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BAHÇEŞEHİR UNIVERSITY

DIGITAL IMAGE INPAINTING USING HIGH
DIMENSIONAL MODEL REPRESENTATION BASED

METHODS

Ph.D. Thesis

EFSUN KARACA
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ABSTRACT

DIGITAL IMAGE INPAINTING USING HIGH DIMENSIONAL MODEL
REPRESENTATION BASED METHODS

Efsun Karaca

Computer Engineering
Supervisor: Assoc. Prof. Dr. M. Alper Tunga

January 2018, 74 Pages

Image inpainting is the process of filling missing or fixing corrupted regions in an image.
The intensity values of the pixels in the missing area are expected to be associated with
the pixels in the surrounding area. Interpolation-based methods that can solve the problem
with a high accuracy may become inefficient when the dimension of the data increases.

In this thesis, we first propose a method to inpaint rectangular missing regions in grayscale
images. Then, just by adding one more term into the High Dimensional Model Represen-
tation method, we propose a method to inpaint rectangular regions in color images. Ex-
perimental results show that the proposed method produces better results than the well-
known and pioneering total variation-based image inpainting method in the literature.
However, these methods can be used only in rectangular missing regions and if the miss-
ing region grows, the accuracy of the inpainting results decrease. Therefore, we propose a
new hierarchical image inpainting approach to solve the trade-off between satisfying the
orthogonality condition and accuracy of the inpainting because of the increasing size of
the region to be inpainted. In each iteration of this procedure, we search the image both
vertically and horizontally to find the smallest missing region whose immediate neigh-
bours are known in the search direction. This procedure decomposes missing regions into
smaller ones and performs inpainting hierarchically starting from the smallest region.
Experimental results demonstrate that the proposed method produces better results than
the variational and exemplar-based inpainting approaches in most of the test images, es-
pecially in the ones containing more structural regions. All of these methods suffer from
finding the underlying texture and pattern in the missing region. In this thesis, we propose
a texture and pattern preserving interpolation-based algorithm for inpainting missing re-
gions in color images. First, the proposed approach produces candidate inpainting results
by interpolating to the observed data at the different neighborhoods of the missing region
using High Dimensional Model Representation with Lagrange interpolation. Later, a final
inpainting decision is given among the candidates for each pixel in the missing region for
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a texture and pattern preserving inpainting. This is achieved by combining the informa-
tion obtained from co-occurrence matrix and from a patch found in the image that fits best
to the missing region using normalized cross correlation. We evaluate the performance of
the proposed approach on various color images that include different texture and pattern.
We also compare the proposed approach with the state-of-the-art inpainting methods in
the literature. Experimental results demonstrate the potential of the proposed approach.

Keywords: Digital image inpainting, High Dimensional Model Representation, Lagrange
Interpolation.
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ÖZET

YÜKSEK BOYUTLU MODEL GÖSTERİLİM TABANLI YÖNTEMLERLE
SAYISAL İMGE İÇBOYAMA

Efsun Karaca

Bilgisayar Mühendisliği
Tez Danışmanı: Doç. Dr. M. Alper Tunga

Ocak 2018, 74 Sayfa

İmge içboyama, imgelerdeki eksik kısımların tamamlanması ya da bozuk kısımların dü-
zeltilmesi süreci olarak tanımlanır. İmgede bulunan eksik kısımların yeğinlik değerleri-
nin, çevrede bulunan yeğinlik değerleriyle ilişkili olması beklenir. Problemin çözümünde
yüksek başarım gösterebilecek aradeğerleme tabanlı yöntemler, aradeğerlenecek verinin
boyutu arttıkça verimsiz hale gelir.

Bu tezde ilk olarak gri tonlamalı imgelerdeki dikdörtgensel kayıp alanların tamamlanması
için bir yöntem önerilmiştir. Daha sonra, Yüksek Boyutlu Model Gösterilim yöntemine
yalnızca bir terim daha ekleyerek, aynı işlemin renkli imgelerde de kullanılmasını sağla-
yan yeni bir yöntem önerilmektedir. Deneysel sonuçlar, önerilen yöntemin iyi bir yöntem
olarak bilinen ve alanında öncü yöntemlerden olan toplam varyasyon tabanlı imge içbo-
yama yönteminden daha iyi sonuçlar ürettiğini göstermiştir. Ancak bu yöntemler yalnız-
ca dikdörtgensel alanlarda kullanılabilmektedir ve kayıp alan büyüdükçe başarı oranının
düştüğü gözlemlenmiştir. Bu bağlamda, hem diklik koşulu kısıtını aşmak, hem de içbo-
yamanın doğruluğunu arttırabilmek için hiyerarşik bir yapıyla içboyama yapan yeni bir
imge içboyama yaklaşımı önerilmiştir. Bu yaklaşımın her iterasyonunda imgeyi yatay ve
dikey düzlemde arayarak, aranan yöndeki en yakın komşuluklarının yeğinlik değerlerinin
bilindiği en küçük kayıp alan bulunmaktadır. Bu işlem kayıp alanı daha küçük kayıp alan-
lara bölmekte ve hiyerarşik olarak en küçük kayıp alandan başlayarak içboyama işlemini
gerçekleştirmektedir. Deneysel sonuçlar, önerilen yöntemin, çoğu test kümesinde, özel-
likle daha yapısal bölgelere sahip olan kayıp alanların olduğu test örneklerinde, varyasyon
ve örneklem tabanlı içboyama yöntemlerine göre daha iyi sonuçlar verdiğini göstermiştir.
Tüm bu önerilen yöntemler kayıp alanın altında yatan doku ve deseni bulmakta zorlandığı
gözlemlenmiştir. Bu tezde, renkli imgelerdeki kayıp alanları tamamlarken, doku ve de-
seni koruyan aradeğerleme tabanlı bir imge içboyama yöntemi önerilmektedir. Önerilen
yöntem ilk olarak, Yüksek Boyutlu Model Gösterilim ile Lagrange aradeğerleme yöntem-
lerini kullanır ve kayıp alanın farklı komşuluklarında gözlenen verileri aradeğerleyerek
aday içboyama sonuçları üretir. Daha sonra, kayıp alandaki desen ve dokuyu korumayan
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bir içboyama yapabilmek için en uygun aday içboyama sonucunu seçilir. Bu işlem, ortak
oluşum matrisi ve normalleştirilmiş çapraz korelasyon yöntemleri kullanılarak ve imge
içerisinde kayıp alana en çok benzeyen yama bulunarak yapılır. Önerilen yöntemin per-
formansı farklı desen ve dokular içeren birçok farklı renkli imgede test edilmiştir. Aynı
zamanda önerilen yöntemin sonuçları literatürde alanında öncü olarak bilinen farklı yön-
temler ile karşılaştırılmıştır. Deneysel sonuçlar önerilen yöntemin potansiyelini gösterir
niteliktedir.

Anahtar Kelimeler: Sayısal İmge İçboyama, Yüksek Boyutlu Model Gösterilim, La-
grange Aradeğerleme.
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1. INTRODUCTION

Image inpainting is the process of filling missing or fixing corrupted regions in an image.
The intensity values of the pixels in the missing area are expected to be associated with
the pixels in the surrounding area. Interpolation-based methods that can solve the problem
with a high accuracy may become inefficient when the dimension of the data increases.

Image inpainting techniques are used in many problems such as repairing damaged pho-
tos, removing an object from a given image, completing missing regions (Bertalmio et al.,
2000), solving red eye problem (Yoo & Park, 2009) and image deblurring (Chan et al.,
2005). Image inpainting is a challenging problem since most of the images contain both
structural and textural regions that lead to complicated patterns (Bertalmio et al., 2003). In
the literature, there are image inpainting approaches which only focus on inpainting tex-
tural regions (Heeger & Bergen, 1995; Simoncelli & Portilla, 1998; Efros & Leung, 1999)
as well as the ones that works only on structural regions (Bertalmio et al., 2000; Ballester
et al., 2001; Bertalmio et al., 2001). There are also hybrid approaches that decompose
a given image into structural and textural components, and apply structural inpainting to
structural component and texture synthesis to textural component (Bertalmio et al., 2003).

Texture synthesis algorithms are one of the oldest image inpainting techniques. These
methods inpaint missing regions by exploiting the pixel intensity values of its neighbour-
ing regions. In these methods, texture is synthesized pixel by pixel. They search similar
pixels from neighbourhoods and inpaints the missing region by sampling and copying
the intensity values of the most similar pixels (Chhabra & Birchha, 2014). Partial Dif-
ferential Equation (PDE) based inpainting methods was first proposed by Bertalmio et
al. (Bertalmio et al., 2000). Later, Chan and Shen proposed two PDE-based methods:
Curvature Driven Diffusion (CDD) (Chan & Shen, 2001) and Total Variation (TV) (Shen
& Chan, 2002). These methods basically aim to complete missing regions by maintaining
the structure of the surrounding area. Thus, these methods provide good results in small
regions. However, as the region to be inpainted grows, the obtained results get blurry
and worse. Exemplar-based image inpainting techniques can be used efficiently in larger
missing regions. These algorithms differ from the texture synthesis based algorithms with
their patch size. Similar patches instead of pixels are used to sample and copy to inpaint
the missing regions (Criminisi et al., 2004). In these methods, filling order of the pix-
els in the missing region and pre-determined sampling patch size plays an important role



on accuracy of these methods. Other related works on image inpainting can be found
in (Guleryuz, 2006; Takeda et al., 2007; Zhang et al., 2010; Li, 2011; Zhou et al., 2012;
Dong et al., 2013; Zhang et al., 2014).

There are many works proposed in the literature for image inpainting. One of the pio-
neering image inpainting methods, Total Variation (TV), was proposed by (Shen & Chan,
2002). TV is a partial differential equation based inpainting method that optimizes an
energy function designed for maintaining the intensity distribution of the surrounding
area. Then, (Zhang et al., 2010) proposed a method called Non-Local Total Variation
(NLTV). NLTV extends TV by adding a term to the energy function that considers non-
local constraints for inpainting. Both TV and NLTV produces good inpainting results in
only smooth regions. However, as the region to be inpainted includes complex pattern
and texture, the obtained results get blurry and worse. Exemplar-based image inpaint-
ing techniques are proposed for inpainting larger missing regions that include texture and
pattern. These methods find the most probable patch within the image for inpainting the
missing region. Finally, the patch is returned as an inpainting solution. These methods
suffer if illumination varies in different parts of the image (Criminisi et al., 2004). Takeda
et al. (2007) adapted and expanded kernel regression for different applications in image
processing such as image denoising, upscaling, and interpolation. Although, the method
produces promising inpainting results in missing regions with smooth intensities, the per-
formance of the method in textural missing region are rather limited. Hybrid Sparse Rep-
resentation (HSR) method uses the strengths of local and nonlocal sparse representations
by Bayesian model averaging where the usage of local smoothness and nonlocal similar-
ity have allowed exploitation of sparsity priors for image recovery applications (Li, 2011).
Beta-Bernoulli Process Factor Analysis (BPFA) model uses several hierarchical Bayesian
models to learn dictionaries for analysis of imagery with applications in inpainting (Zhou
et al., 2012). The method requires a large training set for an effective learning which may
not be available or expensive to obtain in many applications. Spatially Adaptive Iterative
Singular-value Thresholding (SAIST) is an image restoration algorithm which connects
low-rank methods with simultaneous sparse coding and provides a conceptually simple
interpretation from a bilateral variance estimation perspective (Dong et al., 2013). Both
BFPA and SAIST suffer from two problems: 1) they have to solve a large-scale optimiza-
tion problem with high computational complexity in dictionary learning, 2) each patch
is considered independently in dictionary learning and sparse coding, which ignores the
relationship among patches, resulting in inaccurate sparse coding coefficients. Group-
based Sparse Representation (GSR) deals with these problems by introducing the con-
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cept of group as the basic unit of sparse representation to capture the patch relations and
to reduce the computational complexity (Zhang et al., 2014). Karaca & Tunga (2016a)
proposes an interpolation-based image inpainting approach using Lagrange interpolation.
The proposed method works well if the missing region is part of a smooth background.
As in the other interpolation-based algorithms (Ballester et al., 2001; Karaca & Tunga,
2016b), the method proposed by Karaca & Tunga (2016a) is not able to capture and pre-
serve underlying pattern and texture in the region to be inpainted.

The image inpainting process requires having a prior knowledge about the part to be com-
pleted and estimates the missing region accordingly. The apparent part of the image may
give us information about the structure of whole image. Conventional interpolation tech-
niques requires a lot of computation power when dimension of the data increases. This
motivates us to apply divide-and-conquer methods to reduce the computational complex-
ity and CPU time that is needed to interpolate an image.

High Dimensional Model Representation (HDMR) is a divide-and-conquer algorithm to
represent a multivariate function in terms of less-variate functions and it partitions a high
dimensional data into a number of sets of lower dimensional data such as univariate,
bivariate and trivariate ones. Reducing the complexity of the multivariate interpolation
problem to univariate, bivariate and trivariate interpolations enables us to apply interpo-
lation methods in a more efficient way both in terms of computational complexity of the
problem and required CPU time.

In this thesis, we propose to complete missing parts in a given image using interpolation
based methods in a fast and efficient way with the help of HDMR. This thesis is structured
as follows. Section 2 introduces HDMR Method. We explain the HDMR method and
show how data is partitioned through HDMR. Then we illustrate the image representation
by applying HDMR to grayscale and color image data. Performance evaluation method is
alsow shown in this section. HDMR based inpainting methods are exlained in Section 3.
We first show how to inpaint rectangular missing regions in grayscale and color images.
Then, we also show how to inpaint complicated missing regions using a new HDMR based
hierarchical approach. The major contribution of this thesis is exlained in Section 4. This
section examines the Texture Preserving Inpainting using HDMR (TPI-HDMR) method
in detail. The findings of the proposed method are given in Section 5. Finally, the thesis
concludes in Section 6 with the conclusion and discussion.
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2. METHODS

2.1 HIGH DIMENSIONAL MODEL REPRESENTATION METHOD

In this section, we first give mathematical background of the High Dimensional Model
Representation (HDMR) method. Then, we provide the formulation of Lagrange interpo-
lation with HDMR.

HDMR is a divide-and-conquer method which divides a multivariate function into less-
variate functions (Sobol, 1993; Tunga & Demiralp, 2008). For a given multivariate F
function, the HDMR expansion is given as follows:

F(x1, . . . , xN) = f0 +
N∑
i1=1

fi1(xi1) +
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2) +
N∑

i1,i2,i3=1
i1<i2<i3

fi1i2i3(xi1 , xi2 , xi3)

+ · · ·+ f12...N(x1, . . . , xN)

(2.1)

where f0, fi1(xi1), fi1i2(xi1 , xi2), fi1i2i3(xi1 , xi2 , xi3) and f12...N(x1, . . . , xN) represent
constant term, univariate terms, bivariate terms, trivariate terms and N -variate terms,
respectively (Sobol, 1993). These terms are determined uniquely using the following
vanishing conditions

∫ b1

a1

dx1 . . .

∫ bN

aN

dxNW (x1, . . . , xN)fi(xi) = 0, 1 ≤ i ≤ N (2.2)

where

W (x1, . . . , xN) =
N∏
j=1

Wj(xj), xj ∈ [aj, bj], 1 ≤ j ≤ N (2.3)

and aj and bj are the lower and the upper bounds of data points in the jth dimension,
respectively. Also, the weight function of each dimension, Wj(xj), in Equation (2.3)
should satisfy the following normalization condition (Tunga & Demiralp, 2008)
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∫ bj

aj

dxjWj(xj) = 1, 1 ≤ j ≤ N. (2.4)

The vanishing condition given in Equation (2.2) corresponds to the following orthogonal-
ity condition via an inner product

〈fi1i2...ik , fi1i2...il〉 = 0, 1 ≤ k 6= l ≤ N. (2.5)

The right-hand side components of Equation (2.1) must satisfy these orthogonality condi-
tions. Using the properties of the weight function and the orthogonality condition, terms
in Equation (2.1) can be obtained. To achieve this, both sides of Equation (2.1) are mul-
tiplied by the weight functions

(
multiplied by W1(x1)W2(x2) . . .WN(xN) for constant

term, W1(x1)W2(x2) . . .Wi−1(xi−1)Wi+1(xi+1) . . .WN(xN) for univariate terms and so
on
)

and are integrated over whole Euclidean space defined by independent variables ex-
cept xi.

Using the properties of the weight function and the orthogonality conditions, the constant
term of the HDMR expansion can be obtained as follows

f0 =

∫ b1

a1

dx1 . . .

∫ bN

aN

dxNW (x1, . . . , xN)f(x1, . . . , xN). (2.6)

Univariate, bivariate and trivariate terms can be found in a similar manner as given in
Equations (2.7), (2.8) and (2.9).

fm

(
ξ(km)
m

)
=

∫ b1

a1

dx1W (x1) . . .

∫ bm−1

am−1

dxm−1W (xm−1)

∫ bm+1

am+1

dxm+1W (xm+1)

× · · ·×
∫ bN

aN

dxNW (xN)f(x1, . . . , xN)− f0
(2.7)
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fm1m2

(
ξ
(km1 )
m1 ,ξ

(km2 )
m2

)
=

∫ b1

a1

dx1W (x1) . . .

∫ bm1−1

am1−1

dxm1−1W (xm1−1)

× · · · ×
∫ bm1+1

am1+1

dxm1+1W (xm1+1) . . .

∫ bm2−1

am2−1

dxm2−1W (xm2−1)

× · · · ×
∫ bm2+1

am2+1

dxm2+1W (xm2+1) . . .

∫ bN

aN

dxNW (xN)f(x1, . . . , xN)

− f0 − fm
(
ξ(km)
m

)
(2.8)

fm1m2m3

(
ξ
(km1 )
m1 ,ξ

(km2 )
m2 , ξ

(km3 )
m3

)
=

∫ b1

a1

dx1W (x1) . . .

∫ bm1−1

am1−1

dxm1−1W (xm1−1)

× · · · ×
∫ bm1+1

am1+1

dxm1+1W (xm1+1) . . .

∫ bm2−1

am2−1

dxm2−1W (xm2−1)

× · · · ×
∫ bm2+1

am2+1

dxm2+1W (xm2+1) . . .

∫ bm3−1

am3−1

dxm3−1W (xm3−1)

× · · · ×
∫ bm3+1

am3+1

dxm3+1W (xm3+1) . . .

∫ bN

aN

dxNW (xN)f(x1, . . . , xN)

− f0 − fm
(
ξ(km)
m

)
− fm1m2

(
ξ
(km1 )
m1 , ξ

(km2 )
m2

)
.

(2.9)

2.2 DATA PARTITIONING THROUGH HDMR

In a real application, since F function is unknown, the cartesian product of the indepen-
dent variables x1, . . . , xN defined in Euclidean space and the known function values of
the nodes in the cartesian product set are considered to approximate F . The cartesian
product set can be written as

D ≡ D1 ×D2 × · · · × DN (2.10)

where

Di ≡
{
ξ
(ki)
i

}ki=ni
ki=1

=
{
ξ
(1)
i , . . . , ξ

(ni)
i

}
(2.11)
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and ξ(ki)i represents the kith value of ith independent variable (Tunga & Demiralp, 2008).

In our approach, we choose the weight function as

Wj(xj) =

nj∑
kj=1

α
(j)
kj
δ
(
xj − ξ

(kj)
j

)
, xj ∈ [aj, bj], 1 ≤ j ≤ N (2.12)

where δ(.) is the Dirac delta function and α(j)
kj

is a constant which specifies the contribu-
tion level of each node to the model in which we set α(j)

kj
= 1/N for all nodes, in our

experiments.

An exact F function passing through all the data points can be found by using all right-
hand side terms in Equation (2.1). If the integrations in Equations (2.6), (2.7), (2.8) and
(2.9) are performed, constant, univariate, bivariate and trivariate terms given in Equation
(2.1) can be obtained for cartesian set D as in Equations (2.13), (2.14), (2.15) and (2.16),
respectively. Higher variate terms can also be written in a similar manner.

f0 =

n1∑
k1=1

n2∑
k2=1

· · ·
nN∑
kN=1

(
N∏
i=1

α
(i)
ki

)
f
(
ξ
(k1)
1 , . . . , ξ

(kN )
N

)
(2.13)

fm

(
ξ(km)
m

)
=

n1∑
k1=1

n2∑
k2=1

· · ·
nm−1∑
km−1=1

nm+1∑
km+1=1

· · ·
nN∑
kN=1

(
N∏
i=1

α
(i)
ki

)
× f

(
ξ
(k1)
1 , . . . , ξ

(km−1)
m−1 , ξ(km)

m , ξ
(km+1)
m+1 , . . . , ξ

(kN )
N

)
− f0,

ξ(km)
m ∈ Dm, 1 ≤ km ≤ nm, 1 ≤ m ≤ N

(2.14)

fm1m2

(
ξ
(km1 )
m1 , ξ

(km2 )
m2

)
=

n1∑
k1=1

n2∑
k2=1

· · ·
nm1−1∑
km1−1=1

nm1+1∑
km1+1=1

· · ·
nm2−1∑
km2−1=1

nm2+1∑
km2+1=1

· · ·
nN∑
kN=1

(
N∏
i=1

i 6=m1∧i 6=m2

α
(i)
ki

)

× f
(
ξ
(k1)
1 , . . . , ξ

(km1−1)
m1−1 , ξ

(km1 )
m1 , ξ

(km1+1)
m1+1 , . . . , ξ

(km2−1)
m2−1 , ξ

(km2 )
m2 , ξ

(km2+1)
m2+1 , . . . , ξ

(kN )
N

)
− fm1

(
ξ
(km1 )
m1

)
− fm2

(
ξ
(km2 )
m2

)
− f0, ξ

(km1 )
m1 ∈ Dm1 , ξ

(km2 )
m2 ∈ Dm2 ,

1 ≤ km1 ≤ nm1 , 1 ≤ km2 ≤ nm2 , 1 ≤ m1,m2 ≤ N

(2.15)
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fm1m2m3

(
ξ
(km1 )
m1 , ξ

(km2 )
m2 , ξ

(km3 )
m3

)
=

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

· · ·
nm1−1∑
km1−1=1

nm1+1∑
km1+1=1

· · ·
nm2−1∑
km2−1=1

nm2+1∑
km2+1=1

· · ·
nm3−1∑
km3−1=1

nm3+1∑
km3+1=1

· · ·
nN∑
kN=1

×

(
N∏
i=1

i 6=m1∧i 6=m2∧i 6=m3

α
(i)
ki

)
f
(
ξ
(k1)
1 , . . . , ξ

(km1−1)
m1−1 , ξ

(km1 )
m1 , ξ

(km1+1)
m1+1 , . . . , ξ

(km2−1)
m2−1 , ξ

(km2 )
m2 ,

ξ
(km2+1)
m2+1 , . . . , ξ

(km3−1)
m3−1 , ξ

(km3 )
m3 , ξ

(km3+1)
m3+1 , . . . , ξ

(kN )
N

)
− fm1m2

(
ξ
(km1 )
m1 , ξ

(km2 )
m2

)
− fm1m3

(
ξ
(km1 )
m1 , ξ

(km3 )
m3

)
− fm2m3

(
ξ
(km2 )
m2 , ξ

(km3 )
m3

)
− fm1

(
ξ
(km1 )
m1

)
− fm2

(
ξ
(km2 )
m2

)
− fm3

(
ξ
(km3 )
m3

)
− f0, ξ

(km1 )
m1 ∈ Dm1 , ξ

(km2 )
m2 ∈ Dm2 , ξ

(km3 )
m3 ∈ Dm3 ,

1 ≤ km1 ≤ nm1 , 1 ≤ km2 ≤ nm2 , 1 ≤ km3 ≤ nm3 , 1 ≤ m1,m2,m3 ≤ N
(2.16)

where α(i)
ki

is a constant which specifies the contribution level of each node to the model
in which we set equally in our experiments. Once the univariate, bivariate and trivariate
terms are obtained, the corresponding components of the Lagrange interpolation can be
found as follows

Pm(xm) =
nm∑
km=1

Lkm(xm)fm

(
ξ(km)
m

)
, ξ(km)

m ∈ Dm, 1 ≤ m ≤ N (2.17)

Pm1m2(xm1 , xm2) =

nm1∑
km1=1

nm2∑
km2=1

Lkm1
(xm1)Lkm2

(xm2)fm1m2

(
ξ
(km1 )
m1 , ξ

(km2 )
m2

)
,

ξ
(km1 )
m1 ∈ Dm1 , ξ

(km2 )
m2 ∈ Dm2 , 1 ≤ m1,m2 ≤ N

(2.18)

Pm1m2m3(xm1 , xm2 , xm3) =
nm1∑
km1=1

nm2∑
km2=1

nm3∑
km3=1

Lkm1
(xm1)Lkm2

(xm2)Lkm3
(xm3)fm1m2m3

(
ξ
(km1 )
m1 , ξ

(km2 )
m2 , ξ

(km3 )
m3

)
,

ξ
(km1 )
m1 ∈ Dm1 , ξ

(km2 )
m2 ∈ Dm2 , ξ

(km3 )
m3 ∈ Dm3 , 1 ≤ m1,m2,m3 ≤ N

(2.19)

where Lkm(xm) is the Lagrange polynomial. Finally, the polynomial that approximates
to F using up to trivariate terms is obtained as follows
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Lkm(xm) =
nm∏
i=1
i 6=km

(
xm − ξ(i)m

)
(
ξ
(km)
m − ξ(i)m

) (2.20)

F(x1, . . . , xN) ≈ f0 +
N∑
m=1

Pm(xm) +
N∑

m1,m2=1
m1<m2

Pm1m2(xm1 , xm2)

+
N∑

m1,m2,m3=1
m1<m2<m3

Pm1m2m3(xm1 , xm2 , xm3).

(2.21)

2.3 IMAGE REPRESENTATION THROUGH HDMR

In this section, we have tested the HDMR method on small-sized grayscale and color
images to illustrate the results. It can be shown from the results that using up to bivariate
terms is enough to represent grayscale images, whereas, we need to also add the trivariate
terms to the HDMR equation, Equation (2.1), to represent color images.

2.3.1 Representing a Grayscale Image through HDMR

Figure 2.1: Test Image

For a givenX×Y ×Z imageF , let F (x, y, z) be the intensity value at x, y, z coordinates.
Here, X , Y and Z represents the number of rows, columns and color channels (Z = 1 for
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grayscale images), respectively. Then, the sets that are used to create the cartesian product
given in Equation (2.10) can be written as follows:

D1 = {1, 2, . . . , X}, D2 = {1, 2, . . . , Y }, D3 = {1, 2, . . . , Z} (2.22)

There are 9 pixels in the image data given in Figure 2.1. This data has 3 independent
variables: row numbers, x1, column numbers, x2, and the color values, x3.

x1 = {1, 2, 3}, x2 = {1, 2, 3}, x3 = {1} (2.23)

Also, f(x1, x2, x3) is the corresponding intensity value in the image. Note that there is
just 1 color channel in a grayscale image. Thus, we can eliminate x3 from the cartesian
product set and assume there are 2 independent variables, x1 and x2. The Cartesian prod-
uct set of this image has 9 nodes. Each node is characterized by 2 parameters as shown in
Equation (2.24).

f(1, 1) = 28, f(1, 2) = 127, f(1, 3) = 242,

f(2, 1) = 73, f(2, 2) = 177, f(2, 3) = 162,

f(3, 1) = 174, f(3, 2) = 230, f(3, 3) = 146. (2.24)

The α parameters appearing in the weight function are taken same. Using the Equation
(2.1), this multivariate data is partitioned into its constant, univariate and bivariate com-
ponents. The constant term can be obtained by using the relation given in Equation (2.13)
as follows

f0 = 151 (2.25)

If we create a new image with the same size of our original image and fill every one of
the pixels with the value of constant term, it can be clearly seen that the constant term is
not enough to represent the original image as shown in Figure 2.2(b).

Thus, we have also added the univariate terms in order to represent our multivariate data.
The univariate terms can be obtained by using the relation given in Equation (2.14) as
follows

10



Figure 2.2: The image obtained by the HDMR Equation using the constant term

(a) Original Image (b) Constant Image

(c) Univariate Image (d) Bivariate Image

f1

(
ξ
(1)
1

)
= −18.6667, f1

(
ξ
(2)
1

)
= −13.6667, f1

(
ξ
(3)
1

)
= 32.3333

f2

(
ξ
(1)
2

)
= −59, 3333, f2

(
ξ
(2)
2

)
= 27.0000, f2

(
ξ
(3)
2

)
= 32, 3333

(2.26)

where

ξ
(1)
1 = 1, ξ

(2)
1 = 2, ξ

(3)
1 = 3,

ξ
(1)
2 = 1, ξ

(2)
2 = 2, ξ

(3)
2 = 3. (2.27)
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When all of the pixels are filled using the constant and univariate terms, it can also be
seen that univariate terms are not enough to represent the image as well as shown in
Figure 2.2(c). The relation to find the intensity value of the upper-left pixel in the image
using up to univariate terms is given below. All of the intensity values can be found in a
similar manner.

f(ξ
(1)
1 , ξ

(1)
2 ) = f0 + f1

(
ξ
(1)
1

)
+ f2

(
ξ
(1)
2

)
= 73.0000 (2.28)

The bivariate terms can be obtained by using the relation given in Equation (2.15) as
follows

f12

(
ξ
(1)
1 , ξ

(1)
2

)
= −45.0000, f12

(
ξ
(1)
1 , ξ

(2)
2

)
= −32.3333, f12

(
ξ
(1)
1 , ξ

(3)
2

)
= 77.3333,

f12

(
ξ
(2)
1 , ξ

(1)
2

)
= −5.0000, f12

(
ξ
(2)
1 , ξ

(2)
2

)
= 12.6667, f12

(
ξ
(2)
1 , ξ

(3)
2

)
= −7.6667,

f12

(
ξ
(3)
1 , ξ

(1)
2

)
= 77.3333, f12

(
ξ
(3)
1 , ξ

(2)
2

)
= −7.6667, f12

(
ξ
(3)
1 , ξ

(3)
2

)
= −69.6667.

(2.29)

When all of the pixels are filled using the constant, univariate and bivariate terms, it can
again be seen that bivariate terms are also not enough to represent the original image as
shown in Figure 2.2(d). The relation to find the intensity value of the upper-left pixel in
the image using up to bivariate terms is given below.

f(ξ
(1)
1 , ξ

(1)
2 ) = f0 + f1

(
ξ
(1)
1

)
+ f2

(
ξ
(1)
2

)
+ f12

(
ξ
(1)
1 , ξ

(1)
2

)
= 28 (2.30)

This test shows us that, using up to bivariate terms is enough to represent a grayscale
image.

We also show the same procedure for a real grayscale image as shown below. In Fig-
ure 2.3, we show interpolation results on an image by using the terms up to constant,
univariate and bivariate terms in the HDMR expansion. In Figure 2.4, we also show abso-
lute differences between these images and the original image. As shown from the results
in Figure 2.4, using the terms up to bivariate terms perfectly interpolates to the original
image, i.e., all pixels of the image in Figure 2.4(c) is zero.
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Figure 2.3: Interpolated images by using the terms up to (b) constant term, (c)
univariate terms and (d) bivariate terms.

(a) Original (b) Constant

(c) Univariate (d) Bivariate

13



Figure 2.4: Absolute differences between the original image and the image
obtained by using the terms up to (b) constant term, (c) univariate
terms, (d) bivariate terms and (e) trivariate terms.

(a) Constant (b) Univariate

(c) Bivariate
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2.3.2 Representing a Color Image through HDMR

Figure 2.5: Test Image

For a givenX×Y ×Z imageF , let F (x, y, z) be the intensity value at x, y, z coordinates.
Here, X , Y and Z represents the number of rows, columns and color channels (Z = 3 for
color images), respectively. Then, the sets that are used to create the cartesian product
given in Equation (2.10) can be written as follows:

D1 = {1, 2, . . . , X}, D2 = {1, 2, . . . , Y }, D3 = {1, 2, . . . , Z} (2.31)

There are 9 pixels in the image data given in Figure 2.5. This data has 3 independent
variables: row numbers, x1, column numbers, x2, and the color values, x3 (R=1, G=2,
B=3).

x1 = {1, 2, 3}, x2 = {1, 2, 3}, x3 = {1, 2, 3} (2.32)

Also, f(x1, x2, x3) is the corresponding intensity value in the image. The Cartesian prod-
uct set of this image has 27 nodes. Each node is characterized by 3 parameters as shown
in Equation (2.33).
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f(1, 1, 1) = 237, f(1, 1, 2) = 28, f(1, 1, 3) = 36,

f(1, 2, 1) = 255, f(1, 2, 2) = 127, f(1, 2, 3) = 39,

f(1, 3, 1) = 255, f(1, 3, 2) = 242, f(1, 3, 3) = 0,

f(2, 1, 1) = 163, f(2, 1, 2) = 73, f(2, 1, 3) = 164,

f(2, 2, 1) = 34, f(2, 2, 2) = 177, f(2, 2, 3) = 76,

f(2, 3, 1) = 0, f(2, 3, 2) = 162, f(2, 3, 3) = 232,

f(3, 1, 1) = 255, f(3, 1, 2) = 174, f(3, 1, 3) = 201,

f(3, 2, 1) = 181, f(3, 2, 2) = 230, f(3, 2, 3) = 29,

f(3, 3, 1) = 112, f(3, 3, 2) = 146, f(3, 3, 3) = 190. (2.33)

The α parameters appearing in the weight function are taken same. Using the Equa-
tion (2.1), this multivariate data is partitioned into its constant, univariate, bivariate and
trivariate components. The constant term can be obtained by using the relation given in
Equation (2.13) as follows

f0 = 141.4074 (2.34)

If we create a new image with the same size of our original image and fill every one of
the pixels with the value of constant term, it can be clearly seen that the constant term is
not enough to represent the original image as shown in Figure 2.6(b).

Thus, we have also added the univariate terms in order to represent our multivariate data.
The univariate terms can be obtained by using the relation given in Equation (2.14) as
follows

f1

(
ξ
(1)
1

)
= −5.9630, f1

(
ξ
(2)
1

)
= −21.2963, f1

(
ξ
(3)
1

)
= 27.2593

f2

(
ξ
(1)
2

)
= 6.4815, f2

(
ξ
(2)
2

)
= −13.8519, f2

(
ξ
(3)
2

)
= 7.3704

f3

(
ξ
(1)
3

)
= 24.3704, f3

(
ξ
(2)
3

)
= 9.5926, f3

(
ξ
(3)
3

)
= −33.9630

(2.35)

where
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ξ
(1)
1 = 1, ξ

(2)
1 = 2, ξ

(3)
1 = 3,

ξ
(1)
2 = 1, ξ

(2)
2 = 2, ξ

(3)
2 = 3,

ξ
(1)
3 = 1, ξ

(2)
3 = 2, ξ

(3)
3 = 3. (2.36)

When all of the pixels are filled using the constant and univariate terms, it can also be seen
that univariate terms are not enough to represent the image as well as shown in Figure
2.6(c). The relation to find the intensity value in the red color channel of the upper-left
pixel in the image using up to univariate terms is given below. All of the intensity values
for every color channels of each pixel can be found in a similar manner.

f(ξ
(1)
1 , ξ

(1)
2 , ξ

(1)
3 ) = f0 + f1

(
ξ
(1)
1

)
+ f2

(
ξ
(1)
2

)
+ f3

(
ξ
(1)
3

)
= 166.2963 (2.37)

The bivariate terms can be obtained by using the relation given in Equation (2.15) as
follows

f12

(
ξ
(1)
1 , ξ

(1)
2

)
= −41.5926, f12

(
ξ
(1)
1 , ξ

(2)
2

)
= 18.7407, f12

(
ξ
(1)
1 , ξ

(3)
2

)
= 22.8519,

f12

(
ξ
(2)
1 , ξ

(1)
2

)
= 6.7407, f12

(
ξ
(2)
1 , ξ

(2)
2

)
= −10.5926, f12

(
ξ
(2)
1 , ξ

(3)
2

)
= 3.8519,

f12

(
ξ
(3)
1 , ξ

(1)
2

)
= 34.8519, f12

(
ξ
(3)
1 , ξ

(2)
2

)
= −8.1481, f12

(
ξ
(3)
1 , ξ

(3)
2

)
= −26.7037,

f13

(
ξ
(1)
1 , ξ

(1)
3

)
= 89.1852, f13

(
ξ
(1)
1 , ξ

(2)
3

)
= −12.7037, f13

(
ξ
(1)
1 , ξ

(3)
3

)
= −76.4815,

f13

(
ξ
(2)
1 , ξ

(1)
3

)
= −78.8148, f13

(
ξ
(2)
1 , ξ

(2)
3

)
= 7.6296, f13

(
ξ
(2)
1 , ξ

(3)
3

)
= 71.1852,

f13

(
ξ
(3)
1 , ξ

(1)
3

)
= −10.3704, f13

(
ξ
(3)
1 , ξ

(2)
3

)
= 5.0741, f13

(
ξ
(3)
1 , ξ

(3)
3

)
= 5.2963,

f23

(
ξ
(1)
2 , ξ

(1)
3

)
= 46.0741, f23

(
ξ
(1)
2 , ξ

(2)
3

)
= −65.8148, f23

(
ξ
(1)
2 , ξ

(3)
3

)
= 19.7407,

f23

(
ξ
(2)
2 , ξ

(1)
3

)
= 4.7407, f23

(
ξ
(2)
2 , ξ

(2)
3

)
= 40.8519, f23

(
ξ
(2)
2 , ξ

(3)
3

)
= −45.5926,

f23

(
ξ
(3)
2 , ξ

(1)
3

)
= −50.8148, f23

(
ξ
(3)
2 , ξ

(2)
3

)
= 24.9630, f23

(
ξ
(3)
2 , ξ

(3)
3

)
= 25.8519.

(2.38)

When all of the pixels are filled using the constant, univariate and bivariate terms, it can
again be seen that bivariate terms are also not enough to represent the original image as
shown in Figure 2.6(d). The relation to find the intensity value in the red color channel
of the upper-left pixel in the image using up to bivariate terms is given below (Note that
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since the range of the intensity values are between 0 and 255, it is seen as 255 on the
screen if it’s found greater than 255 and seen as 0 if it’s found less than 0). All of the
intensity values for every color channels of each pixel can be found in a similar manner.

f(ξ
(1)
1 , ξ

(1)
2 , ξ

(1)
3 ) = f0+f1

(
ξ
(1)
1

)
+ f2

(
ξ
(1)
2

)
+ f3

(
ξ
(1)
3

)
+ f12

(
ξ
(1)
1 , ξ

(1)
2

)
+f13

(
ξ
(1)
1 , ξ

(1)
3

)
+ f23

(
ξ
(1)
2 , ξ

(1)
3

)
= 259.9630

(2.39)

Finally, we decided to add the trivariate terms as well to represent the original image. The
trivariate terms can be obtained by using the relation given in Equation (2.16) as follows

f123

(
ξ
(1)
1 , ξ

(1)
2 , ξ

(1)
3

)
= −22.9630, f123

(
ξ
(1)
1 , ξ

(1)
2 , ξ

(2)
3

)
= −3.4074,

f123

(
ξ
(1)
1 , ξ

(1)
2 , ξ

(3)
3

)
= 26.3704, f123

(
ξ
(1)
1 , ξ

(2)
2 , ξ

(1)
3

)
= −3.6296,

f123

(
ξ
(1)
1 , ξ

(2)
2 , ξ

(2)
3

)
= −51.0741, f123

(
ξ
(1)
1 , ξ

(2)
2 , ξ

(3)
3

)
= 54.7037,

f123

(
ξ
(1)
1 , ξ

(3)
2 , ξ

(1)
3

)
= 26.5926, f123

(
ξ
(1)
1 , ξ

(3)
2 , ξ

(2)
3

)
= 54.4815,

f123

(
ξ
(1)
1 , ξ

(3)
2 , ξ

(3)
3

)
= −81.0741, f123

(
ξ
(2)
1 , ξ

(1)
2 , ξ

(1)
3

)
= 38.0370,

f123

(
ξ
(2)
1 , ξ

(1)
2 , ξ

(2)
3

)
= −11.7407, f123

(
ξ
(2)
1 , ξ

(1)
2 , ξ

(3)
3

)
= −26.2963,

f123

(
ξ
(2)
1 , ξ

(2)
2 , ξ

(1)
3

)
= −11.9630, f123

(
ξ
(2)
1 , ξ

(2)
2 , ξ

(2)
3

)
= 23.2593,

f123

(
ξ
(2)
1 , ξ

(2)
2 , ξ

(3)
3

)
= −11.2963, f123

(
ξ
(2)
1 , ξ

(3)
2 , ξ

(1)
3

)
= −26.0741,

f123

(
ξ
(2)
1 , ξ

(3)
2 , ξ

(2)
3

)
= −11.5185, f123

(
ξ
(2)
1 , ξ

(3)
2 , ξ

(3)
3

)
= 37.5926,

f123

(
ξ
(3)
1 , ξ

(1)
2 , ξ

(1)
3

)
= −15.0741, f123

(
ξ
(3)
1 , ξ

(1)
2 , ξ

(2)
3

)
= 15.1481,

f123

(
ξ
(3)
1 , ξ

(1)
2 , ξ

(3)
3

)
= −0.0741, f123

(
ξ
(3)
1 , ξ

(2)
2 , ξ

(1)
3

)
= 15.5926,

f123

(
ξ
(3)
1 , ξ

(2)
2 , ξ

(2)
3

)
= 27.8148, f123

(
ξ
(3)
1 , ξ

(2)
2 , ξ

(3)
3

)
= −43.4074,

f123

(
ξ
(3)
1 , ξ

(3)
2 , ξ

(1)
3

)
= −0.5185, f123

(
ξ
(3)
1 , ξ

(3)
2 , ξ

(2)
3

)
= −42.9630,

f123

(
ξ
(3)
1 , ξ

(3)
2 , ξ

(3)
3

)
= 43.4815. (2.40)

The relation to find the intensity value in the red color channel of the upper-left pixel in
the image using up to trivariate terms is given below. All of the intensity values for every
color channels of each pixel can be found in a similar manner. When all of the pixel
intensity values are found, the image in Figure 2.6(e) can be illustrated, which is exactly
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the same with our original image.
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Figure 2.6: The Image obtained by the HDMR Equation using the constant term

(a) Original Image

(b) Constant Image (c) Univariate Image

(d) Bivariate Image (e) Trivariate Image
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f(ξ
(1)
1 , ξ

(1)
2 , ξ

(1)
3 ) = f0 + f1

(
ξ
(1)
1

)
+ f2

(
ξ
(1)
2

)
+ f3

(
ξ
(1)
3

)
+ f12

(
ξ
(1)
1 , ξ

(1)
2

)
+ f13

(
ξ
(1)
1 , ξ

(1)
3

)
+ f23

(
ξ
(1)
2 , ξ

(1)
3

)
+ f123

(
ξ
(1)
1 , ξ

(1)
2 , ξ

(1)
3

)
= 237

(2.41)

This test shows us that, using up to trivariate terms is enough to represent a color image.

We also show the same procedure for a real color image as shown below. In Figure 2.7,
we show interpolation results on an image by using the terms up to constant, univariate,
bivariate and trivariate terms in the HDMR expansion. In Figure 2.8, we also show abso-
lute differences between these images and the original image. As shown from the results
in Figure 2.8, using the terms up to trivariate terms perfectly interpolates to the original
image, i.e., all pixels of the image in Figure 2.8(d) is zero.

Figure 2.7: Interpolated images by using the terms up to (b) constant term, (c)
univariate terms, (d) bivariate terms and (e) trivariate terms.

(a) Original (b) Constant (c) Univariate

(d) Bivariate (e) Trivariate
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Figure 2.8: Absolute differences between the original image and the image
obtained by using the terms up to (b) constant term, (c) univariate
terms, (d) bivariate terms and (e) trivariate terms.

(a) Constant (b) Univariate

(c) Bivariate (d) Trivariate

2.3.3 Performance Evaluation

We evaluate the performance of the method by comparing the obtained images using
up to constant, univariate, bivariate and trivariate terms with the original images using
peak signal-to-noise ratio (PSNR) (Huynh-Thu & Ghanbari, 2008). PSNR is most easily
defined via the mean squared error (MSE) which is computed as follows

PSNR = 20. log(MAXI)− 10. log(MSE) (2.42)
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where

MSE =
1

XY Z

X∑
i=1

Y∑
j=1

Z∑
k=1

(I(i, j, k)− Î(i, j, k))2. (2.43)

MAXI is the maximum possible pixel value of the image, I and Î are original and ob-
tained images, respectively. Note that higher values of PSNR indicate better results.

PSNR results that shows the comparement between the original test images in Figures
2.2(a) and 2.6(a) with the images obtained by using up to constant, univariate, bivariate
and trivariate terms are given in Table 2.1.

Table 2.1: PSNR results of the test images in Figures 2.2 and
2.6.

Original Constant Univariate Bivariate Trivariate

PSNR 11.9142 15.3596 Inf

PSNR 13.7620 15.0814 Inf

PSNR 9.5684 10.2983 18.0555 Inf

PSNR 13.3846 16.1911 25.3227 Inf
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3. HDMR-BASED IMAGE INPAINTING METHODS

Image inpainting is the process of filling missing or fixing corrupted regions in an image.
The intensity values of the pixels in the missing area are expected to be associated with the
pixels in the missing area are expected to be associated with the pixels in the surrounding
area. Interpolation-based methods that can solve the problem with a high accuracy may
become inefficient when the dimension of the data increases. In this chapter, we propose a
new image inpainting method. We show the development of the method through the thesis
process step by step in subsections. We first propose a method to inpaint rectangular
regions in grayscale images using HDMR which is explained in detail in Section 3.1.
Then, we propose the same method to inpaint rectangular regions in color images (see
Section 3.2). But in real life problems, when you try to remove an object from an image,
or when you try to remove a scratch from an image, it generally won’t be in a rectangular
shape. Thus, we propose a new method to inpaint any shape of missing regions in a color
image (see Section 3.3). But this method also has a constraint as it cannot be succeed in
textural images. Finally, we propose a final texture and pattern preserving interpolation-
based method to inpaint color images. This Texture and Pattern Preserving Inpainting
using HDMR (TPI-HDMR) method is explained in detail in Section 4. Note that the
methods which work for a color image can also work for all grayscale images as well.

3.1 INPAINTING RECTANGULAR MISSING REGIONS IN GRAYSCALE IM-
AGES

The proposed method in this section represents a high dimensional data in lower dimen-
sions using High Dimensional Model Representation Method (HDMR) and performs im-
age inpainting for rectangular regions in grayscale images with Lagrange interpolation.
Proposed approach works only when the missing region is a rectangle due to a constraint
that comes from the structure of the HDMR method. Experimental results show that
the proposed method produces better results than the well-known and pioneering total
variation-based image inpainting method in the literature in many test cases.

It has been shown in Chapter 2.1 that a given grayscale image can be exactly obtained
with HDMR by using at most bivariate terms in the Equation (2.1). Therefore, in our
approach for grayscale image inpainting, we use constant, univariate and bivariate terms
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in Equation (2.1).

As it is mentioned in Chapter 2, orthogonality condition must be satisfied to apply HDMR
to a data set (Tunga and Demiralp, 2009). Orthogonality condition requires that all the
values ofF to be known for all points inD. In image inpainting, since there are some pixel
coordinates in D whose intensity values are unknown, the orthogonality condition is not
satisfied. Therefore, we remove row indices corresponding to missing region (or column
indices corresponding to missing region) from D1 (or D2) and construct new cartesian set
D using new D1, D2 and D3 sets as shown in Equation (3.1).

D1 = {1, 2, . . . , X}, D2 = {1, 2, . . . β1− 1, β2 +1, . . . , Y }, D3 = {1, 2, . . . , Z} (3.1)

Let us assume that the intensity values in the black region, between the coordinates
(α1, β1) − (α2, β2), shown in Figure 3.1(a) are missing. Due to the orthogonality con-
dition, when applying HDMR, the image inpainting problem in Figure 3.1(a) turns into
inpainting the image shown in Figure 3.1(b). Note the significant increase of the missing
region with the changes that we made to satisfy the orthogonality condition.

Figure 3.1: Missing Region Illustration

(a) Original missing region (b) Missing region after orthogonality condition
is satisfied

We perform experiments on 4 different grayscale test images shown in Figure 3.2. We
design 12 different test settings by using each test image with 3 different masks with
different sizes of rectangular missing regions shown in Figure 3.3. Note that black regions
in each mask represent the missing region in the corresponding test setting. We compare
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our approach with total variation inpainting method (Shen & Chan, 2002) which is a
pioneering inpainting approach in the literature.

Figure 3.2: Original Images

Figure 3.3: Missing Regions

(a) 5× 5 missing region (b) 10×10 missing region (c) 20×20 missing region

Proposed method inpaints the missing regions using the nearest neighboring known pixel
intensity values. We compare our results with TV inpainting method (Shen & Chan,
2002). We obtain quantitative results by comparing inpainting results of each method
with the original images using PSNR (Huynh-Thu & Ghanbari, 2008) which is explained
in Section 2.3.3.

We present visual results with their corresponding PSNR values for 4 test images with
3 different sizes of masks in each. Figures 3.4, 3.5 and 3.6 show the results in images
with 5× 5, 10× 10 and 20× 20 missing regions, respectively. When the missing region
is smaller, as in the 5 × 5 mask, there is no significant difference between the results of
compared methods. But, when the size of the missing region grows, our method produces
better results than TV inpainting method (Shen & Chan, 2002) in most of the test cases.
Our approach achieves the better PSNR values in 3 of the test cases whereas, the TV
approach (Shen & Chan, 2002) achieves only 1 in both masks with sizes of 10 × 10 and
20× 20.
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Figure 3.4: Visual results with their corresponding PSNR values for test images with
5× 5 missing region for our proposed method and TV inpainting method

Test Images HDMR TV

PSNR 59.6155 58.7767

PSNR 56.6332 58.4680

PSNR 44.4300 47.7881

PSNR 58.8794 56.6201
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Figure 3.5: Visual results with their corresponding PSNR values for test images with
10× 10 missing region for our proposed method and TV inpainting
method

Test Images HDMR TV

PSNR 55.4292 40.9879

PSNR 42.0705 43.0258

PSNR 41.7881 39.2955

PSNR 42.5529 38.8301

28



Figure 3.6: Visual results with their corresponding PSNR values for test images with
20× 20 missing region for our proposed method and TV inpainting
method

Test Images HDMR TV

PSNR 43.4788 37.0732

PSNR 29.1677 28.6785

PSNR 29.6029 29.3509

PSNR 28.7023 28.8453
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3.2 INPAINTING RECTANGULAR MISSING REGIONS IN COLOR IMAGES

In this work, we propose an image inpainting method which represents a high dimen-
sional data in lower dimensions using High Dimensional Model Representation Method
(HDMR) and performs image inpainting for rectangular regions in color images using
Lagrange interpolation. Proposed approach works only on rectangular regions due to a
constraint that comes from the structure of the HDMR method. Experimental results show
that the proposed method produces better results than the well-known and pioneering total
variation-based image inpainting method in the literature.

We used at most the bivariate terms in the method proposed in Chapter 3.1 which can
inpaint only grayscale images. It has been shown in Chapter 2.3 that we also need the
trivariate terms in the Equation (2.1) to represent a given color image. Therefore, in our
approach for color image inpainting, we use constant, univariate, bivariate and trivariate
terms in Equation (2.1).

We perform experiments on 5 different color test images shown in Figure 3.7. We design
15 different test settings by using each test image with 3 different masks with different
sizes of rectangular missing regions shown in Figure 3.14. Note that black regions in
each mask represent the missing region in the corresponding test setting. We compare our
approach with total variation inpainting method (Shen et al., 2002) which is a pioneering
inpainting approach in the literature.

Figure 3.7: Original Images

(a) Lena (b) Parrot (c) Baboon (d) Barbara (e) Peppers

Proposed method inpaints the missing regions using the nearest neighboring known pixel
intensity values. We compare our results with TV inpainting method (Shen & Chan,
2002). We obtain quantitative results by comparing inpainting results of each method
with the original images using PSNR. Note that higher values of PSNR indicate better
inpainting results.

We present visual results with their corresponding PSNR values for 4 test images with 3

30



Figure 3.8: Missing Regions

(a) 5× 5 missing region (b) 10×10 missing region (c) 20×20 missing region

different sizes of masks in each. Figures 3.9, 3.10, 3.11, 3.12, and 3.13 shows the results
in images with 5× 5, 10× 10 and 20× 20 missing regions for test images 3.7(a), 3.7(b),
3.7(c), 3.7(d) and 3.7(e), respectively. When the missing region is smaller, as in the 5× 5

mask, there is no significant difference between the results of compared methods. But,
when the size of the missing region grows, our method produces better results than TV
inpainting method (Shen & Chan, 2002) in most of the test cases. Our approach achieves
the better PSNR values in 3 of the test cases whereas, the TV approach (Shen & Chan,
2002) achieves only 1 in both masks with sizes of 10× 10 and 20× 20.
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Figure 3.9: Visual results with their corresponding PSNR values for Test image
3.7(a) with 5× 5, 10× 10 and 20× 20 missing regions (from top to bottom
respectively) for our proposed method and TV inpainting method

Test Images HDMR TV

PSNR 76.8989 66.4288

PSNR 70.7002 66.4236

PSNR 63.2760 62.8325
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Figure 3.10: Visual results with their corresponding PSNR values for Test image
3.7(b) with 5× 5, 10× 10 and 20× 20 missing regions (from top to
bottom respectively) for our proposed method and TV inpainting
method

Test Images HDMR TV

PSNR 71.8615 59.2500

PSNR 64.8924 57.9459

PSNR 62.1457 58.5664
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Figure 3.11: Visual results with their corresponding PSNR values for Test image
3.7(c) with 5× 5, 10× 10 and 20× 20 missing regions (from top to
bottom respectively) for our proposed method and TV inpainting
method

Test Images HDMR TV

PSNR 77.0999 64.2065

PSNR 61.3470 61.4093

PSNR 61.8201 60.1751
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Figure 3.12: Visual results with their corresponding PSNR values for Test image
3.7(d) with 5× 5, 10× 10 and 20× 20 missing regions (from top to
bottom respectively) for our proposed method and TV inpainting
method

Test Images HDMR TV

PSNR 88.7938 71.4969

PSNR 82.3690 75.0978

PSNR 69.4557 66.8703
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Figure 3.13: Visual results with their corresponding PSNR values for Test image
3.7(e) with 5× 5, 10× 10 and 20× 20 missing regions (from top to
bottom respectively) for our proposed method and TV inpainting
method

Test Images HDMR TV

PSNR 81.6617 64.4975

PSNR 62.0729 60.5547

PSNR 61.9500 57.7178
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3.3 A NEW HIERARCHICAL APPROACH TO INPAINT IMAGES WITH COM-
PLICATED MISSING REGIONS

In this section, we present a new interpolation-based image inpainting approach which
is based on HDMR and Lagrange interpolation. We consider image inpainting as an
interpolation problem in which unknown pixel intensities are estimated by performing
interpolation through known pixel intensities in the surrounding region. However, apply-
ing interpolation to a high dimensional data set is not a trivial task, even for 3D data as
in color images, due to computational difficulties (Tunga & Demiralp, 2009). In order
to deal with high dimensional data, we use HDMR (Sobol, 1993) method and represent
high dimensional data with lower dimensions. Then, we perform Lagrange interpolation
through the outputs of HDMR for image inpainting. HDMR and Lagrange interpola-
tion have already been successfully applied to high dimensional data in other applications
in the literature (Tunga & Demiralp, 2008, 2009; Karahoca & Tunga, 2015; Alış & Ra-
bitz, 2001). However, in image inpainting, HDMR brings some difficulties due to the
orthogonality condition that comes from the derivation of the HDMR equation (Tunga &
Demiralp, 2008). In order to satisfy the orthogonality condition for image inpainting us-
ing HDMR, pixels in the corresponding row or column of the missing region must also be
considered as missing. We deal with this problem with a hierarchical approach in which
we decompose missing regions into smaller regions and start inpainting from the smallest
one.

We perform experiments on variety of test images and missing regions combinations. We
also compare the accuracy of our approach with two pioneering approaches: total vari-
ation inpainting (Shen & Chan, 2002) and exemplar-based inpainting (Criminisi et al.,
2004). Experimental results demonstrate that our approach produces better results than
both approaches in most of the test images, especially in the ones containing more struc-
tural region.

As it is mentioned in the previous sections, when applying HDMR, the image inpainting
problem in Figure 3.14(a) turns into inpainting the image shown in Figure 3.14(b). Note
the significant increase of the missing region with the changes that we made to satisfy
the orthogonality condition. There is a trade-off between satisfying the orthogonality
condition and accuracy of the inpainting because of the increasing size of the region to
be inpainted. We use an hierarchical image inpainting procedure to solve this trade-off.
In each iteration of this procedure, we search the image both vertically and horizontally
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to find the smallest missing region whose immediate neighbours are known in the search
direction. A patch is created containing only the found missing region and its immediate
known neighbouring pixels. Then, D is constructed with respect to indices of the patch.
Once the HDMR and Lagrange interpolation is applied to find the missing pixel values in
this patch, the found pixel values are put to their original location in the image.

Figure 3.14: Missing Regions

(a) Original missing region (b) Missing region after orthogonality condition is
satisfied

We perform experiments on 3 different test images shown in Figure 3.15. We design
15 different test settings by using each test image with 5 different masks shown in Figure
3.16. Note that black regions in each mask represent the missing region in the correspond-
ing test setting. We compare our approach with two pioneering inpainting approaches in
the literature: total variation inpainting (Shen & Chan, 2002) and exemplar-based inpaint-
ing (Criminisi et al., 2004).

Figure 3.15: Original Images

(a) (b) (c)

We obtain quantitative results by comparing inpainting results of each method with the
original images using PSNR. Note that higher values of PSNR indicate better inpainting
results.
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Figure 3.16: Missing Regions

(a) (b) (c) (d)

(e) (f) (g) (h)

Figures 3.17, 3.18, 3.19, 3.20, and 3.21 shows the visual results and corresponding PSNR
results in all test images with missing regions shown in Figures 3.16(a), 3.16(b), 3.16(c),
3.16(d), 3.16(e), 3.16(f), 3.16(g) and 3.16(h), respectively.

Results demonstrate that the proposed inpainting approach produces better results than
both state-of-the-art methods in 4 test cases. The exemplar-based method in (Criminisi
et al., 2004) produces the best result with the mask shown in Figure 3.16(a) in terms of
PSNR. In this test case, the result of our approach is very close to the best result and better
than the result of the method in (Shen & Chan, 2002).

It can be seen in Figure 3.24 that Exemplar-based method cannot produce an output for
this mask that has more than 80% missing pixels in it. Since exemplar-based method tries
to find a similar patch to the missing region, it’s impossible to find patches bigger than
1× 1 in this image, thus, it cannot produce an output.

Test images given in Figures 3.15(a) and 3.15(b) contains more structural patterns relative
to the textural ones. Therefore, our interpolation-based inpainting approach produces bet-
ter results than the other two approaches in the literature in most of the test cases. The test
image in Figure 3.15(c) contains many textural regions like the scarf of the lady and the
chair in the background. Since, the examplar-based approach in (Criminisi et al., 2004)
performs image inpainting by copying similar patterns, it is capable of inpainting textural
images. Although, the proposed approach does not have the mechanism for inpainting
textural images, PSNR values are very close to results of the method in (Criminisi et al.,
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Figure 3.17: Visual results with their corresponding PSNR values for all test
images in 3.15 with a missing region given in Figure 3.16(a) for
our proposed method, total variation (TV) inpainting method
and exemplar-based inpainting method

Test Images TV Exemplar HDMR

PSNR 37.9607 38.2588 38.0464

PSNR 35.9661 33.6417 36.4427

PSNR 32.6628 33.1591 32.6184

2004).
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Figure 3.18: Visual results with their corresponding PSNR values for all test
images in 3.15 with a missing region given in Figure 3.16(b) for
our proposed method, total variation (TV) inpainting method
and exemplar-based inpainting method

Test Images TV Exemplar HDMR

PSNR 33.0644 35.4030 35.9883

PSNR 35.5414 33.3323 37.1111

PSNR 29.5369 31.8904 31.1452
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Figure 3.19: Visual results with their corresponding PSNR values for all test
images in 3.15 with a missing region given in Figure 3.16(c) for
our proposed method, total variation (TV) inpainting method
and exemplar-based inpainting method

Test Images TV Exemplar HDMR

PSNR 31.2465 30.0557 32.4042

PSNR 30.1658 28.9228 31.3753

PSNR 28.3516 27.4568 28.3986
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Figure 3.20: Visual results with their corresponding PSNR values for all test
images in 3.15 with a missing region given in Figure 3.16(d) for
our proposed method, total variation (TV) inpainting method
and exemplar-based inpainting method

Test Images TV Exemplar HDMR

PSNR 33.3071 32.0079 34.2790

PSNR 31.2359 28.7694 31.4559

PSNR 26.1509 28.7713 27.4096
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Figure 3.21: Visual results with their corresponding PSNR values for all test
images in 3.15 with a missing region given in Figure 3.16(e) for
our proposed method, total variation (TV) inpainting method
and exemplar-based inpainting method

Test Images TV Exemplar HDMR

PSNR 27.1687 24.2372 29.7899

PSNR 27.8587 24.3407 28.6769

PSNR 23.9638 22.3270 24.5221
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Figure 3.22: Visual results with their corresponding PSNR values for all test
images in 3.15 with a missing region given in Figure 3.16(f) for
our proposed method, total variation (TV) inpainting method
and exemplar-based inpainting method

Test Images TV Exemplar HDMR

PSNR 35.8511 29.8883 36.5968

PSNR 34.9561 28.9600 35.2738

PSNR 28.1698 26.7474 29.4976
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Figure 3.23: Visual results with their corresponding PSNR values for all test
images in 3.15 with a missing region given in Figure 3.16(g) for
our proposed method, total variation (TV) inpainting method
and exemplar-based inpainting method

Test Images TV Exemplar HDMR

PSNR 33.3136 29.8015 34.0606

PSNR 31.8898 27.6677 32.1718

PSNR 26.2808 26.3168 26.4956
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Figure 3.24: Visual results with their corresponding PSNR values for all test
images in 3.15 with a missing region given in Figure 3.16(h) for
our proposed method, total variation (TV) inpainting method
and exemplar-based inpainting method

Test Images TV Exemplar HDMR

PSNR 25.8512 - 27.0324

PSNR 25.5556 - 26.2642

PSNR 20.9099 - 21.2415
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4. TEXTURE AND PATTERN PRESERVING INPAINTING USING
HDMR METHOD

Interpolation-based methods that can solve the problem with a high accuracy may become
inefficient when the dimension of the data increases. Also, they suffer from finding the
underlying texture and pattern in the missing region. In this study, we propose a new tex-
ture and pattern preserving interpolation-based algorithm for inpainting missing regions.
First, the proposed approach produces candidate inpainting results by interpolating to the
observed data at the different neighborhoods of the missing region using HDMR with
Lagrange interpolation. Later, a final inpainting decision is given among the candidates
for each pixel in the missing region for a texture and pattern preserving inpainting. This
is achieved by combining the information obtained from co-occurrence matrix and from
a patch found in the image that fits best to the missing region. We evaluate the perfor-
mance of the proposed approach on various color images that include different texture
and pattern. We also compare the proposed approach with the state-of-the-art inpainting
methods in the literature. Experimental results demonstrate the potential of the proposed
approach.

Interpolation-based methods can produce inpainting results with high accuracy if a part
of a smooth region is missing as shown in Figure 4.1. However, in many cases, the
underlying structure of the missing region can contain complicated texture and pattern.
Such structures cannot be captured by interpolating to whole surrounding pixels of the
missing region. If we have prior knowledge about the direction of texture and pattern in
the missing region, interpolating to the observed neighboring pixels in only that direction
can help to retain the underlying structure.

We illustrate the aforementioned difficulty of using interpolation for texture and pattern
preserving inpainting in Figure 4.2. Let us consider the part of a zebra body shown in
Figure 4.2(a) where a small region (shown by green) on the vertical black pattern of the
zebra body is missing. If we perform Lagrange interpolation only using the pixels on
the left and the right parts of the missing region, we lose the vertical black texture in
zebra after inpainting (see Figure 4.2(b)). However, if we use the pixels on the upper
and the lower parts of the missing region for interpolation, the interpolation can complete
the missing region quite well as shown in Figure 4.2(c). Inpainting results using the
neighboring observed pixels on the upper-right and the lower-left, and on the upper-left
and the lower-right of the missing region are also shown in Figure 4.2(b) and 4.2(d),
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Figure 4.1: An example that shows interpolation works well for inpainting
smooth regions. (a) The input image with a missing region (shown
with black pixels), (b) inpainting result obtained using interpolation.

(a) (b)

Figure 4.2: An example that demonstrates the motivation of the proposed
method. (a) The input image with a missing region (shown by
green). Candidate inpainting results using the neighboring pixels
on (b) the left and the right (0◦), (c) the upper-right and the
lower-left (45◦), (d) the upper and the lower (90◦), (e) the upper-left
and the lower-right (135◦) parts of the missing region, respectively.
(f) Inpainting result of the proposed method.

(a) (b) (c)

(d) (e) (f)

respectively.

Performing interpolation using the observed pixels in the direction of the underlying struc-
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ture is not trivial, since we do not know the direction of the texture and the pattern in
advance. The problem becomes even more complex than the example in Figure 4.2 when
the underlying structure of the missing region consists of more complicated patterns (e.g.,
different textures and patterns in different directions) as in many natural images. This
motivates us to exploit interpolation results obtained from different directions to develop
an interpolation-based texture and pattern preserving algorithm for image inpainting.

The Texture and Pattern Preserving Inpainting using HDMR (TPI-HDMR) approach per-
forms interpolation by using the observed data at different directions of the missing region
and generates candidate inpainting results for each direction. Then, the algorithm selects
the best intensities for each pixel of the missing region among the candidate inpainting
results such that the underlying texture and pattern are preserved. The inpainting result of
our approach on the image in Figure 4.2(a) is shown in Figure 4.2(f).

4.1 TPI-HDMR ALGORITHM

In this section, we introduce our interpolation-based texture and pattern preserving ap-
proach for inpainting color images. The overall algorithm is given in Algorithm 1. The
algorithm consists of two major parts:
1) generating candidate inpainting results using HDMR with Lagrange interpolation (be-
tween lines 1 - 4 in Algorithm 1),
2) giving an inpainting decision among the candidates for each missing pixel by preserv-
ing the underlying texture and pattern (between lines 5 - 36 in Algorithm 1).

In the following two subsections, we explain these major parts of the proposed approach
in details. Also, in the last subsection, we numerically demonstrate how the proposed
algorithm works on a toy example.

4.1.1 Generating Candidate Inpainting Results

Let us assume that we are given an image I with a missing region M . Also, let us assume
that we interpolate to the neighboring pixels of M from n different directions at angles
θ = {θ1, θ2, . . . , θn} to capture textures and patterns in different directions. As a result
of each interpolation, the algorithm generates an inpainting estimate, Mθi , for a particular
angle θi (1 ≤ i ≤ n).

50



Algorithm 1 Texture and Pattern Preserving Inpainting using HDMR (TPI-HDMR)
.Lines 1-5 are detailed in Section 4.1.1

1: for i = 1→ n do .n : # of angles
2: Find a function, Fθi , by interpolating using HDMR to the neighboring pixels of

the missing region, M , from the angle, θi.
3: Find a candidate inpainting, Mθi , by Mθi = Fθi(M).
4: end for
5: Extract a patch, P , around M .

.Lines 6-36 are detailed in Section 4.1.2
6: Compute co-occurrence matrix C using the observed pixels in P .
7: for each pixel x in M do
8: sum = 0
9: Find the set of neighboring known pixels, X , of x.

10: for i = 1→ n do
11: vθi(x) = 0
12: for each pixel x′ ∈ X do
13: vθi(x) = vθi(x) + C(Mθi(x), I(x

′))
14: end for
15: sum = sum+ vθi(x)
16: end for
17: for i = 1→ n do
18: vθi(x) = vθi(x)/sum .Normalization
19: end for
20: end for

.Lines 21-22 are illustrated in Figure 4.4
21: Find a patch, P̂ , in I that is the most similar to P using normalized cross correlation.
22: Take the region in P̂ that corresponds to the missing region as an inpainting estimate

M̂ .
23: Initialize M? such that it has the same size with M
24: for each pixel x in M do
25: sum = 0
26: for i = 1→ n do
27: cθi(x) = 1/‖M̂(x)−Mθi(x)‖
28: sum = sum+ cθi(x)
29: end for
30: for i = 1→ n do
31: cθi(x) = cθi(x)/sum .Normalization
32: end for
33: L(x) = v(x) + γ.c(x) .γ is a hyperparameter.
34: Find the index, imax, where the L(x) has the maximum value.
35: M?(x) =Mθimax

(x)
36: end for
37: return M?.

51



In our experiments, we empirically set n = 4 and θ = {0◦, 45◦, 90◦, 135◦}. The choice of
the neighboring pixels to be interpolated for each angle are illustrated by red in Figure 4.3.

Figure 4.3: Pixels used in interpolation at different
angles. (a) θ1 = 0◦, (b) θ2 = 45◦, (c) θ3 = 90◦,
(d) θ4 = 135◦. Note that black indicates
missing pixels and red indicates pixels to be
interpolated.

(a) (b)

(c) (d)

Applying interpolation to a high dimensional data set is not a trivial task, even for 3D data
as in color images, due to computational difficulties (Tunga & Demiralp, 2009; Altın, Em-
ine Mine and Tunga, Burcu, 2014). Therefore, in this study, we use HDMR together with
Lagrange interpolation to accelerate the interpolation process. For a given multivariate F
function, the HDMR expansion is given in Equation 2.1. An exact F function passing
through all the data points can be found by using all right-hand side terms in Equation
(2.1).

In our experiments (see Section 2.3.2, we empirically found sufficient enough to use up to
trivariate terms to interpolate the observed intensities. Applying the interpolation proce-
dure mentioned in Chapter 2 to the neighboring pixels in each direction results n different
functions, Fθi , where 1 ≤ i ≤ n. Finally, each candidate inpainting, Mθi , is obtained by
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Mθi = Fθi(M).

4.1.2 Texture Preserving Inpainting

We obtain n candidate inpainting results,Mθi , 1 ≤ i ≤ n, by interpolating to the observed
pixels at the different angles of the missing region, M , as introduced in the previous sec-
tion. In other words, we have n candidate inpainting results for each pixel in the missing
region. In this section, we explain how to choose one of the n candidate inpainting results
of each pixel to obtain a texture and pattern preserving final inpainting. In order to achieve
this, we combine the information obtained from the co-occurrence matrix (Haralick et al.,
1973) and from a patch found in the image that fits best to the missing region.

Co-occurrence matrix stores the number of occurrences of neighboring pixels in an image
and has been widely used to measure the texture of images (Haralick et al., 1973; Avci,
2007). In order to compute co-occurrence matrix, C, we extract a patch, P , around M
(see red rectangular region in Figure 4.4(a)) and compute C using the observed pixels in
P . We assume that the neighboring pixels that have higher number of occurrences in C
are more likely to become a neighbor in the completed part. Therefore, for each candidate
inpainting Mθi(x) of each pixel x ∈M , we compute total number of occurrences (vθi(x))
of Mθi(x) with its neighboring observed pixels (see between lines 5 - 20 in Algorithm 1).
Note that the higher values of vθi(x) indicate that the inpainting result Mθi(x) preserves
the texture with higher probability. We normalize and use this vθi by combining it with
another measure for the underlying pattern and texture to give a final inpainting decision
as explained in the following paragraph.

Let us assume that there is a patch, P̂ , that is similar to the patch, P , in an image I .
Then, the region M̂ inside P̂ that correspond to M can be a good candidate for inpainting
(see Figure 4.4(b)). We find the most similar patch P̂ to P using the normalized cross
correlation (Bracewell, Ronald Newbold and Bracewell, Ronald N, 1986). We compute
the absolute difference between M̂(x) and candidate inpainting results, Mθi(x), for each
pixel x. Note that the higher values of 1

‖M̂(x)−Mθi
(x)‖ are expected. Finally, we normalize

these values to obtain cθi(x). Once we compute vθi(x) and cθi(x) for each pixel x in the
missing region, we find the index of the candidate inpainting, imax, where v(x) + γ.c(x)

is the maximum. Then, the final inpainting, M?(x), of pixel x become Mθimax
(x) (see

between lines 21 - 36 in Algorithm 1). Note that γ is the hyperparameter that controls the
contribution of the information that comes from the co-occurrence matrix and a similar
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patch found by correlation coefficient. For example, one can set γ to zero if there is no
similar pattern to the missing region within the image. Then, the final decision is given
based on the information that is obtained from the co-occurrence matrix.

Figure 4.4: Illustrative example of finding P , P̂ , and M̂ . (a) Extracting a patch P
(shown by red) around M (the black region). (b) Finding a patch P̂
that is the most similar to P . Note that the inner red rectangular
patch in (b) corresponds to M̂ .

(a) (b)

4.1.3 Toy Example Demonstration

In this section, we present a toy example demonstration to achieve a better understanding
of the proposed algorithm. We use a 400× 300× 3 brick wall image in our toy example
with a 100 × 100 × 3 missing region as shown in Figure 4.5. In this toy example, we
numerically show how the proposed method works to inpaint a particular pixel, φ, shown
by green in Figure 4.6(d). Note that the image in Figure 4.6(d) is obtained by zooming
into the upper-left corner of M in the input image shown in Figure 4.6(b).

Let us assume that we have n = 4 and θ = {0◦, 45◦, 90◦, 135◦} in this toy example. As
stated in lines between 1 - 4 in Algorithm 1, we first find 4 candidate inpainting results,
Mθ1 ,Mθ2 ,Mθ3 ,Mθ4 by interpolating to the neighboring pixels of the missing region (see
Figure 4.3) using HDMR. Candidate inpainting results Mθ1 ,Mθ2 ,Mθ3 ,Mθ4 for all pixels
in the missing region are shown in Figure 4.6. RGB values of the candidate inpainting
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Figure 4.5: (a) Original image. (b) The input image, I . Note that the black region in
I corresponds to the missing region, M . (c) Zoomed upper-left corner of
the missing region. Note that the pixel in green, M(φ), is to be inpainted
in this toy example.

(a) (b)

(c)

results for the green pixel φ (shown in Figure 4.6(d)) are as follows

Mθ1(φ) = [103 55 41] Mθ2(φ) = [109 61 44]

Mθ3(φ) = [168 116 85] Mθ4(φ) = [182 123 92]

After finding the candidate inpainting results, we extract a patch, P , around the missing
region M (see line 5 in Algorithm 1) as shown in Figure 4.7(a) and compute the co-
occurence matrix, C, using the observed pixels in P (see line 6 in Algorithm 1). Then, we
find the set of neighboring pixels, X , of pixel φ as stated in line 9 in Algorithm 1. Finally,
we compute total number of occurrences (shown by vθi(x) in Algorithm 1 where x = φ
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Figure 4.6: Candidate inpainting results. (a) M0◦ , (b) M45◦ , (c) M90◦ , (d) M135◦ .

(a) (b)

(c) (d)

in this example) for each candidate inpainting Mθi(φ) and I(x′) for each pixel x′ ∈ X
(see lines 10 - 16 in Algorithm 1). The normalized vθi(φ) values are as follows

vθi(φ) = [0.1005 0.2211 0.3229 0.3555]

In line 21 of Algorithm 1, we find a patch, P̂ , in I that is the most similar to P using
normalized cross correlation. Then, we take the region inside P̂ that corresponds to the
missing region as an inpainting estimate M̂ (see line 22 in Algorithm 1). Regions that
corresponds to P̂ and M̂ are shown in Figure 4.7 for this toy example. Once we find the
inpainting estimate M̂(φ), we compute the reciprocal absolute differences between M̂(φ)

and Mθi(φ) to obtain cθi(φ) where 1 ≤ i ≤ n (see lines 26 - 29 in Algorithm 1). The
normalized cθi(φ) values are as follows

cθi(φ) = [0.0770 0.0850 0.5830 0.2550]
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Figure 4.7: (a) Blue pixels around the missing region show the boundaries for the
extracted patch, P . (b) The patch, P̂ , which is the most similar patch
to P in I , is the region that lies in the green rectangle. The region
inside the yellow rectangle is an inpainting estimate M̂ for the
missing region M .

(a) (b)

Finally, we obtain Lθi(φ) by vθi(φ) + γ.cθi(φ) which we set γ = 1 for this toy example.
Then, the resulting Lθi(φ) is found as follows

Lθi(φ) = [0.1775 0.3061 0.9059 0.6105].

For this example, we find imax = 3 since Lθi(φ) has its highest value at the 3rd index (see
line 34). To this end, the RGB values for the final inpainting M?(φ) of the green pixel φ
becomes Mθ3(φ) which we already found above as [168 116 85].

When we repeat the same procedure and inpaint each pixel x ∈M , using the most suitable
candidate, Mθimax

, M? is obtained as shown in Figure 4.8(b).
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Figure 4.8: (a) Original Image. (b) Inpainted Image.

(a) (b)
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5. FINDINGS

In this section, we present experimental results of our proposed image inpainting ap-
proach. We perform experiments on 10 different 150 × 150 × 3 and 10 different 300 ×
300 × 3 test images that contain complicated texture and pattern. Each test image in
150× 150× 3 set contains a 20× 20× 3 missing region whereas 300× 300× 3 images
contain 40 × 40 × 3 missing region as shown in Figure 5.1. Note that black regions in
each test image are missing. We choose the sizes and locations of the missing regions
such that the underlying region contains complicated pattern and texture.

We compare our approach with 5 state-of-the-art inpainting approaches in the litera-
ture: Total Variation (TV) inpainting (Shen & Chan, 2002), Spatially Adaptive Itera-
tive Singular-value Thresholding (SAIST) inpainting (Dong et al., 2013), exemplar-based
inpainting (Criminisi et al., 2004), Hybrid Sparse Representation (HSR) inpainting (Li,
2011), Group-based Sparse Representation (GSR) inpainting (Zhang et al., 2014). We ob-
tain quantitative results by comparing inpainting results of each method with the original
images using PSNR. Note that higher values of PSNR indicate better inpainting results.

Visual inpainting results of all algorithms together with their corresponding PSNR val-
ues are presented in Figures between 5.2 and 5.21. Note that the presented images are
the zoomed in versions of the test images around the missing regions to achieve better
visualization.

Both visual and quantitative results demonstrate that the proposed method produces bet-
ter results than the other methods in all test cases. TV inpainting method (Shen & Chan,
2002) produces blurry inpainting results in all of the test images. SAIST inpainting
method (Dong et al., 2013) is originally designed for inpainting grayscale images. There-
fore, it cannot produce good inpainting results in all color channels. The inconsistencies
due to this deficiency of SAIST (Dong et al., 2013) can be seen from the corresponding
visual results given in Figures 5.2, 5.3, 5.4, 5.8, 5.10, 5.16, 5.18 and 5.20. Although,
SAIST (Dong et al., 2013) quantitatively produces slightly better inpainting results in
the remaining test images, the blurriness effect in the inpainted regions can easily be
observed in the visual results. Similar to SAIST (Dong et al., 2013), GSR inpainting
method (Zhang et al., 2014) suffers from blurry results as well. However, it still gener-
ates inpainting results with high PSNR, since it can capture overall intensity values in the
missing region. Note that, in Test Image 1, 3, 5, 10, 12, 13, 14 and 19, GSR (Zhang et al.,
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2014) has the second highest PSNR values after the proposed method as shown in Figures
5.2, 5.4, 5.6, 5.11, 5.13, 5.14, 5.15 and 5.20, respectively, although visual investigation
of the results are not promising. The exemplar-based inpainting (Criminisi et al., 2004)
method is able to capture the underlying texture in most test images since it copies a real
patch with a similar texture within the image. However, it suffers from sustaining the
correct pattern. For example, in Test Image 1, the inpainted region contains the texture
of a wooden surface, however, the copied patch does not perfectly retain the underlying
rectangular pattern. The same problem can be observed in other test images as well (e.g.
on the border of the circular region in Test Image 2 (see Figure 5.3), on the vertical straw
in Test Image 4 (see Figure 5.5) and on the pattern that is composed by the brick orders in
Test Image 7 (see Figure 5.8)). HSR inpainting method (Li, 2011) produces good visual
inpainting results in most of the test images, however, it does not have a mechanism that
exploits repeating patterns. This leads to completing the missing region with a pattern
that is inconsistent with the repeating structure such as in Figures 5.5, 5.8 and 5.18. In
the remaining test images, it exhibits a behaviour of finding the correct pattern with some
blur effect. Also, it worths to note that the results of many of these methods get worsens
as the image sizes increase.

Proposed inpainting method produces better visual and quantitative results than the other
methods in all test images by preserving the underlying pattern and texture in most of the
images. All of the test images have similar patterns to be matched with the missing region,
but these patches have different luminance, illuminance and intensity distributions. So,
inpainting the image by copying the similar patch directly into the missing region does
not provide satisfactory results as shown from the results of exemplar-based inpainting
(Criminisi et al., 2004). We exploit similar patch to select one of the outputs of interpola-
tions from different angles. Therefore, while the proposed method sustains the underlying
texture and pattern, it also considers intensity changes with the aid of interpolation. Thus,
the PSNR results and visual results are better than the compared methods and promising
for further research.

We also perform execution time comparison between the proposed method and the other
methods in the literature. We measure the average running time of the algorithms on both
150× 150× 3 and 300× 300× 3 images that we use in our experiments. The execution
time results are shown in Table 5.1. According to the results, the proposed method is in
the 3rd order among all methods in terms of the running time.
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Table 5.1: Average running time of the algorithms on both 150× 150× 3 and
300× 300× 3 images.

Time (sec.)
TV Exemplar SAIST HSR GSR Proposed

150× 150× 3 0.997 0.641 80.722 151.688 1734.097 44.173
300× 300× 3 1.648 4.059 366.940 524.474 6829.783 262.972
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Figure 5.1: Test images that are used in our experiments. Note that Test Image
1-10 are 150× 150× 3 with 20× 20× 3 missing region whereas Test
Image 11-20 are 300× 300× 3 with 40× 40× 3 missing region.
Missing regions are indicated by black pixels.

(a) Test Image 1 (b) Test Image 2 (c) Test Image 3 (d) Test Image 4

(e) Test Image 5 (f) Test Image 6 (g) Test Image 7 (h) Test Image 8

(i) Test Image 9 (j) Test Image 10 (k) Test Image 11 (l) Test Image 12

(m) Test Image 13 (n) Test Image 14 (o) Test Image 15 (p) Test Image 16

(q) Test Image 17 (r) Test Image 18 (s) Test Image 19 (t) Test Image 20
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Figure 5.2: Visual inpainting and corresponding PSNR results for Test Image 1 in
Figure 5.1(a).

Original Image TV SAIST Exemplar

PSNR 33.0505 31.9153 35.8230
Original Image HSR GSR HDMR

PSNR 38.7858 39.7381 41.35791

Figure 5.3: Visual inpainting and corresponding PSNR results for Test Image 2 in
Figure 5.1(b).

Original Image TV SAIST Exemplar

PSNR 31.3546 30.2668 35.5998
Original Image HSR GSR HDMR

PSNR 35.4152 31.7198 39.1572
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Figure 5.4: Visual inpainting and corresponding PSNR results for Test Image 3 in
Figure 5.1(c).

Original Image TV SAIST Exemplar

PSNR 29.5174 30.6634 27.3553
Original Image HSR GSR HDMR

PSNR 33.4203 33.9491 33.9987

Figure 5.5: Visual inpainting and corresponding PSNR results for Test Image 4 in
Figure 5.1(d).

Original Image TV SAIST Exemplar

PSNR 31.5922 28.6599 29.2709
Original Image HSR GSR HDMR

PSNR 30.7591 30.6286 35.5184
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Figure 5.6: Visual inpainting and corresponding PSNR results for Test Image 5 in
Figure 5.1(e).

Original Image TV SAIST Exemplar

PSNR 35.2364 38.9573 38.2921
Original Image HSR GSR HDMR

PSNR 39.2851 39.6402 40.4114

Figure 5.7: Visual inpainting and corresponding PSNR results for Test Image 6 in
Figure 5.1(f).

Original Image TV SAIST Exemplar

PSNR 34.7714 36.5180 32.5188
Original Image HSR GSR HDMR

PSNR 35.4260 35.4484 37.4674
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Figure 5.8: Visual inpainting and corresponding PSNR results for Test Image 7 in
Figure 5.1(g).

Original Image TV SAIST Exemplar

PSNR 32.4050 31.2503 40.9431
Original Image HSR GSR HDMR

PSNR 39.2517 34.7783 43.7744

Figure 5.9: Visual inpainting and corresponding PSNR results for Test Image 8 in
Figure 5.1(h).

Original Image TV SAIST Exemplar

PSNR 31.1242 31.4908 31.0337
Original Image HSR GSR HDMR

PSNR 32.1651 31.1725 32.8881
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Figure 5.10: Visual inpainting and corresponding PSNR results for Test Image 9
in Figure 5.1(i).

Original Image TV SAIST Exemplar

PSNR 31.0265 30.7050 36.0980
Original Image HSR GSR HDMR

PSNR 36.1443 35.1009 36.1683

Figure 5.11: Visual inpainting and corresponding PSNR results for Test Image 10
in Figure 5.1(j).

Original Image TV SAIST Exemplar

PSNR 29.5717 29.1973 29.0624
Original Image HSR GSR HDMR

PSNR 29.5932 30.0822 31.5283
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Figure 5.12: Visual inpainting and corresponding PSNR results for Test Image 11
in Figure 5.1(k).

Original Image TV SAIST Exemplar

PSNR 29.361 30.3498 30.2421
Original Image HSR GSR HDMR

PSNR 30.2194 29.9112 32.8421

Figure 5.13: Visual inpainting and corresponding PSNR results for Test Image 12
in Figure 5.1(l).

Original Image TV SAIST Exemplar

PSNR 29.2986 27.7030 28.6185
Original Image HSR GSR HDMR

PSNR 29.3833 29.8223 29.8440
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Figure 5.14: Visual inpainting and corresponding PSNR results for Test Image 13
in Figure 5.1(m).

Original Image TV SAIST Exemplar

PSNR 31.0800 29.2177 29.3392
Original Image HSR GSR HDMR

PSNR 31.0088 31.1813 31.2247

Figure 5.15: Visual inpainting and corresponding PSNR results for Test Image 14
in Figure 5.1(n).

Original Image TV SAIST Exemplar

PSNR 25.3889 28.5614 24.5404
Original Image HSR GSR HDMR

PSNR 29.2088 32.5293 32.9129
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Figure 5.16: Visual inpainting and corresponding PSNR results for Test Image 15
in Figure 5.1(o).

Original Image TV SAIST Exemplar

PSNR 31.0639 29.3021 31.3604
Original Image HSR GSR HDMR

PSNR 32.4456 31.4884 34.0661

Figure 5.17: Visual inpainting and corresponding PSNR results for Test Image 16
in Figure 5.1(p).

Original Image TV SAIST Exemplar

PSNR 27.1559 41.8247 42.7576
Original Image HSR GSR HDMR

PSNR 40.5856 42.0499 44.3341
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Figure 5.18: Visual inpainting and corresponding PSNR results for Test Image 17
in Figure 5.1(q).

Original Image TV SAIST Exemplar

PSNR 27.9914 31.8028 32.4571
Original Image HSR GSR HDMR

PSNR 35.4140 35.0370 35.4756

Figure 5.19: Visual inpainting and corresponding PSNR results for Test Image 18
in Figure 5.1(r).

Original Image TV SAIST Exemplar

PSNR 29.1472 31.3497 35.0507
Original Image HSR GSR HDMR

PSNR 34.8797 34.8375 37.8846
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Figure 5.20: Visual inpainting and corresponding PSNR results for Test Image 19
in Figure 5.1(s).

Original Image TV SAIST Exemplar

PSNR 29.6021 32.0084 30.5777
Original Image HSR GSR HDMR

PSNR 31.0311 33.0067 33.2315

Figure 5.21: Visual inpainting and corresponding PSNR results for Test Image 20
in Figure 5.1(t).

Original Image TV SAIST Exemplar

PSNR 28.1182 32.1402 28.4229
Original Image HSR GSR HDMR

PSNR 30.0568 29.0212 32.9843
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6. CONCLUSION AND DISCUSSION

Image inpainting is the process of filling missing or fixing corrupted regions in a given im-
age. The image inpainting process requires having a prior knowledge about the part to be
completed and estimates the missing region accordingly. The apparent part of the image
may give us information about the structure of whole image. Conventional interpolation
techniques requires a lot of computation power when dimension of the data increases.
This motivates us to apply HDMR and HDMR-based methods to reduce the computa-
tional complexity and CPU time that is needed to interpolate an image. HDMR is a
divide-and-conquer algorithm to represent a multivariate function in terms of less-variate
functions and it partitions a high dimensional data into a number of sets of lower dimen-
sional data such as univariate, bivariate and trivariate ones. Reducing the complexity of
the multivariate interpolation problem to univariate, bivariate and trivariate interpolations
enables us to apply interpolation methods in a more efficient way both in terms of com-
putational complexity of the problem and required CPU time. In this thesis, we propose
a new inpainting approach using HDMR based methods.

We first propose a method which inpaints the rectangular missing regions in images us-
ing HDMR method and Lagrange interpolation. The results of this proposed method are
compared with the results of TV-based inpainting method (Shen & Chan, 2002) which
is a pioneering method in literature. The results demonstrate that our approach produces
comparable results. This method works well if the missing region is part of a smooth back-
ground instead of a textural one. Also, the proposed method assumes that all columns or
rows that include the pixels in the missing region are also missing due to the orthogonal-
ity constraint of HDMR. If the missing region is large, the assumed missing regions grow
according to the given missing region as well. Thus, we propose a new procedure that
decompose large missing regions into smaller ones and perform inpainting hierarchically
starting from the smallest region. The results of the proposed method are compared with
the results of TV-based (Shen & Chan, 2002) and exemplar-based (Criminisi et al., 2004)
inpainting methods which are two pioneering methods in literature. The results demon-
strate that our approach produces better results than both inpainting methods in most of
the test cases, especially in the ones containing more structural regions. But this method
was also suffering from finding the underlying texture and pattern in the missing region.

In this thesis, we propose a Texture and Pattern Preserving HDMR (TPI-HDMR) method
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for inpainting missing regions in color images. To the best of our knowledge, an interpolation-
based texture and pattern preserving inpainting algorithm have not been proposed in the
literature. First, the proposed approach generates candidate inpainting results by interpo-
lating to observed pixels at different angles of the missing region. Then, a texture and pat-
tern preserving final inpainting decision is given for each pixel based on the information
obtained using co-occurrence matrix and the normalized cross correlation. Experimental
results demonstrate that the proposed algorithm achieves better inpainting results than the
state-of-the-art. One possible future direction of the proposed method might be represent-
ing the problem with Bayesian formulation that involves a suitable likelihood term and a
prior term for texture and pattern. Then, a solution that maximizes the resulting posterior
density can be a good inpainting solution.
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