordinates for instance, and other effects are adequately small to be neglected on condition 

that a high quality camera is performed. This implies that the pinhole camera model can 

usually be used as a proper description regarding how a camera depicts a 3D scene in 

computer vision and computer graphics, as to say.  

In Figure 1.1, the geometry showing the mapping of a pinhole camera is given. Figure 1.2 

shows the geometry of a pinhole camera. 
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Figure 1.1: A diagram of a pinhole camera 
Source : http://en.wikivisual.com 

 

Figure 1.2 : The geometry of a pinhole camera 



  5 

• A 3D orthogonal coordinate system with its origin at O. As well, this is where the 

camera aperture is placed. The three axes of the coordinate system are referred to as 

X1, X2, X3. Axis X3 is pointing in the viewing direction of the camera which reveals 

as the optical axis, principal axis, or principal ray. The 3D plane that intersects with 

axes X1 and X2 are the front side of the camera, or principal plane.  

• An image plane where the 3D world is projected through the aperture of the camera. 

The image plane is parallel to axes X1 and X2 which is placed at distance f from the 

origin O in the negative direction of the X3 axis. An applicable implementation of a 

pinhole camera indicates that the image plane is located such that it intersects the X3 

axis at coordinate -f where f > 0. f is also referred to as the focal length of the pinhole 

camera.  

• The intersection of the optical axis and the image plane is marked as a point R. It is 

mentioned that as the principal point or image center. 

• Point P can be marked at coordinate (x1, x2, and x3) relative to the axis X1, X2, and X3 

on anywhere in the world. 

• The projection line of point P into the camera. This green line goes through point P and 

point Q. 

• The projection of point P is symbolized as Q, onto the image plane. It is existed by the 

intersection of the projection line (green) and the image plane. It can be supposed that 

x3>0 which means that the intersection point is specicified nicely, in any practical 

condition. 

• There is exist a 2D coordinate system in the image plane, with an origin R and axes Y1 

and Y2 , parallel to X1 and X2, in the order given. The coordinates of point Q related 

to this coordinate system is (y1, y2). 

 
The circular hole that controls the amount of light entering a camera, as a pinhole aperture, 

is supposed to be eternally small, a point. In the literature, this point in 3D space is 

indicated as the optical (or lens or camera) center. 
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Let’s try to understand how the coordinates (y1, y2) of point Q depend on the coordinates  

(x1, x2, x3) of point P. It is made with the help of Figure 1.3 that marks the same view as 

Figure 1.2 but now from on top, looking down in negative direction of the X2 axis. 

As shown in Figure 1.3, that are two similar triangles, both having parts of the projection 

line (green) as a hypotenuses. The catheti of the left triangle are –y1 and f and the catheti of 

the right triangle are x1 and x3. These two similar triangles pursue that 
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Figure 1.3: The geometry of a pinhole camera as seen from the X2 axis 
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which is an expression that shows the relation between the 3D coordinates (x1, x2, x3) of 

point P and its image coordinates (y1, y2) given by point Q in the image plane. It should be 

attention on that the mapping from 3D to 2D coordinates described by a pinhole camera is a 

perspective projection followed by a 180 degree rotation in the image plane. This is 

matched with a real pinhole camera works, the resulting image is turned 180 degree and the 

relative size of scheduled objects depends on their distance to the focal point and the whole 

size of the image depends on the distance f between the image plane and the focused point. 

To create an unrotated image, that it is expected from the camera, there are two alternative 

ways: 

• In any direction, turn around the coordinate system in the image plane 180 degree. It is 

a solution any practical performing of a pinhole camera would fix the problem; the 

image is turned around before looking at it for photographic cameras, and for digital 

cameras pixel information is sent in such an order that it becomes rotated. 

• The image plane o is put intersects the X3 axis at f instead of at –f and revise the 

previous calculations. This would generate a virtual (or front) image plane that can’t be 

carried out in practically, but provides a theoretical camera which may be simpler to 

analyze than the real one. 

Either in these cases, the results of mapping from 3D coordinates to 2D view coordinates is 

given by  
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(similar to Equation 1.3 except no minus sign) 
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1.2. Application Domain 

Pose estimation of a 3D object with respect to a camera – or vice versa – from the object’s 

2D image(s) is a subtask in robotics, computer graphics, computer and machine vision. It is, 

for example, used for robot guidance in manufacturing applications. In augmented reality, it 

is required for accurately inserting computer graphics objects into photographic scenes. In 

computer vision, pose estimation is instrumental for object recognition. In machine vision, it 

may sometimes be needed for making precise measurements. And in a variety of tasks, it is 

used for camera calibration (i.e., finding the pose of camera with respect to the world 

coordinates) before carrying out the actual task.  
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2. LITERATURE SURVEY 

The ideas for optimizing the process of finding a pose from 2D-3D correspondences have 

been come up by many people. Most of the algorithms are built on a linear or nonlinear 

system of equations which is required to be solved, however; how these equations are 

obtained and how many parameters to be estimated is very different. It is not for the same 

purpose that all algorithms are made, it still is aimed for speed and accuracy in their area. 

The hypothesize-and-test approach is the classical one to solving these coupled problems 

(Grimson 1990). In this approach, a small set of object feature to image feature 

correspondences are hypothesized, first. The pose of the object is computed, formed on 

these correspondences. Then, the object points are back-projected into the image using this 

pose. On condition that the original and back-projected images are amply similar, then the 

pose is accepted; or, a new hypothesis is formed and the process is repeated. The RANSAC 

algorithm (Fischler 1981) is perhaps the best known example of this approach, for the 

condition that no information is available to confine the correspondences of object points to 

image points. In order to determine a pose, if three correspondences are used, a high 

possibility of success can be achieved by the RANSAC algorithm in )log( 3 NMNO  time 

when there are M object points and N image points.  

The condition mentioned is here is one of the problems that is encountered when applying a 

model-based approach to the object recognition problem, and as such has taken 

considerable attention. (The appearance-based approach (Murase 1995) in which multiple 

views of the object are compared to the image is the other main approach to object 

recognition. Yet, as 3D models are not used, this one does not provide accurate object 

pose.) Many investigators (e.g., (Cass 1994, Cass 1998, Ely 1995, Jacobs 1992, Lamdan 

1988, Procter 1997)) approximate the nonlinear perspective projection through linear affine 

approximations. This is accurate if the relative depths of object features are small compared 

to the distance of the object from the camera. Baird's tree-pruning method (Baird 1985), 

with exponential time complexity for unequal point sets, and Ullman's alignment method 
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(Ullman 1989) with time complexity )log( 34 MMNO  were among the pioneer 

contributions.  

The geometric hashing method (Lamdan 1988) settles an object's identity and pose, using a 

hashing metric computed from a set of image features. Hereby method can only be applied 

to planar scenes as the hashing metric must be invariant to camera viewpoint, and as there 

are no view-invariant image features for general 3D point sets (neither perspective nor for 

affine cameras) (Burns 1993).  

In (DeMenthon 1993), an approach using binary search by bisection of pose boxes in 3 two 

4D spaces is proposed, extending the research of (Baird 1985, Cass 1992, Breuel 1992) on 

affine transforms, yet; it had high-order complexity. The approach by Jurie (Jurie 1999) has 

been inspired for our work and is within to the same family of methods. An initial volume 

of pose space is guessed, and the whole correspondences compatible with this volume are 

first taken into account. The pose volume is then reduced again and again until it can be 

viewed as a single pose. Boxes of pose space are reduced not only by counting the number 

of correspondences that are compatible with the box as in (DeMenthon 1993), but also on 

the basis of the probability of having an object model in the image within the range of 

poses defined by the box, as a Gaussian error model is performed.  

Among the researchers who have denoted the full perspective problem, Wunsch and 

Hirzinger (Wunsch 1996) formalize the abstract problem in a way akin to the approach 

advocated here as the optimization of an objective function by combining correspondence 

and pose constraints. Yet, the correspondence constraints are not represented analytically. 

Instead, each object feature is matched explicitly to the closest lines of the image features’ 

sight. The closest 3D points on the lines of sight are determined for each object feature, and 

the pose that takes the object features closest to these 3D points is chosen which allows an 

easier 3D to 3D pose problem to be solved. The process is reiterated until a minimum of the 

objective function is obtained.  
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The object recognition approach of Beis (Beis 1999) uses view-variant 2D image features 

to index 3D object models. It is performed off-line training to learn 2D feature groupings 

related with large numbers of views of the objects. After, the on-line recognition stage uses 

new feature groupings to index into a database of learned object-to-image correspondence 

hypotheses. These hypotheses are used for pose estimation and verification.  

The pose clustering approach to model-to-image registration and the classic hypothesize-

and-test approach is similar to each other. All hypotheses are created and clustered in a 

pose space before any back-projection and testing takes place, instead of testing each 

hypothesis as it is created. This former step is performed only on poses associated with 

high-probability clusters. It is of the idea that hypotheses including only correct 

correspondences should form larger clusters in pose space than hypotheses that include 

incorrect correspondences. Olson (Olson 1997) gives a randomized algorithm for pose 

clustering with time complexity )( 3MNO .  

Beveridge and Riseman’ method (Beveridge 1992, Beveridge 1995) is also related to 

DeMenthon’s approach. Random-start local search is combined with a hybrid pose 

estimation algorithm engaging both full/weak-perspective camera models. A steepest 

descent search in the space of object to-image line segment correspondences is performed. 

A weak-perspective pose algorithm is used to rank neighbouring points in this search space, 

and a full-perspective pose algorithm is used to update the object's pose after making 

shifting to a new set of correspondences. The time complexity of this algorithm was 

determined empirically to be )( 22NMO .  

In (Kanatani, 1985b), a pose parameter estimation is proposed assuming no information on 

correspondences. Yet, it is assumed by the algorithm that the scene is planar with a closed 

curve drawn on it under orthographic projection. As the algorithm uses difference to 

approximate derivatives, it is generally very sensitive to noise. This algorithm has been 

extended in (Kanatani, 1985a) to be applicable under perspective projection.  
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In (Lin et al., 1986), a correspondenceless pose estimation algorithm is proposed built on 

the analysis of the eigenstructure of the scatter matrix.  

In (Aloimonos and Herve, 1990), it is a correspondenceless pure translational pose 

estimation algorithm is proposed which assumes that the z component of the translation 

vector is much smaller than the depth of the scene. As a result, the author approximates as 

equal the depths of the same 3D point in different camera centred coordinate frames.  

In (Lin et al., 1994), a correspondenceless pose estimation algorithm under orthographic 

projection is proposed. Three cameras are used by the algorithm and it is based on the 

eigenstructure analysis of the scatter matrix.  

In (Govindu et al. 1998), a correspondenceless pose estimation has been proposed based on 

the use of the geometric descriptors of a contour. In the experiments, aerial images are used 

where the 2D contour may be extracted. However, the transformation cannot be guaranteed 

to be a 2D transformation, so that the usefulness of the algorithm is severely limited.  

In (Tarel et al., 1997), a correspondenceless method was proposed to estimate 3D projective 

transformation parameters. This algorithm uses an iterative method to find the initial 

estimation first for projective transformation parameters based on bitangent lines and 

bitangent planes. Then the pose parameters are refining by iteration based on the extended 

ICP (Iterative Closest Point) algorithm. 

In Liu and Rodrigues (2001), a correspondenceless pose estimation algorithm has been 

induced from a realistic camera setup. The algorithm provides a closed form solution to all 

parameters of interest. What is important to emphasize is that the algorithm does not 

require disambiguating multiple solutions which is in contrast with some correspondence-

based and correspondenceless pose estimation algorithms (e.g. Fishler and Bolles, 1981; 

Tsai and Huang, 1984; Lin et al., 1986, 1994; Huang and Netravali, 1994; Tarel et al., 

1997). 
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3. FEATURE EXTRACTION 

GPE needs the coordinates of the points that determined as the points of the object model. 

To give this information to the GPE a feature extraction must be done on the picture.  

3.1.  MANUAL, SEMI-MANUAL, AND AUTOMATED FEATURE EXTRACTION 

The manual method is the basic method to get the coordinates is using a tool that gives the 

pixel coordinates and then typing the coordinate to the file which GPE uses it as an input. 

This method is very simple but it is not useful in terms of time and accuracy. 

In semi-manual method, a program should be used to do the job. The program takes the 

picture as an input and shows it on the screen. When the user clicks mouse on an area in the 

picture the program writes the coordinates of the pixel to the file that GPE uses. 

The most useful method is to automate all the steps. The points on the object that is used 

for object model are marked by infrared leds. Also an infrared filter is used on the camera 

which the pictures are taken by. After these, the picture is taken. As shown in Figure 3.1 

there can be seen only black and white areas. White regions are formed by the infrared leds 

and also these regions are points that are needed for GPE. However, there must be an 

algorithm which is called blob coloring or contour tracing to to make the white regions 

meaningful. Using the blob coloring algorithm the centers of mass of the white regions can 

be find. Finally these parameters can  be used by GPE as input.  
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3.2. TRADE-OFFS IN BLOB COLORING 

Blob coloring scans an image and groups its pixels into blobs based on pixel connectivity, 

i.e. all pixels in a blob share similar pixel intensity values and are in some way connected  

Figure 3.1: Image that is taken using infrared leds and infrared filter 
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with each other. It can be seen in Figure 3.2 briefly. Once all groups have been determined, 

each pixel is labeled with a graylevel or a color (color labeling) according to the blob it was 

assigned to.  

Extracting and labeling of various disjoint and connected blobs in an image is central to 

many automated image analysis applications. The applications use several algorithms. The 

efficiency of these algorithms are appears in big images or complex images. There are six 

algorithms explained in below. The most efficient one in literature is Main Color 

Emphasized Blob Coloring Algorithm. Because it scans the whole image only once. In 

contrast, the other algorithms have to scan the image twice. 

3.2.1.  Rosenfeld and Pfaltz’s Algorithm 

The first method which is suggested by Rosenfeld and Pfaltz carries out two passes over a 

binary image. Each point is encountered once in the first pass. A further study of its four 

neighbouring points (left, upper left, top, and upper right) is conducted at each black pixel 

P. If none of these neighbours carries a label, then P is allocated a new label. In other ways, 

those labels carried by neighbours of P are said to be equivalent. In this occasion, the label 

of P is replaced by the minimal equivalent label. For this resolution, a pair of arrays; one 

containing all current labels and the other the minimal equivalent labels of those current 

labels, is generated,. In the second pass, label substitutes are made.  

 

Figure 3.2 : L-shaped template for blob 
coloring 
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3.2.2.  Haralick’s Algorithm 

Haralick designed a method to remove the excess storage required for the pair of arrays 

which are suggested in the first method. Each black pixel is given a unique label, first. The 

labelled image is then processed iteratively in two directions. Each labelled point is 

reassigned the smallest label among its four neighbouring points in the first pass, 

administered from the top down,. The second pass is similar to the first, except that it is 

administered from the bottom up. The process goes on iteratively until no more labels 

change. The memory storage of hereby method is small, yet; the overall processing time 

differs according to the complexity of the image being processed. 

3.2.3.  Lumia’s Algorithm 

In the method put up by Lumia et al. which compromises between the two preceding 

methods, labels are assigned to black pixels in the first top-down pass as in the first 

method. However, the labels on this line are adjusted to their minimal equivalent labels at 

the end of each scan line,. The second pass begins from the bottom and works similarly as 

the top-down pass which can be proven that all components obtain a unique label after 

these two passes. 

3.2.4.  Fiorio and Gustedt’s Algorithm 

A special model of the union-find algorithm was activated by Fiorio and Gustedt, that it 

runs in linear time for the component-labeling problem. This methodology is made up of 

two passes. In first one, each set of corresponded labels is described as a tree. And a re-

labeling progress is performed in the second pass. To combine two trees into a single tree, 

this operation is used in the union-find methods serves, when a node in one tree bears an 8-

connectivity relations to a node in the other tree. 
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3.2.5. Shima’s Algorithm 

Shima offered this method et a1. is specifically fit for compressed images in which a 

procedure before processing as required to reform image elements into runs. An examining 

part and a propagation step are practiced frequently on the run data. In the examination 

part, the image is countered till an unlabeled run (referred as a focal run) is found and is 

allocated a new label. In the propagation step, the label of each focal run is produced to 

adjacent runs above or below the scan line. 

3.2.6. Main Color Emphasized Blob Coloring 

Main Color Emphasized Blob Coloring Algorithm (MCEBC) quantizes the colors into the 

predefined color classes, using the heuristic information that humans tend to emphasize the 

dominant color component when they perceive and memorize colors. The experimental 

results indicate that the method approximates the user's classification better than the other 

methods that use the mathematical color difference formulas. The MCEBC algorithm is 

implemented in a content-based image retrieval system, called QBM system. The retrieval 

results of the system using MCEBC algorithm is quite satisfactory and shows higher 

success rates than using other methods. 

 

3.2.6. Proposed Blob Coloring Algorithm 

There are six major algorithms in literature. The most efficient of them is the MCEBC 

algorithm. However, using simple images it is not needed to use the MCEBC. In addition to 

this, in the next section it has been seen that in simple images, Rosenfeld and Pfaltz’s 

algorithm is relatively faster than MCEBC. So Rosenfeld and Pfaltz’s algorithm is used in 

the blob coloring part of the thesis. The algorithm can be seen below. 

 
Let the initial color, k=1. Scan the image from left to right and top to bottom.  

If f(xC) =0 then continue  
else  

begin  
if (f(xU) =1 and f(xL) =0)  

then color (xC): = color (xU)  
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if (f(xL) =1 and f(xU) =0)  

then color (xC): = color (xL)  
 

if (f(xL) =1 and f(xU) =1)  
then begin  

color (xC): = color (xL)  
color (xL) is equivalent to color (xU)  

end  
 

comment: two colors are equivalent.  
 

If(f(xL) =0 and f(xU) =0)  
then color (xC): = k; k:=k+1  

 
comment: new color  
end 

 

3.2.7.  Blob Coloring Results 

As always done there should be choosen a method to do the blob coloring efficiently. To 

make this  Rosenfeld and Pfaltz’s algorithm and MCEBC are tested with same photos. As it 

was told above, the MCEBC algorithm is the best blob coloring algorithm in literature. 

However, because of using the infrared leds and infrared filters, the taken photos become 

simpler. This reason effects the run-times positively especially the Rosenfeld and Pflatz 

method.  In Table 3.1 the run-time results can be seen. Two of the methods find the blobs 

very quickly. 

 

 

  Rosenfeld (ms) MCEBC (ms) 
1 0.312500 0.312500 

2 0.468750 0.781250 

3 0.468750 0.781250 

4 0.312500 0.468750 

5 0.312500 0.468750 
 

TABLE 3.1 Results of Blob Coloring 
Algorithms  
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4. GRAVITATIONAL POSE ESTIMATION 

Gravitational Pose Estimation (GPE) is a correspondenceless method which is inspired by 

classical mechanics. GPE can handle occlusion and uses only one image (i.e., perspective 

projection). GPE creates a simulated gravitational field from the image and lets the object 

model move and rotate in that force field, starting from an initial pose. 

4.1. PROBLEM FORMULATION 

Image of a 3D point (on the image sensor of a regular camera) is the perspective projection 

of the point on to the image plane – though less accurate approximations (e.g. orthographic 

projection) are possible. If the coordinates of the point are ( , , )x y z  with respect to the 

camera coordinate frame (origin is the camera lens’ center and the X-Y axes are along the 

edges of the rectangular image sensor), then its image is located at ( . / , . / , )x f z y f z f  where 

f  is the distance between the camera lens and image plane – called f  because it is 

approximately equal to the focal length of the lens. In real life, image plane is behind the 

camera lens at z f= −  and image is inverted. However, most treat it as if the image plane is 

at  z f=  without any loss of generality – a simple flip of all three coordinates does the job. 

All points on line ( , , )kx ky kz , where k  is a free parameter, produce the same image point on 

the image plane. Therefore, for each image point, it can be constructed a unique line in 3D 

(called line of sight) on which the object point must be located.  

A camera image does not consist of feature points; instead it consists of pixels, each of 

which is assigned a value indicating brightness and color if any. However, it is possible to 

transform an image to a collection of feature points by computer vision techniques. Each of 

the feature points on the image plane corresponds to a point on the object and gives us a 

line of sight (LOS) in 3D when extended through the lens center. Thus, from the image of 

an object a pencil of lines is obtained, and it is known that they go through the object as in 

Figure 4.1. 
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GPE (and similar techniques) require a rigid object model, which is a set of 3D object 

points (i.e., feature points) expressed by their coordinates in the object coordinate frame. 

Then, the answer to the pose estimation problem is the pose where the object points are as 

close to the LOSes as possible. From the above discussion an energy function can be 

devised, which is expected to be zero when the correct pose is found. Below are the steps to 

calculate the energy of a suggested pose for the object: 

• For the suggested pose, transform object points’ coordinates in the object model from 

the object coordinate frame to the camera coordinate frame. (Everything from this point 

on is computed in the camera coordinate frame.) 

• Construct the LOSes from the image points.  

• Let 
ijd  be the shortest, hence perpendicular distance, between the i th point of the object 

model and the j
th LOS. Calculate and sort all ijd ’s in ascending order. Place them in a 

list called DistanceList. 

• Pair the LOSes with object points until there is no LOS left (assuming no false 

feature points). Do this in such a way that an object point is paired with only one LOS 

and an LOS is paired with only one object point. Start with the smallest
ijd  (the topmost 

Figure 4.1:  An object in the gravitational 
field of the lines of sight 

Source : H. Fatih Ugurdag, Sezer Gören and Ferhat 
Canbay, 2008. Correspondenceless pose estimation from 
a single 2D image using classical mechanics. October 
2008. 

 

gravitational 
field 

lines of 
sight 

lens 
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element in DistanceList), and assign the i th point of the object model to the j
th LOS. 

Erase all distances in DistanceList that belong to object point i (all ikd  where k is a free 

parameter) as well as all distances that belong to LOS j (all kjd  where k is free). 

Continue with the smallest mnd  in the updated DistanceList, and pair object point m and 

LOS n. Continue until all LOSes are paired. 

• Calculate the energy of object model in the suggested pose, which is equal to the sum of 

squares of the distances between all LOS-object point pairs: 

2

ijE d= ∑                 (4.1) 

It should be noted that one can calculate the average distance between the points and lines 

as in: 

( /#lines)aved E=                (4.2) 

When the estimated (suggested) pose is equal to the correct pose, 
aved  should be quite small 

with respect to the dimensions of the object. Although this is currently our criterion, a 

maximum feature distance criterion may also be imposed. 

4.2.  OVERALL APPROACH 

The algorithm starts by forming the LOSes. A line can be represented (though not 

canonically) by a point on it and a (unit-length) direction vector. As the object points are 

wanted to coincide with the LOSes, it is quite intuitive to form a gravitational field where 

LOSes attract object points as shown in Figure 4.1. Since is not wanted object points to 

move after they reach the LOSes, it makes sense to make the force (gravitational field) 

proportional to the distance between object points and LOSes. The outline of the algorithm 

is as follows: 

 

1) Pair the object points and LOSes on a 1-to-1 basis as described in Section 4.1 in the 
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energy calculation instructions. 

2) Calculate the force on each object point through equation (4.3), where if
r

 is the force on 

object point i  and ijd  is the distance between the i th object point and its paired LOS j , 

and îjr  is the unit vector that points from point i  to line j  and is perpendicular to line 

.j  

ˆ
i ij ijf d r=
r

                                                              (4.3) 

3) Use classical mechanics to calculate the translational, ta
r

, and rotational acceleration, 

ra
r

, as follows: 

a) Calculate effective force, cmf
r

 applied to the object’s center of mass (COM) by: 

.cm i

i

f f= ∑
r r

 (4.4) 

Note that force on an unpaired object point (a possibly occluded point) is zero.    

However, unpaired points still contribute to the COM calculations, i.e., they are still 

considered part of the object. 

b) Calculate translational acceleration, 
ta
r

, which is the acceleration of object’s COM, 

by (4.5), where 
totm  is the total mass of the object. (Normally, it is assumed every 

feature point has a mass of 1. However, if there are different degrees of certainty in 

feature extraction or there are reasons to believe that some feature points have to be 

aligned more carefully with LOSes, then those points may be assigned a larger mass 

than other points.) 

/t cm tota f m=
rr

         (4.5) 
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c) Calculate total torque, cmt
r

, around the COM using the summation of cross-products 

in (4.6), where ( )cm ir
r

 is the vector that gives the relative displacement of point i with 

respect to COM. 

( )cm cm i i

i

t r f= ×∑
rr r

             (4.6) 

d) Calculate the rotational inertia matrix of the object (at the current pose,) ,R  through 

(4.7), where ( ) pqR  is a component of matrix R  that is located in row p  and column 

q , im  is the mass of object point i , and (( ) ) ,  (( ) ) , and (( ) )cm i k cm i p cm i qr r r
r r r

 denote the  

k
th, p

th, and q th  components of the vector ( )cm ir
r

respectively. 

 

( {(( ) ) (( ) ) (( ) ) (( ) ) }pq i cm i k cm i k cm i p cm i q

i k

m r r r r= −∑ ∑R)
r r r r

                                                         (4.7) 

e) Calculate angular acceleration, 
ra
r

, using (4.8), where 1−R is the inverse of rotational 

inertia matrix, .R  

 

1
r cma t−=

rr
R                        (4.8) 

4) Let the pose of object be expressed by vectors ,  ,  n s a
r r r

 (unit vectors by definition) and 

p
r

, where n
r

 is the orientation of X-axis of the object model (object coordinate frame) 

expressed in the camera coordinate frame, s
r

 is the orientation of Y-axis, a
r

 is the 

orientation of Z-axis, and p
r

 is the position of object. Then: 

a) Calculate p∆
r

 where 
tp a∆ =

r r
 and p∆

r
 is the change in p

r
, so add p∆

r
 to old p

r
 to get 

the new p
r

. 

b) Rotate ,  ,  and n s a
r r r

 around the vector ra
r

 by an angle equal to ra
r

 radians, where ra
r

 

denotes the length of the vector .ra
r

 In order to do this, we follow the steps below 

for each of ,  ,  and n s a
r r r

: 
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Let v
r

 be a vector to be rotated around 
ra
r

 shown as in Figure 4.2. Normalize v
r

 (i.e., make it 

unit-length) to get unit vector ˆ.v  Identify the two components of ˆ.v , ˆ
pv and ˆ

nv , where ˆ
pv  is 

parallel to ra
r

, and ˆ
nv  is normal (i.e., perpendicular) to ra

r
, using normalization, dot-product, 

and scalar multiplication in (4.9) and vector subtraction (4.10). 

ˆ ˆ ˆ( . )p r rv a v a=
r

            (4.9) 

n pv v v= −
r r r

                                   (4.10) 

i) Construct unit vector ˆ
nnv  from ˆ

nv  using (4.11). Vector ˆ
nnv  is normal to plane ˆ

nv  

and ra
r

, and is the direction vector v
r

 moves when it is rotated around ra
r

. 

ˆ ˆ
nn r nv a v= ×
r

          (4.11) 

ii) Calculate the next v
r

 denoted as 
nextv
r

using (4.12): 

ˆ ˆ(cos( ) sin( ) )next p n r n r nnv v v a v a v= + +
r r r r r

         (4.12) 

nextv
r

 

v
r

 

ra
r

 

pv
r

 

nv
r

 

ra
r

 

nv
r

 

ˆcos( )n r nv a v
r r

 

ˆsin( )n r nnv a v
r r

 

normal 
component 
 of nextv

r
 

a. b. 

Figure 4.2. Calculation of nextv
r

.  a. 3D view  b. Top view 
Source : H. Fatih Ugurdag, Sezer Gören and Ferhat Canbay, 2008. Correspondenceless 
pose estimation from a single 2D image using classical mechanics. October 2008. 
 

ra
r
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5) Calculate the energy E  at the next pose – pair object points and LOSes – use (4.1). If 

the energy obtained is not small enough, go to step 2 and continue to move the object in 

the gravitational field until it gets stuck in a locally minimum energy state. If it is stuck, 

then update the minimum pose and energy, provided current one is the best. If the 

energy is still not small enough (and the maximum number of iterations is not reached,) 

then go to step 6 to shake the object (shake means a random rotation).  

 

 

6) Generate an angular acceleration, ,ra
r

 randomly. Apply step 4 to calculate the next 

orientation. Then go to step 1. 

As an example, a 10-point object is shown in Figure 4.3. GPE has been run by taking the 

true pose as 

(1,0,0), (0,1,0), (0,0,1), (0,0,5)n s a p= = = =
r r r r

 

and initial pose as 

(0,1,0), (0,0,1), (1,0,0), (20,20,20).n s a p= = = =
r r r r

 

Figure 4.3: Four different views of a 10-point 
synthetic object (3 of the points are collinear) 

Source : H. Fatih Ugurdag, Sezer Gören and Ferhat 
Canbay, 2008. Correspondenceless pose estimation from a 
single 2D image using classical mechanics. October 2008. 
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The initial energy came out to be around 8,000. The criterion for a local minimum was set 

such that the absolute change in the energy is less than 0.0001 for 30 consecutive iterations. 

The criterion for termination was either getting an energy of less than 0.0002 or to reaching 

iteration 1,000. (For our larger set of experiments, it has been used up to 50,000 iterations 

since GPE runs quite fast.) The result of this initial experiment was impressive. The number 

of shakes was only 2. The program stopped with energy less than 0.0002 after the 215th 

iteration. The trajectory of the object during the program execution is plotted in Figure 4.4. 

In addition, energy versus iteration count is given in Figure 4.5.  

 

 

 

 

Figure 4.4: Trajectory of the above object during 
GPE’s search for the true pose. 

Source : H. Fatih Ugurdag, Sezer Gören and Ferhat Canbay, 
2008. Correspondenceless pose estimation from a single 2D image 
using classical mechanics. October 2008. 
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Figure 4.5: Energy versus iterations 
a. Overall plot. b. Zoomed in near the last shake. c. 
Final slope. 

Source : H. Fatih Ugurdag, Sezer Gören and Ferhat Canbay, 
2008. Correspondenceless pose estimation from a single 2D image 
using classical mechanics. October 2008. 
 

a. 

b. 

c. 
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4.3.  GPESoftPOSIT 

GPEsoftPOSIT is an integration of the two algorithms, GPE and SoftPOSIT. The main idea 

here is to run SoftPOSIT with an initial guess that is close to the true pose instead of trying 

any random starts. The pose found by GPE is taken as the initial guess for the object’s 

when running SoftPOSIT. Whenever the ratio of object points matched to LOSes to the 

total number of object points reaches a predetermined criterion (here it is set to 0.7) and 

also SoftPOSIT satisfies its own definition of convergence, then SoftPOSIT terminates and 

outputs the guess for the object’s pose. If SoftPOSIT is unable to find a pose, then the 

initial guess for the object’s pose (the result of GPE) is presented as the output. 

SoftPOSIT has a parameter, called 0β , which corresponds to the fuzziness of the 

correspondence matrix. If the initial pose is close to the actual pose, then 0β  should be 

around 0.1. In our case, since our initial pose comes from GPE and it is known that it is 

close to the actual pose, it is set 0β  to 0.1. As an exercise, the 10-point synthetic object in 

Figure 4.3 and its image for a given pose were constructed. Using the object model and 

image, GPE was run and its result was piped to SoftPOSIT. The projected model and the 

original image are shown in blue and red, respectively in Figure 4.6a through 4.6e. The 

projected model shown in Figure 4.6a corresponds to the object at the pose found by GPE. 

The iterations of SoftPOSIT, on the other hand, are shown in Figure 4.6b through 4.6e. 
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Figure 4.6: Converging to optimum using GPEsoftPOSIT. 
a. Object at the pose found by GPE has been projected to the image 
plane. 
b. c. d. e. f. Iterations of SoftPOSIT to improve the pose. 

 

a. b. 

c. d. 

e. f. 
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4.4.  TRADE-OFFS IN POINT-LINE MATCHING 

The most important part of the GPE algorithm is the matching the points with lines 

accurately. Key point is the distances between point and lines. If the total value of the 

distances after matching equals zero, the perfect matching is found. However, in real life 

this result can not be found zero. So the results are approximately zero. There are various 

type of algorithms to match points and lines but two of them are compared and better one is 

used. 

4.4.1.  Regular Method 

In this method a matrix is used to for the distances between points and lines. In addition to 

this, two lists are used for the unmatched points and lines. And also an array is used for 

matched items as matching table. Let’s call for unmatched points Ind_P, for unmatched 

lines Ind_L, for the matching table A and the distances between points and lines will be 

hold in matrix M.  

• The algorithm finds the minimum distance in M and keeps the index of it. While 

scaning the M the algorithm looks for the unmatched index using Ind_P and Ind _L. 

• After finding the minimum value, the algorithm deletes the index value of matched 

point and line from Ind_P and Ind_L and keeps the values in A.  

• The index of A is used for lines and the value in this index is used for index of point. 

This process ends when Ind_P becomes empty.  

As in the below, algorithm simulated on four points and four lines. The initial values used 

in algorithm can be seen in Figure 4.7. 
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The first step of the algorithm can be seen in Figure 4.8. Minimum distance is found in 

index L0-P3 of matrix M and this matching is assigned on A. After these, L0 is deleted 

from Ind_L and P3 is deleted from Ind_P.   

In the second step of the algorithm, the minimum value is searched in a smaller part of the 

M. In Figure 4.9 it is shown using coloring. Gray colored cells are matched in previous step 

and the white cells are available for searching. After searching the available points and 

lines it is found that the minimum distance is in the index P1-L1. 1 is recorded in index 1 of 

A. P1 is removed from Ind_P and L1 is removed from L1. 

 
 P0 P1 P2 P3 

L0 1 5 2 0 

L1 3 0 1 4 

 L2 2 1 0 3 

L3 0 1 2 3 

 

0 1 2 3 

    

 

Ind_P = { 0, 1, 2 , 3 } 

Ind_L = { 0, 1, 2, 3 } 

Figure 4.7 : The initial values of the elements before the 
algorithm starts 

M 

A 
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 P0 P1 P2 P3 

L0 1 5 2 0 

L1 3 0 1 4 

L2 2 1 0 3 

L3 0 1 2 3 

 

0 1 2 3 

3 1   

 

Min    =  L1, P1 

Ind_P = { 0, 1, 2 } 

Ind_L = { 1, 2, 3 } 

Figure 4.9: Second Step of the Algorithm 

Matrix M 

A 

 
 P0 P1 P2 P3 

L0 1 5 2 0 

L1 3 0 1 4 

L2 2 1 0 3 

L3 0 1 2 3 

 

0 1 2 3 

3    

 

Min = L0,P3 

Ind_P = { 0, 1, 2, 3 } 

Ind_L = { 0, 1, 2, 3 } 

Figure 4.8: First Step of the Algorithm 

Matrix M 

A 



  33 

 

 

 

After searching the M, the minimum value is found in L2-P2. Again, doing same processes 

above, P2 and L2 are matched and they are removed from the available ones as shown in 

Figure 4.10. 

 
 P0 P1 P2 P3 

L0 1 5 2 0 

L1 3 0 1 4 

L2 2 1 0 3 

L3 0 1 2 3 

 

0 1 2 3 

3 1 2 0 

 

Min    =  L1, P1 

Ind_P = { 0 } 

Ind_L = { 3 } 

Figure 4.11 : The situation of the elements after the algorithm 
runs 

Matrix M 

Matched P-L 

 
 P0 P1 P2 P3 

L0 1 5 2 0 

L1 3 0 1 4 

L2 2 1 0 3 

L3 0 1 2 3 

 

0 1 2 3 

3 1 2  

 

Min    =  L1, P1 

Ind_P = { 0, 2 } 

Ind_L = { 2, 3 } 

Figure 4.10 : Third Step of the Algorithm 

Matrix M 

Matched P-L 
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As it can be seen in Figure 4.11 last step of the algorithm is the simplest step. Because there 

is only one point and one line. They are matched without searching and matching table is 

filled fully. 

 

4.4.2  Sorting Based Method 

In the sorting based method two one-dimensional arrays are used instead of a matrix. First 

one is used to keep the Line-Point information (LP) and the second one is used to keep the 

distances (D).  

• The algorithm begins with sorting the second array smaller to the greater distance. 

When a swap process  is done, the same process is done on array LP too.  

• After sorting the arrays the first element of the arrays are match to each other and the 

matched line and point’s indicies are marked.  

• In the other steps it matches the first unmarked point-line and marks the indicies that 

these point and line have. The algorithm is simulated below. 

 As shown in Figure 4.12, values of the matrix used in regular method is also used in 

sorting based method. The values are inserted to the one-dimensional array row by row. 
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 P0 P1 P2 P3 

L0 1 5 2 0 

L1 3 0 1 4 

 L2 2 1 0 3 

L3 0 1 2 3 
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1 5 2 0 3 0 1 4 2 1 0 3 0 1 2 3 

 
 
 

0 1 2 3 

    

 

M 

LP 

D 
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Figure 4.12 : The values of the elements before starting algorithm 
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In the first step array D is sorted from smaller to bigger. As it can be seen in Figure 4.13, 

array LP changes at the same time D. 

The algorithm starts to match the points and lines by the end of sorting step. The first 

element of the array D is the minimum. So it is matched to each other and its background is 

colored red in Figure 4.14. The zero index of A is assigned 3, because of being matched 

with P3.  
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Figure 4.13 : First Step of the Algorithm 
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In the second step L0 and P3 were matched. In Figure 4.15 the background of the related 

elements of array LP and D are colored gray. The algorithm finds the first uncolored 

element. It is the second element of D and L1 and P1 are matched with each other. Its 

background is colored red in Figure 4.15 like the second step. After these, P1 is written on 

index one of the array A. 
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Figure 4.14 : Second Step of the Algorithm 
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As shown in Figure 4.16 the new minimum value is the third element of array D and LP 

which keep L2 and P2.  
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Figure 4.15 : Third Step of the Algorithm 
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In the last step there there is only one uncolored element  exists in array LP and D. As it is 

seen Figure 4.17, this element is the fourth one. L3 and P0 are matched and all of the lines 

and points are matched by the end of this step.  
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Figure 4.16 : 4th Step of the Algorithm 
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4.4.3.  Point-Line Matching Results 

There were used two different point-line matching algorithm which are called regular 

method and sorted-based. For comparing the two algorithms six different data fed as input 

to algorithms. Number of points and lines feeded from smaller to greater. As it can be seen 

in Table 4.1 below they finds the results in the same time when the data is smaller. 

Hovewer, when the data become bigger the regular method gets the result faster. Also in 

Figure 4.18, runtimes are shown on a graphic. 
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Figure 4.17 : Last Step of the Algorithm 
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Number of  
Points-Lines 

Regular 
Method (ms) 

Sorting Based 
Method (ms) 

10 0 0 

20 15.6250 15.6250 

40 31.2500 31.2500 

100 171.8750 406.2500 

150 390.6250 593.7500 

200 718.7500 1156.2500 
 

TABLE 4.1 : Runtime comparison of the point-line 
matching algorithms 
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Figure 4.18: Performance graphic of the Regular and Sorting Based 
matching algorithms 
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5.  GRAVITATIONAL POSE ESTIMATION EXPERIMENTS 

GPE has been first validated using real images, and then GPE, GPEsoftPOSIT, and random 

start SoftPOSIT has been compared on synthetic data with and without occlusion. 

5.1.  RESULTS WITH REAL IMAGES 

In this section, GPE is tested (without SoftPOSIT) with real images taken by a simple 

webcam, and our results are still impressive. (A webcam or any other cheap camera has a 

fish-eye effect. Please notice that the A4 paper’s borders in Figure 5.1 look curved.) There 

is a fixture used in experiments (see Figure 5.2) where an object can be attached, rotate the 

object by means of an arm, and adjust the angle manually. As there is a protractor attached 

to the arm, it is exactly known what the actual angle is. In Figure 5.1, the images of a black 

polygon are taken when the object is brought to angles 70°, 75°, 80°, 85°, 90°, 95°, 100°, 

105°, and 110° on the protractor. All of the images taken are shown in Figure 5.1a through 

5.1i. 

Although GPE can measure all 6 degrees of freedom of a 3D pose, it is hard to measure the 

same 6 degrees of freedom mechanically as it requires a very fancy apparatus. Instead there 

is a simple mechanical fixture where it can be measured one degree of freedom (a rotation 

angle) with great precision. From GPE it is received two 3D poses and compare them to 

find the rotation angle and then compare it with the angle read from the fixture’s protractor. 

Note that the plane that the arm traverses when rotated (i.e., the plane of the protractor) and 

plane of the A4 sheet (where the polygon is drawn) are the same. 
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 Figure 5.1 : Images of a real object taken at various angles: a. 70o  b. 75 o  c. 80 o  d.   
85 o  e. 90 o  f. 95 o  g. 100 o  h. 105 o  i. 110 o 

Source : H. Fatih Ugurdag, Sezer Gören and Ferhat Canbay, 2008. Correspondenceless pose 
estimation from a single 2D image using classical mechanics. October 2008. 

 

a. b. c. 

d. e. f. 

g. h. i. 
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In the real image experiment, the object model contains corners of the polygon. The feature 

extraction has been done manually by pointing to the corners of the polygon with the 

mouse and reading the coordinates by means of image viewing software. The object 

coordinate frame is defined by the A4 sheet. The Z-axis is orthogonal to the sheet and the X 

and Y axes are along the edges of the sheet. The directions of the X, Y, Z axes of the object 

model are expressed respectively by ,  ,  and  n s a
r r r

 in the camera coordinate frame. 

To evaluate the accuracy of GPE, the relative angle between every image pair was 

measured by both GPE and protractor. The results of this experiment are given as a chart in 

Figure 5.3. In the chart, ACTUAL2 (horizontal) axis denotes the angle value for image 2, 

whereas the numbers next to word “vs” denotes the protractor angle for image 1. After 

running GPE twice, the difference between the two angles is computed. ESTIMATED2 

(vertical) axis in Figure 5.3 is the angle estimated for image 2 by GPE. That is, in fact, the 

difference estimated by two runs of GPE (θ ) plus the angle of image 1 from the protractor. 

8 groups of image pairs are included in Figure 5.3:  

vs 70: Image 1 at 70o versus image 2 at {75o, 80o, 85o, 90o, 95o, 100o, 105o, 110o }. 

vs 75: Image 1 at 75o versus image 2 at {80o, 85o, 90o, 95o, 100o, 105o, 110o }. 

vs 80: Image 1 at 80o versus image 2 at {85o, 90o, 95o, 100o, 105o, 110o }. 

Figure 5.2 : The fixture used for the 
real image experiment 
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vs 85: Image 1 at 85o versus image 2 at {90o, 95o, 100o, 105o, 110o }. 

vs 90: Image 1 at 90o versus image 2 at {95o, 100o, 105o, 110o }. 

vs 95: Image 1 at 95o versus image 2 at {100o, 105o, 110o }. 

vs 100: Image 1 at 100o versus image 2 at {105o, 110o }. 

vs 105: Image 1 at 105o versus image 2 at 110o. 

 

 

Figure 5.3 : Estimation of relative angle of the object between two image pairs 
of Figure 5.1 

Source : H. Fatih Ugurdag, Sezer Gören and Ferhat Canbay, 2008. Correspondenceless pose 
estimation from a single 2D image using classical mechanics. October 2008. 
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Absolute estimation error (GPE minus protractor) is presented in Figure 5.4 in degrees. The 

average absolute error for the 36 image pairs is 0.43o. Table 5.1 is also presented where the 

run-time of the pose estimation algorithm and the number of shakes for the 8 experiments 

where image 1 is at 70o, and image 2 is varied between 75o-110o. 

Figure 5.4 : Absolute error in estimated relative angle in Figure 5.3 

Source : H. Fatih Ugurdag, Sezer Gören and Ferhat Canbay, 2008. Correspondenceless pose 
estimation from a single 2D image using classical mechanics. October 2008. 

 

 TABLE 5.1 : Performance of pose 
estimation algorithm 

Image Number of Shakes Run-time (s) 
75o 69 12.6 
80o 97 15.2 
85o 104 8.3 
90o 99 7.9 
95o 71 9.6 
100o 69 22.1 
105o 60 15.6 
110o 63 21.3 

 
Source : H. Fatih Ugurdag, Sezer Gören and Ferhat Canbay, 2008. Correspondenceless pose 
estimation from a single 2D image using classical mechanics. October 2008. 
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All of the experiments were carried out on a laptop running Cygwin (i.e., Linux emulator in 

Windows) with a 1.6 GHz Pentium processor and 1GB RAM. The images that used in this 

experiment have coplanar points. Since SoftPOSIT requires at least 4 non-coplanar points, 

GPEsoftPOSIT has been unable to utilized in this real image experiment. However, it had 

been put together an extensive set of synthetic test images to evaluate random start 

SoftPOSIT, GPEsoftPOSIT, and GPE. 

5.1.1.  Mechanics and Electronics Aspects 

In this thesis, it has been used very simple and useful tools have been used to get results. As 

it is explained in Section 5.1 and shown in Figure 5.2 a mechanical fixture is used to 

measure the angle. The pictures are taken with a simple webcam. GPE is run on a Pentium 

IV machine which has a 1GB memory. After testing GPE with these real images and being 

succesful, to automate the process it is has been used infrared leds and an infrared filter in 

front of the camera.  

5.1.2.  Computing the Relative Angle 

To estimate the relative angle of the object in an image with respect to another image, GPE 

is run twice. We take vectors 1 1 1,  ,  and n s a
r r r

 estimated by GPE for the 1st image and 

2 2 2,  ,  and n s a
r r r

 for the 2nd image. Then it is possible to calculate the rotation angle (denoted 

as θ ) using equations (5.1), (5.2), and (5.3), when the plane of the A4 sheet is identical to 

the plane of the protractor’s rotation plane – as in this case. 

 

1 2acos( . )
n

n nθ =
r r

 (5.1) 

1 2acos( . )s s sθ =
r r

                                  (5.2) 

2
n sθ θ

θ
+

=                  (5.3) 
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5.2.  RESULTS WITH SYNTHETIC IMAGES 

In this section, results of GPEsoftPOSIT are shown and compare them with GPE and 

random start SoftPOSIT, using 3 randomly generated objects with 6, 10, and 15 vertices. 

For each object, 10 different orientations and positions were generated (using step 1 below) 

for each configuration. It has been used up to 3×4=12 configurations (relative distance=3, 

7, 10; number of points occluded=0, 1, 2, 3) with each object model. 

The ratio of the distance of the object from the lens center (i.e., magnitude of the position 

vector) over the diameter of the object is what it is called “relative distance.” Note that 

relative distance is also roughly the reciprocal of the “viewing angle” of the object in 

radians. Viewing angle is the top angle of the “pencil of lines” from the lens center to the 

object (Figure 4.1). 

In order to calculate the radius of an n-point object, first the centroid is computed (also 

COM if all points have equal mass) of the object (denoted by c
r

). Then the squares of 

distances from object points (denoted by 
kx
r

 for object point k) are sum to the centroid. 

Then the average is taken followed by a square-root. Hence, the object radius is, in a way, a 

mean object point distance from the centroid – or more accurately an rms (root-mean-

square) displacement from the centroid – see (5.5). 

_
2 . _

p
relative distance

object radius
=

r

               (5.4) 

2

1_

n

k

k

x c

object radius
n

=

−
=

∑ r r

                (5.5) 

The two steps below outline synthetic image creation process in thesis: 

1) True pose generation: A rotation matrix, αβδR  is generated, using random anglesα , β , 

and δ  between [ ],π π−  by 
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x x x

y y y

z z z

n s a

n s a

n s a

αβδ α β δ

 
 = =  
  

R R R R               (5.6) 

 

1 0 0

0 cos sin

0 sin cos
α α α

α α

 
 = − 
  

R             (5.7)

   

cos 0 sin

0 1 0

sin 0 cos
β

β β

β β

 
 =  
 − 

R               (5.8) 

 
 

cos sin 0

sin cos 0

0 0 1
δ

δ δ
δ δ

− 
 =  
  

R                (5.9) 

 
 

where αR  shows the rotation about X-axis, βR  rotation about Y-axis, and δR  rotation 

about Z-axis. Then a random position vector p
r

 with a length of  

2 . _  . _relative distance object radius  is generated. 

2) Image Construction: With 3D object points in the object model and the true pose 

parameters, the coordinates of every object point are computed with respect to the camera 

coordinate frame (
cv
r

) using the transformation T T

c ov v pαβδ= +
r r r

R , where 
ov
r

 is the coordinates 

of the object point in the object coordinate frame and superscript of T indicates transposed, 

hence, row vectors. Finally, object points are projected on to the 2D image plane.  
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For each configuration of each object model, 10 images had been constructed – each at a 

different and random pose. Then, the performance of GPE had been evaluated, random start 

SoftPOSIT, and GPEsoftPOSIT by comparing the absolute deviation of each method from 

the true pose. 

For random start SoftPOSIT, SoftPOSIT has been run 500 times with each test image. 

Whenever the fraction of the number of 3D to 2D matched points is greater than 0.7 and 

SoftPOSIT is able to converge to a pose, random start SoftPOSIT terminates and outputs 

the guess for the pose of the object. On the other hand, if no convergence is achieved even 

after 500th run, the random start SoftPOSIT algorithm is terminated. In random start 

SoftPOSIT, since it is not known whether the randomly generated initial pose is close to the 

true pose, the parameter 0β  of SoftPOSIT is set to 0.0001 enabling that all possibilities of 

correspondence are possible in the beginning. 

To test GPEsoftPOSIT algorithm, SoftPOSIT is run only once using the pose that is output 

by GPE as the initial pose. In GPEsoftPOSIT, the parameter 0β  is set to 0.1 since it is 

known that the initial pose is close to the actual pose. If the fraction of the number of 3D to 

2D matched points is greater than 0.7 and SoftPOSIT is able to converge to a pose, then it 

outputs the improved guess for the pose of the object. If it fails to get convergence, then the 

initial pose, which is the result of GPE, is presented as the output. (A predetermined initial 

pose is used for GPE whether it is used stand-alone or as part of GPEsoftPOSIT.) 

If the true pose of the object is expressed by vectors ,  ,  ,  and  n s a p
r r r r

, and the estimated pose 

is expressed by vectors ,  ,  ,  and  G G G Gn s a p
r r r r

, the orientation errors, 
nθ∆ ,

sθ∆ ,, and 
aθ∆  and 

the relative position error, pε  are calculated using the following equations: 

 

acos( . )n Gn nθ∆ =
r r

             (5.10) 

 
acos( . )s Gs sθ∆ =

r r
             (5.11) 
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acos( . )a Ga aθ∆ =

r r
             (5.12) 

 

2. _
G

p

p p

object radius
ε

−
=

r r

             (5.13) 

The results of GPE, GPEsoftPOSIT, and random start SoftPOSIT are presented in Table 

5.2, Table 5.3 and Table 5.4 where a total of 30 different configurations are shown. For 

each configuration, there are 10 different tests (i.e., images). Hence, the total number of 

experiments is 300. The averages of orientation errors (
nθ∆ ,

sθ∆ , and 
aθ∆ ) and average of 

relative position errors ( pε ) obtained from the 10 tests for each configuration are listed in 

Table 5.2, Table 5.3 and Table 5.4as 
nθ∆ , 

sθ∆ , and 
aθ∆  in degrees and 

pε  in multiples of 

the object diameter. 

Random start SoftPOSIT was unable to converge to a pose in 257 tests out of 300 (see the 

rightmost column in Table 5.2 titled #fails). Having a number listed there does not mean 

random start SoftPOSIT converged to a pose in all cases. A row in Table 5.2 reports 

average numbers for the corresponding configuration out of the tests that converged. 

On the other hand, GPE (and hence GPEsoftPOSIT) is an algorithm that does not have 

convergence problems. Hence, it converged in all of the 300 tests. It produced good results 

in all experiments except the 6/1 (#object points/#occluded points) case. However, note that 

random start SoftPOSIT was not able to converge even in the 6/0 case. GPE and 

GPEsoftPOSIT worked fine in 6/0 case. Since acceptable results can not been obtained in 

6/1, naturally meaningful results could not been obtained with 6/2 and 6/3. This is true for 

all three methods. Therefore, 6/2 and 6/3 are excluded by having 30 configurations instead 

of 36. However, it is understandable that any occlusion affects the results in the 6-point 

object case. Since there are very few points, every point is critical in finding the true pose. 

GPE is especially very good in finding the position. Note that position error is evaluated in 

relative terms to the size of the object. That is why pε , as shown in equation (5.13), is 
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calculated by normalizing the position error by the object diameter (i.e., twice the object 

radius). 

Looking at the error figures in Table 5.2, Table 5.3 and Table 5.4, the best performing 

algorithm is apparently GPEsoftPOSIT. Figure 5.5 and 5.6 try to summarize the tendencies 

of the orientation and position error, respectively. Before looking at the bar graphs in 

Figure 5.5 and 5.6 more closely, let state the expected tendencies: 

i) Error should go up as the number of occluded points goes up. 

ii) Error should go down as the number of object points goes up. 

iii) Error should go up as the relative distance goes up. 
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TABLE 5.2 : GPEsoftPOSIT RESULTS 

GPEsoftPOSIT # obj. 

pts 

# occ. 

pts 
Rel. Dist. 

θθθθn∆∆∆∆  θθθθ s∆∆∆∆  θθθθa∆∆∆∆  εεεε p  CPU 

3 0.81 0.89 0.47 0.01 28.03 

7 0.14 0.28 0.28 0.01 28.79 0 

10 3.07 2.05 3.14 0.14 26.72 

3 30.24 30.45 13.87 0.46 21.60 

7 49.59 55.42 61.29 0.95 19.50 

6 

1 

10 22.01 21.70 23.21 1.45 19.17 

3 2.59 3.24 2.64 0.02 24.37 

7 3.79 4.49 4.24 0.07 25.11 0 

10 2.91 3.08 3.46 0.10 26.62 

3 1.96 2.63 2.15 0.02 22.58 

7 1.85 2.52 2.72 0.05 23.21 1 

10 2.95 2.96 2.08 0.20 23.32 

3 3.83 3.10 3.44 0.02 20.75 

7 4.16 4.04 4.67 0.13 21.62 2 

10 6.87 7.56 6.19 0.48 21.78 

3 5.11 8.58 8.93 0.06 19.01 

7 3.50 4.91 4.86 0.32 19.84 

10 

3 

10 5.42 5.00 2.54 0.24 20.05 

3 0.97 0.62 0.98 0.02 75.33 

7 1.11 1.45 1.35 0.04 69.97 0 

10 1.85 1.72 1.76 0.03 66.40 

3 1.31 1.39 0.69 0.01 61.06 

7 1.35 1.16 1.42 0.02 60.91 1 

10 3.23 2.87 2.47 0.06 62.67 

3 1.38 1.23 0.52 0.02 53.99 

7 5.70 4.70 6.41 0.07 54.25 2 

10 2.85 2.18 2.82 0.20 53.77 

3 4.62 4.88 2.75 0.05 46.50 

7 6.68 4.65 8.36 0.11 47.50 

15 

3 

10 3.15 2.66 2.58 0.13 48.30 
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Table 5.3 : GPE RESULTS 

GPE # obj. 

pts 

# occ. 

pts 
Rel. Dist. 

θθθθn∆∆∆∆  θθθθ s∆∆∆∆  θθθθa∆∆∆∆  εεεε p  CPU 

3 3.11 3.89 3.30 0.06 28.01 

7 1.79 2.89 3.36 0.10 28.77 0 

10 4.85 3.72 4.63 0.22 26.70 

3 33.14 33.08 16.09 0.53 19.45 

7 50.13 56.22 61.97 1.02 18.92 

6 

1 

10 22.58 22.52 23.71 1.49 18.72 

3 5.28 6.07 5.63 0.03 24.34 

7 7.19 8.27 8.43 0.14 25.10 0 

10 5.80 5.64 5.96 0.23 26.60 

3 5.84 6.76 4.57 0.04 22.57 

7 3.11 4.49 4.40 0.14 23.21 1 

10 6.65 6.08 4.62 0.36 23.29 

3 6.07 5.32 6.25 0.04 20.73 

7 5.84 5.58 6.91 0.21 21.60 2 

10 8.76 9.69 7.84 0.58 21.76 

3 6.49 9.64 10.45 0.07 18.97 

7 4.05 5.45 5.54 0.33 19.82 

10 

3 

10 8.52 8.20 4.75 0.41 20.05 

3 7.44 4.63 7.36 0.07 75.31 

7 4.78 4.66 6.01 0.08 69.95 0 

10 4.62 4.23 4.04 0.14 66.38 

3 6.09 6.20 5.77 0.04 58.06 

7 5.19 4.99 5.11 0.07 58.61 1 

10 6.16 5.75 5.23 0.11 60.55 

3 8.90 6.95 8.36 0.08 50.64 

7 8.20 6.63 9.07 0.12 51.29 2 

10 7.81 6.52 8.09 0.34 51.53 

3 11,13 7.72 9.11 0.11 44.50 

7 10.06 7.96 11.04 0.16 45.50 

15 

3 

10 6.68 5.20 6.20 0.26 46.30 
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Table 5.4 : Random start softPOSIT 

random start softPOSIT # obj. 

pts 

# occ. 

pts 
Rel. Dist. 

θθθθn∆∆∆∆  θθθθ s∆∆∆∆  θθθθa∆∆∆∆  εεεε p
 CPU # fails 

3 - - - - 95.88 10 

7 - - - - 96.88 10 0 

10 - - - - 96.00 10 

3 - - - - 93.11 10 

7 - - - - 94.09 10 

6 

1 

10 - - - - 93.94 10 

3 0.02 0.02 0.02 0.00 51.81 4 

7 0.02 0.03 0.03 0.00 68.85 6 0 

10 - - - - 99.08 10 

3 0.02 0.02 0.02 0.01 67.31 7 

7 0.04 0.05 0.06 0.00 69.65 7 1 

10 0.18 0.19 0.21 0.00 84.99 9 

3 89.86 1.52 88.50 0.01 77.29 8 

7 0.01 0.01 0.02 0.00 79.01 8 2 

10 - - - - 95.23 10 

3 0.05 0.06 0.08 0.00 93.02 9 

7 - - - - 94.83 10 

10 

3 

10 - - - - 95.03 10 

3 0.00 0.00 0.00 0.00 51.43 4 

7 0.01 0.01 0.00 0.00 84.99 8 0 

10 0.06 0.06 0.03 0.01 90.23 9 

3 0.00 0.00 0.00 0.00 90.02 9 

7 0.01 0.01 0.01 0.00 87.89 8 1 

10 0.02 0.02 0.02 0.00 91.22 9 

3 0.01 0.01 0.01 0.00 88.66 8 

7 0.01 0.01 0.01 0.00 87.94 9 2 

10 - - - - 95.13 10 

3 0,01 0,01 0,01 0,00 86.15 9 

7 0.06 0.06 0.04 0.00 78.33 8 

15 

3 

10 0.09 0.08 0.05 0.01 78.58 8 
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If the gross errors are excluded introduced by 6/1, it can be more or less seen that error  

goes up as the number of occluded points goes up (Figure 5.5a and 5.6a). In Figure 5.6c 

and 5.6d, as expected it is seen that (relative) position error goes down as the number of 

object points goes up. In Figure 5.5c and 5.5d, this tendency is not obvious for orientation 

error. This may be due to the fact that the images used are synthetic. In real-life (i.e., real 

images), more object points compensate for the inaccuracies introduced by pixelization, 

imaging system, and feature detection. Similarly in Figure 5.5e, 5.5f, 5.5e, and 5.5f, it is 

seen the expected tendency in position error graphs but not orientation error graphs. Errors 

had been plotted both for no occlusion and also for all tests. If no occlusion tests have an 

error of x (Figure 5.5c, 5.5e, 5.6c, 5.6e), the average of all tests seem to be around 2x 

(Figure 5.5d, 5.5f, 5.6d, 5.6f). 

CPU times are listed in Table 5.2, Table 5.3 and Table 5.4. GPE and GPEsoftPOSIT almost 

have equal times as GPEsoftPOSIT runs SoftPOSIT only once. GPE and GPEsoftPOSIT 

take between half to one minute, while 500 runs of SoftPOSIT in random start SoftPOSIT 

take between 50 to 95 seconds. The computational complexity of GPE is governed by the 

number of iterations and number of feature points. In most tests, GPE went up to the preset 

maximum of 50,000 iterations. The most compute-intensive operation inside a GPE 

iteration is the computation of correspondence (see the pairing algorithm in Section 4.1). 

The complexity of this algorithm is, on the other hand, dominated by the sorting of LOS 

and object point distances, which is in the order of n2logn, where n is the number of object 

points. 
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a. b. 

  

c. d. 

  

e. f. 

Figure 5.5 : Average orientation error (in degrees) versus: a. number of 
occluded points (without 6/1) b. number of occluded points (with 6/1) c. 
number of object points (without occlusion) d. number of object points (for all 
tests) e. relative distance (without occlusion) f. relative distance (for all tests) 
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a. b. 

c. d. 

  

Figure 5.6 : Average position error (error/object_diameter – see equation 
(5.13)) versus: a. number of occluded points (without 6/1) b. number of 
occluded points (with 6/1) c. number of object points (without occlusion) d. 
number of object points (for all tests) e. relative distance (without occlusion) f. 
relative distance (for all tests) 

e. f. 
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6.  VISUALIZATION 

GPE tries various poses to find the accurate pose of an object. To display the trajectory of 

the object a visualization program has been written. The program has been developed by 

using Open-GL. The code written has not been performed a simultaneous simulation by 

integrating into GPE. It is because of that these types of processes use too much memory 

and make the processor work intensively. In addition, as it may cause some 

incompatibilities related to code; it is thought that using of different GPE and simulation 

codes as the two programs would be more productive. Besides, as thousands of iterations 

have been tried to get the best pose; not each but the better pose than before has been used. 

By the way, it is simulated how the good results have been achieved by using this pose 

information. In order to provide integration between the two programs, GPE writes better 

pose into a text file top and bottom, and the simulation program received this file as an 

input and formed an output in accordance with the information from the file. While creating 

output, the object shall be placed into the better pose that GPE has found. At last, the 

coordinate where the object is placed is the best pose which GPE has found for the object. 

In Figure 6.1, simulation belonging to one of the experiments can be followed step by step. 
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a. b. 

c. d. 

e. f. 
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g. h. 

  

i j. 

  

k. l. 

Figure 6.1 : Trajectory of an object GPE while finding pose 
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7. CONCLUSION 

An n-point feature-based correspondenceless pose estimation method (called GPE for 

Gravitational Pose Estimation) for rigid objects, which uses a single perspective image with 

no restrictions on the object’s pose, is hereby presented. GPE is stand on an intuition from 

classical mechanics. 

Good results are presented using both synthetic and real-world images. In the thesis real-

world images have been taken with a cheap webcam with an obvious fish-eye effect (Figure 

5.1) and still quality results are obtained. GPE had been successfully tested against occlusion 

as well – with a test suite of 300 synthetic images. 

The inputs and the outputs for carrying out of the pose estimation algorithms where the 

programs are places have been automated as a whole and provide an improved ease of use. 

In addition to this, processes have been visualized step by step in order to be better 

understood how the program positions the object, observably.  

In this thesis, GPE with SoftPOSIT for fine-tuning of the pose is integrated. After the 

integration, globally optimum pose correspondence and determination in 62% of the test 

cases (185 out of the 300) have been achieved. Averagely (including up to 30% occlusion 

cases but excluding the 6/1 case), GPE finds the orientation within 6 degrees and the 

position within 17% of the object’s diameter. GPEsoftPOSIT, on the other hand, is within 3 

degrees and 10% of the object’s diameter in the same set of tests.  
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