
THE REPUBLIC OF TURKEY

BAHCESEHIR UNIVERSITY

IMAGE SEGMENTATION AND TEXTURE MAPPING

ON PILLOWS USING FULLY CONVOLUTIONAL

NEURAL NETWORKS

Master’s Thesis

Efe Çağın KAPTAN

ISTANBUL, 2018

THE REPUBLIC OF TURKEY

BAHCESEHIR UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND

APPLIED SCIENCES

COMPUTER ENGINEERING

IMAGE SEGMENTATION AND TEXTURE

MAPPING ON PILLOWS USING FULLY

CONVOLUTIONAL NEURAL NETWORKS

Master’s Thesis

Efe Çağın KAPTAN

ADVISOR: Asst. Prof. Dr. Tarkan AYDIN

ISTANBUL, 2018

ACKNOWLEDGEMENTS

I want to thank Asst. Prof. Dr. Tarkan AYDIN for being an amazing supervisor for my

thesis. I benefited very much from his knowledge and suggestions during my research

period.

Furthermore, I would like to thank my wife and my family for their patience and never-

ending support.

iv

ABSTRACT

IMAGE SEGMENTATION AND TEXTURE MAPPING ON PILLOWS USING

FULLY CONVOLUTIONAL NEURAL NETWORKS

Efe Çağın KAPTAN

Computer Engineering

Thesis Supervisor: Asst. Prof. Dr. Tarkan AYDIN

January 2018, 48 Pages

In this work, an autonomous texture mapping framework implemented that does not

require a 3D model of an object. Under this framework, we combine two main tasks such

as “Image Segmentation” and “Texture Mapping” into a unique architecture that runs

automatically without human interaction.

The first goal of this thesis is to implement and evaluate a deep neural network (fully

convolutional neural network) for the segmentation of an apparel object. Generating a

quadrilateral grid on the texture area is the second step after segmentation. As the

computation is faster and without 3D model requirements, this technique can be easily

applied to internet applications to visualize apparel products such as pillows, sofas etc.

Our goal is combining state-of-the-art deep learning architectures with texture mapping

technique in an autonomous way.

Our final results have proven that our system can be a good showcase for the final

appearance of clothing and apparel products inside of interior spaces.

Keywords: Deep Learning, Texture Mapping

v

ÖZET

KONVOLUSYONAL AĞLAR ILE GÖRÜNTÜ SINIFLANDIRMA VE

DOKU GİYDİRME

Efe Çağın KAPTAN

Bilgisayar Mühendisliği

Tez Danışmanı: Asst. Prof. Dr. Tarkan AYDIN

Ocak 2018, 48 Sayfa

Bu çalışmadaki temel amaç, herhangi bir 3D modele ihtiyaç duymadan otomatik çalışan

görsel tabanlı doku giydirme gerçekleştirmektir. Görüntü sınıflandırma ve doku giydirme

tekniklerini tek bir çatı altında toplayarak, insan faktörü olmadan çalışan bir mimari

oluşturulmuştur.

Çalışmadaki ilk hedef, görselin derin öğrenme yöntemi ile sınıflandırılmasıdır.

Giydirmenin efektif olması için tekstil dokusuna sahip olan nesneler seçilmiştir. İkinci

adım ise bölütlenmiş obje alanına doku ızgarası oluşturup, ardından örnek bir dokunun

giydirilmesidir. Bilimsel hesaplamanın hızlı olması ve 3D modele ihtiyaç duyulmaması

nedeni ile uygulanan yöntemin farklı uygulama alanları bulunmaktadır. Bir yastığın veya

koltuğun farklı kumaşlar ile tanıtımını amaçlayan bir internet uygulaması kolayca

gerçekleşebilecektir. Çalışmadaki temel amaç, derin öğrenme alanındaki en yeni güncel

teknolojileri, doku giydirme teknikleri ile harmanlayabilmektir. Simülasyon örnekleri

göstermiştir ki, çalışmada kullanılan teknik, kumaş kaplamada ve iç mimari tanıtımında

faydalı olabilecektir.

Anahtar Kelimeler: Derin Öğrenme, Doku Giydirme

vi

CONTENTS

TABLES ... vii

FIGURES .. viii

ABBREVIATIONS ... x

1. INTRODUCTION ... 1

2. GENERAL INFORMATION .. 3

2.1 DEEP LEARNING .. 3

2.2 IMAGE SEGMENTATION ... 5

2.3 CONVOLUTIONAL NEURAL NETWORK ... 6

2.3.1 Feed-Forward Neural Networks ... 7

2.3.2 Convolutional Neural Networks .. 15

2.3.3 Fully Convolutional Neural Networks .. 18

2.4 TEXTURE MAPPING .. 21

2.4.1 Bilinear Interpolation ... 22

3. METHODOLOGY .. 25

3.1 IMAGE SEGMENTATION ... 26

3.1.1 Preparing Training Data .. 26

3.1.2 Neural Network Consideration ... 28

3.1.3 Segmentation Using FCNN .. 29

3.1.4 Training And Evaluation ... 30

3.2 GRID GENERATION .. 38

3.3 TEXTURE MAPPING .. 42

4. SIMULATION EXAMPLES ... 44

5. CONCLUSION .. 48

REFERENCES .. 49

CURRICULUM VITAE ... 53

vii

TABLES

Table 3.1 : Distribution of ground-truth data for training .. 27

Table 3.2 : Validation performance - MaxF1 (Raw) ... 34

Table 3.3 : Validation performance – Average Precision (Raw) 34

Table 3.4 : Validation performance – MaxF1 (Smooth) .. 35

Table 3.5 : Validation performance – Average Precision (Smooth) 35

viii

FIGURES

Figure 2.1 : Visualizing a 3 layer deep neural network architecture 4

Figure 2.2 : Architecture of a convolutional neural network .. 5

Figure 2.3 : An example of feed-forward neural network .. 9

Figure 2.4 : Demonstration of dropout technique in a neural network 14

Figure 2.5 : Visualization of exemplary filter responses taken from a CNN 16

Figure 2.6 : This example demonstrates the effect of max and average pooling 17

Figure 2.7 : A Fully Convolutional Neural Network (FCNN) .. 19

Figure 2.8 : Classification at image-level versus pixel-level .. 20

Figure 2.9 : This figure illustrates the "skip" architecture .. 21

Figure 2.10 : Bilinear interpolation ... 23

Figure 2.11 : Example of bilinear interpolation operation on a quadrilateral grid 24

Figure 3.1 : Demonstration of main steps of architecture that built for this work 25

Figure 3.2 : Overview of ground-truth images that aligned together 26

Figure 3.3 : Utilization of the our training dataset .. 27

Figure 3.4 : Illustration of the VGG16 net-architecture .. 29

Figure 3.5 : Representation of the FCNN that was used in this work 30

Figure 3.6 : Segmentation result of VGG network with pretrained model 31

Figure 3.7 : Logs of our training after six hours on NVIDIA TESLA GPU................... 32

Figure 3.8 : Evaluation samples after training for six hours in our FCNN 36

Figure 3.9 : Evaluation samples of our fully convolutional neural network 37

Figure 3.10 : FAST corner detection simulation for a segmentation result 38

Figure 3.11 : Generated 10x10 grid on segmented object .. 39

Figure 3.12 : Generated final grid with parameters rows=50 and columns=50 41

Figure 3.13 : Calculating texture coordinates .. 43

ix

Figure 3.14 : Mapping a sample seamless texture image to calculated grid 43

Figure 3.15 : Combining final texture with original cropped image. 43

Figure 4.1 : Simulation of texture mapping after segmentation 44

Figure 4.2 : Simulation of texture mapping after segmentation 45

Figure 4.3 : A sample of texture mapping implementation after segmentation 46

Figure 4.4 : A full sofa demonstration with two separate segmented pillows 47

x

ABBREVIATIONS

2D : 2 Dimensional

3D : 3 Dimensional

CNN : Convolutional Neural Network

FAST : Features from Accelerated Segment Test

FCNN : Fully Convolutional Neural Network

GPU : Graphics Processing Unit

PRELU : Parametric Rectified Linear Units

RELU : Rectified Linear Units

SIFT : Scale Invariant Feature Transform

1. INTRODUCTION

As with advances in computer graphics, realistic computer-generated images have been

implemented by texture mapping applications. In most cases, texture mapping algorithms

focus on the connection between a 2D image and a 3D model of an object. In this context,

there is a corresponding pixel on the target area at each point on the 3D model. Many of

these previous algorithms require a 3D model and panoramic images. Therefore, these

texture mapping algorithms are greatly limited. For example, 3D model-based texture

mapping can not be processed in modern web-based applications as the main problem is

such big size models can’t be streamed through the network. Moreover, it is not an easy

task to build an object’s 3D model for a novice.

In this article, one of the main motivations is the use of texture mapping without the need

for a 3D model of the object. In recent years, the study of computer vision addressed the

problem of automating the detection and segmentation of an object on a 2D image.

Semantic segmentation is an important step in understanding the object. The goal is to

automatically segment an object in a particular image. Machine learning techniques have

been successful in this area, especially in recent years. The state of the art in the

automating visual segmentation is seen in the deep learning research community.

The research on machine learning focuses on the idea that a computer can get the ability

to learn just like a person without sending commands on how to proceed. Deep learning

is one of the areas of machine learning and refers to the application of a set of algorithms

called neural networks, and their variants. The development of larger, faster and cheaper

computing units (GPU’s) has led to a revival of deep learning techniques. Deep Learning

has proven itself in many areas. New architectures, algorithms and tools were developed

in a short time.

Given this information on this context, implementation of a deep neural network (fully

convolutional neural network) is the first objective of the segmentation of an apparel

object. The second objective is to create an interactive quadriliteral grid to associate with

the texture area. The computation is faster and without a requirement of a 3D model, this

technique can be easily applied to an internet application to visualize of clothing products

such as

2

pillows, sofas etc. Our goal is to combine state-of-the-art deep learning architectures with

texture mapping technique in an autonomous way.

3

2. GENERAL INFORMATION

This chapter builds the theoretical part of my work and provides information about state-

of-the-art research. The sub-topics are organized in a consecutive order. First, I explain

the concepts of deep learning and continue with the topic of image segmentation. Then I

describe neural networks in general and introduce subsequently more specialized

networks. Moreover, the main ideas of Fully Convolutional Neural Networks which play

an important role for this work, are explained. Furthermore, I will introduce the texture

mapping techniques that are fundemantal for simulation in this work.

2.1 DEEP LEARNING

The history of neural networks goes back far into the past. In the mid-1980s, the first deep

neural networks were applied to recognition tasks. Although this was a scientific success,

the interest continued to decrease as the training took too much time. After many years,

the development of larger, faster and cheaper IT units has revived deep learning

techniques. Deep Learning has been used successfully in many areas. New architectures,

algorithms and tools are created in a short time.

Artificial neural networks were described as the composition of simple and

interconnected units that change their state according to external inputs [6].

4

Figure 2.1 : Visualizing a 3 layer deep neural network architecture.

Source : Karpathy Andrej. Convolutional Neural Networks for Visual Recognition (Course Notes).

Neural networks can generally be identified by neurons within a human brain. The design

of the neural networks is similar to a layered architecture that each layer follows each

other. In this system, ever layer consists of several units (or neurons) and preceding

activation functions such as sigmoid or relu which we will describe in more detail in the

following chapters. A very basic level deep learning architecture shown in Figure 2.1

Deep neural networks can be considered as self-learning mechanisms. The principle of

this learning path is to extract features. Auto learned features exist in the deep layers of

networks. By analyzing the pixels of an image, we get learned features that are the basics

functionality of common tasks such as semantic segmentation, object detection, and so

on.

These parameters of the model (ie. the neurons inside hidden layers in Figure 2.1) for

instance, is a classical optimization problem where parameters trained and updated

INPUT LAYER HIDDEN LAYERS OUTPUT LAYER

5

several times. In our learning process, ground-truth labels act as the source for our training

loops. A cost function calculates a cost value that should be as low as possible during

training process. Depending on the cost value, the parameters inside hidden layers should

be updated through the system. Changing parameters (weights, biases) in the deep neural

network usually done via gradient descent or stochastic gradient descent methods. The

entire optimization process during training is called “backpropagation algorithm”.

Figure 2.2 : Architecture of a convolutional neural network.

Source : Karpathy Andrej. Convolutional Neural Networks for Visual Recognition (Course Notes).

Figure 2.2 shows a deconvolution network proposed in [30]. We can see the gradual

progress of (de)convolutional layers and (un)pooling layers (functions) across the

network.

The layers of a neural network can be of different types: convolutions that consist of

filters, pooling layers which introduce a translational invariance to the network, and more.

Figure 2.2 shows a visualization of such a convolutional neural network.

2.2 IMAGE SEGMENTATION

Pixel-level information of an image has been analyzed in different ways over the years,

but the fundamental principles remain the same: identify objects in images and access

their importance [7]. The problem of learning from visual information is generally

classified into image classification [33], object localization and detection [14], semantic

segmentation and instance segmentation [37] and the others [19].

6

Semantic segmentation can be understood as classification process of every pixel in a

picture. The terms “scene analysis” or “image analysis” are often used in the same context

in the literature. The remainder of this section details recent advances in dealing with the

image segmentation problem, along with literature survey.

State-of-the-art networks (or models) in this space are obtained by evaluating

performance on large scale benchmark datasets, such as the Microsoft Common Objects

in Context (MSCOCO) [23], ImageNet [32] and PASCAL VOC [8]. MSCOCO is a

famous dataset that consists of classified, segmented and labelled data with more than

300.000 images and 80 object categories, while ImageNet is a large scale dataset with

more than 14.000.000 images and more than 1000 categories, with different subsets used

for each benchmark task.

Most state-of-the-art results were designed for the image classification task, wherein an

object class is assigned to an image as a whole. [24] presented a modified version of

VGGNet [33] - which originally took in images of a constant shape to classify them

amongst a large group of classes. The VGGNet model itself improved upon previous

image classification networks, notably AlexNet [21], by getting rid of local response

normalization layers. The power of VGGNet also lay in its simplicity, with a very

homogeneous structure as compared to previous models. The models introduced in [24],

referred to as Fully Convolutional Neural Networks (FCNN) modified the original

VGGNet designed for an image classification task, for the image segmentation task.

2.3 CONVOLUTIONAL NEURAL NETWORKS

The conventional approach to solving a classification/segmentation problem is to

decompose it into at least two independent subtasks such as feature extraction and

classification. The process of feature extraction can be very complex, typically requires

domain expertise and a lot of development time. A popular example for a hand-crafted

visual feature is SIFT (“scale-invariant feature transform”) [26] developed by David

Lowe. Lowe has put a lot of effort in the development of a feature that does not change

when you rotate and scale images. SIFT has been used successfully for object recognition

or panorama stitching tasks.

7

The downside is that these features are very rigid and do not automatically adapt to the

problem. The classification step however has always been a machine learning approach.

Based on the extracted features, any appropriate classification algorithm can be applied

(e.g. a support vector machine).

An alternative approach is to integrate both feature extraction and classification into one

learning process. Since the features are learned automatically, expert domain knowledge

and time-consuming engineering are not required. Furthermore, it is possible to train

feature extraction and classification in an end-to-end manner, which allows a better

optimization and adaption of both parts.

This work uses a special convolutional neural network (CNN), which extracts features

and classifies the input image pixel-wise for image segmentation. For the sake of a step-

wise introduction, we first introduce feed-forward neural networks and explain the basic

concepts of neural networks.

2.3.1 Feed-forward Neural Networks

Feed-forward networks are collections of neurons, which are organized in layers 1, ..., L.

Every neuron of layer 𝑙 > 1 connects to every neuron of the previous layer 𝑙 − 1. When

deployed a feed-forward net has a distinct direction ("forward pass") and there are no

cycles (feedback loops). The layers are distinguished between input, output and hidden

layers. Hidden layers are placed between the input and output layer and therefore do not

have a direct connection to the environment.

The special case where the network consists of only two layers (in- and output) is called

single-layer perceptron. Since the input layer is not parameterized, it is frequently not

considered as a layer. For this reason, it is called single-layer perceptron. More usual are

the so called multi-layer perceptrons, where several layers are put together on top of each

other. Thus, such a multi-layer perceptron has at least one hidden layer.

Figure 2.3 shows a basic network with an input, output and a hidden layer. Each

connection between two neurons 𝑖 and 𝑗 is associated with a weight 𝑤𝑗,𝑖
(1). The

superscript 𝑙 denotes the number of the layer. These weights are used to calculate a

8

weighted sum of all 𝐽 inputs. In general there are also bias-terms 𝑏𝑖
(1)

 associated to each

neuron. This bias term shifts the weighted sum by a certain amount.

This intermediate result is then processed by a so-called activation function ℎ. Usually

this function applies a non-linear transformation. The result is the output of the neuron

and possibly serves as input for the next layer (if layer 𝑙 is a hidden layer). The below

equation shows the formula for calculating the activation 𝑎𝑖
𝑙 of a specific neuron located

at position 𝑖 in layer 𝑙 for 𝐽 inputs 𝑥𝑗 :

𝑎𝑖
𝑙 = ℎ(𝑏𝑖

𝑙 + ∑ 𝑤𝑗,𝑖
𝑙 . 𝑥𝑗

𝑗

𝑗=1

)

where:

 𝑎𝑖
𝑙 is the activation of neuron 𝑖 at layer 𝑙

 ℎ(𝑥) is the activation function

 𝑤𝑗,𝑖
𝑙 is the weight of neuron 𝑖 at layer 𝑙 associated with input neuron 𝑗

 𝑏 is the bias of neuron 𝑖 at layer 𝑙

 𝑥𝑗 input (result of neuron 𝑗 when 𝑙 > 1)

Typical activation functions are the sigmoid (logistic) or the hyperbolic tangent function.

In this work so-called rectified linear units (ReLU) were used:

ℎ𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)

ReLUs employ a simple ramp function and are crucial for the success of recent deep

networks [21]. [33].

9

Figure 2.3 : An example of feed-forward neural network

Source : Hinton G. E., Srivastava N., Krizhevsky A., Sutskever I and Salakhutdinov R. R., “Improving

neural networks by preventing co-adaptation of feature detectors,” July 2012

An example of feed-forward network consists of one input, one output and one hidden

layer shown in Figure 2.3. The neurons, visualized by solid circles, are organized in layers

𝑙. Each connection between two neurons is associated with a (learned) weight 𝑤𝑗,𝑖
𝑙 . The

weighted sum of the input values plus a bias term 𝑏𝑖
𝑙 is then fed into an activation function,

which results in the activation 𝑎𝑖
𝑙. The values are propagated throughout the entire

network. Finally, the output layer is reached which produces the net output �̂�.

A neural network is entirely defined by its structure (topology), the activation functions

and its parameters (namely weights and biases). In general a neural network can

approximate any finite function [1].

To handle discrete outputs, such as it is needed for classification tasks, a probability

function for each of the defined states can be trained in order to finally select the class

input layer

input 𝒙

Hidden layer (𝑙 =1) output layer (𝑙 =2)

output �̂�

10

with the highest probability. Usually, the probabilities are obtained by applying a softmax

normalization in the output layer. An exponential function 𝑒𝑥𝑝(�̂�𝑛, 𝑦𝑛) turns the class

prediction into a non-negative value. Then this value is normalized by the denominator

to fit the [0, 1] range. In this way all class probabilites sum up to 1.

𝜎𝑐 =
exp (�̂�𝑛,𝑦𝑛

)

∑ exp (�̂�𝑐)𝐶
𝑐=1

where:

 C is the number of classes

 �̂�𝑐 is the predicted class score with 𝑐 = 1,...,C

 �̂�𝑛,𝑦𝑛
 is the predicted class score of the true class 𝑦𝑛 for sample 𝑛

The parameters of a neural network are learned based on training samples. In case of

supervised learning, where a labelled training set is given {(𝑥𝑛, 𝑦𝑛)}, all classifications

have to be penalized by a suitable loss function 𝑙(�̂�𝑛,𝑦𝑛
), also called cost function. This

loss function must be minimized. Usually, a regularization term 𝑟 is added in order to

preserve the model from overfitting. This occurs when individual parameters dominate

over others. The weights should be kept as small as possible. This why the regularization

term is also called "weight decay". This can be achieved by minimizing the L2 norm of

the parameter vector. The balance between regularization and loss is controlled by a

hyperparameter ∝. In summary the regularized error function E is as follows:

𝐸(𝜔, 𝑏) = 𝑙(�̂�𝑛, 𝑦𝑛) + 𝛼 . 𝑟(𝜔)

where:

 𝜔 weight

 𝑏 bias

 𝑦𝑛 is the class label i.e. the true class

 �̂�𝑛 is the class prediction

 𝛼 is the multiplier for the regularization term

11

 𝑟(𝜔) is the regularization term (weight decay)

A popular loss function for multi-class classification objectives is the multinomial logistic

loss. Passing class probabilities 𝜎 conditioned on the input data 𝑥𝑛, the multinomial

logistic loss is the true class negative log-likelihood of the 𝑦𝑛. The total loss 𝑙𝑡𝑜𝑡 of one

training batch is given by the sum over all samples 𝑁. The below equation shows the

normalized multinomial logistic loss 𝑙 ̅which additionally includes a normalization term

1/N:

𝑙 ̅ = −
1

𝑁
 ∑ log (𝜎𝑛,𝑦𝑛

)

𝑁

𝑛=1

where:

 𝑁 is the number of training samples

 𝑦𝑛 is the class label i.e. the true class

 𝜎𝑛𝑦𝑛
 is the class probability conditioned on the input of the true class 𝑦𝑛

As previously mentioned, the training process aims to adopt the parameters such that the

loss is minimized over all training samples. Thus, we search the function f parametrized

by w, which minimizes the loss 𝑄(𝑥, 𝑦, 𝑤) = 𝑙(𝑓𝑤(𝑥), 𝑦) averaged over the examples

(i.e. pairs of 𝑥 and 𝑦). A standard technique for solving nonlinear optimizing problems is

gradient descent [29]. Gradient descent iteratively adopts variables towards the direction

of the negative gradient. This way a local minimum can be found. The learning rate 𝛾

determines the steps size of each adaptation.

𝑤𝑡+1 = 𝑤𝑡 − 𝛾
1

𝑁
∑ ∇𝑤

𝑁

𝑛=1

𝑄(𝑥𝑛𝑦𝑛𝑤𝑡) = 𝑤𝑡 − ∆𝑤𝑡

where:

𝑤 are the weights

𝛾 is the learning rate

12

𝑄 is the loss function

𝛻𝑤 is the gradient w.r.t. w

∆𝑤𝑡 is the weight update

N number of samples

According to the equation, the weight update ∆𝑤𝑡 incorporates all training samples

{(𝑥𝑖, 𝑦𝑖)}.

An abreviation of gradient descent is the stochastic gradient descent method [4].

Stochastic gradient descent shows its strengths when the training set is very large. Instead

of computing the gradient based on all samples, only one or a few randomly chosen

samples are considered. The updated weight 𝑤𝑡+1 in the following equation is based on

a randomly chosen example 𝑥𝑡.

𝑤𝑡+1 = 𝑤𝑡 − 𝛾𝑡 𝑄(𝑥𝑛𝑤𝑡) = 𝑤𝑡 − ∆𝑤𝑡

where:

𝑤 are the weights

𝛾 is the learning rate

Q is the loss function

𝛻𝑤 is the gradient w.r.t. 𝑤

∆𝑤𝑡 is the weight update

An extension of stochastic gradient descent is momentum [29]. Momentum helps to speed

up the learning process by adding a fraction m of the previous weight update.

𝑤𝑡+1 = 𝑤𝑡 − (∆𝑤𝑡 + 𝑚∆𝑤𝑡−1)

where:

𝑤 are the weights

13

∆𝑤𝑡 is the weight update

𝑚 is the momentum parameter

If both weight updates point towards the same direction the step size is amplified. In case

of changing gradients momentum smooths out the variations and provides stability.

By providing training samples 𝑥 and 𝑦, a single layer perceptron can be optimized by any

gradient descent variant. This is because the input and outputs of the single weight layer

are known. Therefore the delta term or error 𝑦 ̂ − 𝑦 is directly computable. This is not the

case for networks including hidden layers.

This fact is the motivation for applying the so-called backpropagation algorithm [29]. In

order to adjust the parameters of hidden layers the error is propagated subsequentially

ack through the net. This process is called backward pass. The parameter adjustment (i.e.

the delta term) of layer 𝑙 depends on the activation of the same layer, the weights and the

delta terms of the subsequent layer 𝑙 + 1. The activations are determined during the

forward pass. In this way the partial derivatives w.r.t. the parameters of each neuron can

be determined (chain rule). Gradient descent uses these delta terms for updating the

parameters.

Dropout invented by Hinton et al. is another powerful regularization tool for training

neural networks [17]. For each iteration dropout randomly turns off a portion of neurons

(see Figure 2.4).

14

Figure 2.4: Demonstration of dropout technique in a neural network

Source : Hinton G. E., Srivastava N., Krizhevsky A., Sutskever I and Salakhutdinov R. R., “Improving

neural networks by preventing co-adaptation of feature detectors,” July 2012.

The effect of dropout applied on a simple neural network demonstrated in Figure 2.3.

Dropout randomly removes a portion of connections between subsequent layers and

produces a thinned network [35].

That way each hidden unit is encouraged to learn meaningful features without relying to

much on other hidden units. More precisely, randomly chosen submodels are trained, thus

comparable to ensemble learning. At test time the predictions are averaged. This leads to

significantly better generalization [35].

Neural networks trained by the backpropagation algorithm suffer from the socalled

"vanishing gradient problem" [18]. Especially for very deep networks this effect is even

amplified. For example the gradient ℎ’(𝑥) of the sigmoid function ℎ(𝑥) =

 (1 + 𝑒𝑥𝑝(−𝑥))−1 tends towards zero as |𝑥| increases. This cumbers the learning

process and limits the network size for end-to-end training. In practice this problem is

attenuated by using ReLUs, careful initialization [11][15] and small learning rates.

(a) Before dropout (b) After dropout

15

Furthermore, very deep networks are usually trained step by step i.e. the size of the

network is gradually increased [33].

Parametric ReLUs (PReLU) include an adjustable slope for the negative part. This slope

can be controlled by a factor 𝑠𝑖.

ℎ(𝑥) = max(0, 𝑥) + 𝑠𝑖min (0, 𝑥)

where

 𝑠𝑖 factor to control slope for the negative part

He et al. have recently shown that learning the PReLU parameter 𝑠𝑖 together with an

improved random initialization helps end-to-end learning of large networks [15]. Another

attempt for preventing the "vanishing gradient problem" was described by Ioffe and

Szegedy [18]. They normalize the inputs of the activation functions such that the

distribution remains stable during training.

2.3.2 Convolutional Neural Networks

In the previous section the main ideas of feed-forward networks were introduced. A

Convolutional Neural Network (CNN) is a special kind of feed-forward neural network.

CNNs are inspired by the biological processes of visual perception. Therefore CNNs are

mainly used for image and video applications. In principal there are three extensions that

distinguishes a CNN from a simple feed-forward network: weight sharing, spatial pooling

and local receptive fields.

The input of a CNN is processed patch-wise by a number of learned convolutions. With

the help of these convolutions various filter techniques can be applied e.g. blurring, edge

or corner detection. Discrete convolutions are calculated by shifting a filter mask over the

input image and calculating the sum of products. The result is written to the current center

of the mask. These filter masks produce the so-called local receptive fields. Intuitively

they define the image crops that a neuron actually "see". In terms of neural networks the

entries of the filter masks correspond to the weights of the neurons and the filter size

defines the connectivity between neurons of subsequent layers.

16

Since many filters are applied several feature maps are obtained. All neurons of a feature

map share the same weight matrix. This property is called weight sharing.

Figure 2.5: Visualization of exemplary filter responses taken from a CNN that has

. three hidden layers. Each filter responds differently to the input.

Source : Zeiler M. D. And Fergus R., “Visualizing and understanding convolutional networks,” Nov. 2013

Weight sharing contributes to the property of shift invariance, since the same

convolutions are applied to the entire input image. At the same time weight sharing

reduces the amount of free parameters dramatically. This makes the net much easier to

train and has a strong regularization effect.

The learned filters expose different kind of visual features. Investigations by different

researchers have shown that the early layers typically capture very simple features, similar

to gabor filters and color patches [40] [27]. These features are very general and therefore

apply to many use-cases. In contrast the features of higher layers are more abstract and

reflect the gist of the learned classes. Exemplary filter responses of an early convolutional

layer are shown in figure 2.5.

17

Figure 2.6: This example demonstrates the effect of max and average pooling.

Another important component of CNNs are pooling layers. Typically the data is sub-

sequentially downsampled by combining spatial pools to a single value. Pooling reduces

the feature space and grant a small amount of translational invariance. This is due to the

fact that neurons within a region are mapped onto a single neuron. Frequently used

pooling operations are avarage and maximum pooling (see Figure 2.6). A more recent

method is stochastic pooling [41], which serves as an regularizer similar to dropout.

So far the feature maps cover a two-dimensional space. For high-level reasoning, such as

classifying an image, a one-dimensional representation is needed. This can be achieved

by a fully connected layer. In fully connected layer, each neuron is connected to all

neurons of the previous layer. Thus, fully connected layers aren’t spatially located

anymore. The one-dimensional output, is suitable for a traditional multi-layer perceptron

classifier.

Max. Pooling

Avg. Pooling

18

CNNs, in recent years, became popular in image classification tasks [21] [33]. Many

models are shared within the researcher community, which makes it possible to follow

up and adopt the networks to other classification problems. This process is called

"finetuning". Initializing from pretrained weights works well for many cases. Even a

model trained on a very distant task is often a better starting point than initializing from

random numbers (like "xavier" [11] or "msra" initialization [15]). One reason for this is

that features of early layers are in fact very general. Yosinksi et al. investigated on the

question of transferability [39]. Deep Learning Frameworks such as Caffe facilitate the

transferal of learned weights.

After the great success of CNNs for image classification, the natural next step was to

apply CNNs to local tasks, such as bounding box detection [10] [12] [13], local

correspondence [25] or semantic segmentation [9] [10] [12] [13].

Even though the results for semantic segmentation tasks yield new record accuracies on

various datasets, the methodologies had some major drawbacks. A common approach was

to identify clusters in the image, which may hold the desired objects ("region proposals").

All clusters are then classified independently. The results are then merged to obtain a

segmentation mask. This approach requires extensive preand post-processing, making it

unsuitable for end-to-end training and includes a considerable overhead. In addition, the

clustering result is likely to be suboptimal. A fully visible object may be divided into

several regions.

Therefore it was a huge improvement, when Long et al. developed a new net architecture

for semantic segmentation namely "Fully Convolutional Neural Networks" (FCNN) [24].

2.3.3 Fully Convolutional Neural Networks

In 2014 Jonathan Long, Evan Shelhamer and Trevor Darrell published the paper "Fully

Convolutional Networks for Semantic Segmentation" [24]. They presented a new neural

network archiecture for pixel-wise prediction. There are several advantages compared to

previous works. A FCNN processes whole-images and produces dense predictions in the

form of probability maps. The training can be applied in an end-to-end behavior and

densely labeled images are required for supervision.

19

Figure 2.7: A Fully Convolutional Neural Network (FCNN)

Source : Long Jonathan, Shelhamer Evan and Darrell Trevor. “Fully Convolutional Networks for Semantic

Segmentation”.

A fully convolutional neural network processes the entire image to make pixelwise

predictions of the same size as the input image. The network is trained end-to-end by

backpropagation and a pixel-wise loss (see Figure 2.7). This requires dense ground truths

for supervised training.

Another advantage is the ability to re-interpret existing classification nets as a FCNN.

Therefore a FCNN can benefit from pre-trained CNN models. In order to convert a CNN

into a FCNN, we need to replace the inner layers (fully connected layers) by convolutions

with a kernel size of 1x1 (see Figure 2.8).

While the fully connected layer of an image classification net completely discards spatial

information and delivers only one feature vector for the entire image, the fully

convolutional layer produces a feature vector for every pixel. Based on this feature map

a pixel-wise classification can be performed. This yields a probability map for each class.

To restore the original image dimensions this map is upsampled by so-called

deconvolutions. Depending on the weights, a deconvolution can serve as a bilinear

interpolation.

20

Figure 2.8: Classification at image-level versus pixel-level

Source : Long Jonathan, Shelhamer Evan and Darrell Trevor. “Fully Convolutional Networks for Semantic

Segmentation”.

In order to retain spatial information, we can "convolutionalize" a network by replacing

fully connected layers by convolutions. As you can see in Figure 2.8, the main difference

is fully connected layers at the end of the network.

While pooling improves classification accuracy, it partially neglects spatial information.

This is a drawback as it limits the spatial accuracy of the segmentation. The VGG16- and

Alex-net for example include 5 pooling layers of stride 2 [33][21]. In total this results in

downsampling by factor 32 (25). In general this leads to coarse segmentation maps. Very

small objects aren’t even considered at all.

To solve this issue they use a so-called "skip" architecture (see Figure 2.9). By fusing

predictions of different strides they are able to refine the segmentation maps. In addition

to the classification based on the 32-stride feature map, they do the same for the outputs

of earlier pooling layers and fuse the classification scores by taking the element-wise sum.

Of course such an element-wise operation affords inputs of the same size. Thus, the

smaller prediction maps must be interpolated accordingly.

21

Figure 2.9: This figure illustrates the "skip" architecture developed by Long et al..

Source : Long Jonathan, Shelhamer Evan and Darrell Trevor. “Fully Convolutional Networks for Semantic

Segmentation”.

To keep the net-representation compact, only pooling and classification layers are shown

in Figure 2.9. All intermediate convolution layers are omitted. The coarsest prediction is

based on pool5 only (solid line) and is called FCNN-32s. The FCNN-16s version (dashed

line) first upsamples stride 32 predictions by a factor of 2 and then combine the output

with the predictions of pool4. The FCNN-8s variant (dotted line) combines predictions of

stride 32, 16 and 8.

This way they obtained new state-of-the-art results on several data-sets. However, this

method left enough space for improving the spatial accuracy. Noh et al. achieve finer

predictions by learning a deconvolution network [30]. The general idea is to extend a

convolutional network by its mirrored counterpart. By learning the inverse operations

(pooling vs. unpooling, convolution vs. deconvolution) it’s possible to produce a finer

segmentation.

2.4 TEXTURE MAPPING

In the field of computer graphics, texture mapping is a common and popular technique to

improve the appearance of computer generated images [16].

The main motivation is to create a map between a 3D model and a 2D image. In this

plane, each point of the outer space at a pixel is connected to the original image.

Declaration a parametric surface [3,5] was the purpose of previous algorithms to create

that maps. The implementations of these algorithms for polygonal meshes are not

22

successful to apply texture mapping and therefore such statements are not common

nowadays.

In order to find an optimal solution for this problem, we need to find a layer that it should

have a simple shape. This layer will be effective for the mapping between texture area

and our 3D model surface [2]. Due to the non-linearity of texture maps, these algorithms

often yield high deformation results [22]. In order to obtain more efficient mapping

results, a number of optimization algorithms have been developed [1,22–28,31–34,36].

A new technique has been developed by Devich and Weinhaus [38] and other researchers

[20]. This technique, known as projective texture mapping, reflects the texture map (ex.

a panoramic image) onto the geometry. This technique does not use a fixed texture unlike

the old techniques.

In this work, we developed a texture mapping application based on images, without using

3D models. We have seen it very successful when we use this method on fabric-covered

objects such as pillows or sofas. To succeed in practice, we have created an interactive

texture grid on segmented objects. Texture distortion is not a problem because of the

relationship between the grid and texture visual is in linear-form.

It is estimated that final result will be successful in internet or desktop applications. No

requirement for a 3D model is a big reason for this conjecture. Moreover, the efficiency

of computational calculation will also provide easy adaptation. In general, we foresee that

this method will be used in the interior presentation of apparel products. This technique

does not require any user interaction. Using the result of image segmentation, a texture

mapping is done automatically which we will give details of this process in next chapter.

2.4.1 Bilinear Interpolation

Bilinear interpolation is expressed as a method of transforming a square into a

quadrilateral. As can be seen in Figure 2.10, the first step of this transformation can be

expressed as follows: along the bottom and top sides of the quadrilateral linearly

interpolated by fraction 𝑢. The second step is linear interpolation by fraction 𝑣 between

points that interpolated to form target point (𝑥, 𝑦)

23

Figure 2.10 Bilinear interpolation

(𝑥, 𝑦) = (1 − 𝑢)(1 − 𝑣)𝑝00 + 𝑢(1 − 𝑣)𝑝10 + (1 − 𝑢)𝑣10 + (1 − 𝑢)𝑣𝑝01 + 𝑢𝑣𝑝11

The matrix notation form is:

(𝑥 𝑦) = (𝑢𝑣 𝑢 𝑣 1) [

𝑎 𝑒
𝑏 𝑓
𝑐 𝑔
𝑑 𝑓ℎ

]

The matris that contains 8 coefficients from the 4 points correlation can be computed as

follows :

[

𝑎 𝑒
𝑏 𝑓
𝑐 𝑔
𝑑 ℎ

] = [

1 −1 −1 1
−1 1 0 0
−1 0 1 0
1 0 0 0

] [

𝑥00 𝑦00

𝑥10 𝑦10

𝑥01 𝑦01

𝑥11 𝑦11

]

This mapping transforms a unit square into the general quadrilateral 𝑝00, 𝑝10, 𝑝11, 𝑝01 .

24

Figure 2.11 : Example of bilinear interpolation operation on a quadrilateral grid.

In this chapter, we have provided background information on image segmentation and

texture mapping techniques. In the next chapter, we combine these two concepts in an

architecture that automatically process texture mapping after an image segmentation task.

25

3. METHODOLOGY

In this work, we design an architecture that can efficiently perform image segmentation

and texture mapping simultaneously. This is done by incorporating three main tasks into

a unified architecture. The first task is performing image segmentation and create a black

and white mask (binary mask) image. The white colour corresponds to the object that was

segmented. The second main task is to create a 2D grid (mesh) on the object. This grid is

the 2D model of the segmented object. The final step is applying texture mapping with a

sample texture (fabric) to the target area. We will provide detailed information on each

step in the next chapters.

Figure 3.1 Demonstration of main steps of architecture that built for this work.

Figure 3.1 shows the key steps for a stand-alone texture mapping architecture of an object

in the input image. The first picture is the input image that user uploads to the system.

The first step is the only user interaction in the system. The second image is the output of

the image segmentation process. We see the generated texture grid in the third picture

after segmentation. The last picture is the final result of texture mapping of the object that

was segmented automatically.

Input Image
Image

Segmentation Grid Generation
Texture
Mapping

26

3.1 IMAGE SEGMENTATION

In this chapter, we describe the deep learning framework which was used to learn the

semantic segmentation of images from the new ground truth datasets, which were

generated for this work.

Fully convolutional neural network (FCNN) was used as an architecture for learning

semantic information. We gave detailed information of fully convolutional neural

networks in chapter 2.3.3. In summary, FCNN is a neural network architecture that was

implemented by Long et al. [24] in 2015. FCNN’s were proposed to model semantic

segmentation using a deep learning pipeline that can be trained end-to-end.

3.1.1 Preparing Training Data

In order to process segmentation on clothing, apparel products or pillows, a custom

dataset created manually. This dataset contains 250 black and white hand generated

images. White colour represents the object that needs to be segmented. Figure 3.2 shows

an overview of original and labelled images side by side.

Figure 3.2 : Overview of ground-truth images that aligned together.

27

In Figure 3.2 we see some examples of training images which prepared for this work. For

each sample pillow image, a black and white ground-truth image generated by a graphics

software. As we only interested in the main object, our training images consist of two

colours which are black and white.

Table 3.1 Distribution of ground-truth data for training

Dataset Number of images

Training 200

Testing 25

Validation 25

Figure 3.3 : Utilization of the our training dataset.

Training = 80% Validation = 10% Testing = 10%

Training for parameter

optimization

Evaluation of parameter

optimization

Training for final

evaluation
Final evaluation

28

In this work, we split training data into three parts as training (%80), validation (%10)

and test (10%). All datasets subsampled with random selections. This dataset is fairly

small compared to common deep learning datasets. Thus the network has to transfer as

much knowledge as possible from pre-training. Details of pretraining explained in next

chapter.

3.1.2 Neural Network Consideration

The experiences and results of other researchers are important to find a good starting point

for choosing the model architecture. Mainly based on the work of Long et al. [24] various

experiments have been carried out to find a way to improve the system in general or to

adapt it to certain circumstances.

Simonyan and Zisserman describe network architecture with up to 19 weight layers in

their work "Very deep convolutional networks fo large-scale image recognition" [33].

The research groups of Long and Zheng used the pretrained model of the 16 layer version

visualized in Figure 3.4. This network is known as "VGG16", as it was developed by

Oxford’s "Visual Geometry Group" and has 16 weight layers. Figure 3.4 illustrates the

topology of the network.

Characteristic for VGG-16 is an architecture that uses relatively small convolutional

filters, mainly of size 3×3. These small filters result in convolutional layers with relatively

few learnable parameters. This allows combining convolutional layers following each

other while still yielding neural network models that can be trained in reasonable time.

The VGG-16 architecture, composed of 16 layers in the ImageNet competition in 2014,

achieved a very successful classification result. [32]. There are 1000 object categories in

this competition.

29

Figure 3.4 Illustration of the "VGG16" net-architecture.

Source : Simonyan K. and Zisserman A., “Very deep convolutional networks for largescale

. image recognition,” Sept. 2014.

3.1.3 Segmentation Using FCNN

FCNN architecture which is used in this work is eventually based on the famous VGG-

16 network [33]. Long et al. [24] transformed VGG-16 into FCNN, a fully convolutional

neural network. They did so by transforming VGG-16’s fully connected layers into

convolutional layers and by adding deconvolutional layers, which upsample the data back

to the original input image resolution. In addition, they added three so-called "skips" to

30

the FCNN architecture, which fuse spatial information from shallow FCNN layers with

semantic information from deep FCNN layers to obtain the better semantic segmentation

of images. Figure 3.4 illustrates the architecture of FCNN. The name of FCNN-8s refers

to the neural network layer Pool 3, which has the highest spatial resolution among those

three neural network layers of FCNN-8s which are used in a "skip". Pool 3 has a spatial

resolution that is roughly 8 times lower than the original input image spatial resolution.

When evaluated on a PASCAL VOC 2011 subset, semantic segmentation dataset [8],

FCNN achieved state-of-the art segmentation results [24]. The number of feature

channels, which are used in the upper parts of FCNN, correspond to the number of

different object labels, which are learned. In Long et al. [24], the number of feature

channels is either 21, 33, 40 or 60 depending on the dataset which was used for learning.

In FCNN, rather than producing one dimensional predictions, this leads to two-

dimensional predictions i.e. the segmentation maps. In this work, the number of different

object labels are always 2 (object and background).

Figure 3.5 Representation of the FCNN that was used in this work.

As shown in Figure 3.5, we take the VGG16 architecture and convert fully connected

layers to 1 x 1 convulation layers to get 39 x 12 sized segmentation features. Three

upsampling layers followed as a next step to produce 1248 x 384 output image with two

channels. These two channels represents segmented object and background.

3.1.4 Training And Evaluation

FCNN initialized using pretrained VGG weights on ImageNet [33]. ImageNet visual

recognition dataset consists of 14 million images belonging to 1000 categories. The

researchers from the Oxford Visual Geometry Group, or VGG for short, made their

Input

1248x384x3

VGG16

13 Conv.
Layers

Encoded
Features

39x12x512

FCNN

3
Upsampling

Layers

Prediction

1248x384x2

31

models and learned weights available online. This allowed us to use an advanced image

classification model in our architecture. In Figure 3.6, we show a sample of segmentation

result for a sofa object before training. “Sofa” is one of the classes of ImageNet dataset.

Figure 3.6 Segmentation result of VGG network with pretrained model

32

The convolutional layers of the segmentation network initialized using VGG weights and

the transposed convolution layers are initialized to perform bilinear upsampling. The skip

connections, on the other hand, are initialized randomly with very small weights (i.e. std

of 1𝑒 − 4). This allows us to perform training in one step (as opposed to the two step

procedure of [24]).

 Figure 3.7 : Logs of our training after six hours on NVIDIA M2000 GPU

33

Our segmentation architecture is trained with our custom dataset. This dataset is very

small, providing only 200 training images. Thus the network has to transfer as much

knowledge as possible from pre-training. Note that the skip connections are the only

layers which are initialized randomly and thus need to be trained from start. This transfer

learning approach leads to very fast convergence of the network. As shown in preceding

tables, the raw scores already reach values of about 90 % after only about 4000 iterations.

Training is conducted for 16.000 iterations to obtain a meaningful median score.

The segmentation performance is measured using the F1 score. The F1 score is a

measurement method used for the classification in statistics field. Recall and precision

values are important to calculate F1 score. Positive correct results divided by the total

number of positive results equals “precision”. Positive correct results divided by positive

results equals “recall”. The harmonic average of the recall and average scores defines F1

score. The worst case of the F1 score is 0 and its top/best value is 1 which we call it

perfect recall and precision.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
 , 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑝

𝑡𝑝+𝑓𝑛

where:

𝑡𝑝 is the number of true positives

𝑓𝑝 is the num of false positives

𝑓𝑛 is the num of false negatives

Thus, 𝐹1 score calculated as :

𝐹1 =
2 . 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

In addition, the average precision score is given for reference. Classification performance

is evaluated by computing accuracy and precision-recall plots.

34

Table 3.2 : Validation performance - Max F1 (Raw)

Table 3.3 : Validation performance – Average Precision (Raw)

87

88

89

90

91

92

93

94

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

V
a

li
d

a
ti

o
n

 S
co

re
 [

%
]

Iteration

Max F1 (Raw)

87,5

88

88,5

89

89,5

90

90,5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

V
a

li
d

a
ti

o
n

 S
co

re
 [

%
]

Iteration

Avarage Precision (Raw)

35

In order to show result in a linear form, values smoothed using linear regression method.

In Table 3.4, we show smoothed results of Max F1 score. Smoothed Avarage Precision

values are shown in Table 3.5.

Table 3.4 : Validation performance – Max F1 (Smooth)

 Table 3.5 : Validation performance – Avarage Precision (Smooth)

86

87

88

89

90

91

92

93

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

V
a

li
d

a
ti

o
n

 S
co

re
 [

%
]

Iteration

Max F1 (Smooth)

86

87

88

89

90

0 2000 4000 6000 8000 10000 12000 14000 16000 18000V
a

li
d

a
ti

o
n

 S
co

re
 [

%
]

Iteration

Avarage Precision (Smooth)

36

Figure 3.8 Evaluation samples after training for six hours in our FCNN.

37

 Figure 3.9 Evaluation samples of our fully convolutional neural network.

38

3.2. GRID GENERATION

As this work does not need any 3D model for the segmented object, a 2D grid needed for

texture mapping. Before creating the texture grid, four corners of the segmented object

calculated using the FAST corner detection algorithm [46].

FAST (Features from Accelerated Segment Test) has a working principle that there

should be 𝑛 pixels surrounded by a corner candidate p.

Figure 3.10 : FAST corner detection simulation for a segmentation result. The pixel

. at p is a candidate corner which is at the center.

The working principle of this algorithm relies on n pixels around a candidate corner 𝑝

such that this pixel should be surrounded by n pixels that have a brighter or darker color.

Surrounded pixels around corner 𝐼𝑝 are brighter if 𝑙𝑝 + 𝑡 or lighter if 𝑙𝑝 − 𝑡 where 𝑡 is

the threshold value. As you can see in Figure 3.8, the 𝑛 parameter is 16. When looking at

points 1,5,9 and 13, it can be seen that the number 16 selected to effectively identify

corner candidates. In order to estimate if p is a corner, it must be a lighter color of at least

3 points 𝑙𝑝 + 𝑡. Conversely, it should be at least 3 points 𝑙𝑝 − 𝑡 darker color. If these

39

conditions are not met, this point is not considered a corner. This method applies the same

comparisons to the other candidate corner points. The texture grid is calculated based on

the four boundary lines which calculated by four detected corners in previous task. In first

step, horizontal and vertical lines were used to calculate the texture grid.

Figure 3.11 : Generated 10x10 grid on segmented object.

40

In order to calculate the mesh lines with interpolation, parameters must be determined.

If 𝐿𝑖 expresses a mesh line in the whole mesh, we can formulate 𝐿𝑖 as :

𝐿𝑖 = {
𝑋𝑖 (𝑡)
𝑌𝑖 (𝑡)

There are 𝑛 𝐿𝑖 lines in the grid and for 𝐿𝑖 that we should calculate 𝑡 parameter on this

line. Starting from the starting point of the line, we need to calculate the 𝑡 parameter for

each mesh intersection. In short, we know that how many 𝑡 parameters can be calculated

by dividing the line length by the number of horizontal/vertical meshes. After computing

the number 𝑡, it can be seen that there are 𝑋𝑖(𝑡) and 𝑋𝑖(𝑡) coordinate points on each line.

Thus, the values of 𝑡 on the line 𝐿𝑖 are computed. Since the generated grid lines are

modelled completely by the segmented image, the composition of both vertical and

horizontal lines are calculated. The final result will be the mesh of segmented image.

Since the horizontal and vertical calculations are almost identical, we will only give

information about the calculation of horizontal lines. As mentioned earlier, mesh lines are

calculated by linear interpolation. During this process, weights must be formulated for

each row. if the number 𝑚 is considered to represent the number of lines, the weight

𝑤𝑔1, 𝑤𝑔2, … , 𝑤𝑔𝑚 must be calculated. Hence, the entire length 𝑚 is divided into equal

parts and [𝑤1, 𝑤𝑚] is calculated. If we need to formulate the weight of the 𝑤𝑔𝑗 on the line:

𝑋𝑗(𝑡) =

∑
𝑋𝑖(𝑡)

|𝑤𝑖 − 𝑤𝑔𝑗|
𝑛
𝑖=1

∑
1

|𝑤𝑖 − 𝑤𝑔𝑗|
𝑛
𝑖=1

 , 𝑌𝑗(𝑡) =

∑
𝑌𝑖(𝑡)

|𝑤𝑖 − 𝑤𝑔𝑗|
𝑛
𝑖=1

∑
1

|𝑤𝑖 − 𝑤𝑔𝑗|
𝑛
𝑖=1

In this formula, Xi(t) and Yi(t) values for each mesh intersection point 𝑡 on the line 𝐿𝑖

are represented. Each line is divided into 𝑛 grid lines. A sample grid is shown in Figure

3.9.

41

As we divide each line into uniform spaced grids, the parameter set is :

{𝑖/𝑁 − 1|𝑖 = 0,1, … (𝑁 − 1)}

where

 𝑁 columns count

In Figure 3.10 we can see the vertical and horizontal lines that were calculated using

linear interpolation method which we gave details above.

Figure 3.12 : Generated final grid with parameters rows=50 and columns=50.

42

3.3 TEXTURE MAPPING

To calculate texture coordinate of a point on the target picture, we need the texture grid.

The texture grid will be created on the segmented object area. The details of generating

the grid explained in section 3.2. When our grid is ready, the texture coordinate of the

(𝑖, 𝑗) point is :

𝑦𝑡 =
𝑖

(𝑟 − 1)

 𝑥𝑡 =
𝑗

𝑙 − 1

where :

 r is the number of rows,

 l is the number of columns,

Figure 3.13 : Calculating texture coordinates

The four vertexes are important for a pixel inside quadrilateral to figure out coordinates

of the texture. The four vertexes V1, V2, V3, V4 coordinates should be calculated for a

43

proper mapping purpose. For every grid point in our grid, bilinear warp technique

converts original texture to desired grid coordinates. In Figure 3.12 we can see the final

texture after warping.

Figure 3.14 : Mapping a sample seamless texture image to calculated grid.

In figure 3.13 we show the final appearance of the image that was segmented. After the

combination of calculated texture with the original image, we get a realistic mapping

result. To produce such realistic effect we use “Image Composition” library of

ImageMagick open source project. The parameters are:

convert.exe -compose copy_opacity -composite -compose over

-background transparent -flatten original.jpg texture.jpg

Figure 3.15 : Combining final texture with original cropped image.

44

4. SIMULATION EXAMPLES

In this chapter we show examples of final result of this work. Sample sofa and pillow

photos segmented with our fully convolutional neural network. For each segmented

object, texture mapping done automatically by our mapping algorithm. In the left-bottom

corner of each sample, we show generated grid and fabric texture.

Figure 4.1 : Simulation of texture mapping after segmentation

45

Figure 4.2 : Simulation of texture mapping after segmentation

46

Figure 4.3 : A sample of texture mapping implementation after segmentation

47

 Figure 4.4 : A full sofa demonstration with two separate segmented pillows

48

5. CONCLUSION

We have combined two main tasks such as “Image Segmentation” and “Texture

Mapping” into a unique architecture that automatically runs without human interaction.

Our image segmentation process, which uses fully convolutional neural network is simple

and can be trained end-to-end. Segmentation results perform well with custom training

data.

We have implemented texture mapping on a texture grid to visualize apparel products

such as pillows, sofas and so on. The texture grid which calculated on segmented object

act as a 3D model for our texture mapping process.

Our final results have proven that our system can be a good showcase for the final

appearance of clothing and apparel products inside of interior spaces. We have found that

creating a texture grid and applying texture mapping technique to the segmented object

is very effective.

Future work needs to be conducted on partially-hidden objects in a picture. Generating

autonomous texture grid for a partially-hidden object is another challenging task. To

succeed in this task, training pictures with corresponding ground-truth 3D Models could

be a possible solution. Obtaining orientation and angle of the model can act as a guide for

partially-hidden objects.

49

REFERENCES

[1] Barron, A. “Universal approximation bounds for superpositions of a sigmoidal

function,” Information Theory, IEEE Transactions on, vol. 39, pp. 930–945, May 1993.

[2] Bier E., Sloan K., Two-part texture mapping, IEEE Comput. Graphics Appl. 6 (9)

(1986) 40–53.

[3] Blinn J.F., Newell M.E., Texture and reflection in computer generated images, Comm.

ACM 19 (10) (1976) 542–547.

[4] Bottou L., “Large-scale machine learning with stochastic gradient descent,” in

Proceedings of COMPSTAT’2010, pp. 177–186, Springer, 2010.

[5] Catmull E., A Subdivision Algorithm for Computer Display of Curved Surfaces, PhD

Thesis. Department of Computer Science of Utah University, 1974.

[6] Caudill Maureen. “Neural Networks Primer, Part I”. In: AI Expert 2.12 (Dec. 1987),

pp. 46–52. issn: 0888-3785. url: http://dl.acm.org/citation.cfm?id=38292.38295.

[7] Colwell R.N. “Manual of Photographic Interpretation”. In: (1997).

[8] Everingham M. “The Pascal Visual Object Classes Challenge: A Retrospective”. In:

International Journal of Computer Vision 111.1 (Jan. 2015), pp. 98–136.

[9] Farabet C., Couprie C., Najman L. and LeCun Y., “Learning hierarchical features for

scene labeling,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.

35, no. 8, pp. 1915–1929, 2013.

[10] Girshick R., Donahue J., Darrell T. and Malik J. “Rich feature hierarchies for

accurate object detection and semantic segmentation,” Nov. 2013.

[11] Glorot X. and Bengio Y., “Understanding the difficulty of training deep feedforward

neural networks,” in In Proceedings of the International Conference on Artificial

Intelligence and Statistics (AISTATS™10). Society for Artificial Intelligence and

Statistics, 2010.

[12] Gupta S., Girshick R., Arbeláez P. and J. Malik, “Learning rich features from rgb-d

images for object detection and segmentation,” July 2014.

50

[13] Hariharan B., Arbeláez P., Girshick R. and Malik J. “Simultaneous detection and

segmentation,” July 2014.

[14] He Kaiming. “Deep Residual Learning for Image Recognition”. In: CoRR

abs/1512.03385 (2015). url: http://arxiv.org/abs/1512. 03385.

[15] He Kaiming, Zhang, X., Ren S. and Sun J., “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” Feb. 2015.

[16] Heckbert P.S., Survey of texture mapping, IEEE Comput. Graphics Appl. 6 (11)

(1986) 56–67.

[17] Hinton G. E., Srivastava N., Krizhevsky A., Sutskever I and Salakhutdinov R. R.,

“Improving neural networks by preventing co-adaptation of feature detectors,” July 2012.

[18] Ioffe S. and Szegedy C., “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” Feb. 2015.

[19] Karpathy Andrej. Convolutional Neural Networks for Visual Recognition (Course

Notes). url: http://cs231n.github.io/.

[20] Kim D., Hahn J.K., Projective texture mapping with full panorama, Comput.

Graphics Forum 21 (3) (2002) 421–430.

[21] Krizhevsky A., Sutskever I. and Hinton G. E., “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Systems

25 (F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds.), pp. 1097–1105, Curran

Associates, Inc., 2012.

[22] Levy B., Mallet J.L., Non-distortion texture mapping for sheared triangulated

meshes, Proceedings ACM SIGGRAPH 98, pp. 343–352.

[23] Lin Tsung-Yi. “Microsoft COCO: Common Objects in Context”. In: CoRR

abs/1405.0312 (2014). url: http://arxiv.org/abs/1405. 0312.

[24] Long Jonathan, Shelhamer Evan and Darrell Trevor. “Fully Convolutional Networks

for Semantic Segmentation”. In: CoRR abs/1411.4038 (2014). url:

http://arxiv.org/abs/1411.4038.

51

[25] Long Jonathan, Zhang N. and Darrell T., “Do convnets learn correspondence?,” Nov.

2014.

[26] Lowe D. G., “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[27] Mahendran A. and Vedaldi A., “Understanding deep image representations by

inverting them,” Dec. 2014.

[28] Maillot J., Yahia H., Verroust A., Interactive texture mapping, Comput. Graphics 27

(3) (1993) 27–34.

[29] Montavon G., Orr G. B. and Müller K.-R., Neural Networks: Tricks of the Trade,

Reloaded, vol. 7700 of Lecture Notes in Computer Science (LNCS). Springer, 2nd edn

ed., 2012.

[30] Noh H., Hong S. and Han B., “Learning deconvolution network for semantic

segmentation,” May 2015

[31] Pedersen H.K., Decorating implicit surfaces, Proceedings ACM SIGGRAPH’95, pp.

291–300

[32] Russakovsky Olga. “ImageNet Large Scale Visual Recognition Challenge”. In:

CoRR abs/1409.0575 (2014). url: http://arxiv.org/ abs/1409.0575.

[33] Simonyan K. and Zisserman A., “Very deep convolutional networks for largescale

image recognition,” Sept. 2014.

[34] Sheffer A., Sturler E.D., Smoothing an overlay grid to minimize linear distortion in

texture mapping, ACM Trans. Graphics 21 (4) (2002) 874–890.

[35] Srivastava N., Hinton G., Krizhevsky A., Sutskever I. And Salakhutdinov R.,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal of

Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[36] Sun H.Q., Bao H.J., Interactive texture mapping for polygonal models, Comput.

Geometry 15 (1) (2000) 41–49

[37] Uhrig Jonas. “Pixel-level Encoding and Depth Layering for Instance-level Semantic

Labeling”. In: CoRR abs/1604.05096 (2016). url: http://arxiv.org/abs/1604.05096.

52

[38] Weinhaus F.M., Devich R.N., Photogrammetric texture mapping onto planar

polygons, Graphical Models Image Processing 61 (2) (1999) 63–83.

[39] Yosinski J., Clune J., Bengio Y. And Lipson H., “How transferable are features in

deep neural networks?,” Advances in Neural Information Processing Systems 3320-3328.

Dec. 2014, vol. Advances 3320-3328. Dec. 2014, pp. Advances in Neural Information

Processing Systems 27,pages 3320–3328 Dec.2014, Nov. 2014.

[40] Zeiler M. D. And Fergus R., “Visualizing and understanding convolutional

networks,” Nov. 2013.

[41] Zeiler M. D. And Fergus R., “Stochastic pooling for regularization of deep

convolutional neural networks,” Jan. 2013.

53

CURRICULUM VITAE

Name & Surname: Efe Çağın Kaptan

Permanent Address: Kaptanpasa Mah. Umit Sitesi A/31 Sisli Istanbul

Place and Year of Birth: Istanbul / 1984

Foreign Language: English

Primary School: Sisli Ondokuz Mayis Primary School

High School: Besiktas Ataturk Anatolian High School

Bachelor of Science: Istanbul Technical University - 2008

Master of Science: Bahcesehir University - 2017

Name of Institute: Institute of Science

Name of Master’s Program: Computer Engineering

Work Experience: Trendyol – 2016 –

 Dogus Technology - 2012 – 2016

