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ABSTRACT 
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In this work, an autonomous texture mapping framework implemented that does not 

require a 3D model of an object. Under this framework, we combine two main tasks such 

as “Image Segmentation” and “Texture Mapping” into a unique architecture that runs 

automatically without human interaction. 

The first goal of this thesis is to implement and evaluate a deep neural network (fully 

convolutional neural network) for the segmentation of an apparel object. Generating a 

quadrilateral grid on the texture area is the second step after segmentation. As the 

computation is faster and without 3D model requirements, this technique can be easily 

applied to internet applications to visualize apparel products such as pillows, sofas etc. 

Our goal is combining state-of-the-art deep learning architectures with texture mapping 

technique in an autonomous way.  

Our final results have proven that our system can be a good showcase for the final 

appearance of clothing and apparel products inside of interior spaces.  

Keywords:  Deep Learning, Texture Mapping 
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Bu çalışmadaki temel amaç, herhangi bir 3D modele ihtiyaç duymadan otomatik çalışan 

görsel tabanlı doku giydirme gerçekleştirmektir. Görüntü sınıflandırma ve doku giydirme 

tekniklerini tek bir çatı altında toplayarak, insan faktörü olmadan çalışan bir mimari 

oluşturulmuştur. 

Çalışmadaki ilk hedef, görselin derin öğrenme yöntemi ile sınıflandırılmasıdır. 

Giydirmenin efektif olması için tekstil dokusuna sahip olan nesneler seçilmiştir. İkinci 

adım ise bölütlenmiş obje alanına doku ızgarası oluşturup, ardından örnek bir dokunun 

giydirilmesidir. Bilimsel hesaplamanın hızlı olması ve 3D modele ihtiyaç duyulmaması 

nedeni ile uygulanan yöntemin farklı uygulama alanları bulunmaktadır.  Bir yastığın veya 

koltuğun farklı kumaşlar ile tanıtımını amaçlayan bir internet uygulaması kolayca 

gerçekleşebilecektir. Çalışmadaki temel amaç, derin öğrenme alanındaki en yeni güncel 

teknolojileri, doku giydirme teknikleri ile harmanlayabilmektir. Simülasyon örnekleri 

göstermiştir ki, çalışmada kullanılan teknik, kumaş kaplamada ve iç mimari tanıtımında 

faydalı olabilecektir.  

Anahtar Kelimeler:  Derin Öğrenme, Doku Giydirme 
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1. INTRODUCTION 

As with advances in computer graphics, realistic computer-generated images have been 

implemented by texture mapping applications. In most cases, texture mapping algorithms 

focus on the connection between a 2D image and a 3D model of an object. In this context, 

there is a corresponding pixel on the target area at each point on the 3D model. Many of 

these previous algorithms require a 3D model and panoramic images. Therefore, these 

texture mapping algorithms are greatly limited. For example, 3D model-based texture 

mapping can not be processed in modern web-based applications as the main problem is 

such big size models can’t be streamed through the network. Moreover, it is not an easy 

task to build an object’s 3D model for a novice.   

In this article, one of the main motivations is the use of texture mapping without the need 

for a 3D model of the object. In recent years, the study of computer vision addressed the 

problem of automating the detection and segmentation of an object on a 2D image. 

Semantic segmentation is an important step in understanding the object. The goal is to 

automatically segment an object in a particular image. Machine learning techniques have 

been successful in this area, especially in recent years. The state of the art in the 

automating visual segmentation is seen in the deep learning research community.  

The research on machine learning focuses on the idea that a computer can get the ability 

to learn just like a person without sending commands on how to proceed. Deep learning 

is one of the areas of machine learning and refers to the application of a set of algorithms 

called neural networks, and their variants. The development of larger, faster and cheaper 

computing units (GPU’s) has led to a revival of deep learning techniques. Deep Learning 

has proven itself in many areas. New architectures, algorithms and tools were developed 

in a short time.  

Given this information on this context, implementation of a deep neural network (fully 

convolutional neural network) is the first objective of the segmentation of an apparel 

object. The second objective is to create an interactive quadriliteral grid to associate with 

the texture area. The computation is faster and without a requirement of a 3D model, this 

technique can be easily applied to an internet application to visualize of clothing products 

such as   
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pillows, sofas etc. Our goal is to combine state-of-the-art deep learning architectures with 

texture mapping technique in an autonomous way. 
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2. GENERAL INFORMATION 

This chapter builds the theoretical part of my work and provides information about state-

of-the-art research. The sub-topics are organized in a consecutive order. First, I explain 

the concepts of deep learning and continue with the topic of image segmentation. Then I 

describe neural networks in general and introduce subsequently more specialized 

networks. Moreover, the main ideas of Fully Convolutional Neural Networks which play 

an important role for this work, are explained. Furthermore, I will introduce the texture 

mapping techniques that are fundemantal for simulation in this work. 

 

2.1 DEEP LEARNING 

The history of neural networks goes back far into the past. In the mid-1980s, the first deep 

neural networks were applied to recognition tasks. Although this was a scientific success, 

the interest continued to decrease as the training took too much time. After many years, 

the development of larger, faster and cheaper IT units has revived deep learning 

techniques. Deep Learning has been used successfully in  many areas. New architectures, 

algorithms and tools are created in a short time. 

Artificial neural networks were described as the composition of simple and 

interconnected units that change their state according to external inputs [6].  
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Figure 2.1 : Visualizing a 3 layer deep neural network architecture. 

Source : Karpathy Andrej. Convolutional Neural Networks for Visual Recognition (Course Notes). 

Neural networks can generally be identified by neurons within a human brain. The design 

of the neural networks is similar to a layered architecture that each layer follows each 

other. In this system, ever layer consists of several units (or neurons) and preceding 

activation functions such as sigmoid or relu which we will describe in more detail in the 

following chapters. A very basic level deep learning architecture shown in Figure 2.1 

Deep neural networks can be considered as self-learning mechanisms. The principle of 

this learning path is to extract features. Auto learned features exist in the deep layers of 

networks. By analyzing the pixels of an image, we get learned features that are the basics 

functionality of common tasks such as semantic segmentation, object detection, and so 

on. 

These parameters of the model (ie. the neurons inside hidden layers in Figure 2.1) for 

instance, is a classical optimization problem where parameters trained and updated 

INPUT LAYER HIDDEN LAYERS OUTPUT LAYER 
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several times. In our learning process, ground-truth labels act as the source for our training 

loops. A cost function calculates a cost value that should be as low as possible during 

training process. Depending on the cost value, the parameters inside hidden layers should 

be updated through the system. Changing parameters (weights,  biases) in the deep neural 

network usually done via gradient descent or stochastic gradient descent methods. The 

entire optimization process during training is called “backpropagation algorithm”.         

 

Figure 2.2 : Architecture of a convolutional neural network. 

Source : Karpathy Andrej. Convolutional Neural Networks for Visual Recognition (Course Notes). 

Figure 2.2 shows a deconvolution network proposed in [30]. We can see the gradual 

progress of (de)convolutional layers and (un)pooling layers (functions) across the 

network. 

The layers of a neural network can be of different types: convolutions that consist of 

filters, pooling layers which introduce a translational invariance to the network, and more. 

Figure 2.2 shows a visualization of such a convolutional neural network. 

 

2.2 IMAGE SEGMENTATION 

Pixel-level information of an image has been analyzed in different ways over the years, 

but the fundamental principles remain the same: identify objects in images and access 

their importance [7]. The problem of learning from visual information is generally 

classified into image classification [33], object localization and detection [14], semantic 

segmentation and instance segmentation [37] and the others [19]. 
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Semantic segmentation can be understood as classification process of every pixel in a 

picture. The terms “scene analysis” or “image analysis” are often used in the same context 

in the literature. The remainder of this section details recent advances in dealing with the 

image segmentation problem, along with literature survey. 

State-of-the-art networks (or models) in this space are obtained by evaluating 

performance on large scale benchmark datasets, such as the Microsoft Common Objects 

in Context (MSCOCO) [23], ImageNet [32] and PASCAL VOC [8]. MSCOCO is a 

famous dataset that consists of classified, segmented and labelled data with more than 

300.000 images and 80 object categories, while ImageNet is a large scale dataset with 

more than 14.000.000 images and more than 1000 categories, with different subsets used 

for each benchmark task. 

Most state-of-the-art results were designed for the image classification task, wherein an 

object class is assigned to an image as a whole. [24] presented a modified version of 

VGGNet [33] - which originally took in images of a constant shape to classify them 

amongst a large group of classes. The VGGNet model itself improved upon previous 

image classification networks, notably AlexNet [21], by getting rid of local response 

normalization layers. The power of VGGNet also lay in its simplicity, with a very 

homogeneous structure as compared to previous models. The models introduced in [24], 

referred to as Fully Convolutional Neural Networks (FCNN) modified the original 

VGGNet designed for an image classification task, for the image segmentation task.  

 

2.3 CONVOLUTIONAL NEURAL NETWORKS 

The conventional approach to solving a classification/segmentation problem is to 

decompose it into at least two independent subtasks such as feature extraction and 

classification. The process of feature extraction can be very complex, typically requires 

domain expertise and a lot of development time. A popular example for a hand-crafted 

visual feature is SIFT (“scale-invariant feature transform”) [26] developed by David 

Lowe. Lowe has put a lot of effort in the development of a feature that does not change 

when you rotate and scale images. SIFT has been used successfully for object recognition 

or panorama stitching tasks.  
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The downside is that these features are very rigid and do not automatically adapt to the 

problem. The classification step however has always been a machine learning approach. 

Based on the extracted features, any appropriate classification algorithm can be applied 

(e.g. a support vector machine). 

An alternative approach is to integrate both feature extraction and classification into one 

learning process. Since the features are learned automatically, expert domain knowledge 

and time-consuming engineering are not required. Furthermore, it is possible to train 

feature extraction and classification in an end-to-end manner, which allows a better 

optimization and adaption of both parts. 

This work uses a special convolutional neural network (CNN), which extracts features 

and classifies the input image pixel-wise for image segmentation. For the sake of a step-

wise introduction, we first introduce feed-forward neural networks and explain the basic 

concepts of neural networks.  

 

2.3.1 Feed-forward Neural Networks 

Feed-forward networks are collections of neurons, which are organized in layers 1, ..., L. 

Every neuron of layer 𝑙 > 1 connects to every neuron of the previous layer 𝑙 − 1. When 

deployed a feed-forward net has a distinct direction ("forward pass") and there are no 

cycles (feedback loops). The layers are distinguished between input, output and hidden 

layers. Hidden layers are placed between the input and output layer and therefore do not 

have a direct connection to the environment.  

The special case where the network consists of only two layers (in- and output) is called 

single-layer perceptron. Since the input layer is not parameterized, it is frequently not 

considered as a layer. For this reason, it is called single-layer perceptron. More usual are 

the so called multi-layer perceptrons, where several layers are put together on top of each 

other. Thus, such a multi-layer perceptron has at least one hidden layer. 

Figure 2.3 shows a basic network with an input, output and a hidden layer. Each 

connection between two neurons 𝑖 and 𝑗 is associated with a weight 𝑤𝑗,𝑖
(1). The 

superscript 𝑙 denotes the number of the layer. These weights are used to calculate a 
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weighted sum of all 𝐽 inputs. In general there are also bias-terms 𝑏𝑖
(1)

 associated to each 

neuron. This bias term shifts the weighted sum by a certain amount.  

This intermediate result is then processed by a so-called activation function ℎ. Usually 

this function applies a non-linear transformation. The result is the output of the neuron 

and possibly serves as input for the next layer (if layer 𝑙 is a hidden layer). The below 

equation  shows the formula for calculating the activation 𝑎𝑖
𝑙 of a specific neuron located 

at position 𝑖 in layer 𝑙 for 𝐽 inputs 𝑥𝑗 : 

𝑎𝑖 
𝑙 = ℎ(𝑏𝑖

𝑙 +  ∑ 𝑤𝑗,𝑖
𝑙  .  𝑥𝑗

𝑗

𝑗=1

) 

where: 

 𝑎𝑖
𝑙 is the activation of neuron 𝑖 at layer 𝑙 

 ℎ(𝑥) is the activation function 

 𝑤𝑗,𝑖
𝑙  is the weight of neuron 𝑖 at layer 𝑙 associated with input neuron 𝑗 

 𝑏 is the bias of neuron 𝑖 at layer 𝑙 

 𝑥𝑗 input (result of neuron 𝑗 when 𝑙 > 1) 

 

Typical activation functions are the sigmoid (logistic) or the hyperbolic tangent function. 

In this work so-called rectified linear units (ReLU) were used: 

ℎ𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) 

 

ReLUs employ a simple ramp function and are crucial for the success of recent deep 

networks [21]. [33]. 
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Figure 2.3 : An example of feed-forward neural network 

 

 

 

Source : Hinton G. E., Srivastava N., Krizhevsky A., Sutskever I and Salakhutdinov R. R., “Improving 

neural networks by preventing co-adaptation of feature detectors,” July 2012 

An example of feed-forward network consists of one input, one output and one hidden 

layer shown in Figure 2.3. The neurons, visualized by solid circles, are organized in layers 

𝑙. Each connection between two neurons is associated with a (learned) weight 𝑤𝑗,𝑖
𝑙 . The 

weighted sum of the input values plus a bias term 𝑏𝑖
𝑙 is then fed into an activation function, 

which results in the activation 𝑎𝑖
𝑙. The values are propagated throughout the entire 

network. Finally, the output layer is reached which produces the net output �̂�. 

A neural network is entirely defined by its structure (topology), the activation functions  

and its parameters (namely weights and biases). In general a neural network can 

approximate any finite function [1]. 

To handle discrete outputs, such as it is needed for classification tasks, a probability 

function for each of the defined states can be trained in order to finally select the class 

input layer 

input 𝒙 

Hidden layer (𝑙 =1) output  layer (𝑙 =2) 

output �̂� 
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with the highest probability. Usually, the probabilities are obtained by applying a softmax 

normalization in the output layer. An exponential function 𝑒𝑥𝑝(�̂�𝑛, 𝑦𝑛) turns the class 

prediction into a non-negative value. Then this value is normalized by the denominator 

to fit the [0, 1] range. In this way all class probabilites sum up to 1. 

𝜎𝑐 =
exp (�̂�𝑛,𝑦𝑛

)

∑ exp (�̂�𝑐)𝐶
𝑐=1

 

where: 

 C is the number of classes 

 �̂�𝑐 is the predicted class score with 𝑐 = 1,...,C 

 �̂�𝑛,𝑦𝑛
 is the predicted class score of the true class 𝑦𝑛 for sample 𝑛 

 

The parameters of a neural network are learned based on training samples. In case of 

supervised learning, where a labelled training set is given {(𝑥𝑛, 𝑦𝑛)}, all classifications 

have to be penalized by a suitable loss function 𝑙(�̂�𝑛,𝑦𝑛
), also called cost function. This 

loss function must be minimized. Usually, a regularization term 𝑟 is added in order to 

preserve the model from overfitting. This occurs when individual parameters dominate 

over others. The weights should be kept as small as possible. This why the regularization 

term is also called "weight decay". This can be achieved by minimizing the L2 norm of 

the parameter vector. The balance between regularization and loss is controlled by a 

hyperparameter ∝. In summary the regularized error function E is as follows: 

𝐸(𝜔, 𝑏) = 𝑙(�̂�𝑛, 𝑦𝑛) +  𝛼 . 𝑟(𝜔) 

where: 

 𝜔 weight 

 𝑏 bias 

 𝑦𝑛 is the class label i.e. the true class 

 �̂�𝑛 is the class prediction 

 𝛼 is the multiplier for the regularization term 
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 𝑟(𝜔) is the regularization term (weight decay) 

A popular loss function for multi-class classification objectives is the multinomial logistic 

loss. Passing class probabilities 𝜎 conditioned on the input data 𝑥𝑛, the multinomial 

logistic loss is the true class negative log-likelihood of the 𝑦𝑛. The total loss 𝑙𝑡𝑜𝑡 of one 

training batch is given by the sum over all samples 𝑁. The below equation shows the 

normalized multinomial logistic loss 𝑙 ̅which additionally includes a normalization term 

1/N: 

 

𝑙 ̅ =  − 
1

𝑁
 ∑ log (𝜎𝑛,𝑦𝑛

)

𝑁

𝑛=1

 

where: 

 𝑁 is the number of training samples 

 𝑦𝑛 is the class label i.e. the true class 

 𝜎𝑛𝑦𝑛
 is the class probability conditioned on the input of the true class 𝑦𝑛 

As previously mentioned, the training process aims to adopt the parameters such that the 

loss is minimized over all training samples. Thus, we search the function f parametrized 

by w, which minimizes the loss 𝑄(𝑥, 𝑦, 𝑤)  =  𝑙( 𝑓𝑤(𝑥), 𝑦) averaged over the examples 

(i.e. pairs of 𝑥 and 𝑦). A standard technique for solving nonlinear optimizing problems is 

gradient descent [29]. Gradient descent iteratively adopts variables towards the direction 

of the negative gradient. This way a local minimum can be found. The learning rate 𝛾 

determines the steps size of each adaptation. 

𝑤𝑡+1 =  𝑤𝑡 −  𝛾 
1

𝑁
∑ ∇𝑤

𝑁

𝑛=1

𝑄(𝑥𝑛𝑦𝑛𝑤𝑡) =  𝑤𝑡 − ∆𝑤𝑡 

where: 

𝑤 are the weights 

𝛾 is the learning rate 
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𝑄 is the loss function 

𝛻𝑤 is the gradient w.r.t. w 

∆𝑤𝑡 is the weight update 

N number of samples 

According to the equation, the weight update ∆𝑤𝑡 incorporates all training samples 

{(𝑥𝑖, 𝑦𝑖)}. 

 

An abreviation of gradient descent is the stochastic gradient descent method [4]. 

Stochastic gradient descent shows its strengths when the training set is very large. Instead 

of computing the gradient based on all samples, only one or a few randomly chosen 

samples are considered. The updated weight 𝑤𝑡+1 in the following equation is based on 

a randomly chosen example 𝑥𝑡. 

 

𝑤𝑡+1 =  𝑤𝑡 −  𝛾𝑡 𝑄(𝑥𝑛𝑤𝑡) =  𝑤𝑡 −  ∆𝑤𝑡 

where: 

𝑤 are the weights 

𝛾 is the learning rate 

Q is the loss function 

𝛻𝑤 is the gradient w.r.t. 𝑤 

∆𝑤𝑡 is the weight update 

An extension of stochastic gradient descent is momentum [29]. Momentum helps to speed 

up the learning process by adding a fraction m of the previous weight update. 

𝑤𝑡+1 =  𝑤𝑡 − (∆𝑤𝑡 + 𝑚∆𝑤𝑡−1) 

where: 

𝑤 are the weights 
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∆𝑤𝑡 is the weight update 

𝑚 is the momentum parameter 

If both weight updates point towards the same direction the step size is amplified. In case 

of changing gradients momentum smooths out the variations and provides stability. 

By providing training samples 𝑥 and 𝑦, a single layer perceptron can be optimized by any 

gradient descent variant. This is because the input and outputs of the single weight layer 

are known. Therefore the delta term or error 𝑦 ̂ − 𝑦 is directly computable. This is not the 

case for networks including hidden layers. 

This fact is the motivation for applying the so-called backpropagation algorithm [29]. In 

order to adjust the parameters of hidden layers the error is propagated subsequentially  

ack through the net. This process is called backward pass. The parameter adjustment (i.e. 

the delta term) of layer 𝑙 depends on the activation of the same layer, the weights and the 

delta terms of the subsequent layer 𝑙 + 1. The activations are determined during the 

forward pass. In this way the partial derivatives w.r.t. the parameters of each neuron can 

be determined (chain rule). Gradient descent uses these delta terms for updating the 

parameters.  

Dropout invented by Hinton et al. is another powerful regularization tool for training 

neural networks [17]. For each iteration dropout randomly turns off a portion of neurons 

(see Figure 2.4). 
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Figure 2.4: Demonstration of dropout technique in a neural network 

 

Source :  Hinton G. E., Srivastava N., Krizhevsky A., Sutskever I and Salakhutdinov R. R., “Improving 

neural networks by preventing co-adaptation of feature detectors,” July 2012. 

The effect of dropout applied on a simple neural network demonstrated in Figure 2.3. 

Dropout randomly removes a portion of connections between subsequent layers and 

produces a thinned network [35]. 

That way each hidden unit is encouraged to learn meaningful features without relying to 

much on other hidden units. More precisely, randomly chosen submodels are trained, thus 

comparable to ensemble learning. At test time the predictions are averaged. This leads to 

significantly better generalization [35]. 

Neural networks trained by the backpropagation algorithm suffer from the socalled 

"vanishing gradient problem" [18]. Especially for very deep networks this effect is even 

amplified. For example the gradient ℎ’(𝑥) of the sigmoid function ℎ(𝑥)  =

 (1 +  𝑒𝑥𝑝(−𝑥))−1 tends towards zero as |𝑥| increases. This cumbers the learning 

process and limits the network size for end-to-end training. In practice this problem is 

attenuated by using ReLUs, careful initialization [11][15] and small learning rates. 

(a) Before dropout (b) After dropout 
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Furthermore, very deep networks are usually trained step by step i.e. the size of the 

network is gradually increased [33].  

Parametric ReLUs (PReLU) include an adjustable slope for the negative part. This slope 

can be controlled by a factor 𝑠𝑖. 

ℎ(𝑥) = max(0, 𝑥) + 𝑠𝑖min (0, 𝑥) 

where 

 𝑠𝑖 factor to control slope for the negative part 

He et al. have recently shown that learning the PReLU parameter 𝑠𝑖 together with an 

improved random initialization helps end-to-end learning of large networks [15]. Another 

attempt for preventing the "vanishing gradient problem" was described by Ioffe and 

Szegedy [18]. They normalize the inputs of the activation functions such that the 

distribution remains stable during training. 

 

2.3.2 Convolutional Neural Networks  

In the previous section the main ideas of feed-forward networks were introduced. A 

Convolutional Neural Network (CNN) is a special kind of feed-forward neural network. 

CNNs are inspired by the biological processes of visual perception. Therefore CNNs are 

mainly used for image and video applications. In principal there are three extensions that  

distinguishes a CNN from a simple feed-forward network: weight sharing, spatial pooling 

and local receptive fields. 

The input of a CNN is processed patch-wise by a number of learned convolutions. With 

the help of these convolutions various filter techniques can be applied e.g. blurring, edge 

or corner detection. Discrete convolutions are calculated by shifting a filter mask over the 

input image and calculating the sum of products. The result is written to the current center 

of the mask. These filter masks produce the so-called local receptive fields. Intuitively 

they define the image crops that a neuron actually "see". In terms of neural networks the 

entries of the filter masks correspond to the weights of the neurons and the filter size 

defines the connectivity between neurons of subsequent layers. 
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Since many filters are applied several feature maps are obtained. All neurons of a feature 

map share the same weight matrix. This property is called weight sharing. 

Figure 2.5: Visualization of exemplary filter responses taken from a CNN that has                                                                                                         

.                   three hidden layers. Each filter responds differently to the input. 

 

Source : Zeiler M. D. And Fergus R., “Visualizing and understanding convolutional networks,” Nov. 2013 

Weight sharing contributes to the property of shift invariance, since the same 

convolutions are applied to the entire input image. At the same time weight sharing 

reduces the amount of free parameters dramatically. This makes the net much easier to 

train and has a strong regularization effect. 

The learned filters expose different kind of visual features. Investigations by different 

researchers have shown that the early layers typically capture very simple features, similar 

to gabor filters and color patches [40] [27]. These features are very general and therefore 

apply to many use-cases. In contrast the features of higher layers are more abstract and 

reflect the gist of the learned classes. Exemplary filter responses of an early convolutional 

layer are shown in figure 2.5. 
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Figure 2.6: This example demonstrates the effect of max and average pooling. 

 

Another important component of CNNs are pooling layers. Typically the data is sub-

sequentially downsampled by combining spatial pools to a single value. Pooling reduces 

the feature space and grant a small amount of translational invariance. This is due to the 

fact that neurons within a region are mapped onto a single neuron. Frequently used 

pooling operations are avarage and maximum pooling (see Figure 2.6). A more recent 

method is stochastic pooling [41], which serves as an regularizer similar to dropout.  

So far the feature maps cover a two-dimensional space. For high-level reasoning, such as 

classifying an image, a one-dimensional representation is needed. This can be achieved 

by a fully connected layer. In fully connected layer, each neuron is connected to all 

neurons of the previous layer. Thus, fully connected layers aren’t spatially located 

anymore. The one-dimensional output, is suitable for a traditional multi-layer perceptron 

classifier. 

Max. Pooling 

Avg. Pooling 
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CNNs, in recent years, became popular in image classification tasks [21] [33]. Many 

models are shared within the researcher community, which makes it possible to follow 

up and adopt the networks to other classification problems. This process is called 

"finetuning". Initializing from pretrained weights works well for many cases. Even a 

model trained on a very distant task is often a better starting point than initializing from 

random numbers (like "xavier" [11] or "msra" initialization [15]). One reason for this is 

that features of early layers are in fact very general. Yosinksi et al. investigated on the 

question of transferability [39]. Deep Learning Frameworks such as Caffe facilitate the 

transferal of learned weights. 

After the great success of CNNs for image classification, the natural next step was to 

apply CNNs to local tasks, such as bounding box detection [10] [12] [13], local 

correspondence [25] or semantic segmentation [9] [10] [12] [13]. 

Even though the results for semantic segmentation tasks yield new record accuracies on 

various datasets, the methodologies had some major drawbacks. A common approach was 

to identify clusters in the image, which may hold the desired objects ("region proposals"). 

All clusters are then classified independently. The results are then merged to obtain a 

segmentation mask. This approach requires extensive preand post-processing, making it 

unsuitable for end-to-end training and includes a considerable overhead. In addition, the 

clustering result is likely to be suboptimal. A fully visible object may be divided into 

several regions. 

Therefore it was a huge improvement, when Long et al. developed a new net architecture 

for semantic segmentation namely "Fully Convolutional Neural Networks" (FCNN) [24]. 

 

2.3.3 Fully Convolutional Neural Networks 

In 2014 Jonathan Long, Evan Shelhamer and Trevor Darrell published the paper "Fully 

Convolutional Networks for Semantic Segmentation" [24]. They presented a new neural 

network archiecture for pixel-wise prediction. There are several advantages compared to 

previous works. A FCNN processes whole-images and produces dense predictions in the 

form of probability maps. The training can be applied in an end-to-end behavior and 

densely labeled images are required for supervision. 
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Figure 2.7: A Fully Convolutional Neural Network (FCNN) 

Source : Long Jonathan, Shelhamer Evan and Darrell Trevor. “Fully Convolutional Networks for Semantic 

Segmentation”. 

A fully convolutional neural network processes the entire image to make pixelwise 

predictions of the same size as the input image. The network is trained end-to-end by 

backpropagation and a pixel-wise loss (see Figure 2.7). This requires dense ground truths 

for supervised training. 

Another advantage is the ability to re-interpret existing classification nets as a FCNN. 

Therefore a FCNN can benefit from pre-trained CNN models. In order to convert a CNN 

into a FCNN, we need to replace the inner layers (fully connected layers) by convolutions 

with a kernel size of 1x1 (see Figure 2.8). 

While the fully connected layer of an image classification net completely discards spatial 

information and delivers only one feature vector for the entire image, the fully 

convolutional layer produces a feature vector for every pixel. Based on this feature map 

a pixel-wise classification can be performed. This yields a probability map for each class. 

To restore the original image dimensions this map is upsampled by so-called 

deconvolutions. Depending on the weights, a deconvolution can serve as a bilinear 

interpolation.  
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Figure 2.8: Classification at image-level versus pixel-level 

Source : Long Jonathan, Shelhamer Evan and Darrell Trevor. “Fully Convolutional Networks for Semantic 

Segmentation”. 

In order to retain spatial information, we can "convolutionalize" a network by replacing 

fully connected layers by convolutions. As you can see in Figure 2.8, the main difference 

is fully connected layers at the end of the network. 

While pooling improves classification accuracy, it partially neglects spatial information.  

This is a drawback as it limits the spatial accuracy of the segmentation. The VGG16- and 

Alex-net for example include 5 pooling layers of stride 2 [33][21]. In total this results in 

downsampling by factor 32 (25). In general this leads to coarse segmentation maps. Very 

small objects aren’t even considered at all. 

To solve this issue they use a so-called "skip" architecture (see Figure 2.9). By fusing 

predictions of different strides they are able to refine the segmentation maps. In addition 

to the classification based on the 32-stride feature map, they do the same for the outputs 

of earlier pooling layers and fuse the classification scores by taking the element-wise sum. 

Of course such an element-wise operation affords inputs of the same size. Thus, the 

smaller prediction maps must be interpolated accordingly. 
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Figure 2.9: This figure illustrates the "skip" architecture developed by Long et al.. 

Source : Long Jonathan, Shelhamer Evan and Darrell Trevor. “Fully Convolutional Networks for Semantic 

Segmentation”. 

To keep the net-representation compact, only pooling and classification layers are shown 

in Figure 2.9. All intermediate convolution layers are omitted. The coarsest prediction is 

based on pool5 only (solid line) and is called FCNN-32s. The FCNN-16s version (dashed 

line) first upsamples stride 32 predictions by a factor of 2 and then combine the output 

with the predictions of pool4. The FCNN-8s variant (dotted line) combines predictions of 

stride 32, 16 and 8. 

This way they obtained new state-of-the-art results on several data-sets. However, this 

method left enough space for improving the spatial accuracy. Noh et al. achieve finer 

predictions by learning a deconvolution network [30]. The general idea is to extend a 

convolutional network by its mirrored counterpart. By learning the inverse operations 

(pooling vs. unpooling, convolution vs. deconvolution) it’s possible to produce a finer 

segmentation. 

 

2.4 TEXTURE MAPPING 

In the field of computer graphics, texture mapping is a common and popular technique to 

improve the appearance of computer generated images [16]. 

The main motivation is to create a map between a 3D model and a 2D image. In this 

plane, each point of the outer space at a pixel is connected to the original image. 

Declaration a parametric surface [3,5] was the purpose of previous algorithms to create 

that maps. The implementations of these algorithms for polygonal meshes are not 
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successful to apply texture mapping and therefore such statements are not common 

nowadays. 

In order to find an optimal solution for this problem, we need to find a layer that it should 

have a simple shape. This layer will be effective for the mapping between texture area 

and our 3D model surface [2].  Due to the non-linearity of texture maps, these algorithms 

often yield high deformation results [22]. In order to obtain more efficient mapping 

results, a number of optimization algorithms have been developed [1,22–28,31–34,36].   

A new technique has been developed by Devich and Weinhaus [38] and other researchers 

[20]. This technique, known as projective texture mapping, reflects the texture map (ex. 

a panoramic image) onto the geometry. This technique does not use a fixed texture unlike 

the old techniques. 

In this work, we developed a texture mapping application based on images, without using 

3D models. We have seen it very successful when we use this method on fabric-covered 

objects such as pillows or sofas. To succeed in practice, we have created an interactive 

texture grid on segmented objects. Texture distortion is not a problem because of the 

relationship between the grid and texture visual is in linear-form. 

It is estimated that final result will be successful in internet or desktop applications. No 

requirement for a 3D model is a big reason for this conjecture. Moreover, the efficiency 

of computational calculation will also provide easy adaptation. In general, we foresee that 

this method will be used in the interior presentation of apparel products. This technique 

does not require any user interaction. Using the result of image segmentation, a texture 

mapping is done automatically which we will give details of this process in next chapter.  

 

2.4.1 Bilinear Interpolation 

Bilinear interpolation is expressed as a method of transforming a square into a 

quadrilateral. As can be seen in Figure 2.10, the first step of this transformation can be 

expressed as follows: along the bottom and top sides of the quadrilateral linearly 

interpolated by fraction 𝑢. The second step is linear interpolation by fraction 𝑣 between 

points that interpolated to form target point (𝑥, 𝑦) 
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Figure 2.10 Bilinear interpolation 

 

 

(𝑥, 𝑦) = (1 − 𝑢)(1 − 𝑣)𝑝00 + 𝑢(1 − 𝑣)𝑝10 + (1 − 𝑢)𝑣10 + (1 − 𝑢)𝑣𝑝01 + 𝑢𝑣𝑝11 

The matrix notation form is: 

(𝑥 𝑦) = (𝑢𝑣 𝑢 𝑣 1) [

𝑎 𝑒
𝑏 𝑓
𝑐 𝑔
𝑑 𝑓ℎ

] 

The matris that contains 8 coefficients from the 4 points correlation can be computed as 

follows : 

 

[

𝑎 𝑒
𝑏 𝑓
𝑐 𝑔
𝑑 ℎ

] =  [

1 −1 −1 1
−1 1 0 0
−1 0 1 0
1 0 0 0

] [

𝑥00 𝑦00

𝑥10 𝑦10

𝑥01 𝑦01

𝑥11 𝑦11

] 

This mapping transforms a unit square into the general quadrilateral 𝑝00, 𝑝10, 𝑝11, 𝑝01 . 
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Figure 2.11 : Example of bilinear interpolation operation on a quadrilateral grid. 

 

 

 

 

 

 

In this chapter, we have provided background information on image segmentation and 

texture mapping techniques. In the next chapter, we combine these two concepts in an 

architecture that automatically process texture mapping after an image segmentation task.  
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3. METHODOLOGY 

In this work, we design an architecture that can efficiently perform image segmentation 

and texture mapping simultaneously. This is done by incorporating three main tasks into 

a unified architecture. The first task is performing image segmentation and create a black 

and white mask (binary mask) image. The white colour corresponds to the object that was 

segmented. The second main task is to create a 2D grid (mesh) on the object. This grid is 

the 2D model of the segmented object. The final step is applying texture mapping with a 

sample texture (fabric) to the target area. We will provide detailed information on each 

step in the next chapters. 

 

Figure 3.1 Demonstration of main steps of architecture that built for this work. 

 

 

Figure 3.1 shows the key steps for a stand-alone texture mapping architecture of an object 

in the input image. The first picture is the input image that user uploads to the system. 

The first step is the only user interaction in the system. The second image is the output of 

the image segmentation process. We see the generated texture grid in the third picture 

after segmentation. The last picture is the final result of texture mapping of the object that 

was segmented automatically. 

 

Input Image
Image 

Segmentation Grid Generation
Texture 
Mapping
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3.1 IMAGE SEGMENTATION 

In this chapter, we describe the deep learning framework which was used to learn the 

semantic segmentation of images from the new ground truth datasets, which were 

generated for this work. 

Fully convolutional neural network (FCNN) was used as an architecture for learning 

semantic information. We gave detailed information of fully convolutional neural 

networks in chapter 2.3.3. In summary, FCNN is a neural network architecture that was 

implemented by Long et al. [24] in 2015. FCNN’s were proposed to model semantic 

segmentation using a deep learning pipeline that can be trained end-to-end.  

 

3.1.1 Preparing Training Data 

In order to process segmentation on clothing, apparel products or pillows, a custom 

dataset created manually. This dataset contains 250 black and white hand generated 

images.  White colour represents the object that needs to be segmented. Figure 3.2 shows 

an overview of original and labelled images side by side. 

 

Figure 3.2 : Overview of ground-truth images that aligned together. 
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In Figure 3.2 we see some examples of training images which prepared for this work. For 

each sample pillow image, a black and white ground-truth image generated by a graphics 

software. As we only interested in the main object, our training images consist of two 

colours which are black and white. 

 

Table 3.1 Distribution of ground-truth data for training 

Dataset Number of images 

Training 200 

Testing 25 

Validation 25 

 

 

Figure 3.3 : Utilization of the our training dataset. 

Training = 80% Validation = 10% Testing = 10% 

 

 

 

 

 

 

 

 

 

 

Training for parameter 

optimization 

Evaluation of parameter 

optimization 

Training for final 

evaluation 
Final evaluation 
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In this work, we split training data into three parts as training (%80), validation (%10) 

and test (10%). All datasets subsampled with random selections. This dataset is fairly 

small compared to common deep learning datasets. Thus the network has to transfer as 

much knowledge as possible from pre-training. Details of pretraining explained in next 

chapter. 

 

3.1.2 Neural Network Consideration 

The experiences and results of other researchers are important to find a good starting point 

for choosing the model architecture. Mainly based on the work of Long et al. [24] various 

experiments have been carried out to find a way to improve the system in general or to 

adapt it to certain circumstances. 

Simonyan and Zisserman describe network architecture with up to 19 weight layers in 

their work "Very deep convolutional networks fo large-scale image recognition" [33]. 

The research groups of Long and Zheng used the pretrained model of the 16 layer version 

visualized in Figure 3.4. This network is known as "VGG16", as it was developed by 

Oxford’s "Visual Geometry Group" and has 16 weight layers. Figure 3.4 illustrates the 

topology of the network. 

Characteristic for VGG-16 is an architecture that uses relatively small convolutional 

filters, mainly of size 3×3. These small filters result in convolutional layers with relatively 

few learnable parameters. This allows combining convolutional layers following each 

other while still yielding neural network models that can be trained in reasonable time. 

The VGG-16 architecture, composed of 16 layers in the ImageNet competition in 2014, 

achieved a very successful classification result. [32]. There are 1000 object categories in 

this competition. 
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Figure 3.4 Illustration of the "VGG16" net-architecture. 

Source : Simonyan K. and Zisserman A., “Very deep convolutional networks for largescale                

.             image recognition,” Sept. 2014. 

 

3.1.3 Segmentation Using FCNN 

FCNN architecture which is used in this work is eventually based on the famous VGG-

16 network [33]. Long et al. [24] transformed VGG-16 into FCNN, a fully convolutional 

neural network. They did so by transforming VGG-16’s fully connected layers into 

convolutional layers and by adding deconvolutional layers, which upsample the data back 

to the original input image resolution. In addition, they added three so-called "skips" to 
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the FCNN architecture, which fuse spatial information from shallow FCNN layers with 

semantic information from deep FCNN layers to obtain the better semantic segmentation 

of images. Figure 3.4 illustrates the architecture of FCNN. The name of FCNN-8s refers 

to the neural network layer Pool 3, which has the highest spatial resolution among those 

three neural network layers of FCNN-8s which are used in a "skip". Pool 3 has a spatial 

resolution that is roughly 8 times lower than the original input image spatial resolution. 

When evaluated on a PASCAL VOC 2011 subset, semantic segmentation dataset [8], 

FCNN achieved state-of-the art segmentation results [24]. The number of feature 

channels, which are used in the upper parts of FCNN, correspond to the number of 

different object labels, which are learned. In Long et al. [24], the number of feature 

channels is either 21, 33, 40 or 60 depending on the dataset which was used for learning. 

In FCNN, rather than producing one dimensional predictions, this leads to two-

dimensional predictions i.e. the segmentation maps. In this work, the number of different 

object labels are always 2 (object and background).  

 

Figure 3.5 Representation of the FCNN that was used in this work. 

 

As shown in Figure 3.5, we take the VGG16 architecture and convert fully connected 

layers to 1 x 1 convulation layers to get 39 x 12 sized segmentation features. Three 

upsampling layers followed as a next step to produce 1248 x 384 output image with two 

channels. These two channels represents segmented object and background. 

 

3.1.4 Training And Evaluation 

FCNN initialized using pretrained VGG weights on ImageNet [33]. ImageNet visual 

recognition dataset consists of 14 million images belonging to 1000 categories. The 

researchers from the Oxford Visual Geometry Group, or VGG for short, made their 

Input

1248x384x3

VGG16

13 Conv. 
Layers

Encoded 
Features

39x12x512

FCNN

3 
Upsampling 

Layers

Prediction

1248x384x2
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models and learned weights available online. This allowed us to use an advanced image 

classification model in our architecture. In Figure 3.6, we show a sample of segmentation 

result for a sofa object before training. “Sofa” is one of the classes of ImageNet dataset. 

Figure 3.6 Segmentation result of VGG network with pretrained model 
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The convolutional layers of the segmentation network initialized using VGG weights and 

the transposed convolution layers are initialized to perform bilinear upsampling. The skip 

connections, on the other hand, are initialized randomly with very small weights (i.e. std 

of 1𝑒 −  4). This allows us to perform training in one step (as opposed to the two step 

procedure of [24]). 

  Figure 3.7 : Logs of our training after six hours on NVIDIA M2000 GPU 
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Our segmentation architecture is trained with our custom dataset. This dataset is very 

small, providing only 200 training images. Thus the network has to transfer as much 

knowledge as possible from pre-training. Note that the skip connections are the only 

layers which are initialized randomly and thus need to be trained from start. This transfer 

learning approach leads to very fast convergence of the network. As shown in preceding 

tables, the raw scores already reach values of about 90 % after only about 4000 iterations. 

Training is conducted for 16.000 iterations to obtain a meaningful median score. 

The segmentation performance is measured using the F1 score. The F1 score is a 

measurement method used for the classification in statistics field. Recall and precision 

values are important to calculate F1 score. Positive correct results divided by the total 

number of positive results equals “precision”. Positive correct results divided by positive 

results equals “recall”. The harmonic average of the recall and average scores defines F1 

score. The worst case of the F1 score is 0 and its top/best value is 1 which we call it 

perfect recall and precision.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
  ,  𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑝

𝑡𝑝+𝑓𝑛
 

where: 

𝑡𝑝 is the number of true positives 

𝑓𝑝 is the num of false positives 

𝑓𝑛 is the num of false negatives 

 

Thus, 𝐹1 score calculated as : 

𝐹1 =  
2 .  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  .  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

In addition, the average precision score is given for reference. Classification performance 

is evaluated by computing accuracy and precision-recall plots. 
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Table 3.2 : Validation performance - Max F1 (Raw) 

 

 

 

Table 3.3 : Validation performance – Average Precision (Raw) 
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In order to show result in a linear form, values smoothed using linear regression method. 

In Table 3.4, we show smoothed results of Max F1 score. Smoothed Avarage Precision 

values are shown in Table 3.5.      

 

Table 3.4 : Validation performance – Max F1 (Smooth) 

 

 

 

 

        Table 3.5 : Validation performance – Avarage Precision (Smooth) 
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Figure 3.8 Evaluation samples after training for six hours in our FCNN. 
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        Figure 3.9 Evaluation samples of our fully convolutional neural network. 
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3.2. GRID GENERATION 

As this work does not need any 3D model for the segmented object, a 2D grid needed for 

texture mapping. Before creating the texture grid, four corners of the segmented object 

calculated using the FAST corner detection algorithm [46]. 

FAST (Features from Accelerated Segment Test) has a working principle that there 

should be 𝑛 pixels surrounded by a corner candidate p. 

 

Figure 3.10 :  FAST corner detection simulation for a segmentation result. The pixel 

.                      at p is a candidate corner which is at the center. 

 

 

The working principle of this algorithm relies on n pixels around a candidate corner 𝑝 

such that this pixel should be surrounded by n pixels that have a brighter or darker color. 

Surrounded pixels around corner  𝐼𝑝 are brighter if 𝑙𝑝 + 𝑡 or lighter if 𝑙𝑝 − 𝑡  where 𝑡 is 

the threshold value. As you can see in Figure 3.8, the 𝑛 parameter is 16. When looking at 

points 1,5,9 and 13, it can be seen that the number 16 selected to effectively identify 

corner candidates. In order to estimate if p is a corner, it must be a lighter color of at least 

3 points 𝑙𝑝  +  𝑡. Conversely, it should be at least 3 points 𝑙𝑝 − 𝑡 darker color. If these 
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conditions are not met, this point is not considered a corner. This method applies the same 

comparisons to the other candidate corner points. The texture grid is calculated based on 

the four boundary lines which calculated by four detected corners in previous task. In first 

step, horizontal and vertical lines were used to calculate the texture grid. 

 

Figure 3.11 : Generated 10x10 grid on segmented object. 
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In order to calculate the mesh lines with interpolation, parameters must be determined.  

If 𝐿𝑖 expresses a mesh line in the whole mesh, we can formulate  𝐿𝑖 as : 

𝐿𝑖 =  {
𝑋𝑖 (𝑡)
𝑌𝑖 (𝑡)

  

There are 𝑛 𝐿𝑖 lines in the grid and for 𝐿𝑖 that we should calculate 𝑡 parameter on this 

line. Starting from the starting point of the line, we need to calculate the 𝑡 parameter for 

each mesh intersection. In short, we know that how many 𝑡 parameters can be calculated 

by dividing the line length by the number of horizontal/vertical meshes. After computing 

the number 𝑡, it can be seen that there are 𝑋𝑖(𝑡) and 𝑋𝑖(𝑡) coordinate points on each line. 

Thus, the values of 𝑡 on the line 𝐿𝑖 are computed. Since the generated grid lines are 

modelled completely by the segmented image, the composition of both vertical and 

horizontal lines are calculated. The final result will be the mesh of segmented image. 

Since the horizontal and vertical calculations are almost identical, we will only give 

information about the calculation of horizontal lines. As mentioned earlier, mesh lines are 

calculated by linear interpolation. During this process, weights must be formulated for 

each row. if the number 𝑚 is considered to represent the number of lines, the weight 

𝑤𝑔1, 𝑤𝑔2, … , 𝑤𝑔𝑚 must be calculated. Hence, the entire length 𝑚 is divided into equal 

parts and [𝑤1, 𝑤𝑚] is calculated. If we need to formulate the weight of the 𝑤𝑔𝑗 on the line: 

 

𝑋𝑗(𝑡) =  

∑
𝑋𝑖(𝑡)

|𝑤𝑖 −  𝑤𝑔𝑗|
𝑛
𝑖=1

∑
1

|𝑤𝑖 −  𝑤𝑔𝑗|
𝑛
𝑖=1

 , 𝑌𝑗(𝑡) =  

∑
𝑌𝑖(𝑡)

|𝑤𝑖 −  𝑤𝑔𝑗|
𝑛
𝑖=1

∑
1

|𝑤𝑖 −  𝑤𝑔𝑗|
𝑛
𝑖=1

 

 

In this formula, Xi(t) and Yi(t) values for each mesh intersection point 𝑡 on the line 𝐿𝑖 

are represented. Each line is divided into 𝑛 grid lines. A sample grid is shown in Figure 

3.9.  
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As we divide each line into uniform spaced grids, the parameter set is : 

{𝑖/𝑁 − 1|𝑖 = 0,1, … (𝑁 − 1)} 

where 

 𝑁 columns count 

In Figure 3.10 we can see the vertical and horizontal lines that were calculated using 

linear interpolation method which we gave details above. 

 

Figure 3.12 : Generated final grid with parameters rows=50 and columns=50. 
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3.3 TEXTURE MAPPING 

To calculate texture coordinate of a point on the target picture, we need the texture grid. 

The texture grid will be created on the segmented object area. The details of generating 

the grid explained in section 3.2. When our grid is ready, the texture coordinate of the 

(𝑖, 𝑗) point is :  

𝑦𝑡 =
𝑖

(𝑟 − 1)
 

 𝑥𝑡 =
𝑗

𝑙 − 1
 

where : 

 r is the number of rows, 

 l is the number of columns, 

 

Figure 3.13 : Calculating texture coordinates 

 

 

The four vertexes are important for a pixel inside quadrilateral to figure out coordinates 

of the texture. The four vertexes V1, V2, V3, V4 coordinates should be calculated for a 
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proper mapping purpose. For every grid point in our grid,  bilinear warp technique 

converts original texture to desired grid coordinates. In Figure 3.12 we can see the final 

texture after warping. 

 

Figure 3.14 : Mapping a sample seamless texture image to calculated grid. 

 

In figure 3.13 we show the final appearance of the image that was segmented. After the 

combination of calculated texture with the original image, we get a realistic mapping 

result. To produce such realistic effect we use “Image Composition” library of 

ImageMagick open source project. The parameters are:  

convert.exe -compose copy_opacity -composite -compose over  

-background transparent -flatten original.jpg texture.jpg 

 

 

Figure 3.15 : Combining final texture with original cropped image. 
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4. SIMULATION EXAMPLES 

In this chapter we show examples of final result of this work. Sample sofa and pillow 

photos segmented with our fully convolutional neural network. For each segmented 

object, texture mapping done automatically by our mapping algorithm. In the left-bottom 

corner of each sample, we show generated grid and fabric texture. 

 

Figure 4.1 : Simulation of texture mapping after segmentation 
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Figure 4.2 : Simulation of texture mapping after segmentation 
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Figure 4.3 : A sample of texture mapping implementation after segmentation 
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   Figure 4.4 : A  full sofa  demonstration  with  two  separate  segmented  pillows   
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5. CONCLUSION 

We have combined two main tasks such as “Image Segmentation” and “Texture 

Mapping” into a unique architecture that automatically runs without human interaction. 

Our image segmentation process, which uses fully convolutional neural network is simple 

and can be trained end-to-end. Segmentation results perform well with custom training 

data.  

We have implemented texture mapping on a texture grid to visualize apparel products 

such as pillows, sofas and so on. The texture grid which calculated on segmented object 

act as a 3D model for our texture mapping process. 

Our final results have proven that our system can be a good showcase for the final 

appearance of clothing and apparel products inside of interior spaces. We have found that 

creating a texture grid and applying texture mapping technique to the segmented object 

is very effective.   

Future work needs to be conducted on partially-hidden objects in a picture. Generating 

autonomous texture grid for a partially-hidden object is another challenging task. To 

succeed in this task, training pictures with corresponding ground-truth 3D Models could 

be a possible solution. Obtaining orientation and angle of the model can act as a guide for 

partially-hidden objects.    
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