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ABSTRACT 
 
 

FINE-TUNING CONVOLUTIONAL NEURAL NETWORKS FOR MARITIME 
VESSEL CLASSIFICATION, VERIFICATION AND RECOGNITION 

 
 

C. Deniz Gürkaynak 
 

Computer Engineering 
 

Thesis Supervisor: Prof. Nafiz ARICA 
 
 

May 2018, 47 Pages 
 

 
Autonomous maritime vessel surveillance systems have enormous implications to 
national defense and global supply chain. Therefore, ship detection and classification 
problems have been widely studied for a long time. Most of the studies have used 
satellite imagery, the real-time satellite imaging access is not public and image 
resolutions is insufficient for high-quality classification and recognition systems. As an 
alternative approach, consumer-level surveillance cameras have attracted great attention 
recently due to its cost-effectiveness and easy installation process. 
 
Recently, deep learning has become the state-of-the-art method in computer vision field. 
Deep network architectures have emerged by surpassing human-level accuracy on 
image classification problems. Many old but powerful ideas have been revised and 
applied to these networks in various computer vision problems. However, the 
applications of deep learning methods in the analysis of maritime vessel images are 
limited in the literature. In this thesis, we employ the state-of-the-art deep network 
architectures for maritime vessel classification, verification and recognition problems. 
 
In the experiments, the most popular three convolutional neural network architectures; 
AlexNet, VGGNet and ResNet are used. MARVEL dataset is utilized for benchmark 
purposes, which contains 2M ship images. Since these networks are very difficult to 
train and they require lots of training samples, we follow transfer learning approach. 
The main contribution of this thesis is the implementation, tuning and evaluation of 
specific applications for maritime vessels domain. For classification task, we conduct 
experiments on different transfer learning techniques and we investigate their 
performance by transferring the weights layer by layer. We reach the state-of-the-art 
results by fine-tuning VGG-16 architecture. For both verification and recognition tasks, 
we use triplet loss heavily inspired by recent advances in the field of face verification 
and recognition. We achieve closely comparable state-of-the-art results on MARVEL’s 
both verification and recognition benchmarks.  
 
Keywords:  Convolutional Neural Networks, Transfer Learning, MARVEL, Ship 

Classification, Ship Recognition



 v 

ÖZET 
 
 

EVRİŞİMLİ SİNİR AĞLARINDA EĞİTİM TRANSFERİ İLE GEMİ 
SINIFLANDIRMA, DOĞRULAMA VE TANIMA 

 
 

C. Deniz Gürkaynak 
 

Bilgisayar Mühendisliği 
 

Tez Danışmanı:  Prof. Dr. Nafiz ARICA 
 
 

Mayıs 2018,  47 Sayfa 
 

 
Otonom denizcilik gözetleme sistemleri milli güvenlik ve küresel ticaret zinciri 
alanlarında büyük önem taşımaktadır. Bu yüzden gemi sınıflandırma ve tanıma 
problemleri üzerine oldukça uzun zamandır çalışılmaktadır. Bu konudaki çoğu araştırma 
uydu görüntüleri üzerine yapılmış, fakat uydu görüntüleme sistemleri herkesin 
kullanımına açık değildir ve çözünürlükleri yüksek kalite sınıflandırma ve tanıma 
yapmak için yetersiz kalmaktadır. Buna çözüm olarak son zamanlarda standart güvenlik 
kameraları uygun maliyetleri ve kolay kurulumları ile dikkat çekmektedir. 
 
Derin öğrenme son yıllarda çok hızlı ilerlemeler katederek bilgisayarlı görü alanındaki 
en gelişmiş teknik haline gelmiştir. İmge sınıflandırma problemlerinde insan 
seviyesinden daha iyi başarım gösteren derin mimariler ortaya çıkmış, yapay zeka 
alanında uzun zamandır var olan fikirler bu mimarilere bazı bilgisayarlı görü 
problemleri için adapte edilmeye başlanmıştır. Fakat literatürdeki gemi imgelerinin 
analizi konusunda derin öğrenme uygulamaları sınırlı kalmaktadır. Bu tez kapsamında; 
gemi sınıflandırma, doğrulama ve tanıma görevleri için derin öğrenme alanındaki en 
gelişmiş teknikler kullanılacaktır. 
 
Deneylerde, literatürdeki en popüler üç evrişimli sinir ağı olan AlexNet, VGGNet ve 
ResNet mimarileri kullanılmıştır. Eğitim ve test için 2 milyondan daha fazla gemi 
imgesi barındıran MARVEL veri setinden yararlanılmıştır. Ayrıca elde edilen 
sonuçların karşılaştırılması için de aynı makale referans olarak alınacaktır. Bu derin 
mimarilerin eğitimi oldukça zor olup, çok büyük eğitim setlerine ihtiyaç duymaktadır. O 
yüzden bu tezde eğitim transferi yaklaşımı uygulanmıştır. Bu tezde literatüre katkı 
olarak; gemi imge analizi için derin öğrenme teknikleri kullanarak sistemler 
gerçeklenmiş, ince ayarları ve performans analizleri yapılmıştır. Gemi sınıflandırma 
problemi için değişik eğitim transferi teknikleri üzerine deneyler yapılmış ve bu 
teknikler katman katman uygulanarak performansa etkileri araştırılmıştır. VGG-16 
mimarisine eğitim transferi yaparak sınıflandırma probleminde en yüksek başarım elde 
edilmiştir. Doğrulama ve tanıma problemleri için, güncel yüz doğrulama ve tanıma 
sistemlerinden esinlenerek üçlü yitim fonksiyonu kullanılmıştır. Bu problemler 
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kapsamında şu ana kadar yayınlanmış en yüksek sonuçlarla kıyaslanabilir başarımlar 
elde edilmiştir.  

Anahtar Kelimeler: Evrişimli Sinir Ağları, Eğitim Transferi, MARVEL, Gemi 
Sınıflandırma, Gemi Tanıma 
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1. INTRODUCTION 

The maritime vessel classification, verification and recognition are critical and 

challenging problems concerning national defense and marine security for coastal 

countries. These countries have to control the traffic and they are constantly trying to 

improve efficiency on ports for economic growth. There are also other threats such as 

piracy, sea pollution and illegal fishery. Most of these issues are not only related with 

countries individually, but also they need to be considered in a global perspective. 

That’s why the International Maritime Organization (IMO) was established. IMO is a 

specialized agency of the United Nations, whose purpose is to create regulatory 

framework for the safety and security of shipping and also preventing marine pollution 

caused by ships. To follow IMO regulations in ports, marine surveillance and traffic 

control is done by officers in a control center. Since humans are capable of making 

mistakes by nature, the need of autonomous surveillance systems has emerged. These 

systems can be used in control centers for assistance. 

 

Vessel classification is the task of inferring vessel type from a ship image. According to 

IMO’s Convention on International Regulations for Preventing Collisions at Sea 1972 

(COLREGs), the right of way heavily depends on ship types. For instance, a motorized 

vessel should give the right of way to non-motorized vessel such as sailing ship. But 

another set of rules are applied when two sailing ships are encountered. Therefore, 

vessel classification is crucial for Autonomous sea Surface Vessel (ASV) systems to 

navigate without any human interaction. Moreover, seaborne transportation covers more 

than 90 percent of global trade with $375 billion worth and crew costs are estimated at 

about 44 percent of overall costs (Arnsdorf 2014). ASV cargo ships could eliminate 

these costs while creating more space for goods by removing crew cabins and life 

support systems.  

 

Vessel verification task is deciding whether two vessel images belong to same ship or 

not. The main application area of this task is maritime surveillance, where vessel 

passing is strictly tracked in straits and canals. In this kind of applications, two separate 
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camera systems are placed to both entry and exit locations. The images gathered from 

those systems are compared to infer whether the ship is still passing through or it has 

completed its passing. 

 

The goal of vessel recognition task is finding the exact vessel identity for given a ship 

image. This is the hardest problem among the others. While the most of vessels 

belonging the same type look like very similar, these vessels have some unique visual 

characteristics due to customized construction processes. On the other hand, visual 

appearance of carrier vessels heavily depends on the type and amount of the cargo load. 

Vessel recognition systems must be robust enough to these type of variations.  

 

These problems have been widely studied for a long time due to their vital importance. 

Radar is the most commonly used and probably the oldest technology, but it is 

insufficient for classification and recognition. After 1960s, with the advancements in 

space technology and increasing number of specialized satellites, different kind of 

satellite imagery has been used such as optical remote sensing and synthetic-aperture 

radar (SAR) for ship detection and classification tasks. Nevertheless, the number of 

satellites is limited and real-time imaging is not open to public usage. Therefore, 

standard camera based systems have attracted great attention recently. Even though this 

method seems more difficult when compared with satellite imaging because of different 

lighting conditions and perspectives, it is a cost-effective solution and easy to be 

installed on both ports and ships.  

 

In most of studies in the literature, old-school handcrafted features are used. But this 

approach could not satisfy the requirements of real-world application mentioned above. 

Deep learning has become a promising solution to these obstacles. However, deep 

architectures require a lot of training data due to huge number of parameters. To obtain 

good results, these architectures generally need hand-annotated and well-balanced 

datasets with at least a couple of million samples depending on the network capacity 

and problem difficulty. Unfortunately, there is no such dataset for maritime vessels. The 

largest known dataset is MARVEL (Gundogdu-Solmaz et al. 2016), which is used in 

this thesis, and it has 140K unique samples for the classification task. With the 
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accessibility of pre-trained models of the state-of-the-art networks, fine-tuning 

technique has become good option when working with small datasets. 

 

In this thesis; AlexNet, VGGNet and ResNet architectures will be used. All of these 

architectures have proved themselves in the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) on 2012, 2014 and 2015 respectively. ImageNet is a public dataset 

containing over 14M hand-annotated images with more than 22K labels (Deng et al. 

2009). ILSVRC is accepted as one the hardest image classification challenge in 

computer vision community with 1.2M training images within 1000 classes.  

 

For vessel classification, we have taken these three networks which are pre-trained on 

ImageNet, and experimented on fine-tuning by transferring weights layer by layer. Our 

aim is to find optimal training scheme for MARVEL classification dataset. Because 

there are still open questions such as how many layers should be transferred and how 

many layers should be trained. We have trained these architectures from scratch as well 

and compared the results. Additionally, we have made experiments on different dropout 

values and data augmentation techniques to improve our score. 

 

Vessel verification and recognition problems are closely related to another well-studied 

topics; face verification and recognition. The current state-of-the-art face recognition 

systems are using distance metric learning methods like triplet loss and its variants. As a 

result of detailed literature review, this approach has not been applied to vessel 

verification and recognition problems. However, triplet loss comes with own 

difficulties. Batch generation and triplet selection strategies are crucially important. 

Moreover, we have observed convergence issues when training directly with triplet loss. 

To overcome this problem, we have prepared some base models in classification 

training fashion and we have fine-tuned them later with triplet loss. We have also made 

experiments on different embedding sizes, training schemes. 

 

As a result of this thesis, we reach the state-of-the-art results on MARVEL’s 

classification benchmark by fine-tuning VGG-16 architecture. ResNet-50 performs 

quite well as much as VGG-16, while AlexNet gains the worst results. The experiments 
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show that fine-tuning is better approach than plain transfer learning specifically when 

training more layers. For MARVEL’s both verification and recognition benchmarks, we 

achieve closely comparable state-of-the-art results with triplet loss. The best scores are 

obtained when fine-tuning just the embedding layer. As more layers are trained, triplet 

loss causes more distinct separation of positive and negative samples. However, this 

affects outlier area negatively which causes worse performance. 

 

The rest of the thesis is organized as follows. In Chapter 2, the literature survey on 

maritime vessel classification, verification and recognition is covered. Also, the deep 

learning approaches used in this project are reviewed. Chapter 3-4-5 are focused on 

maritime vessel classification, verification and recognition tasks respectively. Finally, a 

conclusion is presented in Chapter 6.  
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2. RELEVANT LITERATURE 

In this chapter, a detailed literature survey on ship classification, verification and 

recognition is conducted. Then, an introduction to neural networks and deep learning is 

given including Convolutional Neural Network (CNN) architectures used in this project, 

followed by distance metric learning and transfer learning techniques. Lastly, we 

explain the details of MARVEL dataset that we use for benchmarking purposes.  

2.1 LITERATURE SURVEY ON MARITIME VESSEL APPLICATIONS 

There are lots of works as an attempt to solve ship detection and classification problems 

by using different technologies. In this section, we will summarize the most notable 

studies in this field.  

 

Since SAR imagery is very robust to varying weather and lightning conditions, ship 

detection task on SAR images have been widely studied. Most of these work use a 

modified version of constant false-alarm rate (CFAR) detection algorithm. CFAR is a 

quite popular target detection algorithm in radar systems, which is designed to work on 

an environment of varying background noise. In radar systems, target detection task is 

simply comparing the signal with a threshold. The real problem is specifying this 

threshold value such that the probability of false positives never exceeds a limit. 

Eldhuset (1996) used Gauss distribution to determine this threshold, Wackerman et al. 

(2014) used k-distribution and Gamma distribution. Hwang (2017) built a preprocessing 

pipeline where the input image is processed by two different processing approaches to 

minimize the negative effects of the SAR image characteristics, resulting with two 

processed images. They fed these two images into a neural network and trained it for 

generating ship-probability map. This map is used for ship detection. As the emergence 

of deep learning architectures recently, Bentes (2017) applied traditional CFAR 

approach as a preprocessing step, then they used four different custom CNN 

architectures to classify 5 different vessel types.  
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For vessel detection and classification tasks on optical satellite imagery, Zhu (2010) and 

Antelo et al. (2010) used traditional machine learning methods like hand-crafted 

features such as shapes and texture, while Tang et al. (2014) proposed auto-encoder 

based automated feature extraction process. Liu et al. (2017) used traditional image 

processing techniques for ship candidate extraction. They trained a custom 4-layer CNN 

with these candidates with quite small dataset 1200 images for detection, 1500 images 

for classification among 10 vessel types. 

 

Zhang et al. (2015) captured both visible (RGB) and infrared (IR) images by using a 

high-end dual camera system. They collected 1088 RGB+IR paired images among 6 

vessel types, and they published this dataset for public usage with the name of VAIS. 

Their motivation behind using IR images is to fix poor performance in night-time. They 

trained VGG-16 and Gnostic Fields with SIFT features. With the ensemble of this 

classifiers, they achieved 87.4 day-time and 61.0 night-time accuracy. 

 

Dao-Duc et al. (2015) created a dataset named E2S2-Vessel. They collected random 

150K ship images from a community-driven website called ShipSpotting. They 

eliminate the images belonging multiple classes, resulting with 130K samples. They 

manually extracted 35 vessel types by merging similar ones. They also noted that the 

dataset is not balanced over all classes. They split the dataset with 80/20 scheme into 

training and test sets respectively. They utilized two modified versions of AlexNet and 

they achieved 80.91 accuracy. However, E2S2-Vessel dataset is not open to public 

usage. 

 

Last and most importantly, Gundogdu-Solmaz et al. (2016) created MARVEL dataset 

which is focused in the last section of this chapter.  

2.2 NEURAL NETWORKS AND DEEP LEARNING 

The history of neural networks is quite old. Rosenblatt (1958) was a psychologist and he 

proposed “the perceptron” which is a mathematical model heavily inspired by biological 

neurons in human brain. As we can see in Figure 2.1, the model has n binary inputs and 

exactly same number of weights. Each input value is multiplied by the corresponding 
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weight. If the sum of these products is larger than zero, the perceptron is activated and it 

outputs a signal whose value is generally +1. Otherwise it is not activated with an 

output value of 0. This is the mathematical model for a single neuron, the most 

fundamental unit for neural networks. 

Figure 2.1: A diagram of the perceptron model 

 
 

Since the perceptron model has a single output, it can perform just binary classification. 

A stronger structure called “a layer” has been formed with connecting many perceptrons 

in parallel fashion. Thus, this enables to work for classification tasks with many 

categories. This structure is called Single-Layer Perceptron or Single–Layer Neural 

Network.  

 

However, single unit perceptrons are only capable of learning linearly separable tasks. 

Minsky and Papert (1969) famously showed that it is impossible for a single layer 

perceptron to learn a simple XOR function. They also stated that this issue could be 

overcame by adding intermediate layers called hidden layers. That architecture is now 

called Multi-Layer Perceptron or Multi-Layer Neural Network. But the real problem 

was that Rosenblatt’s learning algorithm did not work for multiple layers and nobody 

knew how to adjust the weights of hidden layers at that time. After a long stagnation 

period in artificial intelligence field, Werbos (1982) utilized the back-propagation 
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algorithm to train multi-layer neural networks. But its importance wasn't fully 

appreciated until the famous work of Rumelhart et al. (1986).  

 

Cybenko (1989) proved in his universal approximation theorem that a neural network 

with 1 hidden layer can approximate any function, which means it can learn anything in 

theory. However, it is observed that deeper networks worked better in practice. In spite 

of the fact that nobody knows the real reason of this phenomenon, there are two main 

arguments. The first one is that multiple layers create the effect of hierarchical process. 

Therefore, deeper models should learn the desired function by combining several 

simpler functions. On the other hand, the second argument is that the number of units in 

a shallow network grows exponentially with task complexity. So in order to increase the 

capacity of a shallow network that much, the network might need to be very big, 

possibly much bigger than a deep network.  

 

However, researchers did not have widespread success training neural networks with 

more than 2 layers. Because bigger networks require more computing resource, and that 

kind of large computational power is not commonly available at that time. Another 

obstacle is the lack of big and high-quality data. This causes the network to overfit on 

training data, resulting with failing to capture the true statistical properties. But the main 

problem with deep networks is so-called vanishing gradients; the more layers are added, 

the harder it becomes to update the weights because the error signal becomes weaker 

and weaker. Since the initial weights can be quite off due to random initialization, it can 

become almost impossible to learn the true features. 

 

Deep learning era started in 2006. Deep learning is a just popularized name by 

community, emphasizing that researchers were now able to train many layer neural 

networks. There is no exact definition of the term “deep”, but it is often referred for 

having two or more hidden layers. Hinton et al. (2006) proposed a new weight 

initialization strategy called greedy layer-wise pre-training. Before training whole 

network with back-propagation, they individually trained each layer as autoencoders. 

Autoencoder is a neural network architecture which learns compressing the input and 

uncompressing that representation into something that closely matches the original data.  
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Figure 2.2: A view of autoencoder compression 

 
 

Since autoencoders are generally shallow, they are less effected by vanishing gradient 

problem. They used this unsupervised technique to determine the network’s initial 

weights instead of random initialization. They showed that deep networks can be 

successfully trained with better weight initialization. Then in 2010, researchers realized 

that pre-training is not only way to train deeper networks; using different activations 

functions, regularization methods and architectures makes a huge difference for back-

propagation. 

2.3 CONVOLUTIONAL NEURAL NETWORKS 

CNN is a type of feed-forward neural networks designed to work on spatial information 

such as images. It is heavily inspired from biological processes. According to their work 

on the visual cortex, Hubel and Wiesel (1959) proposed a featural hierarchy of cells. 

First, there are simple cells responding to low level features like edges and colors in 

their small receptive field, and then there are complex cells above them which are 

sensitive to higher level features such as shapes. As we go up in this hierarchy, cells are 

starting to sense more and more complex patterns.  

 

CNNs use convolutional and pooling layers, different from standard feed-forward 

networks. In convolutional layers, a simple 2-dimensional convolution operation is 

performed for each filter. The number of filters in a layer is left to designer’s choice. 

The key thing is that the parameters of a filter are shared by all the possibly positioned 

neurons in the same layer. Therefore, learnt filters are independent from position 

information in the image. In general, a convolutional layer is followed by a pooling 
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layer where 2-dimensional input is simply downscaled. The main purpose of this layer 

is reducing the number of parameters and controlling overfitting. These convolutional 

and pooling layers are get stacked on top each other to learn more and more complex 

features. The structure of a typical CNN can be seen in Figure 2.3. Subsequent to 

convolutional layers, there are fully-connected layers as we are familiar from feed-

forward neural networks. In first fully-connected layer, highest-level image features are 

got flatten. Then, they are fed to next layers for desired task such as classification.  

Figure 2.3: Structure of a typical convolutional neural network 

 

Source: MathWorks 

The first successfully applied CNN is LeNet (LeCun et al. 1998). It recognizes digits 

from 32x32 pixel images of hand-written numbers. Although this network achieved 

promising results, it did not get much attention at that time. Because this method could 

not be applied to more complex problems due to limited computer power and lack of 

large image datasets.  

2.3.1 AlexNet 

AlexNet is the first CNN that wins ILSVRC by outperforming the runner-up with about 

10 percent margin (Krizhevsky et al. 2012). At that time, using handcrafted features was 

accepted as state-of-the-art methods in computer vision field. AlexNet has changed this 

with its groundbreaking success. From then on, all of the ILSVRC winners have been 

using CNNs. 
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Actually, its architecture is very similar to LeNet. It is a deeper and bigger network with 

5 convolutional and 3 fully-connected layers. Needless to say, the dataset is much larger 

and consumer-level powerful graphic processing units (GPUs) had emerged. They 

proposed new techniques that have been still used today. 

 

They used Rectified Linear Unit (ReLU) as non-linear activation function. It simply 

thresholds negative values to zero. They reported six times faster training time 

compared with conventional tanh activation function when training on CIFAR-10 

dataset (Figure 2.4). ReLU is currently the most popular activation function just works 

best for most of the cases. 

 

For regularization, they proposed dropout method. Krizhevsky et al. (2012, p.6) explain, 

“The neurons which are dropped out in this way do not contribute to the forward pass 

and do not participate in back-propagation.”. Its motivation is decreasing the 

dependence between neurons, so that they can learn more robust features. They reported 

that even though it increases the training time, the network was suffered from 

overfitting without dropout. 

Figure 2.4: Training speed difference tanh (dashed) 
and ReLU activation functions 

 

Source: Krizhevsky et al. 2012, Figure 1 
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Another key point of this work is data augmentation. As mentioned earlier, ILSVRC 

contains 1.2M images which seems reasonably large. However, AlexNet uses offline 

patch extraction and horizontal reflection techniques to artificially increase the size of 

dataset by a factor of 2048. They stated that such big networks overfit easily without 

data augmentation. 

2.3.2 VGGNet 

VGGNet is another famous CNN featuring pretty homogenous and deeper architecture 

(Simonyan-Zisserman 2014). AlexNet and ZFNet, which is the winner of ILSVRC 

2013, used large convolutional filters such as 11x11 and 7x7 in the first convolutional 

layers, while VGGNet uses just 3x3 filters across all the convolutional layers. It should 

be noted that 3x3 is the smallest filter size to capture the notion of left/right and 

up/down. They show that larger receptive fields can be simulated by stacking 3x3 filters 

on top of each other. A stack of two 3x3 convolutional layers has an effective receptive 

field of 5x5. This also decreases the number of parameters from 25 to 18. Similarly, a 

combination of three 3x3 filters have 27 parameters and it simulates a 7x7 filter which 

would have 49 parameters.  

 

Beside of having less parameters, stacking these 3x3 filters acts like a regularization by 

forcing larger filters to be formed through multiple 3x3 filters. They also reported faster 

training times comparing with AlexNet due to this implicit regularization. Additionally, 

these stacks use more ReLU layers instead of just one, which provides more 

discriminative decision function.  

 

VGGNet architecture proposes 6 different network configurations. When the 

architecture is examined from higher perspective, it is very similar to AlexNet. It has 5 

convolutional blocks following by 3 fully-connected layers. Each configuration just 

differs at the number of stacked 3x3 layers in these convolutional blocks. These 

configurations have 11, 13, 16 and 19 actual layers and each network is denoted as 

“VGG-⟨number of layers⟩” such as VGG-16. 
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VGGNet uses an online data augmentation pipeline featuring random cropping at 

random scale between a fixed interval. The main idea is simple, a scale interval is firstly 

defined such as (S1, S2). A random integer S is picked up between S1 and S2. Then, both 

width and height of the input image is scaled to S. Finally, the image is cropped at a 

random position in size of 224x224 pixels which is the input size of VGGNet. They 

achieved up to 3 percent better scores with this technique when compared with fixed-

size cropping. They also used random horizontal flipping just like AlexNet.  

2.3.3 ResNet 

Another fascinating CNN architecture is ResNet proposed by He et al. (2015). They 

heavily investigate the effect of the network depth. They observed that deeper plain 

networks have higher training error, and thus test error. This phenomenon can be seen 

in Figure 2.5. To overcome this problem, they proposed residual blocks which has 

skipped connections between every following two convolutional layers. The main idea 

of this shortcut connections is to prevent performance degradation by preserving more 

information about input as the network getting deeper. Another benefit of residual 

blocks is decreasing the effect of infamous vanishing gradients problem.  

Figure 2.5: Training of plain networks (left) and residual networks (right) on 
ImageNet 

 

Source: He et al. 2015, Figure 4 

They use 18, 34, 50, 101 and 152 layered networks using same residual network 

architecture. They achieved 3.57 percent top-5 error with the deepest 152-layer 
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configuration by surpassing human-level accuracy. Human error rate is estimated 5.1 

percent (Russakovsky et al. 2015).  

 

They even experimented with 1202-layer network, however they observed worse 

performance compared to 101-layer network even though their training accuracies are 

similar. They argued that overfitting could be the reason of this. Nevertheless, there are 

still open problems for such aggressively deep networks.  

2.4 DISTANCE METRIC LEARNING 

Distance metric learning or similarity learning is a supervised machine learning 

technique closely related to regression. The task is learning a distance function over 

labeled inputs, so that all the same classes positioned close to each other while different 

classes are far apart in the output representation space. This process is also known as 

“embedding”. 

 

After getting these embeddings, many computer vision tasks become straightforward. 

Verification becomes just a distance check, classification and recognition task becomes 

simple k-NN problem. Additionally, standard clustering algorithms such as k-means can 

be applied in the embedding space for unsupervised learning. 

 

This technique adopted to neural networks by Siamese network architecture (Bromley et 

al. 1993). They used two identical sub-networks to process two different inputs and a 

unified output layer compares their outputs for signature verification task. The sub-

networks share the weights, so it is trained to produce similar outputs for similar inputs.  

 

However, this approach compares just two samples at a time. Hoffer et al. (2015) 

proposed triplet loss as an improvement to Siamese networks architecture. The network 

takes a triplet of an anchor, a positive and a negative input at a time. It tries to minimize 

the anchor’s distance to positive sample, while maximizing the distance to negative 

sample (Figure 2.6).  
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Although triplet approach seems intuitive, it comes with own difficulties. According to 

their FaceNet work of Schroff et al. (2015), triplet selection is extremely important to 

achieve good results.  

Figure 2.6: Triplet loss minimizes the distance to positive 
sample while maximizing the distance to 
negative 

 

Source: Schroff et al. 2015, Figure 3 

FaceNet architecture proposes two online triplet mining strategies. First one is “hard 

selection” where the hardest positive and the hardest negative sample in the batch are 

selected for each sample. The other selection method is “semi-hard negative selection”, 

because they observed that too hard negatives can lead to bad local minima in early 

stages of training. However, batch generation is still open problem because positive and 

negative samples are selected from current batch. FaceNet uses very large batches with 

thousands of samples as a workaround for this issue, which makes impossible to train 

on GPUs. This issue is addressed by Hermans-Beyer et al. (2017), they use PK-style 

batch generation where random P identities are sampled, then selected random K 

images without replacement. They also showed that the hardest triplet selection method 

performs better with this batch generation strategy.  

2.5 TRANSFER LEARNING & FINE-TUNING 

Transfer learning is quite an old idea in machine learning field. As the main purpose of 

pattern recognition is to learn how to generalize input data, transfer learning is 

investigating how to use this generalized feature knowledge on a different task or 

problem.  
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As mentioned earlier, CNNs are designed to work like animal visual cortex system. 

There is a hierarchy of simples cells to more complex ones that are responding more 

and more complex patterns. The convolution filters at the first layer of AlexNet, which 

is trained on ImageNet, can be seen in Figure 2.7. It turns out that these filters are very 

similar to the ones that are being hand-engineered by computer vision community for 

over 30 years.  

 

This is the motivation behind transfer learning idea, there is no need to learn same low-

level features again and again. Transferring these features works great on small datasets, 

because small datasets are insufficient for such big networks to learn this generic 

features. Moreover, networks converge much faster from when they trained from 

scratch. If training times are considered, many modern networks require 2-3 weeks to 

train on ImageNet with multiple GPUs (Simonyan-Zisserman 2014, Krizhevsky 2012). 

So, this technique also makes rapid experimenting possible.  

Figure 2.7: AlexNet’s first-layer convolution filters learnt from ImageNet 

 

Source: Krizhevsky et al. 2012, Figure 3 

Although its many benefits, Hermans-Beyer et al. (2017) stated, “Using pre-trained 

models does not allow for the exploration of new deep learning advances or different 

architectures.”. 
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There lots of way to transfer learning between CNNs. The usual approach is to copy 

first n layers of source model to first n layers of target model, and then train the rest of 

network. However, the number how many layers to be transferred is open question. 

Likewise, initial weights of the layers to be trained can be transferred from pre-trained 

model instead of starting randomly which is called “fine-tuning”. These choices are left 

to implementer.  

 

Yosinski et al. (2014) performed comprehensive experiments on these transfer learning 

methods. They divide ImageNet dataset into two groups that each has approximately 

500 non-overlapping classes. They utilize two separate AlexNet and train on split 

datasets from scratch, they called these models “baseA” and “baseB” respectively. For 

both models, every possible first n-layer is transferred to both blank A and B networks 

and then they train the rest of network from scratch. They also repeat this experiments 

with fine-tuning method. According to their work, fine-tuning recovers most of the lost 

(not transferred) features when transferring to “selfer” networks (baseA to A, or baseB 

to B). The most interesting part of the study is when they apply transfer learning 

between cross networks (baseA to B, or baseB to A), they observed better performance 

compared with their base models. This phenomenon occurs because networks 

generalizes better with a base. We also experiment on these methods in the next chapter. 

2.6 MARVEL DATASET 

MARVEL is a public dataset containing 2M ship images, it is created to fill the absence 

of a benchmark dataset specifically designed for marine vessel classification, 

verification and recognition tasks by Gundogdu-Solmaz et al. (2016). Ship images and 

their annotations including vessel type and IMO number, which is a unique 

identification number of a ship, are taken also from ShipSpotting website. There are 109 

different vessel types in total, however the dataset is not balanced. So they utilize a 

semi-supervised clustering scheme to combine similar vessel types. They ended up with 

26 more balanced superclasses. Some examples can be seen in Figure 2.8. 
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Figure 2.8: Some samples of MARVEL dataset. Superclasses from left to right; 
container ship, bulk carrier, passenger ship, tug 

    
 

For superclass classification task, 140K unique images in 26 superclasses are gathered 

after semi-supervised clustering scheme. For each superclass, they selected 8192 and 

1024 images for training and test set respectively. For the superclasses that have 

insufficient samples, they generate more images by cropping different patches of 

images. Finally, the training and test set contain about 212K and 26K examples 

respectively. This dataset is referred as superclass dataset. 

 

Prior to verification and recognition tasks, 8000 vessels with unique IMO number are 

selected such that each vessel has 50 sample images. They divide these vessels into 2 

groups by preserving vessel type distribution, 4035 vessels for training and 3965 for test 

set. We refer these datasets IMO training set and IMO test set respectively. There are 

still 109 vessel types in among these 400K images.  

 

For verification task, 50K positive and 50K negative pairs selected randomly from IMO 

training set, resulting in 100K total pairs. It is called as verification train set. 

Verification test set is collected in the same way, but from IMO test set.  

 

Lastly for recognition task, they decided to perform recognition among individual 

vessel types due to computational complexity, because there are 3965 ships in IMO test 

set. Therefore, 29 vessel types are extracted so that each type has at least 10 unique 

ships and each ship contains 50 sample images. They split each vessel type into 5-fold 

cross-validation scheme such that each vessel has 40 training and 10 test images.  
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3. MARITIME VESSEL CLASSIFICATION  

In this chapter; AlexNet, VGGNet and ResNet architectures are trained for vessel 

superclass classification task while experimenting on transfer learning techniques. The 

task is straightforward; for a given ship image, the goal is to identify its vessel type 

among 26 superclasses. There are also other experiments for investigating the effects of 

dropout and data augmentation. In the next section, the used dataset is described in 

detail. Then, the main experimental methods utilized are given with the motivations 

behind them, followed by obtained results. Lastly, our scores are compared with best 

results on MARVEL superclass dataset.  

3.1 DATASET 

Gundogdu-Solmaz et al. (2016) provided a Python script to download MARVEL 

dataset. However, some images are deleted from the website and some of them could 

not be downloaded due to operational reasons. For superclass classification, 137293 

unique images are downloaded and our train set contains 211876 images while test set 

contains 26491 images. In original MARVEL superclass dataset, 212992 and 26624 

images are reported for training and test set respectively in total of 140K unique 

samples. So we have about a thousand less samples, which can be ignored. The 

resolution of all downloaded images is 256x256 pixels.  

3.2 METHOD 

Gundogdu-Solmaz et al. (2016) trained an AlexNet from scratch on this dataset. To 

emphasize that score, they also used a pre-trained VGGNet to extract features from the 

penultimate layer and dimensionality of extracted features is reduced to 256 with 

principal component analysis (PCA) method. Then they train a multi-class support 

vector machine (SVM) with the half of training set due to computational complexity. 
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Instead of training from scratch, we use different transfer learning techniques. In 

addition to AlexNet, VGG-16 and ResNet-50 networks are utilized which all are pre-

trained on ImageNet.  

Figure 3.1: A flowchart describing the main training and testing process 
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3.2.1 Preprocessing 

Mean color subtraction and random horizontal flipping are used as the basic 

preprocessing methods. First, the mean image of superclass train set is calculated. As 

we can see from Figure 3.2, there is a dark colored blob in the center where ships are 

generally positioned in images. After acquiring the mean image, its mean color is 

calculated as (132.27, 139.65, 146.97) in BGR color space which is a grayish color. 

This mean color is subtracted from the input image (Figure 3.2). Then it is horizontal 

flipped with 50 percent randomness. Before feeding them into network, they are scaled 

to expected input size of the networks which is 227x227 for AlexNet, 224x224 for 

VGGNet and ResNet. 

Figure 3.2: Mean image of superclass train set (above), mean color 
subtraction (below) 

 

 

 

 

Additionally, we experiment with random cropping at a random scale, which is 

described in Section 2.3.2, with three different scaling intervals; (228, 256), (228, 286) 

and (256, 286). 
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3.2.2 Training 

Pre-trained AlexNet, VGG-16 and ResNet-50 models are taken, and their 1000-neuron 

output layer is replaced by 26-neuron layer. Because we want to classify 26 vessel 

superclasses.  

 

The layers to be trained from scratch are initialized with Glorot initialization (Glorot-

Bengio 2010). On the other hand, the layers to be fine-tuned are initialized with 

transferred weights from a source model. 

 

At first, stochastic gradient descent (SGD) is used as optimizer with 0.01 learning rate. 

Shortly after, we have switched to ADAM optimizer due to its much faster 

convergence. For all the results reported in this project, ADAM optimizer is used. We 

use 0.001 learning rate by default, but it is decreased in some cases for more stabilized 

training which will be stated explicitly.  

 

According to our initial observations, training loss generally converges before 10th 

epoch and does not improve afterwards. But most of experiments, network is trained for 

20 epochs anyway.  

 

If the network contains dropout layers, 0.5 is used if not specified explicitly. To 

investigate the effect of dropout, we also experiment with four different dropout values; 

0.2, 0.35, 0.65 and 0.8. 

3.2.3 Transfer Learning & Fine-tuning 

First, we apply plain transfer learning to a AlexNet network by copying the first n layers 

from a model pre-trained on ImageNet and training the last (8 - n) layers from scratch. 

For instance; if we are training last two layers of network, first 6 layers are copied from 

pre-trained model and they are fixed (or frozen) during training. This training scheme is 

denoted as fc7+. The number 7 stands for 7th layer (which is a fully-connected layer), 

and plus sign at the end implies that 7th and following layers are being trained. 

Similarly, if we transfer the first two layers from pre-trained model and train the rest, it 
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is denoted as conv3+ (3rd layer is a convolutional layer). Please notice that, the layers to 

be trained are initialized with Glorot initialization. Also the last layer could not be 

copied from pre-trained model, because we have modified it in order to classify 26 

vessel superclasses. 

Figure 3.3: Difference of plain transfer learning (above) and fine-tuning (below) 
techniques, exemplified for conv3+ training scheme on AlexNet. 

 
 

In the next experiment; we repeat the same experiment described above, but with fine-

tuning approach this time. So, the layers to be trained are initialized with the transferred 

weights from pre-trained model. It should be noted that all the layers except the final 

layer are transferred for every training scheme (Figure 3.3). 
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3.2.4 Orientation-Specialized Networks 

Ensemble of specialized networks approach is also investigated. For this experiment, we 

have decided to use ship orientation information. We assumed that these orientation-

specialized networks could improve classification performance. Therefore, we define 

four orientations by using position of the camera relative to subject ship. These 

orientations can be seen in Figure 3.4. Since there are no orientation labels for 

superclass dataset, and manually labelling 137K images would be infeasible, we employ 

a ResNet network to do most of the heavy-lifting. 1250 samples for each orientation are 

manually labelled, resulting in a total of 5000 images. We randomly split this 

orientation dataset such that each orientation has 1000 training and 250 test images. We 

fine-tuned a ResNet-50 network pre-trained on ImageNet, and got 96.7 percent test 

accuracy. Then, we ran this network on whole superclass dataset to acquire their 

orientation labels. These orientation labels were manually corrected with human 

supervision.  

Figure 3.4: Orientation convention according to 
camera position relative to subject ship 
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In the end, superclass dataset is divided into four orientation-specific subsets which we 

refer as orientation dataset from 1 to 4 respectively. After these preparation steps, we 

fine-tune AlexNet, VGG-16 and ResNet-50 networks (pre-trained on ImageNet) for 

each orientation. It should be noted that random horizontal flipping is not used, because 

it changes the orientation. Additionally, we merge horizontally symmetrical orientations 

into two groups and repeat same experiments. Thus, random horizontal flipping can be 

used in that way. 

3.3 EXPERIMENTAL RESULTS 

All the experiments are conducted on a high-end desktop computer. It has Intel i5-

6600K CPU, 16GB memory, NVIDIA GTX 1080Ti with 11GB memory. Operating 

system is Ubuntu 16.04 LTS. TensorFlow 1.1 and SciKit-learn 0.18.2 libraries is used 

on Python 2.7 programming environment. The results and findings of each conducted 

experiment are covered in the following sections. 

3.3.1 Transfer Learning & Fine-tuning 

The results of training accuracies can be seen in Table 3.1. When just the last layer (fc8) 

is trained, we observed that the network’s performance on training set stuck at 63 

percent. This is normal because it shows that there is no capacity to learn the training set 

completely. As more layers being trained, training accuracy increases rapidly as 

expected. When we train with conv5+ scheme, networks reach enough capacity to 

classify almost all of the training set correctly with 99 percent accuracy. It can be also 

seen that instead of plain transfer learning, fine-tuning improves the training with a 

subtle difference. 
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Table 3.1: Training accuracies of different transfer learning 
techniques (%) 

Training Scheme Plain Transfer Learning Fine-tuning 
fc8 63.21 - 
fc7+ 95.13 96.44 
fc6+ 96.62 98.80 
conv5+ 99.56 99.66 
conv4+ 99.78 99.81 
conv3+ 99.84 99.85 
conv2+ 99.87 99.90 
conv1+ 99.90 99.91 

 

If we look at resulting test accuracies in Table 3.2, they are more interesting. When we 

train just the output layer with plain transfer learning, the network achieved 52.97 

percent test accuracy. As we train more layers, test accuracy increases as expected, but 

up to conv3+ scheme. It should be noticed that training more layers from scratch means 

transferring less layers from pre-trained model. With conv2+ scheme, the network’s 

score dropped 0.8 percent. If we go further with conv1+ scheme, which is equivalent to 

training the whole network from scratch, the score drops 3.09 percent more.  

 

However, we saw that applying fine-tuning technique instead of plain transfer learning 

fixes this performance degradation. The best score is obtained when fine-tuning with 

conv3+ scheme just like plain transfer learning. There is no significant performance 

change observed when trained with conv2+ and conv1+ schemes. After this point, test 

scores almost stabilized unlike plain transfer learning. This phenomenon can be seen 

clearly in Figure 3.5. Another important result is that fine-tuning all the layers scored 

6.41 percent better than training the network from scratch. 
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Table 3.2: Test accuracies of different transfer learning techniques (%) 

Training Scheme Plain Transfer Learning Fine-tuning Difference 
fc8 52.97 - - 
fc7+ 61.59 61.55 -0.05 
fc6+ 64.37 65.57 1.20 
conv5+ 65.07 66.98 1.91 
conv4+ 66.27 68.10 1.83 
conv3+ 67.16 69.72 2.56 
conv2+ 66.36 69.39 3.03 
conv1+ 63.27 69.68 6.41 

 

Figure 3.5: Comparison between plain transfer learning and fine-tuning 
over training depth 
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3.3.2 Dropout 

As we can see from the results presented in Table 3.3, best scores are obtained with 

average dropout values such as 0.35, 0.50 and 0.65. When it is aggressively increased or 

decreased, performance drops more than 1 percent. 

Table 3.3: Test accuracies for different dropout 
values 

Dropout Probability Best Score 
0.20 68.52 
0.35 69.66 
0.50 69.72 
0.65 69.75 
0.80 68.55 

 

3.3.3 Random Crop at Random Scale 

The results can be seen in Table 3.4. Random scaling significantly improved the 

performance. However, as input image is being more up-scaled, test scores started to 

decrease. This is expected because the network sees quite small part of the images, so 

that it cannot make generalization. We observed that fairly small up-scaling such as 

(228, 256) works the best, if AlexNet’s 227x227 input size is considered. 

Table 3.4: Test accuracies for different random 
cropping scale intervals 

Scale Interval Best Score 
No random crop 69.72 
(228, 256) 71.17 
(228, 286) 70.77 
(256, 286) 70.17 
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3.3.4 VGGNet and ResNet  

In this experiment; VGG-16 and ResNet-50 will be fine-tuned layer by layer with the 

best experiment techniques including random cropping, and their performance will be 

compared with AlexNet. When training conv2+ and afterwards for VGG-16, also 

block1+ for ResNet-50, batch size is decreased from 128 to 64 because of high memory 

requirements. 

Table 3.5: Test accuracies for VGG-16 (%) 

Training Scheme Best Score 
fc8 51.85 
fc7+ 59.87 
fc6+ 66.01 
conv5+ 73.13 
conv4+ 75.65 
conv3+ 76.10 
conv2+ 76.21 
conv1+ 76.60 

 

Table 3.6: Test accuracies for ResNet-50 (%) 

Training Scheme Best Score 
fc6 58.92 
block5+ 73.16 
block4+ 75.24 
block3+ 75.37 
block2+ 75.24 
block1+ 76.04 

 
 

As we can see from the results in Table 3.5 and Table 3.6, the best results were obtained 

when fine-tuning all layers for both networks. These networks achieved about 5 percent 

improvement over AlexNet, whose best score is 71.17 percent. Also it should be noted 

that after conv4+ for VGG-16 and block4+ for ResNet-50, the performance improved at 

most 1 percent. 
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3.3.5 Orientation-Specialized Networks 

In this experiment we have observed the networks that fine-tuned on merged datasets 

performed better than single orientation specialized networks (Table 3.7). In fact, the 

whole superclass dataset worked the best for all network architectures. In this manner, 

we can clearly say that this orientation-specialized network approach did not work. 

Table 3.7: Test accuracies of orientation-specialized networks (%) 

Orientation Dataset AlexNet VGG-16 ResNet-50 
1 68.64 72.02 72.04 
2 69.63 74.39 72.19 
3 68.63 74.18 72.74 
4 68.29 72.26 71.98 
1+4 69.05 74.80 72.31 
2+3 65.16 76.23 74.18 
1+2+3+4 71.13 76.52 75.99 

 

We argue that this is because orientation information is already learnt and generalized 

by networks. By splitting the dataset according to orientations, we are not helping. 

Instead, we are just decreasing the dataset size which causes performance degradation. 

3.3.6 Transferring Learning from Relevant Source 

As a final experiment for vessel classification task, we have fine-tuned some VGG-16 

networks pre-trained on other MARVEL datasets which will be described in next 

chapter, Section 4.3. Although this seems like against to main purpose of 

benchmarking, it will help us to make a comparison between generic and relevant 

learning transfer sources. 

 

We have two pre-trained models, both of them is trained on IMO train set. But first one 

is trained for 109 vessel types, while the other one is trained for 3980 vessel identities 

(Section 4.3). The results can be seen in Table 3.8. We have observed that choosing a 
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relevant source model improved the performance for this dataset with more than 2 

percent when compared to ImageNet. 

Table 3.8: Test accuracies of different pre-trained 
models used for fine-tuning (%) 

Source Model Best Score 
ImageNet 76.60 
BASE-109 (109 vessel types) 78.79 
BASE-3980 (3980 vessel identities) 78.56 

 

3.4 COMPARISION WITH THE STATE-OF-THE-ART 

A comparison between our scores and theirs (Gundogdu-Solmaz et al., 2016) can be 

seen in Table 3.9. They got 73.14 percent accuracy by training an AlexNet from scratch. 

However, we achieved 71.10 percent even with fine-tuning approach. We saw that 

VGG-16 performed the best with 76.60 percent accuracy, followed by ResNet-50 with 

76.04 percent.  

Table 3.9: Superclass classification scores 
compared with state-of-the-art (%) 

Model Best Score 
VGGNet features + SVM [1] 53.89 
AlexNet [1] 73.14 
AlexNet (ImageNet + fine-tuning) 71.19 
VGG-16 (ImageNet + fine-tuning) 76.60 
ResNet-50 (ImageNet + fine-tuning) 76.04 
VGG-16 (BASE-109 + fine-tuning) 78.79 

Source: [1] Gundogdu-Solmaz et al. 2016. 
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4. MARITIME VESSEL VERIFICATION 

In this chapter, we focus on vessel verification task which is simply deciding whether 

two images belong to same ship or not. Experimental setup is almost identical with 

classification experiment, except for the dataset. First, we prepare some base models to 

be fine-tuned later on distance metric learning experiments which is described in 

following section.  

4.1 DATASET 

As mentioned earlier in Section 2.6, we will use MARVEL IMO dataset. Verification 

dataset will also be used, which is already utilized from IMO dataset. The properties of 

the datasets can be seen in following Table 4.1 and Table 4.2. Just like superclass 

dataset, we have negligible missing data. 

Table 4.1: Properties of MARVEL IMO dataset 

 Reference Downloaded 
Vessel type in both sets 109 109 
# of unique vessels in training set 4035 4001 
# of unique vessels in test set 3965 3943 
# of images in training set 201750 197832 
# of images in test set 198250 194429 

 

Table 4.2: Properties of MARVEL verification dataset 

 Reference Downloaded 
# of positive pairs in training set 50000 48647 
# of negative pairs in training set 50000 47941 
# of positive pairs in test set 50000 48689 
# of negative pairs in test set 50000 48191 
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4.2 METHOD 

Gundogdu-Solmaz et al. (2016) trained an AlexNet on IMO training for 109 vessel type 

labels from scratch. They used this network as feature extractor by probing activations 

in the penultimate layer, which is a 4096-dimenson vector. After acquiring the features 

of verification dataset, they reduced the dimensionality to 100 with PCA. All the pairs 

in verification training set are concatenated into 200-dimensional vector, and they used 

SVM and nearest neighbor (NN) classifier. 

 

Instead, we apply a distance metric learning approach to this task. Just VGG-16 

architecture is utilized due to its success in classification task. We fine-tune it by using 

triplet loss as explained in Section 2.4. It should be noted that triplet loss enables end to 

end training. In theory; if the distance between a pair in embedding space is smaller than 

a threshold, they belong to same vessel, and vice-versa. This removes the need of 

additional classifier. However, we also make experiments with SVM. 

 

We have tried directly fine-tuning a VGG-16 pre-trained on ImageNet with triplet loss, 

but the results were very poor. Parkhi et al. (2015) stated these kind of difficulties for 

triplet loss. In their work, they trained a CNN as a classifier first. Then they replaced the 

last layer with desired embedding layer and they fine-tuned just this layer with triplet 

loss. They reported that this technique makes training significantly easier and faster. 

Therefore, some base models are prepared to be fine-tuned with triplet loss which are 

explained in the next section. 

 

To fine-tuning with triplet loss, we generally followed common configurations. We 

used 128-dimensional embedding space. Output of the network is normalized by using 

L2 normalization. Since the maximum distance in L2 normalized space is 2, we choose 

the margin of triplet loss as 1. It is simply the desired distance between positive and 

negative samples.  

 

As discussed earlier in Section 2.4, triplet selection is critically important. In trial and 

error phase, we have observed the approach of Hermans-Beyer et al. (2017) works the 

best. Therefore, we used batch hard triplet selection strategy and also PK-style batch 
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generation method. We also followed a common practice by taking K = 4. If we 

consider our default batch size of 128, there will be P = 32 unique vessels containing K 

= 4 images each. 

 

However, choosing P identity from dataset is still open question. For face verification, 

the most common way is picking random. But we can use vessel type information to 

choose vessels in same category together. So, there would be much harder triplets in a 

batch when compared to random selection. However, this approach did not work in 

practice. Hermans-Beyer et al. (2017) explained the reason of this issue is because 

network selects outliers so often that it is unable to learn normal associations. Therefore, 

we ignored vessel type information and selected vessels randomly. 

 

For evaluation, Euclidian pair distances in embedding space are calculated for 

verification test set. Then, simple linear regression is run to determine best threshold 

value that separates positive and negative pairs. It should be noted that verification 

training set is not used in this configuration. 

4.3 BASE MODEL PREPARATION 

We have decided to train a network that classifies 4001 unique vessels in IMO training 

set. Since the training and test sets of IMO dataset contain different vessels, we need a 

test dataset for evaluation purposes. First, we took out the vessels which contains less 

then 10 images. Then, 5 images are extracted randomly for each vessel. As a result, we 

had 177856 training and 19935 test images for total of 3980 unique vessels. 

 

After preparing this dataset, we utilized a pre-trained VGG-16 on ImageNet, and we 

have attempted to fine-tune it. Even though we have tried lots of different 

configurations, the network did not converge.  

 

We went back to IMO training set, and we have fine-tuned another pre-trained VGG-16 

for 109 vessel types. The network performed fairly well with 78.67 test accuracy. This 

score is even higher than what we achieved for classification task with just 26 
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superclasses. However, it should be noted that this dataset is not balanced. Nevertheless, 

this model is referred as BASE-109. 

 

Then, we have tried again to fine-tune a VGG-16 network for 3980 vessels, but this 

time we used BASE-109 model instead of ImageNet. This model managed to achieve a 

promising result with 61.85 percent test accuracy. Likewise, we refer this model as 

BASE-3980. 

4.4 EXPERIMENTAL RESULTS 

After preparing base models, we experiment on training depth and embedding size of 

triplet loss. We will also compare the performance of end-to-end training enabled by 

triplet loss and an additional SVM classifier. The results and findings of each conducted 

experiment are covered in the following sections. 

4.4.1 Training Depth 

For superclass classification task, we have seen that fine-tuning prevents performance 

degradation as more layers being trained. So, whole network can be trained to obtain 

best results if computing power requirements can be afforded. However, we have 

observed that networks oscillated immediately and they did not converge even after 5 

training epochs.  

 

We used incremental fine-tuning to overcome this issue. First, we trained just the last 

layer with triplet loss. After seeing convergence and stabilization, we stopped the 

training and started fine-tuning more layers. 

Table 4.3: Verification test results of different training depths (%) 

Training Scheme Accuracy Precision Recall F1 Score 
fc8 92.89 92.92 92.92 92.92 
fc6+ 92.08 92.12 92.12 92.12 
conv4+ 88.75 88.80 88.80 88.80 
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The results can be seen in Table 4.3. We achieved 92.89 percent accuracy while fine-

tuning just the last layer. As more layers were trained, network performed worse in 

verification test set.  

Figure 4.1: Histograms of pair distances in verification test set for different 
training schemes; fc8, fc6+ and conv4+ respectively. Green color 
represents positive pairs, while red for negative pairs. 
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To investigate this issue, we examined the distributions of pair distances in verification 

test set which can be seen in Figure 4.1. We can clearly see how network is trying to 

separate the positive and negative pairs. However, this also affect negatively the 

intersection area. 

4.4.2 Embedding Size 

Even though we could not make comprehensive experiments on embedding size due to 

limited time, we have also tried 64 and 256-dimensional embedding space. The results 

can be seen in Table 4.4. We have observed that while 64 and 128-dimensional 

embeddings produced similar results, performance dropped with embedding size of 256. 

The best score is obtained with 128 embedding size. 

Table 4.4: Verification test results for different embedding sizes (%) 

Embedding Size Accuracy Precision Recall F1 Score 
64 92.71 92.74 92.74 92.74 
128 92.89 92.92 92.92 92.92 
256 91.84 92.36 91.38 91.87 
 

4.4.3 Additional Classifier 

Instead of just thresholding, we also experiment with SVM for comparison purposes. 

Until this point, we have not used the verification train set. However, we also utilize this 

dataset, and train a SVM classifier with radial basis function (RBF) kernel.  

Table 4.5: Verification test results for thresholding and SVM (%)  

 Accuracy Precision Recall F1 Score 
Model 1 92.89 92.92 92.92 92.92 
Model 1 + SVM 93.27 94.90 91.52 93.18 
Model 2 92.71 92.74 92.74 92.74 
Model 2 + SVM 92.80 94.19 91.29 92.72 
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As we can see the results in Table 4.5, SVM performs a little better when compared to 

simple thresholding. Even though SVM makes training and testing process much more 

difficult and time consuming, SVM will be used as default classifier after this point. 

4.5 COMPARISION WITH THE STATE-OF-THE-ART 

Gundogdu-Solmaz et al. (2017) improved their previous approach (2016) which is 

explained in Section 4.2. They trained another AlexNet from scratch for 4035 vessel 

identities just like our approach. However, they merged 109-dimensional vessel type 

and 4035-dimensional vessel identity information into 4144-dimensional feature vector. 

The rest of their approach such as dimensionality reduction and classification remains 

the same. Additionally, they utilized a Siamese network architecture based on AlexNet 

with using contrastive loss. 

Table 4.6: Verification test comparison with state-of-the-art (%) 

 Accuracy Precision Recall F1 Score 
109-dim + NN [1] 85.18 82.11 89.96 85.86 
109-dim + SVM [1] 90.93 90.86 91.01 90.93 
4144-dim + NN [2] 88.45 84 95 89.16 

4144-dim + SVM [2] 93.97 95 92 93.48 
Siamese network + NN [2] 84.85 82 89 85.35 
Siamese network + SVM [2] 92.02 92 92 92 
Triplet loss (128-dim) + 
Thresholding (ours) 

92.89 92.92 92.92 92.92 

Triplet loss (128-dim) + SVM 
(ours) 

93.67 95.40 91.83 93.58 

Source: [1] Gundogdu-Solmaz et al. 2016, [2] Gundogdu-Solmaz et al. 2017 

The results can be seen in Table 4.6. While our best result is higher than Gundogdu-

Solmaz et al.’s work at 2016, we achieved 93.67 percent accuracy which is slightly 

worse than their improved approach, however our f1-score is a little better. 
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5. MARITIME VESSEL RECOGNITION 

Vessel recognition task is similar to verification task. Instead of comparing two pair of 

images, the goal is to find vessel identity for given an image. The dataset is introduced 

in the next section, followed by the method that we approach to this problem. After 

detailed explanation of the experiments conducted and their results, we compare our 

results with state-of-the-art models. 

5.1 DATASET 

As mentioned in Section 2.6, the recognition task is performed among individual vessel 

types. The authors of MARVEL extracted 29 vessel types from IMO test set containing 

3965 vessels, so that each vessel type has at least 10 vessels and each vessel has 50 

images. The properties of this set can be seen in Table 4.1. Although we have 22 

missing vessels resulting a total of 3821 vessels, the number of extracted vessels is the 

same. 

 

They split each vessel type specific dataset into 5 folds so that each fold has 10 images 

for each vessel identity. They also provided an open-source GitHub repo to download 

this exact dataset with 5-folding scheme. Models are evaluated by 5-fold cross-

validation scores. 

5.2 METHOD 

Gundogdu-Solmaz et al. (2016) followed very similar approach to verification task. 

They utilized the same AlexNet network trained on IMO training set for 109 vessel 

types. They use this network as feature extractor. The dimensionality is reduced to 100 

with PCA. Then they trained a multi-class SVM to recognize vessels for each vessel 

type. 

 

Likewise, we use the VGG-16 network fine-tuned with triplet loss on 3980 vessel 

identities for verification task (Section 4.4). After calculating embeddings, k-NN and 
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SVM classifiers are used to perform recognition task which is actually a classification 

problem among each vessel types. 

5.3 EXPERIMENTAL RESULTS 

Since this task is very much alike verification task, there is no network trained 

additionally. We conduct similar experiments which are covered in Section 4.4. 

5.3.1 Epochs 

When we tested recognition accuracies with the model fine-tuned with fc8 scheme, we 

observed a heavy fluctuation between training epochs for some vessel types. Usually, 

the difference between epochs are very subtle. We further investigated this issue and 

realized that it occurs with the vessel types that has less unique vessels when compared 

with others. There are 29 vessel types in dataset, 14 of them has less then 25 vessels.  

Table 5.1: Recognition test accuracies difference between epochs (%) 

Vessel Type # of vessels Epoch 9 Epoch 11 Epoch 13 
Suction Dredger 16 88.05 79.84 87.66 
Crude Oil Ship 21 59.06 64.38 58.05 
Trawler 19 57.19 80.39 57.97 
Fire Fighting Vessel 10 52.81 75.16 52.34 
Tug Supply Vessel 11 65.00 82.34 64.22 
Hopper Dredger 18 72.50 89.84 71.48 
LNG Tanker 13 74.38 84.06 74.45 
Sailing Vessel 16 67.89 75.55 66.95 

 

Some of affected vessel types can be seen in Table 5.1. Most of the accuracies of these 

vessel types improved significantly from epoch 9 to 11, while suction dredger 

decreasing. Interestingly, when we fine-tuned the network 2 epochs more, accuracies 

are kind of reverted back to the scores achieved in epoch 9. However, we have also 

observed that the effect of this issue decreased dramatically when more layers are 

trained. 
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5.3.2 Training Depth 

We have observed that training more layers causes performance degradation as 

described in detail at Section 4.4.1. Similarly, we have checked the scores for fc8, fc6+ 

and conv4+ training schemes. Almost all of the vessels type accuracies decreased with a 

couple of exceptions when more layers are trained. For comparison, vessel-count 

weighted average scores are calculated which can be seen in Table 5.2. 

Table 5.2: Weighted average recognition scores for 
different training depths (%) 

Training Scheme Accuracy 
fc8 47.90 
fc6+ 38.31 
conv4+ 36.91 

 

5.3.3 Embedding Size 

We have experimented with embedding size of 64, 128 and 256. As we can see the 

results in Table 5.3, 128-dimension embeddings performed slightly better than 64, while 

256 embedding scored the worst. 

Table 5.3: Weighted average recognition scores 
for different embedding sizes (%) 

Embedding Size Accuracy 
64 46.58 
128 47.90 
256 39.00 
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Table 5.4: Weighted average recognition scores of 
a model with different classifiers (%) 

Classifier Accuracy 
1-NN 53.95 
3-NN 47.13 
5-NN 43.37 
SVM 60.37 

 

5.3.4 Additional Classifier 

After acquiring embeddings, any kind of classifier can be used. We have tested k-NN 

with different k values and SVM classifiers. The results can be seen in Table 5.4. For k-

NN, the best score is obtained when k = 1, which is the NN classifier. It should be noted 

that there are few vessel types such as hopper dredger and firefighting vessels where 

higher k values work slightly better. However, SVM outperformed k-NN for all vessel 

types. 

5.4 COMPARISON WITH STATE-OF-THE-ART 

As we mentioned in Section 4.4, Gundogdu-Solmaz et al. (2017) improved their 

approach. In their first work (2016), they were using just 109 vessel type information to 

extract features from vessel images. However, they used a new representation method 

that combines both of this 109-dimensional feature and 4035-dimensional feature 

extracted from another network. This technique boosted their scores significantly in 

their latest work. They also employed a VGG-19 network instead of AlexNet for this 

task, which increased scores a little. We take their best score for each vessel type for 

comparison. The results can be seen in Table 5.5. We outperformed their work at 2016, 

while we achieved comparable scores with their latest work.  
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Table 5.5: Recognition test comparison with state-of-the-art (%) 

Vessel Type # of vessels [1] Best [2] Our Best 
Bulk Carrier 196 39.34 70.6 57.86 
Cargo Containership 57 51.37 77 73.06 
Chemical Tanker 127 55.23 79.5 69.36 
Containership 851 27.88 65.1 49.61 
Crude Oil Tanker 21 45.24 70.4 71.33 
Fire Fighting Vessel 10 62.88 75 80.47 
General Cargo 965 34.2 72.8 57.20 
Heavy Load Carrier 15 77.54 88.5 92.42 
Hopper Dredger 18 81.13 89.1 92.58 
LNG Tanker 13 64.77 77.7 86.02 
LPG Tanker 46 65.48 86.3 79.18 
Offshore Supply Ship 19 80.11 90 90.00 
Oil Products Tanker 91 52.20 75.4 64.24 
Oil Chemical Tanker 295 47.8 78.7 66.11 
Passengers Ship 179 42.5 68.6 54.60 
Reefer 92 49.46 72.1 65.55 
Research Survey Vessel 19 85.47 91.6 92.97 
Ro-Ro Cargo 132 58.80 77.1 65.73 
Ro-Ro Passenger Ship 178 64.65 78.7 66.99 
Sailing Vessel 16 57.47 78.1 83.75 
Self-Discharging Bulk Carrier 23 49.13 72.9 66.48 
Suction Dredger 16 80.88 93.4 91.48 
Supply Vessel 12 88.33 93.7 95.31 
Tanker 84 57.12 80.1 73.62 
Trawler 19 73.68 89.9 86.72 
Tug 176 52.00 77.7 64.43 
Tug Supply Vessel 11 73.09 82.2 86.72 
Vehicles Carrier 101 46.61 65.7 55.84 
Yacht 18 69.44 84.7 86.25 
Average  59.79 79.40 74.69 
Weighted Average 42.73 73.02 60.49 

Source: [1] Gundogdu-Solmaz et al. 2016, [2] Gundogdu-Solmaz et al. 2017 



 44 

6. DISCUSSION AND CONCLUSION 

In this thesis, maritime vessel classification, verification and recognition tasks have 

been extensively studied. We have applied state-of-the-art deep learning and machine 

learning methods, inspiring from recent advancements in image classification and face 

recognition field. We have used 630K ship images from MARVEL dataset prepared by 

Gundogdu-Solmaz et al. (2016), and also compared our results with their amazing 

works (2016; 2017).  

 

We have worked with three famous CNN architectures; AlexNet, VGGNet and ResNet. 

In total, they are trained 612 times for different tasks in this work, which took 132 days 

in a high-end computer. In our experiments, VGGNet have achieved the best scores 

when compared to others. However, it is the most expensive network to train. The 

runner-up is ResNet, followed by AlexNet at the last position. In most cases, ResNet 

has performed quite well as much as VGGNet. Additionally, it converges a lot faster 

and it is much lighter than VGGNet. 

 

We have also experimented with different training techniques. Although the success of 

these methods heavily depends on the dataset, fine-tuning method has worked the best 

in all cases. We have seen that fine-tuning outperformed training from scratch by 6 

percent. If fine-tuning is not applicable, plain transfer learning can also be used instead 

of training from scratch. Copying the first one or two layers and training the rest is still 

a good option. However, fine-tuning specifically shines when working with hard 

problems. As mentioned in Section 4.3, a VGG-16 network could not manage to 

converge when it is directly trained on 3980 vessel identities each containing 50 

samples. This is really difficult problem, because the number of classes are quite high 

meanwhile the number of samples for each class is too low. We have overcome this 

issue by training the network for much easier problem with 109 vessel types first. Then, 

it has been fine-tuned for 3980 classes and it achieved satisfactory results. 
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Regularization and preprocessing techniques are important. Dropout increased our 

scores with about 1 percent, while random crop improved about 2 percent. 

 

For vessel classification task, we have obtained 76.60 percent accuracy with VGG-16 

by outperforming state-of-the-art score which is 73.14 percent. We have improved this 

score even further 78.79 percent by fine-tuning another VGG-16 which is trained on 

IMO train set. 

 

As an unsuccessful experiment, we have tried ensemble of networks which specialized 

in four different orientations. We have seen that the performance is dropping as the 

dataset getting smaller. We think that orientation information was wrong hinge. The 

network has probably already generalized this information and decided to ignore it. 

Therefore, we did not help the network to generalize better, instead we just reduced the 

dataset size. This might be the reason behind this failure. 

 

Triplet loss has been utilized when performing verification and recognition tasks. We 

have seen that triplet loss is quite harder to train comparing with standard Softmax loss. 

We have experienced with converging issues when directly training with triplet loss. 

Therefore, we have built two base models which are trained on 109 vessel types and 

3980 vessel identities. These base models have been fine-tuned with triplet loss in order 

to obtain good results. We have seen that triplet loss tries to separate positive and 

negative samples harder, as we train more layers. However, this affects outlier area 

negatively which causes worse performance. In our experiments, fine-tuning just the 

last layer has performed the best. 

 

We have also experimented with different embedding sizes. 128 has achieved the best 

scores, followed by 64 with a close gap. Embedding size of 256 has performed the 

worst. This is probably because of overfitting; it requires more training data. 

 

Another difficulties of triplet loss are triplet selection and batch generation. For triplet 

selection, we have observed that batch hard strategy works better than batch all. In 

FaceNet, very large batches are used for better triplet selection. However, this makes the 



 46 

network impossible to train on GPUs. Therefore, we have used PK-style batch 

generation to overcome this issue. We have tried to generate batches with using 

additional vessel type information so that each batch contains more vessels belonging 

the same type. But, we have seen that this technique forces the network to train on 

mostly outliers which causes convergence issues. As a result, we have ignored vessel 

type information and generated batches by picking vessels randomly. However, this 

information is quite valuable and we will investigate on how to use it in further studies. 

 

We have used linear regression, k-NN and SVM from traditional machine learning 

methods. We have seen that SVM performed the best for both binary and multi-class 

classification problems. 

 

In the end, we have achieved a very promising verification accuracy with 93.67, which 

is very close to state-of-the-art score with 93.97 accuracy. It should be noted that our f1-

score is better than the state-of-the-art. For vessel recognition task, we have achieved 

comparable state-of-the-art results. However, their improved method of Gundogdu-

Solmaz et al. (2017) worked better for most vessel types. We think this is because they 

utilize 109-dimensional vessel type information directly by concatenating feature 

vectors from two specialized networks. It should be noted that we are also using this 

information by fine-tuning a base model which is trained on vessel types. However, 

fine-tuning over and over for new tasks causes this learnt information to fade away 

slowly. 

 

In future works, we are planning to use regional convolutional neural networks (R-

CNN) for ship detection and segmentation. Because MARVEL is a quite hard dataset. 

Most images contain multiple vessels belonging different types. There is also 

reasonable amount of outliers such as inside images of ships. We think that detecting or 

segmenting vessels will help to overcome these issues significantly. Besides that, we 

will apply more preprocessing methods for data augmentation. New and powerful 

methods have emerged recently like perspective skewing and elastic distortions. Even 

though SVM achieved better scores for some tasks, it requires additional steps which 

cause severe division of training process. This makes training and validation very hard. 
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On the other hand, triplet loss can enable end to end training by removing the need of 

additional classifier layer. Therefore, we will further investigate on triplet loss for better 

utilization. 
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