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ABSTRACT 

 
 

IMPACT OF QUALITY DISTORTIONS ON CNN IMAGE CLASSIFIERS AND 

RESTORATION USING DEEP CONVOLUTIONAL AUTO-ENCODER 

 

Çağkan ÇİLOĞLU 

 

 

Computer Engineering Graduate 

 

Thesis Supervisor: Prof. Dr. Taşkın KOÇAK 

 

 

May 2018, 42 pages 

 

 
Deep neural networks have obtained significant performance on recognizing objects even 

in real-time video stream. As hardware requirements of this task decrease in cost and parts 

getting smaller, this technology can be used in mobile devices Most of the time, deep 

neural networks are trained and tested on quality picture datasets. But frames provided 

by camera may be distorted because of camera defects and/or weather conditions such as 

rain and snow. This paper provides an evaluation of four state-of-the-art deep neural 

network models for picture classification under quality distortions. Three types of quality 

distortions are considered: blur, noise and contrast. It is shown that the existing networks 

are susceptible to these quality distortions and architecture of the network dramatically 

affects the results. Using deep convolutional auto-encoder to restore picture quality is 

suggested and better scores have been archived utilizing it. Results enable future work in 

developing machine vision systems on that are more invariant to quality distortions. 

 

Keywords: Convolutional Neural Network, Image Classification, Image Restoration       

                    Auto-Encoder, Object Classification in Video, iOS CoreML 
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ÖZET 

 

 

KALİTE BOZULMALARININ SINIFLANDIRICI CNN’LER ÜZERİNDEKİ 

ETKILERİ VE DERİN KONVOLÜSYONEL AUTO-ENCODER İLE 

DÜZELTİLMESİ  

 

Çağkan ÇİLOĞLU 

 

 

Bilgisayar Mühendisliği Yüksek Lisans 

 

Tez Danışmanı: Prof. Dr. Taşkın KOÇAK 

 

 

Mayıs 2018, 42 sayfa 

 

 

Derin sinir ağları gerçek zamanlı video akışında bile nesneleri tanıma üzerinde önemli 

başarı elde etmiştir. Bu görevin donanımsal gereksinimlerinin maliyetinin azalması ve 

fiziksel olarak küçülmesi bu teknolojinin mobil cihazlarda kullanılabilinmesini 

sağlamıştır. Çoğulukla, derin sinir ağları kaliteli veri setleri üzerinde eğitilmiş ve test 

edilmiştir. Fakat kamera tarafından sağlanan kareler, kamera kusurları ve/veya hava 

koşulları nedeniyle bozulmuş olabilir. Bu tez, resmin kalitesinin bozulma durumu altında, 

resim sınıflandırması için kullanılan, yüksek performanslı en güncel dört derin sinir ağ 

mimarilerinin bir değerlendirmesini sunar. Üç tür kalite bozulması üzerinde çalışılmıştır: 

bulanıklık, gürültü ve kontrast. Mevcut ağların bu kalite bozulmalarına duyarlı olduğu ve 

mimarilerinin sonuçlar üzerinde direkt etkisi olduğu gösterilmiştir. Bu durum karşında 

resim kalitesini arttırmak için derin konvolüsyonel auto-encoder kullanılması önerilmiş 

ve bozuk resimlere göre daha doğru değerler alınmıştır. Bu tez, makine görü sistemlerinin 

resim kalitesinden bağımsız olarak sonuç vermesinin geliştirilmesine katkı sağlar. 

 

Anahtar Kelimeler: Konvolüsyonel Sinir Ağları, Resim Sınıflandırma, Auto-Encoder  

                                   ile Resim Düzeltme, Videoda Obje Sınıflandırılması, iOS CoreML 
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1. INTRODUCTION 

 

 

Deep neural networks have obtained significant performance on recognizing objects even 

in real-time video stream. As hardware requirements of this task decrease in cost and parts 

getting smaller, this technology can be used in mobile devices. This development makes 

the quality of frames provided by camera an important concern.  

 

Most of the time, deep neural networks are trained and tested on quality picture datasets. 

But frames provided by camera may be distorted because of camera defects and/or 

weather conditions such as rain and snow or user’s movements. In this context it is 

important to know how quality distortions impact on results of image classification.  

 

Because utilizing deep neural networks on mobile devices is a new development there are 

limited number of architectures that are optimized enough to run on mobile devices. The 

questions would be, are all these architectures effected by quality distortions equally, do 

distortion types effect the result all the same or some more than others, which levels of 

distortions significantly affect the classification results.    

 

It is possible to restore the images damaged by these distortions using neural network. 

But as using neural networks on mobile devices is a new development it is vital to learn 

if using restoration convolutional auto-encoder(CAE) would be suitable in this 

environment. If it is, then the next question would be if the architecture of image 

classification model poses as a factor in the results or the image provided by restoration 

model gives the same output for all image classification architectures.  

 

To answer these questions, an evaluation of four state-of-the-art deep neural network 

models for picture classification under quality distortions on mobile environment has 

been made. Three types of quality distortions have been considered: blur, noise and 

contrast. Impacts of these distortions on image classification results have been compared 

using different models. Suitability of using restoration CAE on mobile devices have been 

investigated. Then classification results of restored images have been assessed in terms 
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of image classification architectures, distortion types and levels. Lastly, results gotten by 

these experiments have been discussed and a conclusion has been given by stating a 

general understanding and suggestions for future works to develop machine vision 

systems on mobile devices that are more invariant to quality distortions. 

 

In this work, CoreML framework on iOS has been used to handle the communication 

between the device and the neural network models. Except the training of the restoration 

auto-encoder, for all other procedures such as data gathering, assessing the performance 

of image classifiers and restoration auto-encoder model, only an iPhone 6 device has been 

used to limit the scope to mobile usage. 

 

1.1 BACKGROUND INFORMATION 

 

In computer vision, deep neural networks (DNN) achieves state-of-the-art results within 

numerous domains such as processing pictures, video, speech and audio (LeCun et al. 

2015, pp.436-444).  

 

DNNs are a set of algorithms, modeled after the human brain, which are designed to 

recognize patterns in given input. In common words, a deep network comprises of layers 

of neurons where each neuron computes function: 

f(x) = φ (𝑤𝑇x + b)         (1.1) 

where x is the input to the neuron, w is a weight vector, b is a bias term and φ is a 

nonlinearity function. Each neuron gets possibly numerous inputs and yields a single 

number. The importance of nonlinearity is allowing layers of neurons to learn non-linear 

functions. In these layered designs, the output of one layer of units gets to be the inputs 

to the next layer of units. 

 

For picture recognition tasks, the input to the network is the picture itself (most of the 

time normalized). However, in the event that a single neuron is to get inputs from 

the whole picture, the memory and computational necessities rapidly end up restrictive. 

Weight sharing is being used to solve this issue. Instead of each neuron using a different 
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weight vector w, it is shared between neurons. The weight vector behaving like a bridge 

connects to adjacent neurons from the previous layer inside a pre-defined region known 

as a receptive field. Layers with convolutional shared weights are defined as 

convolutional layers. Whereas layers without the convolutional shared weights are 

defined fully connected layers. 

 

Convolutional layers together with pooling layers and fully connected layers compose 

convolutional neural network (CNN) (LeCun et al. 1998) a type of DNN. CNN 

architectures make the assumption that the inputs are pictures, which permits to use 

certain techniques into the architecture such as filtering to find local feature maps, pooling 

to reduce the dimensions of each feature map while preserving the significant features 

and weight sharing. These features make the architecture more efficient in terms of 

calculation by significantly reducing the number of parameters within the network. CNNs 

are used primarily for image processing (Ciresan et al. 2012; Szegedy et al. 2014), video 

analysis (Ji et al. 2012) and natural language processing (Collobert and Weston 2008). 

 

A softmax layer is used as a last part of the network most of the time. Softmax normalizes 

the outputs by having their sum to one.   By doing so the output layer functions as a 

probability distribution with each neuron corresponding to the probability of the network 

for a specific class. 

 

The parameters w and b are trained with a huge set of input pictures. To begin with the 

output of the network is calculated for a given set of pictures. This value is compared to 

the known class tags then a cost function is used to verify the result by finding how close 

the prediction to ground truth is. The gradient of this cost function can be calculated, and 

by propagating this value in reverse through the network, each neurons gradient can be 

calculated also. With knowing the gradient, any optimization methods based on gradient 

descent can be used to optimize the weights. This technique is called the backpropagation 

algorithm (Rumelhard et al. 1986, pp. 533–536). 

 

One specific domain of picture classification on extensive scale datasets containing many 

pictures from huge number of classes. These problem domains were thought to be greatly 
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difficult however CNNs have accomplished extremely great outcomes. Despite their great 

success, deep networks are susceptible to adversarial samples (Goodfellow et al. 2015). 

Adversarial samples are created by adding worst-case noise to the picture to such an 

extent that the classification prediction is inaccurate with a high confidence.  

 

In processing real-time video stream from camera, the network may experience quality 

distortions. While using a mobile device to classify frames, user may shake his/her device 

or camera being out-of-focus would cause blur. Another possible distortion noise may 

result from acquiring frames with low quality camera sensors, in poor illumination 

conditions or in bad weather conditions. Although these distortions are not the worst case, 

they can in any case make the system misclassify pictures. 

 

As well as picture classification, CNNs show potential in correcting quality distortions 

such as blur and noise (Fu et al. 2016; Gao and Grauman 2017). A type of CNN, 

convolutional auto-encoders(CAE) is state-of-the-art tool in restoring images. Auto-

encoder is an unsupervised neural network based on an encoder-decoder template, in 

which an encoder transforms the input into a low-dimensional representation, and a 

decoder is trained to recreate the original input using this representation (Hinton and 

Salakhutdinov 2006). Main difference of CAEs from auto-encoders is that CAEs are 

using weight sharing and so preserving spatial locality (Masci et al. 2011). But it is yet 

be studied if they are suitable to use on real-time video stream from a mobile device also 

the results they provide would have any effect on architectures optimized for mobile 

usage. 

 

For these sorts of distortions, clarifying the impact of the distortion levels which influence 

the networks in such way that they begin to misclassify frames coming from device’s 

camera is one of the two goals of this paper.  Examining that if a restoration CAE can run 

on mobile device and if it can be used on real-time video stream to restore picture quality 

in terms of these distortions and comparing the results produced by undistorted pictures 

are together form the second goal. Results will enable future work in developing machine 

vision systems on mobile devices that are more invariant to quality distortions. 
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2. LITERATURE REVIEW 

 

 

For most applications in computer vision it is expected that the input pictures are of 

generally without any distortion. But a camera attached on mobile device much likely 

will produce distorted frames as an input.  

 

Many computer vision applications such as face-filters and face-swapping are already 

available for mobile phones as hardware requirements of the task decrease in cost.  

Next milestone will the integration of deep neural network to these systems. There are 

researchers who proposed efficient CNNs for mobile devices (Zhang et al. 2017; Howard 

et al. 2017). This development makes the prerequisite of high quality pictures for deep 

neural networks a concern.  

 

Before that distorted pictures as input was not considered as a problem because supplying 

quality images to CNNs was user’s responsibility. Being a relatively a new concern 

behavior of CNNs under these conditions is still an active field of researchers. 

 

Nguyen, Yosinski and Clune (2015, p.8) presented that discriminative DNN models are 

easily manipulated in such way that they labeled many unrecognizable images with near-

certainty as members of a recognizable class. They produced images which are entirely 

unidentifiable to human observers, but that state-of-the art DNNs were certain with 

99.99% confidence that they are recognizable objects. 

 

Dodge and Karam (2017, p.5) showed that the performance of DNNs and human subjects 

is roughly the same on clean images, but for distorted images human subjects achieve 

much higher accuracy than DNNs. In other words, DNNs cannot effectively recognize 

and get the visual data with these kinds of distortions. 

 

Zhou, Song and Cheung (2017, p.4) examined the CNN picture classifier performance 

under blur and noise distortions. Experimenting on CIFAR-10 (Krizhevsky 2009) and 
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ImageNet (Deng et al. 2009) datasets, they stated that these types of distortions 

significantly worsen the error rate because they affect the edge, color and texture 

information. They presented their fine-tuning and re-training the model using noisy data 

can increase the model performance on distorted data, and re-training method usually 

achieves comparable or better accuracy than fine-tuning. 

 

Borkar and Karam (2018) proposed a metric to detect the most noise susceptible 

convolutional filters and sort them in order of the highest gain in classification accuracy 

when corrected. In their proposed approach named DeepCorrect, at the output of these 

sorted filters, they applied small stacks of convolutional layers with residual connections 

and trained them to correct the worst distortion affected filter activations, while leaving 

the rest of the pre-trained filter outputs in the neural network unchanged. 

 

For image restoration, Mao, Shen and Yang (2016) suggested a very deep fully 

convolutional auto-encoder network, that is an encoding-decoding template with 

symmetric convolutional and deconvolutional layers. While convolutional layers 

grasping the abstraction of image with eliminating corruptions, deconvolutional layers 

recover the image details as they have the capability to up-sample the feature maps. As 

such deep neural network model as this would need long time to train they proposed to 

symmetrically link convolutional and deconvolutional layers with skip-layer connections, 

to have the training converge much faster and attain better results. They also showed it is 

possible to handle different levels of corruptions using a single model. 

 

In this paper, first assessment of deep networks that are running on a mobile device on 

video frames under different types and diverse levels of picture quality distortions has 

been presented. In differentiate to other papers, real-time video stream has been used as 

input to deep networks that trained by high quality pictures. Frames has been augmented 

by introducing distortions on real-time and has been used to assess the performance of 

state-of-the-art image classifier deep neural networks. As a second task, restoring frames 

by utilizing a deep convolutional auto-encoder neural network model has been attempted 

and the results between restored frames, distorted ones and the original ones have been 

compared under different types of distortions and levels. 
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3. DATA AND METHOD 

 

 

Only an iOS device has been used to gather the data, to distort frames and to utilize deep 

neural networks with this, scope has been limited to the device’s capabilities. 

  

3.1 DATASET 

 

In this paper, only real-time frames have been used in the experiment. In total almost 

360k frames from 20 different objects have been tested to understand the effects of image 

distortions. 3 of these objects have been used in restoration experiment.  From household 

items to electronics, objects are selected from various categories.  

 

Objects sizes and their features were also considered as an outcome objects such as band-

aid and a big plastic bag are included to the dataset. Colors on the object was also 

considered, thus objects with single color such as a banana and multiple colors such as a 

TV remote have been added. Lastly, detailed objects such as wrist watch and more 

homogenous objects such as paper-towel have been selected. 

 

3.2 QUALITY DISTORTIONS 

 

Distortions were applied to every frame of the real-time stream directly with OpenGL 

filters. 3 types of image distortions have been used in the assessment of deep networks: 

blur, noise and contrast.  

 

Blur is the result of camera not being focused properly on the object of interest. 

Furthermore, blur can mimic the network’s execution on small or far off objects which 

will be shot with low resolution. Intensity of the blur from 1 to 10 has been used in tests. 

 

Noise may result from utilizing low quality camera sensors. Strength of the noise from 

10 to 100 in steps of 10 has been varied in the tests. 
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Contrast of the frames has been reduced as the final distortion test. 

Contrast decrease is gotten by mixing the input picture with a gray picture (Haeberli and 

Voorhies 1994, pp. 8-9). Level of contrast is indicated by the blending factor. The 

blending factor from 0 to 1 in steps of 0.1 has been varied in the tests. 

 

3.3 DEEP NEURAL NETWORK ARCHITECTURES 

 

In this paper four neural network architectures have been studied: Inception v3 (Szegedy 

et al. 2015), ResNet50 (He et al. 2015), SqueezeNet (Iandola et al. 2016) and MobileNet 

(Howard et al. 2017). They are lightweight enough be utilized on mobile device. All four 

of these networks have been trained on the ImageNet dataset. ImageNet is an image 

dataset which contains over 14 million images under approximately 20 thousand 

categories (ImageNet Official Website 2010). Images of each categories are quality-

controlled and human-annotated (Deng et al. 2009). Pre-trained model weights of these 

networks have been used in tests. 

 

Inception model includes a sort of layer called inception layers. By processing the input 

with different size filters in parallel, the inception layers combine the filter responses 

together. In simple terms, the layer acts as multiple convolution filters. These filters are 

applied to the same input with some pooling then results are concatenated. This allows 

the model to take advantage of multi-level feature extraction as it extracts general (5x5) 

and local (1x1) features in parallel. Also, Inception structure enables the network to use 

far less parameters (Szegedy et al. 2014). Inception v3 is the optimized version for mobile 

vision and big-data scenarios. 

 

By introducing “residual learning framework” (He et al. 2015, p.3) ResNet maintained 

its low complexity with a depth of up to 152 layers. In general usage, several layers are 

stacked and trained in a deep convolutional neural network. The network learns several 

low, mid and high level features at the end of its layers. In residual learning, network also 

tries to learn residuals so that predictions are close to the actuals. In numerical analysis a 

residual is the error in a result. For example, if the prediction of age of a person is 18 

while her actual age is 20, result will be off by 2. In this result, 2 will be residual. ResNet 
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learns residuals by using shortcut connections. Shortcut connections skip one or more 

layers and they simply perform identity mapping. Then their outputs are added to the 

outputs of the stacked layers.  A cluster of these residual nets accomplishes 3.57 

percentage error on the ImageNet data set. ResNet50 is a 50-layer residual network. As it 

is lightweight enough ResNet50 a suitable deep network for mobile vision usage. 

 

SqueezeNet is only 5 MB (megabyte) and utilizes 50 times less parameters than AlexNet 

but their accuracies are similar (Iandola et al. 2016, p.6). Architecture uses three main 

strategies for reducing parameters. First strategy is making the network smaller by 

replacing 3x3 filters with 1x1 filters to reduce the number of parameters 9x by replacing 

a bunch of 3x3 filters with 1x1 filters. Typically, a larger 3x3 convolution filter captures 

spatial information of pixels close to each other.  On the other hand, 1x1 convolutional 

filters zero in on a single pixel and capture relationships amongst its channels as opposed 

to neighboring pixels. Next strategy is reducing the number of inputs for the remaining 

3x3 filters. This strategy reduces the number of parameters by basically just using fewer 

filters. Last strategy is doing the downsample late in the network so that convolution 

layers have large activation maps. Having larger activation maps near the end of the 

network is in stark contrast to networks like VGG where activation maps get smaller as 

getting closer to the end of a network. Even though SqueezeNet is not the best network 

when it comes precise outputs, it’s an extremely efficient deep network. 

 

MobileNet is a light weight deep neural network architecture for mobile and embedded 

vision applications. Most distinctively, it uses depthwise separable convolutions. By 

using this type of convolutions, the number of parameters significantly reduces when 

compared to the network with normal convolutions with the same depth. In MobileNet 

normal convolution is replaced by depthwise convolution subsequently pointwise 

convolution which is called depthwise separable convolution. In another terms, 

architecture sacrifices accuracy for low complexity deep neural network. With that by 

using two global hyper-parameters that tradeoff between latency and accuracy, it is 

possible to choose the right sized model for the applications based on the constraints of 

the problem (Howard et al. 2017 p.1). 
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3.4 RESTORATION CONVOLUTIONAL AUTO-ENCODER 

 

As second part of the experiment is restoring the image, a neural network has been used 

and trained to do this task. It takes 300x300 RGB image as an input and outputs an image 

with same structure.  

 

Restoration CAE that has been used in experiments is modified/simplified version of the 

model proposed by Mao et al. (2016). It has been implemented using Keras framework 

in Python. It consists of 11 2D convolution layers, 2 max-poolings and 2 up-samplings. 

It has 1.814.628 trainable and 0 non-trainable parameters. In Figure 3.1 a visual 

representation of the model has been presented. 

 

Model has been trained with images which have been distorted by all three types so that 

not only it can restore a singular distortion but also a group of them. Around 7500 frames 

have been used in training. These frames have been divided into four sets: original train, 

original test, distorted train and distorted test. Approximately for every test frame whether 

it’s in original or distorted set there are two train frames in its counterpart. A distorted 

frame has been created using an original frame and distortion filters. So, they have been 

their exact counterparts. The numbers of frames in both train sets are equal so are the 

frames in test sets.  Neural network first trained on original train and distorted train sets 

then validated the weights using test sets. Training has been done on GPU as time required 

for CPU would be too much. Training approximately lasted eight hours using a computer 

which has a GeForce GTX1080 graphical card. 
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              Figure 3.1: Restoration auto-encoder model architecture 
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3.5 METHOD 

 

Only an iPhone 6 device has been used to gather the data, to distort frames and to utilize 

deep neural networks to limit the scope to mobile devices. In total around 360k frames 

from 20 different objects from various categories have been tested in showing distortion 

effects and 3 of them have been used in restoration stage. Overlook of the experiment 

setup has been given in Figure 3.2 below. 

 

Figure 3.2: Experiment setup 
 

 

 

3.5.1 Finding the Impact of Distortion Effects 

 

First part of the experiment is about learning how the distortion filters effect CNNs. This 

part has 3 stages: preparation stage, distortion stage and comparison stage.  

 

In preparation stage, utilizing each of four CNNs, object’s reference values have been 

noted. For example, while classifying a banana, all four CNNs give the classification 

result with different confidence score. It is important to understand that confidence score 

is not the same for every CNN.  

 

In distortion stage using OpenGL, distortion filters have been applied directly to camera 

feed. For blur, noise and contrast, 10 different distortion intensity levels have been varied 

in the tests.  
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After distorting the frames, from different angles, augmented frames have been passed to 

CNNs to classify the pictures again. For each distortion filter and its intensity level, an 

average confidence score of classification results from all four CNNs have been noted. 

 

Lastly, in comparison stage difference of average confidence scores between distorted 

and original frame have been noted for all CNNs. These values also have been used to 

find the performance of restoration part.  

 

3.5.2 Restoration Stage 

 

In restoration stage, distorted frames of each distortion filters been attempted to restored 

using the CAE for picture restoration. Restored frames have been passed to picture 

classification CNNs and average confidence scores have been recorded. 

 

The effects of all three distortion types have been tried to be rectified for all four deep 

network architectures. In total twelve experiment has been conducted using the three 

objects of the original twenty. 

 

While testing for a specific distortion, two constant values have been given to other two 

distortions. These constants have been changed while testing for each distortion types.  

For example, while restoring a blurred image with different intensity, noise and contrast 

distortions have been given constant values to mimic a picture taken by average camera. 

These values have been found by comparing pictures taken by an average camera and 

pictures augmented by distortions. Figure 3.3 shows a sample of pictures taken by an 

average camera (General Mobile 5 Plus) and a quality camera (iPhone 6) but distorted by 

distortion filters to mimic the constant distortions in average cameras. 
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Figure 3.3: Raw and distorted pictures from average and quality cameras 

 

 
 

The difference of average confidence scores between distorted and restored frame have 

been noted to find the performance of restoration CAE. Using the reference values given 

by original undistorted frames, distortion filters impact on classification confidence score 

and restoration CAE’s compensation has been clearly shown. 

 

Peak signal-to-noise ratio (PSNR) values have been given in restoring all three quality 

distortions. PSNR is the ratio between the maximum possible power of a signal and the 

power of corrupting noise that affects the quality of its representation. PSNR is generally 

used to measure the quality of reconstruction of signal and image. High PSNR usually 

means good image quality and less error is introduced to the image (Huynh-Thu and 

Ghanbari 2008). 

 

The PSNR (in dB) is defined as: 

PSNR = 10 ∗ log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (3.1) 

In this equation 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image. This value is 

255 when the pixels in the image are represented using 8 bits per sample. Other term 𝑀𝑆𝐸 

is the mean squared error that is the difference between the predictor and what is 

predicted. For every distortion level in specific quality distortion two PSNR values have 

been presented by comparing original to distorted and original to restored frames. 
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4. FINDINGS 

 

 

4.1 QUALITY DISTORTION EFFECTS 

 

Most of the time image classification CNN’s gives an array of object labels along with 

their confidence points. For example, when a banana is used as the input, CNN’s output 

would be: 90 percentage banana, 9 percentage ruler, 1 percentage sponge. 

 

All twenty objects’ confidence score values when introduced to quality distortions have 

given as impact tables in the Appendix section. The average calculated for all CNN 

architectures by summing the confidence scores for all levels and types of distortions 

separately then dividing them to 20, for SqueezeNet architecture it was divided to 18 as 

SqueezeNet has failed to detect the two objects in the dataset entirely. 

 

In the figures below, average correct classification confidence point with distortion level 

is given for blur, noise and contrast. An effort has been made to ensure that during the 

experiment environmental conditions such as light intensity, angles and the distance 

between the camera and the object have been kept the same.  

 

4.1.1 Blur 

 

Figure 4.1 shows the change causing by the blur augmentation in frames. As seen in the 

figure, confidence point hasn’t changed the same with each distortion level. When level 

1 blur distortion was introduced for Inception v3 model, 2,9 percent change has been 

recorded. Then despite that level has been doubled only 0,9 percent change was observed. 

But each time level was increased especially after level 4, new wrong labels were started 

to be given in output array while the correct classification’s confidence point decreased 

dramatically. 
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Figure 4.1: Blur distortion effects 

 

 

 

4.1.2 Noise 

 

Next, noise distortion has been tested. As is seen in Figure 4.2, all of the networks are 

very sensitive to noise. Even though until level 20 most of the CNNs that have been tested 

has been somewhat resistant against distortion’s effects. But after 20, a dramatic decrease 

in confidence score has been observed.  

 

However, compared with the SqueezeNet and MobileNet, it has noted that the 

performance of the Inception v3 and ResNet50 falls off slower. At a noise level of 80 

the networks’ confidence scores have gotten to be less than 20% on average; despite this 

level of noise, the pictures were still effectively recognizable by human observers. 

 

 

 

 

 

 

 

0 1 2 3 4 5 6 7 8 9 10

Inception v3 95,8 92,9 92 89,3 83,9 74,5 70,8 64,8 59,7 55,3 44,9

ResNet50 92,5 91,4 89,7 86,5 80,6 76,9 68,2 61,6 52,3 44,2 33,9

SqueezeNet 81,6 66,4 61,7 55,9 49,6 35,2 22 15,3 11,8 8,4 2,3

MobileNet 89,6 88,4 88,2 84,7 79,3 74,1 64 49,7 37,8 25,1 16,1

0

10

20

30

40

50

60

70

80

90

100

C
O

N
F

ID
E

N
C

E

DISTORTION LEVEL

Inception v3 ResNet50 SqueezeNet MobileNet



17 

 

Figure 4.2: Noise distortion effects 

 

 

 

4.1.3 Contrast 

 

Lastly, effect of contrast changes on confidence score has been tested. As seen in Figure 

4.3 except SqueezeNet, networks have been resilient with regard to contrast changes. 

Also, under high contrast distortion levels, recognizing pictures was as hard as to human 

observers as it was to CNNs. 
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Figure 4.3: Contrast distortion effects 

 

 

 

It is observed that shape, size, detail level and how colorful is the object also effect 

confidence points against distortions. If the object is small like a band-aid or too detailed 

like a watch confidence points rapidly decreased every time level was increased. But if 

its big and not detailed like a plastic-bag or a white napkin, confidence points stayed the 

same for higher levels of distortion. Color is also a factor; it has been observed that the 

confidence points of objects like a bath-towel and a remote-controller with colorful 

buttons does not decrease the same against the distortions. CNNs quickly confused when 

a colorful object’s frames augmented by distortions given as input. 

 

4.2 RESTORATION 

 

For all four CNN architectures the effects of all three distortion types has been tried to be 

corrected. These experiments have been conducted in same environment where light 

condition is the same for all architectures. Also, care was taken to use similar angles and 

distance between camera and object. Even though restored pictures look all the same for 
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the human observer that’s not the case for CNNs. Results have indicated that restored 

pictures perform different on each CNN and distortion type.   

 

4.2.1 Blur 

 

Restoring blurred images has been tested first for all four neural network architectures. 

“coffee mug” object is used in these experiments. Blur levels from 1 to 10 has been used 

while noise distortion level has been set to 20 and contrast to 0.8.  

 

A sample of blurred and restored “coffee mug” images by restoration model is given in 

Figure 4.4. On sample image not only, blur but also other two distortions has been 

utilized. 

 

Figure 4.4: Distorted and restored coffee mug 

 

 

 

In Figure 4.5 PSNR values between original, distorted and restored frames for blur 

distortion has been given. Even though restoration in frames can be observed with naked 

eye, PSNR values between frames has been almost the same even though a small increase 

has been recorded. 

 

 

 



20 

 

Figure 4.5: PSNR values in restoration of blur distortion 

 

 
 

Figure 4.6 shows the confidence scores of original, distorted and restored camera frames 

of “coffee mug” object given by Inception v3 neural network architecture. As for all 

experiments, only the frames coming from real-time video feed have been used. 

 

Figure 4.6: Blur restoration performance for Inception v3 
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It has been seen that restoration model couldn’t correct the distorted frame 100% for this 

architecture. Moreover, it behaved like a distortion filter for early levels by dropping the 

confidence score. Be that it may, restoration model’s confidence score stayed between 75 

and 61. Even under maximum blur level where image classification no longer gives 

correct result for distorted frames, restoration model managed to stay in these bounds. 

Although it has seen that model hadn’t give stable results when used with Inception v3. 

Especially after blur level 5 a significant drop has been seen in confidence score given by 

restoration model.  

 

Confidence scores of original, distorted and restored camera frames of “coffee mug” 

object is given in Figure 4.7. It shows scores given by ResNet50 neural network 

architecture.  

 

Figure 4.7: Blur restoration performance for ResNet50 

 

 

 

Similar to Inception v3 case, for early levels of blur distortion levels, restoration model 

has made the confidence score drop. Nevertheless, results indicate that restoration model 

corrects the effects of blur distortion. Even so, it has started to correct distorted frames 

from the beginning. Even at minor distortion such as level 1, a 10-point increase in 
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confidence score has been seen. Also, between distortion levels of 2 and 6 it has given 

almost same scores as original frames. In other words, restoration model fully corrected 

distorted frames for ResNet50 architecture for these levels. After level 7 blur distortion, 

a drop worth of 10 confidence points has been observed. But despite that this drop, model 

has given stable results for higher distortion levels. 

 

Figure 4.8 shows the performance of restoration model in blur correction for SqueezeNet 

architecture. Same with others “coffee mug” object and real-time video feed has been 

used. 

 

Figure 4.8: Blur restoration performance for SqueezeNet 

 

 

 

SqueezeNet is the most susceptible deep neural network architecture to image distortions. 

Even a small distortion is enough to drop significant confidence points. It also gave the 

worst performance with blur restoration model. Similar to other architectures restoration 

model has made the confidence points drop. But because SqueezeNet is more susceptible 

to distortions, restoration model made the “coffee mug” object unrecognizable. Despite 

that, it was recognizable for blur distortion level 1 and 2 though with low confidence 
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points. Results show that the restoration model has negative effect regards to confidence 

points in image classification and acts like a distortion effect. 

 

Results of blur restoration model for MobileNet has been given at Figure 4.9. Same with 

other experiments with architectures distortion effect has been given in real-time and with 

those frames restoration model has been utilized. 

 

Figure 4.9: Blur restoration performance for MobileNet 

 

 

 

Restoration CAE model could not correct the blur distortions fully for MobileNet. Even 

though it had less impact on confidence points than blur distortions, it still caused some 

loss for earlier distortions.  

 

Restoration model reached a break-through on blur distortion level 5 it. Increase in 

distortion level after 5 didn’t have any effect on confidence points as model keep giving 

higher points than points caused by blur distortion. Moreover, though out the experiment 

restoration model gave steady results between 55 and 47 points. Still MobileNet’s 

performance wasn’t as good as Inception v3’s and ResNet50’s. 
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4.2.2 Noise 

 

 “Remote controller” object has been used in noise distortion restoration experiments. 

Noise levels from 10 to 100 has been utilized while blur distortion level has been set to 2 

and contrast to 0.7 as constants. 

Figure 4.10 shows a sample of distorted and restored “remote controller” images. First 

row shows the distorted images by distortion filters such as blur, noise and contrast while 

the second row shows the restored images by restoration model. 

 

Figure 4.10: Distorted and restored remote controller 

 

 

 

Figure 4.11 show the PSNR values between original, distorted and restored frames for 

noise restoration. From the first level of distortion a significant increase in PSNR has 

been recorded. As distortion levels increased, PSNR values compared original to distorted 

frames continuously decreased while values of original to restored frames have stayed 

above 32 dB. 
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Figure 4.11: PSNR values in restoration of noise distortion 

 

 

 

Restoration model’s performance on Inception v3 architecture has been tested using 

distorted real-time camera frames of “remote controller” object.  Figure 4.12 shows the 

impact of the restoration model on confidence scores of frames augmented by noise and 

other two constant distortions. 

 

Figure 4.12: Noise restoration performance for Inception v3 
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Confidence score of “remote controller” object has been very high. During the 

experiments it hasn’t go down below 98 for undistorted frames. In fact, the basic 

understanding of the Inception v3 model on this object is so deep that noise distortion has 

had little to no effect on confidence points up until level 50. Whereas for earlier distortion 

levels restoration model made the confidence score to drop up to 10 points. After noise 

level 50 where the image classification model based on Inception v3 architecture started 

to lose confidence points a break-though has been reached. Until distortion level 90, 

restoration model has given steady results almost the same with results has been given by 

original frames.  

 

Nonetheless, a dramatic drop on confidence points has been observed after this level. 

Even so, for noise distortion levels 90 and 100 where model has been unable to recognize 

this object, restored images given by restoration model hasn’t go below 55 confidence 

score. 

 

“Remote controller” object’s confidence scores given by its original, distorted and 

restored camera frames have been presented in Figure 4.13. It shows scores given by 

model based on ResNet50 neural network architecture. 
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Figure 4.13: Noise restoration performance for ResNet50  

 

 

 

Confidence scores of restored frames given by restoration model has been almost 

identical to original frames except for level 100 noise distortion. Unlike the results of 

other experiments restoration model has not caused a drop on confidence score for earlier 

distortions. Base understanding of the model which is based on ResNet50 architecture 

has been deep enough to resist the effects of noise distortion up until level 40. Results 

show that confidence score of restored frames given by image classification neural 

network model based on ResNet50 was the highest compering to other three models. 

 

In Figure 4.14 shows the restoration model’s performance on SqueezeNet architecture. 

Scores given by “remote controller” objects original, distorted and restored frames. 
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Figure 4.14: Noise restoration performance for SqueezeNet 

 

 

 

As shown in first part of the paper, SqueezeNet performs worst under distortion filters. 

Beginning from the first level it couldn’t identify the “remote controller” at all. As for the 

restoration model, it hasn’t had any effect. 

 

Lastly, MobileNet architecture-based model has been tested with restoration model. Like 

previous experiments care has been taken to keep same conditions, such as light, angles 

and distance from the camera. Figure 4.15 shows the results. 
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Figure 4.15: Noise restoration performance for MobileNet 

 

 

 

Similar to ResNet50, base understanding of the MobileNet model on “remote controller” 

were deep as model’s confidence scores didn’t go below 98 points for original frames. 

Distortion augmentations didn’t have any effect on the model until level 30 noise 

distortion. From level 20 to level 30 a dramatic drop worthy of 60 points on confidence 

score has been observed.  

 

For MobileNet model, restored frames hasn’t caused a drop on confidence score while 

testing for earlier noise distortion levels. Moreover, restoration model’s restored frames 

have almost given same results as original ones. Up until the noise distortion level 70 

results given by it were stable. Like the distorted frames’ confidence scores a notable drop 

worthy of 22 points has been observed when level 80 noise distortion introduced. On 

distortion level 100 confidence score dropped to 61 points. 
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4.2.3 Contrast 

 

For contrast restoration experiments a “wooden spoon” has been used. Throughout the 

experiments environmental conditions were kept the same. So only the difference was the 

contrast distortion levels. Original, distorted and restored frames confidence scores have 

noted for all four neural network architectures. Starting from 1, contrast level of the 

frames gradually dropped to 0.1 while testing. Additional constant distortions also 

included, blur distortion has been set to 2 and noise to 30 for all frames.  

 

A sample of distorted and restored “wooden spoon” frames were given in Figure 4.16. 

On first row, distorted images by distortion filters such as blur, noise and contrast has 

presented while the second row shows the restored images by restoration model. 

 

Figure 4.16: Distorted and restored wooden spoon 

 

 
 

In figure 4.17 PSNR values for contrast distortion has been given. For first 3 levels 

original to distorted frames have given higher PSNR value which suggest restoration CAE 

distorted the frames more than distortion filter itself. Despite this situation, for higher 

levels of contrast distortion PSNR values of original to restored frames were greater. 
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Figure 4.17: PSNR values in restoration of contrast distortion 

 

 

 

Restoration CAE model’s performance in terms of contrast correction on Inception v3 

architecture has been tested using distorted real-time camera frames of “wooden spoon” 

object.  Figure 4.18 shows the effeteness of the restoration model on confidence scores 

on frames distorted by contrast and other two constant distortions. 

 

Figure 4.18: Contrast restoration performance for Inception v3 
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Restoration model managed give frames that increase the confidence score between 

distortion level 0.5 and 0.2. On distortion level 0.2, the increase in confidence score has 

been observed as 7 points. 

 

A dramatic drop has been seen on confidence score when contrast of the frame had been 

set to 0.1. After this level, restoration model impacted the confidence score worse than 

contrast distortion itself.  

 

Next, image classifier based on ResNet50 architecture model has been tested in contrast 

restoration. Original, distorted and restored “wooden spoon” object’s frames provided by 

real-time camera feed, distortion filters and restoration model. Results have been 

presented in Figure 4.19. 

 

Figure 4.19: Contrast restoration performance for ResNet50 
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significant improvement worthy of 12 points has been observed. For higher levels of 

distortion until 0.1, restoration CAE almost completely corrected the contrast distortion.  

 

Performance of restoration model for SqueezeNet has been tested for contrast correction 

with real-time camera frames of “wooden spoon”. Results of this experiment has been 

presented in Figure 4.20. 

 

Figure 4.20: Contrast restoration performance for SqueezeNet 

 

  

 

SqueezeNet model’s base understanding of this object was low from the beginning and it 

was so sensitive these distortions even from first level confidence score has dropped to 0. 

It has been found that frames provided by restoration model hadn’t had any effect on 

image classifier based on SqueezeNet architecture. Restored frames still were too 

distorted to increase the confidence score given by the image classifier CNN.  

 

MobileNet architecture based model was tested last. Same with others original, distorted 

and restored frames of “wooden spoon” object has been used in contrast correction 

performance comparison. Figure 4.21 presents the result of this experiment. 
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Figure 4.21: Contrast restoration performance for MobileNet 

 

 

 

Similar to ResNet50 architecture based image classifier’s case, restoration CAE had given 

frames which has performed worse than their distorted counterparts for early levels of 

distortion levels. On distortion level 0.7 restoration model has output frames that have 

same confidence score with distorted frames. After this level, restoration model has kept 

giving significantly better scores until contrast of the frame set to 0.2 then a dramatic drop 

has been observed and its frames also couldn’t be able to be recognized by MobileNet 

CNN. 

 

Another finding about contrast restoration experiment is that when a background other 

than the trained one has been used confidence scores dropped from 90s to between 60 and 

80s. 
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5. DISCUSSION 

 

 

Results of experiments have been discussed in two parts. In the first part, impact of the 

distortion types and levels on four state-of-the-art CNN architectures for image 

classification has been reviewed. Suitability of the usage of restoration CAE, its effect on 

confidence score in terms of distortion and architecture of image classification have been 

assessed in the second part. 

 

5.1 QUALITY DISTORTIONS 

 

It has been found that distortion types, their levels and the image classification 

architecture all affect the confidence score. All four architectures lost confidence points 

when introduced distortion effects. This suggests that distortions affect the confidence 

score regardless of the architecture. But it has been found that some architectures show 

resilience to these effects and manage to keep their score by losing a few points. Also, it 

has been observed that distortion types, blur, noise and contrast don’t disturb the results 

equally. 

 

When introduced to images, blur causes a decrease in performance of CNNs by giving 

low confidence scores. In training CNNs learn features of the images, later they look for 

these to predict their class. Blur by default, damages the textures in the images, in these 

damaged textures, there could be features that are being looked for by CNN. This could 

be the reason of why blur affect the image classification CNNs. Although, for early levels 

of blur, except SqueezeNet all architectures showed some resilience. Being a relatively 

small model as it is only 5 MB, SqueezeNet’s higher susceptibility to blur distortion effect 

could be explained by its lack of depth in the architecture. It is highly possible that depth 

of structure makes the CNN more resilient to blur effect. Because it learns more features 

from the images during the training. Even so, significant drops on confidence score have 

been recorded after level 5 and above, this fact suggests that depth of the architecture 

alone is not enough to resist impact of the blur effect. 
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Noise distortion effect has decreased the confidence score more than blur for all four 

CNNs. Inception v3 and ResNet50 showed some resilience until level 20 but after that 

they too started to lose confidence score rapidly with increasing levels. When advancing 

from distortion level 70 to 80 approximately 38% loss in confidence score has been 

observed while from 60 to 70 it was around 34%. From 90 to 100 it has become 78%. As 

a side note, even for level 100 noise distortion, frames were still clearly recognizable to 

human eyes. These values point that with each noise distortion level confidence score of 

correct class gets worse gradually. This situation could be indicating that not all features 

learned from the image are affected by noise equally. Like blur, it is possible that deeper 

structure of CNNs permits the networks to learn features that are resilient to noise for 

some levels. This understanding also explains why SqueezeNet is the most sensitive CNN 

to distortions as one of its benefits is reducing the depth of feature map to boost to 

computation. 

 

As for the contrast distortion, except the SqueezeNet all other CNNs have managed to 

give high confidence scores for correct class labels. Even then contrast of the frames had 

been decreased by 70%, these other three CNNs managed to give approximately 76% 

confidence score. Which suggests features that are learned during the training are not 

easily distorted by contrast reduction if architecture’s depth is normal not squeezed like 

SqueezeNet. It is also possible that because experiments have been done on real-time 

video stream, some features that are belong to specific angles and distances are more 

resilient to contrast reduction. In addition to that it has been observed shape, size, how 

detailed and colorful is object also a factor. If object is small or too detailed like a watch 

confidence score of correct class label rapidly decreased with every contrast distortion 

level. Also, it has been noted that colorful objects lose confidence score faster objects like 

bath-towel. But these levels of contrast distortions are not likely to be encountered on 

real-life scenarios. By testing couple of the low-tier devices, it has been seen that worst 

contrast distortion was around 0.7. At this level, average confidence score has been noted 

as 80.5%. What this value suggests is that it is possible to ignore contrast distortions in 

real-life usage. 

 



37 

 

From the experiments it has been observed that not all distortion types affect the CNNs 

equally, some CNNs have shown resilience for early levels of distortions, also different 

architectures give different results when encountered to those distortions which suggests 

it is possible to build picture classification CNN models that are more resilient to effects 

of quality distortions. Even though blur and noise still pose as a challenge to be solved 

because CNNs have been highly sensitive to them, results of contrast distortion can be 

ignored considering most CNNs were resilient to it. 

 

5.2 RESTORATION CONVOLUTIONAL AUTO-ENCODER 

 

Using a restoration CAE on mobile device to get better confidence score for correct class 

labels for the objects in real-time video stream has been tested in second part. Suitability 

of the restoration model for mobile device was a question in terms of function and 

performance. It has been shown that restoration CAE can be suitable for mobile usage 

and some increase in confidence score has been noted. But it was not the same for all 

architectures and distortion types and their levels. While testing the performance of the 

restoration CAE for specific distortion type, constant values have been set for other types 

to mimic real-life situation. 

 

For blur restoration, except for SqueezeNet, increase in confidence score has been 

observed for all image classification architectures. Although for earlier levels of blur 

distortion, restoration CAE impacted confidence score worse than blur itself except 

ResNet50 architecture. It is possible that restoration model distorts these frames because 

of lack of training as experiment has been done on real-time video using mobile device. 

Restoration CAE takes a frame as an input and generates a new frame using features 

learned during training. It is likely restoration model couldn’t generate every feature of 

the original frame so for early levels it acts like a distortion filter. For ResNet50 case, 

even though restoration model causes some distortion, it fully corrected the distorted 

frames which suggests image classifier CNN architecture also determines performance of 

the restoration. As for other two architectures, after early levels a break-though has been 

reached at different distortion levels. For Inception v3 it has been after level 2 while for 

MobileNet it has been after level 5 which indicates that even though restoration model 
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causes loss in confidence score for early levels its possible that at some level it may restore 

more features than distortion filter damages. 

 

Noise restoration performance of restoration CAE model has been better than blur 

restoration performance. For higher levels of noise distortions while image classifier 

CNNs were no longer identify the correct class label, restoration model managed to give 

over 90% confidence score for some models.  Best results have been observed when using 

ResNet50 architecture based image classifier while the worst with SqueezeNet. Despite 

that they look the same for the human eye, restored frames may not have the features 

needed by CNN to classify, another explanation would be none of features of the object 

that SqueezeNet learned during the training couldn’t be generated by the restoration 

model because of its depth does not allow it learn features that are more robust to some 

minor modifications. In noise restoration experiment only for Inception v3 it acted like a 

distortion filter for early levels for blur it was the same case for MobileNet too which 

suggests for different distortion types performance of the restoration model may change. 

It is certain that architecture of image classifier has a direct effect on restoration model’s 

performance also for restoring noised images. 

 

Results of the contrast restoration has been quite different from the blur and noise. 

Restoration model has given better scores for some distortion levels but mostly after level 

0.7 before that it caused some drop on confidence score. For SqueezeNet no performance 

gain has been noted. It is possible that restoring color is different from restoring blur and 

noise distortions. Getting better confidence score for mid and high contrast distortion 

levels on Inception v3 and ResNet50 suggests that restoring contrast is possible for these 

levels. Although, unlike noise and blur distortions it is not sustainable for higher levels 

such as 0.2. Together with this and MobileNet’s case once again shows that architecture 

of the CNN plays an important role on the performance of the restoration model. Also, it 

should be noted that all image classification CNNs showed resistance for early levels of 

contrast distortions and for higher levels restoration CAE performed better. So, to create 

more robust visual systems against quality distortions, it might better to use restoration 

CAEs where CNNs give lower confidence scores than CAEs. 
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Almost for all architectures, restoration CAE has impacted confidence score worse than 

distortion filter itself for early levels of distortions. It is possible that restoration model 

distorts these frames because of lack of training as the experiment has been done on real-

time video using mobile device. Restoration CAE takes a frame as an input and generates 

a new frame using features learned during training. It is likely that restoration model could 

not generate every feature of the original frame so for early levels it acts like a distortion 

filter but for higher levels of distortion restoration CAE generates more features than 

distortion filter damages so increase in confidence score occurs. In SqueezeNet 

architecture 3x3 filters are replaced with 1x1 filters to reduce the number of parameters 

by 9x. Typically, a larger 3x3 convolution filter captures spatial information of pixels 

close to each other.  On the other hand, 1x1 convolutional filters zero in on a single pixel 

and capture relationships amongst its channels as opposed to neighboring pixels. This 

could be reason that restoration CAE could not improve the confidence score of 

SqueezeNet for all three distortions. 

 

Response time for a single frame of CAE has been around 7.6 seconds. Although this 

value would be considered high, it is possible to reduce the time needed by doing more 

optimization in convolution layer depth and filter size. Also using efficient neural 

network architectures especially designed for devices with limited computation power 

may significantly improve the performance in terms of response time.      

 

In the beginning of the paper, finding quality distortions’ impact on different image 

classifier architectures optimized for mobile usage on real-time video stream and whether 

their types would cause different performance outcome, learning the usability of the 

restoration CAE on mobile device and its performance on different architectures and 

quality distortions were the initial goals. These goals have been achieved with 

experiments and comparisons that have been done. Because this work covers the state-

of-the-art CNN architectures optimized for mobile devices result of this research enables 

future work in developing machine vision systems on mobile devices that perform more 

unchanging to quality distortions and better restoration CAEs which can correct these 

distortions by taking account of image classifier architecture and distortion types and 

gives better insight about how quality distortions affect CNNs. 
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6. CONCLUSIONS AND FUTURE WORK 

 

 

An evaluation of four state-of-the-art deep neural network models for picture 

classification under quality distortions on mobile environment has been made to 

understand whether different architectures would cause a difference in terms of 

confidence scores of correct class labels. Impact of these distortions on image 

classification results have been compared using different models.  

 

In gathering the data, distorting the frames and utilizing deep neural networks, only an 

iPhone 6 device has been used to limit the scope for mobile devices. In total around 360k 

frames from 20 different objects from various categories have been tested in showing 

distortion effects and 3 of them have been used in restoration stage. 

 

First part of the experiment has been about learning how the distortion filters effect CNNs. 

This part consisted of three stages: preparation stage, distortion stage and comparison 

stage.  

 

In preparation stage, using different angles and distances object’s reference values have 

been gathered utilizing each of four CNNs and average value has been noted. 

 

In distortion stage distortion filters have been applied directly to camera feed using 

OpenGL. 10 different distortion intensity levels for blur, noise and contrast have been 

varied in the tests. After distorting the frames, from different angles, augmented frames 

have been passed to CNNs to classify the pictures again. For each distortion filter and its 

intensity level, an average confidence score of classification results from all four CNNs 

have been noted. 

 

Lastly, in comparison stage difference of average confidence scores between distorted 

and original frame have been noted for all four CNNs. The impact of the quality 

distortions clearly shown with these values. These values also have been used to find the 

performance of restoration part.  
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It has been observed architecture of picture classification CNN directly effects the quality 

distortions’ impact on confidence score. Different quality distortions affect the 

confidence score differently. The variance of objects that have been used in experiments 

suggests that it is independent from the object used. Based on the results from different 

CNNs that have been used in these experiments, it is possible to create CNN architectures 

that are more invariant to quality distortions. This would be possible to create models that 

learn the features in a way that they are not easily affected when encountered to quality 

distortions such as blur, noise and contrast.    

 

As second part, suitability of using restoration CAE on mobile devices have been 

investigated. Then classification results of restored images have been assessed in terms 

of image classification architectures, distortion types and levels. In this part, distorted 

frames of each distortion filters been attempted to restored using the CAE for picture 

restoration. Restored frames have been passed to picture classification CNNs and average 

confidence scores have been recorded. The effects of all three distortion types have been 

tried to be rectified for all four deep neural network architectures. In total twelve 

experiments have been conducted using the three objects of the original twenty. 

 

While testing for a specific distortion, two constant values have been given to other two 

distortions. These constants have been changed while testing for each distortion types. 

These values have been found by comparing pictures taken by average a camera and 

quality pictures augmented by distortion filters. 

 

It has been seen that in mobile device, it is possible to use restoration CAE for real-time 

video stream’s distorted frames to improve confidence score of correct class label. With 

model used in these experiments, restoring a single frame took approximately 7.6 

seconds. Although this response time of restoration CAE might be considered high, 

creating restoration models that are optimized for mobile usage is achievable like it has 

been for image classification CNNs. 

Like the impact of the quality distortions, architecture of image classification CNN 

directly affects the restoration CAE performance. Even though restored frames look all 

the same for human observers, features that are required by some image classification 
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CNNs may not be restored correctly or not restored at all. Using architectures that are 

compatible with the image classification CNN architecture would increase visual 

system’s resistance against quality distortions. If the intention is to use this model in 

mobile environment researcher must keep in his/her mind that response time and resource 

management play a significant role as well on the performance of the CAE. 

 

Also, it has been noted that CAE performs differently for each different quality distortions 

and their levels. While it significantly increased the confidence scores of distorted frames 

by blur and noise, it wasn’t same case for contrast restoration. But almost all image 

classification CNNs showed resistance for early levels of contrast distortion and 

restoration CAE performed better where CNNs couldn’t, so to create more robust visual 

systems against quality distortions, it might better to use restoration CAEs where image 

classification CNNs give lower confidence scores than CAEs.   

 

To sum up, in mobile environment real-time video stream is likely to be experience 

quality distortions because of movement, weather conditions and poor-quality camera 

lens. Different deep neural network architectures give different results as some of them 

are more sensitive to the quality distortions while others manage to keep invariant for 

early and medium levels of distortions which suggests it is possible to build machine 

vision systems that are optimized enough to run on mobile devices by choosing or 

creating deep neural network architectures that are resistant against these distortions and 

with making sure that they are compatible with each other utilizing restoration CAE 

where they fail. In creating these models, especially if the intention is using these in 

mobile environment, optimization on resource usage and response time should be 

considered. 

 

As for future work, developing an image classifier CNN architecture that gives more 

accurate results and resistant against quality distortions is considered. Furthermore, 

compatible to this CNN, creating a faster and more precise deep convolutional auto-

encoder restoration model that is optimized for mobile usage is another objective for 

future work. 
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APPENDIX A.1 Table 1, Wooden spoon - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 99% 99% 94% 100% 

1 100% 100% 95% 100% 

2 100% 100% 94% 100% 

3 99% 100% 83% 100% 

4 97% 96% 71% 98% 

5 93% 88% 24% 91% 

6 94% 82% 9% 73% 

7 94% 65% 0% 49% 

8 89% 48% 0% 17% 

9 83% 20% 0% 0% 

10 78% 0% 0% 0% 

 

APPENDIX A.1 Table 2, Wooden spoon - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 100% 100% 95% 100% 

10 99% 100% 90% 100% 

20 100% 100% 84% 100% 

30 100% 99% 84% 99% 

40 99% 99% 73% 95% 

50 99% 83% 37% 80% 

60 99% 70% 0% 54% 

70 93% 26% 0% 0% 

80 80% 0% 0% 0% 

90 50% 0% 0% 0% 

100 31% 0% 0% 0% 

 

APPENDIX A.1 Table 3, Wooden spoon - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 99% 100% 97% 100% 

0.1 99% 100% 95% 100% 

0.2 99% 100% 93% 100% 

0.3 99% 100% 87% 99% 

0.4 99% 99% 43% 99% 

0.5 100% 98% 20% 99% 

0.6 99% 95% 0% 99% 

0.7 99% 69% 0% 88% 

0.8 97% 38% 0% 36% 

0.9 81% 0% 0% 0% 

1.0 0% 0% 0% 0% 
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APPENDIX A.2 Table 1, Washbasin - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 99% 99% 94% 100% 

1 99% 100% 96% 100% 

2 99% 100% 94% 99% 

3 96% 99% 83% 95% 

4 96% 99% 50% 94% 

5 93% 94% 37% 93% 

6 93% 83% 13% 86% 

7 87% 73% 0% 77% 

8 88% 61% 0% 25% 

9 83% 41% 0% 14% 

10 78% 24% 0% 0% 

 

APPENDIX A.2 Table 2, Washbasin - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 100% 100% 95% 100% 

10 100% 100% 95% 100% 

20 100% 99% 96% 100% 

30 98% 100% 95% 99% 

40 99% 99% 80% 95% 

50 98% 97% 81% 90% 

60 100% 98% 71% 80% 

70 99% 80% 50% 52% 

80 80% 53% 30% 33% 

90 64% 42% 10% 13% 

100 30% 19% 0% 0% 

 

APPENDIX A.2 Table 3, Washbasin - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 99% 100% 97% 100% 

0.1 100% 99% 98% 99% 

0.2 99% 100% 99% 99% 

0.3 100% 100% 100% 99% 

0.4 99% 99% 98% 99% 

0.5 96% 100% 97% 99% 

0.6 97% 96% 98% 99% 

0.7 98% 91% 95% 88% 

0.8 98% 56% 30% 28% 

0.9 97% 0% 0% 0% 

1.0 0% 0% 0% 0% 
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APPENDIX A.3 Table 1, Sunglasses - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 100% 87% 89% 83% 

1 90% 90% 0% 88% 

2 95% 100% 0% 90% 

3 96% 100% 0% 95% 

4 99% 98% 0% 95% 

5 98% 99% 0% 96% 

6 93% 97% 0% 97% 

7 96% 98% 0% 98% 

8 95% 95% 0% 98% 

9 95% 96% 0% 99% 

10 91% 55% 0% 100% 

 

APPENDIX A.3 Table 2, Sunglasses - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 98% 85% 88% 82% 

10 100% 84% 0% 85% 

20 100% 90% 0% 83% 

30 98% 91% 0% 84% 

40 99% 95% 0% 86% 

50 98% 97% 0% 90% 

60 100% 98% 0% 80% 

70 100% 80% 0% 30% 

80 100% 12% 0% 10% 

90 99% 0% 0% 0% 

100 88% 0% 0% 0% 

 

APPENDIX A.3 Table 3, Sunglasses - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 98% 96% 87% 82% 

0.1 100% 96% 90% 92% 

0.2 98% 98% 88% 98% 

0.3 97% 85% 0% 95% 

0.4 98% 97% 0% 97% 

0.5 99% 98% 0% 96% 

0.6 97% 99% 0% 98% 

0.7 98% 99% 0% 99% 

0.8 99% 98% 0% 97% 

0.9 100% 97% 0% 95% 

1.0 0% 0% 0% 0% 
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APPENDIX A.4 Table 1, Electric switch - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 100% 99% 93% 99% 

1 100% 100% 95% 99% 

2 100% 100% 97% 100% 

3 98% 100% 97% 100% 

4 97% 98% 94% 98% 

5 95% 88% 95% 96% 

6 85% 82% 88% 97% 

7 81% 78% 70% 98% 

8 63% 68% 60% 98% 

9 65% 69% 28% 99% 

10 45% 55% 11% 100% 

 

APPENDIX A.4 Table 2, Electric switch - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 100% 99% 94% 98% 

10 99% 100% 90% 97% 

20 100% 100% 84% 96% 

30 98% 100% 84% 93% 

40 99% 100% 73% 86% 

50 98% 92% 40% 82% 

60 99% 85% 18% 75% 

70 93% 74% 0% 30% 

80 92% 36% 0% 0% 

90 83% 14% 0% 0% 

100 31% 0% 0% 0% 

 

APPENDIX A.4 Table 3, Electric switch - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 99% 100% 97% 99% 

0.1 99% 99% 95% 100% 

0.2 100% 100% 93% 100% 

0.3 99% 86% 87% 98% 

0.4 100% 82% 67% 97% 

0.5 100% 83% 48% 98% 

0.6 99% 74% 38% 98% 

0.7 99% 62% 38% 99% 

0.8 99% 38% 0% 97% 

0.9 100% 26% 0% 95% 

1.0 0% 0% 0% 0% 
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APPENDIX A.5 Table 1, Envelope - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 99% 90% 83% 99% 

1 99% 92% 82% 99% 

2 99% 95% 82% 99% 

3 76% 85% 70% 90% 

4 67% 74% 71% 80% 

5 40% 60% 46% 69% 

6 42% 40% 33% 43% 

7 23% 19% 13% 17% 

8 16% 0% 11% 16% 

9 10% 0% 12% 12% 

10 0% 0% 11% 0% 

 

APPENDIX A.5 Table 2, Envelope - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 100% 93% 80% 98% 

10 98% 94% 81% 96% 

20 98% 95% 83% 95% 

30 95% 97% 76% 88% 

40 81% 85% 58% 71% 

50 75% 45% 40% 58% 

60 31% 24% 18% 20% 

70 0% 0% 0% 0% 

80 0% 0% 0% 0% 

90 0% 0% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.5 Table 3, Envelope - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 99% 98% 82% 99% 

0.1 99% 99% 85% 99% 

0.2 100% 100% 83% 95% 

0.3 100% 99% 85% 96% 

0.4 100% 99% 80% 91% 

0.5 99% 98% 77% 92% 

0.6 99% 96% 71% 83% 

0.7 86% 65% 64% 84% 

0.8 47% 19% 30% 30% 

0.9 35% 10% 0% 12% 

1.0 0% 0% 0% 0% 
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APPENDIX A.6 Table 1, Toilet seat - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 99% 100% 92% 98% 

1 98% 100% 91% 94% 

2 99% 100% 82% 92% 

3 98% 100% 71% 90% 

4 99% 98% 71% 91% 

5 97% 99% 24% 91% 

6 94% 97% 0% 93% 

7 94% 98% 0% 91% 

8 95% 99% 0% 83% 

9 95% 100% 0% 58% 

10 92% 97% 0% 10% 

 

APPENDIX A.6 Table 2, Toilet seat - Noise distortion impact  

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 98% 99% 93% 97% 

10 98% 100% 86% 96% 

20 98% 99% 84% 95% 

30 95% 99% 76% 88% 

40 95% 95% 66% 84% 

50 96% 88% 37% 81% 

60 85% 70% 0% 65% 

70 54% 51% 0% 40% 

80 46% 29% 0% 10% 

90 13% 12% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.6 Table 3, Toilet seat - Contrast distortion impact  

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 99% 100% 89% 99% 

0.1 99% 100% 91% 99% 

0.2 98% 100% 81% 98% 

0.3 99% 100% 0% 96% 

0.4 99% 99% 0% 95% 

0.5 99% 99% 0% 94% 

0.6 99% 100% 0% 94% 

0.7 95% 98% 0% 88% 

0.8 96% 93% 0% 86% 

0.9 84% 92% 0% 74% 

1.0 0% 0% 0% 0% 
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APPENDIX A.7 Table 1, Plastic bag - Blur distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 97% 89% 86% 94% 

1 96% 83% 80% 93% 

2 98% 84% 76% 92% 

3 98% 79% 69% 93% 

4 96% 65% 52% 94% 

5 95% 68% 43% 93% 

6 88% 59% 0% 87% 

7 81% 51% 0% 77% 

8 60% 46% 0% 47% 

9 43% 41% 0% 0% 

10 12% 37% 0% 0% 

 

APPENDIX A.7 Table 2, Plastic bag - Noise distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 98% 87% 88% 95% 

10 95% 84% 79% 93% 

20 95% 78% 61% 84% 

30 91% 71% 10% 82% 

40 93% 62% 0% 76% 

50 96% 50% 0% 46% 

60 85% 48% 0% 34% 

70 79% 40% 0% 20% 

80 46% 32% 0% 0% 

90 13% 14% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.7 Table 3, Plastic bag - Contrast distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 97% 83% 85% 96% 

0.1 98% 84% 82% 97% 

0.2 97% 82% 83% 98% 

0.3 98% 82% 84% 98% 

0.4 96% 78% 65% 97% 

0.5 95% 79% 48% 98% 

0.6 97% 74% 38% 94% 

0.7 95% 66% 23% 88% 

0.8 96% 56% 11% 77% 

0.9 84% 26% 0% 74% 

1.0 0% 0% 0% 0% 
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APPENDIX A.8 Table 1, Soup bowl - Blur distortion impact  

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 99% 98% 89% 93% 

1 99% 99% 16% 93% 

2 98% 99% 0% 94% 

3 99% 100% 0% 95% 

4 98% 97% 0% 95% 

5 98% 100% 0% 89% 

6 98% 100% 0% 87% 

7 99% 100% 0% 77% 

8 95% 95% 0% 54% 

9 98% 96% 0% 43% 

10 91% 58% 0% 40% 

 

APPENDIX A.8 Table 2, Soup bowl - Noise distortion impact  

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 98% 98% 88% 95% 

10 98% 98% 81% 96% 

20 98% 100% 54% 92% 

30 100% 97% 39% 87% 

40 99% 95% 0% 83% 

50 99% 83% 0% 80% 

60 99% 70% 0% 35% 

70 100% 58% 0% 0% 

80 100% 32% 0% 0% 

90 99% 14% 0% 0% 

100 88% 0% 0% 0% 

 

APPENDIX A.8 Table 3, Soup bowl - Contrast distortion impact  

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 98% 98% 87% 92% 

0.1 98% 96% 90% 96% 

0.2 98% 98% 88% 98% 

0.3 97% 99% 85% 98% 

0.4 97% 99% 60% 97% 

0.5 98% 98% 32% 96% 

0.6 97% 93% 0% 95% 

0.7 96% 69% 0% 96% 

0.8 96% 19% 0% 91% 

0.9 97% 0% 0% 89% 

1.0 0% 0% 0% 0% 
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APPENDIX A.9 Table 1, Band-aid - Blur distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 97% 100% 92% 93% 

1 95% 100% 91% 94% 

2 93% 100% 87% 92% 

3 94% 100% 71% 90% 

4 96% 99% 67% 83% 

5 97% 100% 37% 84% 

6 98% 100% 24% 93% 

7 99% 100% 13% 91% 

8 95% 99% 0% 83% 

9 98% 100% 0% 58% 

10 92% 97% 0% 40% 

 

APPENDIX A.9 Table 2, Band-aid - Noise distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 95% 99% 93% 94% 

10 96% 100% 86% 96% 

20 97% 100% 84% 92% 

30 93% 100% 74% 87% 

40 95% 100% 66% 84% 

50 90% 88% 24% 81% 

60 79% 85% 0% 75% 

70 54% 74% 0% 40% 

80 27% 53% 0% 0% 

90 0% 42% 0% 0% 

100 0% 19% 0% 0% 

 

APPENDIX A.9 Table 3, Band-aid - Contrast distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 96% 100% 89% 92% 

0.1 98% 100% 91% 96% 

0.2 96% 100% 81% 94% 

0.3 93% 100% 77% 92% 

0.4 96% 99% 60% 93% 

0.5 94% 95% 32% 94% 

0.6 86% 93% 12% 84% 

0.7 83% 92% 0% 77% 

0.8 96% 76% 0% 86% 

0.9 97% 0% 0% 0% 

1.0 0% 0% 0% 0% 
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APPENDIX A.10 Table 1, Dishwasher - Blur distortion impact  

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 90% 95% 86% 94% 

1 90% 96% 84% 90% 

2 93% 100% 87% 92% 

3 71% 99% 70% 90% 

4 67% 96% 71% 67% 

5 61% 87% 38% 56% 

6 61% 79% 31% 36% 

7 58% 72% 13% 18% 

8 54% 63% 0% 14% 

9 53% 61% 0% 0% 

10 47% 58% 0% 0% 

 

APPENDIX A.10 Table 2, Dishwasher - Noise distortion impact  

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 98% 96% 88% 94% 

10 95% 94% 84% 96% 

20 95% 90% 83% 80% 

30 95% 91% 74% 63% 

40 97% 85% 58% 39% 

50 98% 70% 24% 37% 

60 89% 60% 0% 34% 

70 90% 40% 0% 0% 

80 79% 12% 0% 0% 

90 50% 0% 0% 0% 

100 46% 0% 0% 0% 

 

APPENDIX A.10 Table 3, Dishwasher - Contrast distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 97% 96% 84% 92% 

0.1 98% 100% 82% 97% 

0.2 97% 100% 83% 95% 

0.3 98% 100% 76% 95% 

0.4 98% 99% 43% 93% 

0.5 100% 98% 16% 93% 

0.6 98% 95% 12% 83% 

0.7 95% 92% 0% 84% 

0.8 97% 68% 0% 77% 

0.9 63% 10% 0% 12% 

1.0 0% 0% 0% 0% 
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APPENDIX A.11 Table 1, Watch - Blur distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 90% 79% 60% 60% 

1 74% 70% 16% 53% 

2 75% 46% 0% 51% 

3 73% 35% 0% 34% 

4 63% 21% 0% 25% 

5 30% 14% 0% 24% 

6 12% 11% 0% 22% 

7 0% 10% 0% 18% 

8 0% 0% 0% 14% 

9 0% 0% 0% 11% 

10 0% 0% 0% 0% 

 

APPENDIX A.11 Table 2, Watch - Noise distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 95% 86% 68% 60% 

10 83% 80% 11% 48% 

20 78% 68% 0% 26% 

30 64% 42% 0% 21% 

40 45% 36% 0% 0% 

50 14% 15% 0% 0% 

60 0% 5% 0% 0% 

70 0% 0% 0% 0% 

80 0% 0% 0% 0% 

90 0% 0% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.11 Table 3, Watch - Contrast distortion impact  

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 93% 74% 68% 56% 

0.1 86% 86% 14% 62% 

0.2 83% 85% 0% 53% 

0.3 82% 85% 0% 54% 

0.4 80% 82% 0% 55% 

0.5 81% 83% 0% 56% 

0.6 81% 76% 0% 55% 

0.7 79% 62% 0% 54% 

0.8 46% 33% 0% 36% 

0.9 13% 0% 0% 0% 

1.0 0% 0% 0% 0% 
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APPENDIX A.12 Table 1, Pill bottle - Blur distortion impact  

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 96% 90% 82% 92% 

1 74% 90% 0% 91% 

2 71% 95% 0% 90% 

3 76% 83% 0% 90% 

4 64% 80% 0% 83% 

5 30% 82% 0% 84% 

6 42% 76% 0% 42% 

7 23% 65% 0% 17% 

8 16% 48% 0% 16% 

9 10% 40% 0% 11% 

10 0% 37% 0% 0% 

 

APPENDIX A.12 Table 2, Pill bottle - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 95% 93% 82% 93% 

10 96% 93% 56% 93% 

20 97% 95% 43% 90% 

30 91% 77% 10% 84% 

40 93% 68% 0% 76% 

50 90% 67% 0% 58% 

60 79% 54% 0% 54% 

70 79% 26% 0% 20% 

80 27% 0% 0% 0% 

90 0% 0% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.12 Table 3, Pill bottle - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 98% 94% 82% 96% 

0.1 98% 96% 83% 97% 

0.2 98% 89% 83% 94% 

0.3 98% 86% 84% 95% 

0.4 96% 97% 80% 92% 

0.5 99% 95% 77% 92% 

0.6 95% 90% 71% 84% 

0.7 86% 66% 64% 77% 

0.8 83% 33% 46% 36% 

0.9 81% 0% 0% 0% 

1.0 0% 0% 0% 0% 

 

 

 

 



59 

 

APPENDIX A.13 Table 1, Toilet paper - Blur distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 96% 95% 93% 92% 

1 95% 96% 96% 91% 

2 94% 94% 97% 92% 

3 95% 85% 97% 90% 

4 92% 80% 94% 91% 

5 93% 77% 95% 89% 

6 89% 76% 88% 86% 

7 87% 73% 70% 77% 

8 88% 68% 60% 54% 

9 83% 69% 36% 43% 

10 84% 58% 10% 11% 

 

APPENDIX A.13 Table 2, Toilet paper - Noise distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 96% 96% 94% 93% 

10 98% 93% 95% 96% 

20 98% 82% 96% 96% 

30 98% 77% 95% 93% 

40 99% 68% 80% 83% 

50 98% 70% 81% 82% 

60 89% 60% 71% 65% 

70 90% 51% 50% 52% 

80 79% 36% 30% 33% 

90 64% 12% 10% 13% 

100 30% 0% 0% 0% 

 

APPENDIX A.13 Table 3, Toilet paper - Contrast distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 97% 94% 97% 92% 

0.1 95% 96% 98% 97% 

0.2 98% 89% 99% 91% 

0.3 98% 86% 100% 92% 

0.4 97% 87% 98% 92% 

0.5 96% 87% 97% 93% 

0.6 95% 90% 98% 95% 

0.7 96% 91% 95% 96% 

0.8 98% 93% 46% 91% 

0.9 97% 92% 0% 89% 

1.0 0% 0% 0% 0% 
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APPENDIX A.14 Table 1, Remote controller - Blur distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 96% 98% 55% 98% 

1 99% 99% 54% 93% 

2 99% 99% 50% 94% 

3 98% 99% 55% 95% 

4 98% 97% 41% 82% 

5 88% 87% 38% 71% 

6 85% 83% 13% 36% 

7 70% 72% 10% 0% 

8 63% 61% 0% 0% 

9 65% 40% 0% 0% 

10 45% 24% 0% 0% 

 

APPENDIX A.14 Table 2, Remote controller - Noise distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 98% 98% 60% 97% 

10 94% 98% 56% 97% 

20 95% 99% 43% 90% 

30 95% 100% 39% 63% 

40 97% 95% 0% 24% 

50 98% 92% 0% 11% 

60 99% 54% 0% 0% 

70 99% 14% 0% 0% 

80 92% 0% 0% 0% 

90 83% 0% 0% 0% 

100 46% 0% 0% 0% 

 

APPENDIX A.14 Table 3, Remote controller - Contrast distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 98% 96% 50% 99% 

0.1 97% 99% 51% 99% 

0.2 98% 99% 49% 99% 

0.3 96% 100% 42% 98% 

0.4 96% 99% 31% 95% 

0.5 98% 100% 16% 93% 

0.6 91% 100% 10% 75% 

0.7 95% 98% 0% 71% 

0.8 83% 66% 0% 28% 

0.9 63% 0% 0% 0% 

1.0 0% 0% 0% 0% 
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APPENDIX A.15 Table 1, Soap dispenser - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 97% 89% 83% 86% 

1 96% 92% 82% 88% 

2 94% 94% 76% 89% 

3 95% 85% 58% 81% 

4 96% 78% 52% 82% 

5 93% 77% 34% 71% 

6 89% 59% 9% 73% 

7 96% 51% 10% 49% 

8 89% 43% 0% 47% 

9 83% 20% 0% 14% 

10 84% 0% 0% 0% 

 

APPENDIX A.15 Table 2, Soap dispenser - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 96% 87% 80% 90% 

10 96% 78% 79% 91% 

20 95% 68% 61% 84% 

30 93% 70% 46% 82% 

40 81% 64% 0% 71% 

50 75% 45% 0% 46% 

60 50% 48% 0% 20% 

70 27% 14% 0% 0% 

80 0% 0% 0% 0% 

90 0% 0% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.15 Table 3, Soap dispenser - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 93% 96% 85% 88% 

0.1 86% 100% 85% 90% 

0.2 82% 99% 80% 91% 

0.3 82% 100% 77% 92% 

0.4 80% 99% 65% 91% 

0.5 81% 98% 65% 93% 

0.6 81% 99% 50% 75% 

0.7 72% 99% 23% 71% 

0.8 55% 98% 11% 30% 

0.9 54% 97% 0% 12% 

1.0 0% 0% 0% 0% 
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APPENDIX A.16 Table 1, Banana - Blur distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 99% 99% 0% 91% 

1 98% 100% 0% 90% 

2 96% 100% 0% 89% 

3 93% 99% 0% 79% 

4 67% 98% 0% 67% 

5 50% 94% 0% 56% 

6 46% 55% 0% 42% 

7 40% 50% 0% 23% 

8 37% 43% 0% 24% 

9 23% 15% 0% 14% 

10 0% 10% 0% 0% 

 

APPENDIX A.16 Table 2, Banana - Noise distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 98% 99% 0% 90% 

10 96% 100% 0% 91% 

20 95% 99% 0% 80% 

30 76% 62% 0% 32% 

40 29% 0% 0% 0% 

50 0% 0% 0% 0% 

60 0% 0% 0% 0% 

70 0% 0% 0% 0% 

80 0% 0% 0% 0% 

90 0% 0% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.16 Table 3, Banana - Contrast distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 99% 100% 0% 88% 

0.1 98% 100% 0% 90% 

0.2 98% 100% 0% 94% 

0.3 99% 100% 0% 95% 

0.4 99% 99% 0% 89% 

0.5 100% 99% 0% 82% 

0.6 98% 74% 0% 45% 

0.7 72% 0% 0% 0% 

0.8 24% 0% 0% 0% 

0.9 0% 0% 0% 0% 

1.0 0% 0% 0% 0% 
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APPENDIX A.17 Table 1, Television - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 97% 89% 60% 83% 

1 95% 83% 54% 83% 

2 96% 46% 50% 83% 

3 93% 35% 55% 79% 

4 92% 21% 41% 80% 

5 88% 14% 43% 69% 

6 88% 11% 24% 61% 

7 70% 10% 13% 47% 

8 60% 0% 11% 17% 

9 43% 0% 12% 12% 

10 12% 0% 0% 11% 

 

APPENDIX A.17 Table 2, Television - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 98% 86% 68% 86% 

10 94% 84% 0% 85% 

20 95% 82% 0% 83% 

30 64% 42% 0% 42% 

40 29% 36% 0% 0% 

50 14% 15% 0% 0% 

60 0% 5% 0% 0% 

70 0% 0% 0% 0% 

80 0% 0% 0% 0% 

90 0% 0% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.17 Table 3, Television - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 97% 83% 68% 85% 

0.1 97% 82% 51% 92% 

0.2 98% 82% 49% 94% 

0.3 93% 82% 42% 92% 

0.4 96% 78% 31% 89% 

0.5 94% 79% 20% 82% 

0.6 91% 76% 10% 45% 

0.7 79% 65% 0% 0% 

0.8 46% 66% 0% 0% 

0.9 0% 26% 0% 0% 

1.0 0% 0% 0% 0% 
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APPENDIX A.18 Table 1, Washing machine - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 96% 87% 55% 91% 

1 95% 84% 80% 93% 

2 95% 84% 69% 92% 

3 94% 85% 69% 93% 

4 67% 74% 67% 78% 

5 50% 68% 46% 68% 

6 46% 40% 33% 43% 

7 40% 19% 32% 0% 

8 37% 0% 35% 0% 

9 23% 0% 36% 0% 

10 0% 0% 10% 0% 

 

APPENDIX A.18 Table 2, Washing machine - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 95% 85% 60% 82% 

10 82% 84% 11% 85% 

20 78% 80% 0% 66% 

30 76% 62% 0% 32% 

40 45% 0% 0% 0% 

50 0% 0% 0% 0% 

60 0% 0% 0% 0% 

70 0% 0% 0% 0% 

80 0% 0% 0% 0% 

90 0% 0% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.18 Table 3, Washing machine - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 96% 86% 50% 82% 

0.1 95% 84% 14% 83% 

0.2 96% 85% 0% 84% 

0.3 96% 85% 0% 64% 

0.4 96% 83% 0% 47% 

0.5 95% 83% 0% 46% 

0.6 86% 74% 0% 20% 

0.7 83% 76% 0% 15% 

0.8 24% 76% 0% 14% 

0.9 13% 0% 0% 0% 

1.0 0% 0% 0% 0% 
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APPENDIX A.19 Table 1, Coffee mug - Blur distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 85% 89% 82% 86% 

1 83% 84% 84% 83% 

2 71% 79% 69% 83% 

3 71% 83% 58% 81% 

4 64% 78% 50% 78% 

5 61% 82% 34% 68% 

6 61% 79% 31% 61% 

7 58% 78% 32% 47% 

8 54% 63% 35% 25% 

9 53% 61% 28% 14% 

10 47% 58% 0% 10% 

 

APPENDIX A.19 Table 2, Coffee mug - Noise distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 82% 80% 82% 86% 

10 82% 78% 84% 85% 

20 74% 80% 54% 66% 

30 71% 70% 46% 42% 

40 59% 64% 0% 39% 

50 51% 67% 0% 37% 

60 50% 70% 0% 35% 

70 27% 58% 0% 0% 

80 13% 29% 0% 0% 

90 0% 14% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.19 Table 3, Coffee mug - Contrast distortion impact 

 

Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 84% 86% 84% 85% 

0.1 83% 82% 83% 83% 

0.2 82% 85% 80% 84% 

0.3 76% 86% 76% 64% 

0.4 72% 83% 67% 47% 

0.5 73% 83% 65% 46% 

0.6 66% 84% 50% 20% 

0.7 65% 76% 38% 15% 

0.8 55% 68% 0% 14% 

0.9 54% 26% 0% 12% 

1.0 0% 0% 0% 0% 
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APPENDIX A.20 Table 1, Pillow - Blur distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 85% 79% 0% 60% 

1 83% 70% 0% 53% 

2 75% 79% 0% 51% 

3 73% 79% 0% 34% 

4 63% 65% 0% 25% 

5 40% 60% 0% 24% 

6 12% 55% 0% 22% 

7 0% 50% 0% 23% 

8 0% 46% 0% 24% 

9 0% 15% 0% 0% 

10 0% 10% 0% 0% 

 

APPENDIX A.20 Table 2, Pillow - Noise distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0 82% 80% 0% 60% 

10 83% 80% 0% 48% 

20 74% 78% 0% 26% 

30 71% 71% 0% 21% 

40 59% 62% 0% 24% 

50 51% 50% 0% 11% 

60 31% 24% 0% 0% 

70 0% 0% 0% 0% 

80 13% 0% 0% 0% 

90 0% 0% 0% 0% 

100 0% 0% 0% 0% 

 

APPENDIX A.20 Table 3, Pillow - Contrast distortion impact 

 
Distortion Inception v3 ResNet50 SqueezeNet MobileNet 

0.0 84% 74% 0% 56% 

0.1 83% 86% 0% 62% 

0.2 83% 85% 0% 53% 

0.3 76% 85% 0% 54% 

0.4 72% 87% 0% 55% 

0.5 73% 87% 0% 56% 

0.6 66% 84% 0% 55% 

0.7 65% 0% 0% 54% 

0.8 47% 0% 0% 36% 

0.9 35% 0% 0% 0% 

1.0 0% 0% 0% 0% 

 



 

 

 


