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ABSTRACT

STATISTICAL LEARNING IN MODELING INTERRELATIONS AMONG
VARIABLES: AN APPLICATION TO METABOLOMICS

YAYLAOGLU, Safiye

Computer Engineering Graduate Program

Supervisor: Asst. Prof. Dr. Olcay KURSUN

January, 2011, 87 pages

In some machine learning problems, large datasets are naturally organized into some
groups of variables, which are called views in the literature. Views can be used to
predict the same target variable, such as the class of a given sample, such as in Parallel
Interacting Multi-view Learning (PIML). In this thesis, we deal with a more general
case, where the views are designed to predict different but related target variables. The
goal here is to develop a mechanism for incorparating the interrelations among the
target variables into their predictions, along with the input variables in their own views.
In this study, the predictions obtained from the training phase of each view are used as
additional inputs to the next iteration. Iterations are repeated until the interactions
between the views in consecutive iterations become stable. The interrelations and
interactions among the views are modeled using Support Vector Machines (SVM) along
with optimization-related methods such as leave-one-out cross-validation, k-fold cross-
validation, grid search and bootstrap resampling. The proposed method is compared
with the classical regression implemented on single view in its application to a toy
dataset and a real-world dataset of cancer (a metabolomics dataset obtained through
nuclear magnetic resonance spectroscopy on tissue samples from healthy and cancerous
human subjects in a study conducted by the biomedical engineering department at the
University of North Carolina). The web of interrelations among the views might give
insight to the clinicians in their research.

Keywords: Multi-view machine learning, support vector machines, parallel interactive
multiview learning, prostate cancer metabolomics dataset.



OZET

DEGISKENLER ARASINDAKI iLISKILERIN MODELLENMESINDE
ISTATIKSEL OGRENME: METABOLOMIK UZERINE BiR UYGULAMA

YAYLAOGLU, Safiye

Bilgisayar Miihendisligi Yiiksek Lisans Programi

Danigman: Yrd. Dog. Dr. Olcay KURSUN

Ocak, 2011, 87 sayfa

Baz1 yapay 6grenme problemlerinde buyik veri setleri literatirde bakis olarak bilinen
dogal gruplara ayrilmistir. Farkli bakiglar, aym1 hedef degiskeni kestirmek icin
kullanilabilir, 6rnegin farkli bakislar1 verilen bir 6rnegin smifin1 kestirmede kullanilan
paralel etkilesimli ¢ok bakisli 6grenmede (PIML) yapildig1 gibi. Buradaki amag ise,
bunun daha genel bir hali olarak, aralarinda bazi istatistiksel iliskiler olan farkl
degiskenlerin, kendi bakislarindan kestiriminde nasil birlestirilebilecegini ele alacagiz.
Amacimiz, farkl bakislarin farkli hedef degiskenlerini kestirmesi sirasinda, bu farkh
hedef degiskenler arasindaki bagintilar1 da kullanan bir yontem gelistirmektir. Bu
caligmada bir hedef degisken igin egitim sathasinda elde edilen tahminler bir sonraki
iterasyonun, kendi bakisindaki degiskenlere ilaveten ek girdi olarak kullanilmistir.
Iterasyonlar bakislarmn birbiri ile etkilesimi sabit hale gelinceye kadar tekrar ettirilmistir.
Bakiglar arasi iletisim ve etkilesim destek vektor makinesi (DVM) ile modellenmistir.
DVM optimizasyonu i¢in birini-disarida-birak ¢apraz saglama, k-kat ¢apraz saglama,
1zgara arama ve kendini yiikleme tekrar 6rnekleme metotlar1 uygulanmistir. Onerilen
yontem sentetik veri kiimesi ve gercek bir kanser veri kimesi (North Carolina
Universitesi biyomedikal miihendisligi bdliimiinde saglikli ve kanserli insan
deneklerinden nikleer manyetik rezonans spektroskopisiyle elde edilmis metabolomik
bir veri kiimesi) (zerinde uygulanmis ve tek bakish klasik baglanim y®&ntemiyle
karsilastirilmistir. Bakislar arasindaki iligkilerin ortaya ¢ikarilmasi ve birbirlerini nasil
etkilediklerini bu sekilde ortaya koymak, klinik calismalara, az da olsa, katki
saglayabilir.

Anahtar Kelimeler: Cok bakisli yapay ogrenme, destek vektor makinesi, paralel
etkilesimli ¢ok bakisli 6grenme, prostat kanseri metabolomik veri kiimesi.
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1. INTRODUCTION

Metabolomics is a new field in analytical biochemistry. Metabolomics (the metabolite
network) is the cheap and correct separation, definition and measurement of all
metabolites in cells, tissues or biological fluids in a short time with high throughput
technologies such as Nuclear Magnetic Resonance (NMR) (Ozkara 2008). The term
metabolite is any substance essential to the metabolism of a particular metabolic
process. Metabolites are used in diagnosing diseases. For example, using Choline,
Creatine and Citrate metabolites, the result of the computation (Choline +
Creatine)/Citrate is often investigated as a marker for Prostate Cancer (Kim et al. 2004)
In metabolomics studies of different brain tumors and cancers, it is explored that the
different metabolites are increased. Metabolomic researches on brain tumors show that
for different brain tumors and cancers different metabolites increases (Griffin and
Kauppinen 2007).

Metabolomics studies rely on NMR that is the absorption of electromagnetic radiation
of a specific frequency by an atomic nucleus that is placed in a strong magnetic field,
used especially in spectroscopic studies of molecular structure to monitor tissue
metabolism and to distinguish between normal and abnormal cells. NMR can recognize
all existing metabolites and calculate their concentrations in a sample. Mass
spectrometry (MS) is a complementary application to NMR. MS can construct the
profiles of thousands of metabolites and can analyze these profiles more precisely.
Metabolite profiles can be processed and analyzed by related computer programs.
(Ozkara 2008). NMR is the basis of Nuclear Magnetic Resonance Spectroscopy
(NMRS). NMRS (less sensitive than MS) provides a powerful complementary
technique for the identification and quantitative analysis of metabolites in tissue
extracts. Nuclear Magnetic Resonance Imaging (NMRI) can retrieve the image of the

internal structure of the body in three dimensional space and can detect tumor tissues.

Cancer is the unbounded increase in population or size of the cells (extra tissue) caused
by DNA damages. This mass of extra tissue, called tumor, can be benign or malignant.
Benign tumors are not cancer. They can usually be removed from the body. Benign
tumors do not spread to other parts of the body. Benign tumors are rarely a threat to life.



If benign tumors are not removed from the body, they may transform to cancerous
tumors. Malignant tumors are cancer. Cancer cells can damage tissues and organs near
the tumor. Also, cancer cells can break away from a malignant tumor and enter the
bloodstream or lymphatic system. This is how cancer spreads to the other parts of the
body™.

In the literature there are many studies analyzing and detecting different cancer types by
using computer programs. Among these, SVM classification and regression methods
also take place. Ding et al. (2009) used SVM regression in their study and they tried to
detect lung cancer by analyzing breath biomarkers. In another work Furey et al. (2000)
has developed a method on ovarian cancer analysis by using SVM classification. Liu et
al. (2003) diagnosed the breast cancer by using SVM classification and they compared

SVM with other learning techniques.

In this study, the proposed SVM regression technique is applied on a real prostate
cancer dataset (Keshari et al. 2009). Prostate is a part of reproductive system. Prostate
cancer is one of the most prevalent types of cancer in men over the age of fifty. The
cancer cells may spread to the other organs. The presence of prostate cancer is indicated
by biopsy. After a biopsy, the pathologist analyzes the samples under a microscope. If
cancer is present, then the pathologist reports the progress of the cancer tissues.

The dataset used contains the percentages of glandular, stromal and cancer in a whole
tissue taken from healthy and cancer subjects. Glandular tissue is a healthy tissue,
stromal tissue is benign tumor and cancer tissue is a malignant tumor. The tissues are
parts of a whole for every instance of the dataset; therefore each part or tissue is related
with the others. The dataset also contains the concentrations of metabolites related to
these tissues to be used as the independent variables in predicting these percentages.
These three views (G for glandular, S for Stromal, and C for Cancer) were the natural
partition of the metabolites used by (Keshari et al. 2009); that is, even though many
metabolites are interrelated, for the sake of simplicity and understandability, some are
thought to form more closely related groups (Christoudias et al., 2008, Culp et al.

! Source at: http://www.medicinenet.com/colon_cancer/article.htm [cited November, 2010]
2 Source at: http://en.wikipedia.org/wiki/Prostate_cancer [cited November, 2010]




2009), for example, some metabolites are taken into Giew because they are thought to
be more related with the G content in the tissue. Similarly, Syiew is for stromal view,
which indicates the variable group primarily responsible for predicting the stromal

tissue percentage in the sample and vice versa for Cyiew.

In this work, we call the task of predicting a target variable from all the views merged
together as Classical Single-view Regression (CSR). Using multiple views of the same
semantic object (or related objects) is a recently popular topic (Wang and Chen 2009,
Hardoon et al. 2004, Gonen and Alpaydin 2010; Kursun et al. 2011; Kursun and
Favorov 2010). We first use the views independently in training; but iteratively, the
predictions obtained from them were also used as additional inputs to other views for
the next iterations. We called this approach Parallel Interacting Multi-view Regression
(PIMR). Learning vector-valued functions is an ongoing research area, there are some
recent work on this topic such as (Theodoros et al. 2005). However, in this study, we
investigate deeper into a simpler approach by Sakar et al. (2009), who proposed a
method called Parallel Interacting Multi-view Learning for classification. A protein
dataset is used for their study. PIMR is based on the same idea, however it is different in
that it aims to predict different (but related) variables in different views and also it
performs regression rather than classification. By considering the interrelations among
the target values, each of which is a part of a whole, PIMR increases the processing
complexity in exchange of increased generalization capability of regressors, provides
better results using less data in regression, reaches higher accuracy and overcomes
Bellman’s (1961) curse of dimensionality as compared to CSR.

In Section 2, a brief explanation of SVM is provided together with leave-one-out cross-
validation, k-fold cross-validation, grid search, and bootstrap resampling methods.
These methods are used to improve the accuracy of PIMR. In Section 3, synthetic
dataset is introduced, which has a similar structure to original prostate cancer dataset
and SVM is applied to both original and synthetic dataset. In Section 4, the results are
provided and compared.



2. MATERIALS AND METHODS

2.1 SUPPORT VECTOR MACHINES (SVMs)

Support Vector Machine (SVM) is an efficient supervised learning algorithm that is
using both classification and regression for data analysis. Today, SVM analysis
performance is comparably better than the other statistical models such as Neural
Networks (Kecman 2004). The current SVM methodology was first announced with the
paper A training algorithm for optimal margin classifier at the COLT 1992 conference
by Boser, Guyon and Vapnik. The soft margin classifier related with the classification
case, was introduced by Cortes and Vapnik in 1995. In the same year the algorithm was
extended to the case of regression by Vapnik. Recently, SVM is a very popular
algorithm used in many fields of engineering researches, such as face recognition
(Heisele et al. 2001), handwriting analysis (Venkatesh and Sureshkumar 2009), speech
analysis (Campbell et al. 2006), text categorization (Joachims 1998). In the literature,
main research fields applying these methods are pattern recognition and machine

learning.

In database systems classification and prediction are two forms of data analysis that can
be used to extract models describing important data classes or to predict future data
trends. In these forms classification predicts the category that the data falls in whereas,
prediction estimates data based on the given attributes as a continuous function. The
synonym of data prediction is regression which is a statistical methodology that is most

often used for numeric prediction.

Basic idea of SVM is to find an optimal hyperplane for linearly separable data. It is
always easy to separate two different type patterns linearly. If the data class number is
two, this is called binary classification. If the data is separable linearly in low
dimensional space this is called linearly separable SVM. If the classification is not
possible to separate linearly then the data is extended from low dimensional input space
to high dimensional feature space for separating. This is called nonlinearly separable
SVM. If the number of classes is more than two then it is named as multi-class SVM.
These methods have usability for regression, too.



SVM has two basic techniques Support Vector Classification (SVC) and Support Vector
Regression (SVR). As in database systems, main task in SVC is to separate the patterns
into specific categories whereas the task of regression is to forecast the target values of
samples. In other words, if the solution or output is continuous then the problem is
related with regression, if it is categorical then the problem is related with classification.
For the solution of a specific problem, SVM must be trained by a teacher to generate the
model/predictor or classifier. The model is used for testing the data to obtain solution or
output. In this sense, summarizes the basic operations of SVC and SVR. In Figure 2.1
there is a two-step process of classification and regression informally. The first step is
training phase and the second is testing phase. In classification, output of training phase
is represented by the term classifier. In regression, output of training phase is resented
by the term regressor.

Training set | Training phase of Classifier/
data/Input > SVMI/Learning step Regressor/
data/Samples Model

Testing/Predicting phase D
of SUM Output Data

Figure 2.1: SVC and SVR operations

2.1.1 Support Vector Classification (SVC)

In this section, binary classification and multi-class classification are detailed. If the
number of different classes that the input should be mapped is more than two then
classification is done with hyperplanes each of which separates a class. In this case; it is
mentioned about multi-class classification. Binary classification is to separate given
objects into two classes in 2-dimensional feature space, such as, objects which have
many special properties or attributes. One of the useful tasks of the classification is to
determine the patients healthy or unhealthy. Binary classification can be achieved by
two cases namely linearly separable and nonlinearly separable.



2.1.1.1 When the Data are Linearly Separable

In classification, an instance, x is represented by a vector x = (X, X, ..., x ) Where n
denotes the number of the attributes/ features, or dimensionality. F is used to denote the
features of the related instance, respectively F,, F,, ..., F,,. Classification implements the
function or mapping y = f(x) where y is used to denote the class label or scalar output
and x; is the related instance. It is supposed that the related instance and the class label

or output is represented by x; and y; respectively. The training dataset consists of

D
instances {x;, y;}, where i =1,...,1, x; € R . [ denotes the number of instance. Each
of y; can take one of the values, either —1 or +1, y; € {—1,+1}. D denotes

dimensionality.

When the data is linearly separable, it means that, it is drawn a line on a graph. If the
number of features is 2, i.e. x; = (x,,x,) or F=2or D =2 (2-D), it is drawn a line
to separate two different classes. If the number of features is more than two, x; =
(x4, %5, x,) i.e. F>2or D> 2, it is drawn a hyperplane on a graph (Fletcher
20009).

SVMs are based on finding maximum marginal hyperplane in a high dimensional
feature space. There are many hyperplanes that separate the classes. These are called
separating hyperplanes. From the given set of objects, the main goal is produce a
classifier that determines the class label of the given new object. In classification,
drawing a boundary to separate classes on the same plane is possible. But as shown in
Figure 2.2, it is not clear where the boundary will be occurring. Here, there are two
types of samples/classes shown on two-dimensional plane and possible occurrences of
boundary are shown (Han and Kamber 2006).
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Figure 2.2 : Possible  decision  hyperplanes/boundaries
example in SVM

The boundary must be located at the most distant place of the classes’ members for
minimizing the training error. SVM determines how to draw this boundary. For this
operation two parallel boundaries are drawn near the instances. The distance between
two parallel lines is called margin as shown in Figure 2.3.

Figure 2.3 :  Support vectors (SVs) and maximum margin

The margin plays very important role in SVM. The size of the margin must be
maximum length. The parallel lines touch a number of points, if the margin is

maximized. These points on margin boundaries are called “support vectors”. A new line



is generated in the middle of the parallel separating hyperplanes. This line is called
maximum margin hyperplane in binary classification, is represented by solid line in
Figure 2.3 (Han and Kamber 2006). The maximum margin causes minimal error and the

minimum margin causes maximal risk to error when classifying a new instance.

According to Figure 2.4, the equation b/”W” is the distance from maximum marginal

hyperplane to the origin where, b is the scalar or bias, w is the normal to the hyperplane
and |lw|| is the Euclidian norm of w. In addition w is identified an unknown

dependency weight vector between input and output.

Referring to Figure 2.4 hyperplanes are written as;

H :x-w+b>1fory =+1 (2.1)
H,:x -w+b<-1fory =-1 (2.2)

Any point above the hyperplane H; belongs to +1 class and any point below the

hyperplaneH, belongs to +1 class (Figure 2.4).

Figure 2.4 : Parallel separating hyperplanes and maximum
margin hyperplane



As “-” denotes the dot production, Eq. 2.1 and Eq. 2.2 can be combined as:
y;i (X -w+b)>+1fori=1,2,...,n (2.3)

Any point falls on H; and H,, is called “Support Vector” or SV (Figure 2.3). These
points can be described by:

H :x -w+b=1 (2.4)

H,:x -w+b=-1 (2.5)

The distance between H, to separating hyperplane or maximum marginal hyperplane is
equal to 1/”W”. According to this equation, the margin length is equal to 2/”W”.

To find the maximum margin equations below are used.

minw’ (2.6)

y, (X -W+b) > +1Vi (2.7)

Here, the problem is in Eq. 2.6 and the condition is in Eq. 2.7. Lagrangian formulation
is used to solve the problem in Eq. 2.6. If the Lagrangian multiplier a, a; 2 1 Vi, is
allocated to Eq. 2.6 and Eq. 2.7, then Eq. 2.8 is obtained.

M_

1 |
L, :§||W||2 —;ai yi (xw+b)+> o, (2.8)

I
[N



Solving Eqg. 2.8 is very complicated. To solve the equation Karush-Kuhn-Tucker (KKT)

conditions are used to transform it to a dual problem. KKT conditions are like those:

oL
—L=0=>w= VX 2.9
o 2% (2.9)
oL

a—bp=0:>Zaiyi =0 (2.10)

These conditions are substituted into Eq. 2.8. In this case, it is obtained a new

formulation which is needed to maximize:

' |
Lo =D == ae;Y;y%x; such that e 20 Vi, Doy, =0 (2.11)
=1 ' i1
|
1

= 2 Q; _Ezi,jaiHijaj where H;; = vy, (xx;) = yiijiTxj (2.12)
! !

=) q —%zi jaT Ha such that o, >0 Vi, D ey, =0 (2.13)
=1 ' i-1

H denotes the Hessian Matrix (Kecman 2004). Ly, is dual form of L,,. It is needed for
minimizing L,, and maximizing Lp. This is a convex quadratic optimization problem. It
is needed Quadratic Programming (QP) solver to find a. If a substitutes into Eq. 2.9
then w is obtained. Any data point that satisfies Eq. 2.10 is Support Vector which is on
the separating hyperplane. x, denotes Support Vector. The bias can be calculated by

using SVs. b and w define the separating hyperplanes, hence SVM (Fletcher 2009).

2.1.1.2 When the Data are Linearly Non-Separable

Data may not be always linearly separable (Figure 2.5). The method soft margin is a
solution to this case. In this case, positive slack variable &;, i =1,...,n is used (Cortes

and Vapnik 1995). Slack variable indicates tolerances of misclassification. If Eq. 2.1

10



and Eqg. 2.2 are rewritten again with the slack variable, the following equations are

obtained.
X -W+b>1-¢& for y, =+1 (2.14)
Xi-W+b<-1+¢ for y, =-1 (2.15)
&E2>0Vi (2.16)

If the slack variable is equal to 0 (i.e. & = 0), then the instance x; is classified

correctly, if the slack variable is between 0 and 1 (i.e. 0 < ¢; < 1), then the instance x;
is classified correctly but lays in between F; and F, hyperplanes, if & = 1, then x; is
classified incorrectly (Alpaydin 2004). Eq. 2.14, Eq. 2.15 and Eq. 2.16 are combined

into:

y; (X -w+b)—1+¢& >0 where & >0 Vi (2.17)

In Figure 2.5 the point is on the wrong side of the maximal margin hyperplane.

Figure 2.5 : Non-linearly separable data

11



In order to prevent the system to adjust the boundary for each case, a parameter C is
added into the equation. This is the maximum value that the Lagrange multipliers can

take. Then, the Lagrange formulation can be reformed in Eq. 2.18 as below:
1 9 | | |
Lp = E”VV” + C;& _izﬂ:ai [Yi (XiW+ b) -1+ fi]_ ;ﬂ.f. (2-18)

In Eqg. 2.18, B; is the Lagrange multiplier which provides ¢; to be positive. Since this
Lagrange formulation is very complex to solve it is converted to a dual problem as it is
done with the linearly separable examples. If the KKT rules are applied to this problem
then the equations Eq. 2.19, Eq. 2.20 and Eq. 2.21 are obtained (Demirci 2007).

oL

P =0=w-— V. X 2.19
> §i Y%, (2.19)
oL

_p=_z v =0 2.20
_aLp =C-a,—-B =0 (2.21)
0%, o

If these equations are substituted in Eq. 2.18 then the following equation is obtained.

| |
L, = Zai —%ZaT H « such that 0 <, <C Vi and ZOzi y.=0 (2.22)
i1 i

i=1

x; values corresponding to the Lagrange multipliers, 0 < a; < C, which are the

solutions to this problem, are SVs.

12



2.1.1.3 Multi-Class Classification

The SVMs explained so far work if the examples are formed with only two different
classes. In case of more classes the system should make multiple classifications. There
are two basic approaches used to separate multiple classes in SVM. First approach is to
reform the Lagrange function used directly for SVM so that it can be used for multiple
classes operations. However, since errors increase as the number of classes increases,
this approach is not a preferred one. Second approach is to run SVM to make dual
classifications with respect to the number of classes. Some methods applied in this
approach are one versus one, one versus all and directed loop free graphs (Demirci
2007).

Since the multi-class classification is not included in the scope of this thesis, it is not

detailed more.

2.1.2 Support Vector Regression (SVR)

In regression, it is predicted real-valued output y;, instead of categorical output. The
training dataset form is:

{Xi,yi} wherei=1,...,L Yy eR, x eR®
Yi =W-X +b (2.23)

In Figure 2.6 boarded squares are SVs. These SVs are on the tube boundary or in the

outside of the tube. In other words, there is no SV in the tube.

13



£ insensitive tube

) e >0

Figure 2.6 : e-insensitive tube

Eqg. 2.23 shows the linear regression hyperplane. SVM uses a penalty function to
measure the error approximation between continuous output y; and target t; of the
related instance x;. The error/loss is equal to O if the measured distance between the
predicted y; and the actual value t; is less than w, i.e. if |t; — y;| <w. This is the
Vapnik’s linear loss function. If the predicted value is within the tube then the loss is
zero. For the other points outside the tube, the loss equals to the difference between the

predicted value and the radius ¢ of the tube (Kecman 2004).

The slack variables for the points outside the tube are given below:

t <y +e+&" (2.24)
2y, —e-¢& (2.25)

The error function can be written as:

cy (& +§;)+%||w||2 (2.26)

|
i=1
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It is needed to minimize Eq. 2.26 under constraints é* >0, é~ >0Vi Lagrange

multipliers are used to make this minimization process.

a7 20, a 20, pB20, B~ 20 V,:

Lo =CY (& +&)+ZIWIF X (878 +,6)-
N . (2.27)
Zai+(8+§i+ +Yi _ti)_zai+(8+§i7 —Y, +t)

Eq. 2.27 is needed to be minimized with respect to w, b, &, &, and maximized with
respect to Lagrange multipliers «/, a;, Bi*, Bi. The following equations show the
derivates of L,, with respect to primal variables w, b, &, &, and setting the derivatives

to 0.

|
%zojvv:;(a;_a;)xi (2.28)
|
AP 0= Y (o —a)=0 (2.29)
ob =
%’:0:0 —o + B (2.30)
%:oj C=af +f (2:31)

It is needed to be maximized L, with respect to ;" and «; (a; =0, a; = 0) where;
| | 1 |
Ly = Z‘,(Ofi+ —o; ) _CC"Z:(OG+ —a;) _EZ(ai+ _Otii)(oﬂ'+ _a;)xixj (2.32)
i=1 i=1 ij
|
suchthat 0<q; <C, 0<q; <C and > (af - )=0V,.
i=1
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Substituting Eq. 2.26 into Eq. 2.23 the following equation is found:

y'= ZI:((X: —o )X - X' +Db (2.33)

i=1

As a result a set of Support Vectors x, are found.

2.1.3 Non-Linear Support Vector Machines

In previous sections it is mentioned about linear SVM. In this section non-linear SVM is
explained. If the input data aren’t linearly separable in its original space, then the data
are transformed into a new high dimensional space using a nonlinear mapping. In this

space the input data are separated with a separating hyperplane (Figure 2.7).

separating
e O hyperplane
mapping function
[ o
L J o
[
o
original space feature space

low dimensional space high dimensional space

Figure 2.7 : SVM process flow

Kernel trick (Scholkopf and Smola 2002, Favorov and Kursun 2011) is used to find the
maximal marginal hyperplane when the input data are taken for separating into the high
dimensional feature space using the suitable mapping function, i.e. x - ®(x). There are
many mapping functions and Table 2.1 illustrates a few special kernel functions.
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Table 2.1 : Kernel functions

Kernel Type Equations

Gaussian Radial Basis _<|lxi- xj||2>
Function (RBF) Kernel K(x;,x) = e 207
Polynomial Kernel K(x;,x;) = (x;* x; + a)?
Sigmoid Kernel K(x;,x;) = tanh (ax; - x; - b)
Linear Kernel K(x;, %) = x; - x;

2.2 A LIBRARY FOR SUPPORT VECTOR MACHINES (LIBSVM)

LIBSVM is a simple and efficient software for both classification and regression. There
are many SVM packages like LibSVM by Chang and Lin, MySVM? by Stefan Riibing
and SVMLigth* by Thorsten Joachims, etc... Because of its simple use LibSVM is
selected among these packages and some modifications are applied for improving its
performance for grid-search of optimal SVM parameters combined with cross-

validation.

LIBSVM supports C-SVM classification (C-SVC), nu-SVM classification (nu-SVC),
epsilon-SVM regression (epsilon-SVR), nu-SVM regression (nu-SVR), one-class SVM
and multi-class classification. In this study, Java version of LIBSVM (Chang and Lin
2001)° is preferred to use. LIBSVM includes svm_train and svm_predict classes. It is
prepared a separate dataset for each class. In general, it is called as train/training dataset
which is used for svm_train class, test/testing dataset is used for svm_predict class.
LIBSVM is implemented in accordance with reading from a file. The following format
is an instance of the training and testing datasets in corresponding files.

<label> <index 1>:<feature 1> <index 2>:<feature 2> ...

The label indicates the target of a class in classification, but in regression it indicates a
continues/real number. Each feature has an index which starts from 1 and must be in

ascending order. In testing dataset, the label is not necessary, i.e. can be any number.

® Software available at: http://www-ai.cs.uni-dortmund.de/SOFTWARE/MY SVM/index.html [cited
November, 2010]

* Software available at: http://svmlight.joachims.org/ [cited November, 2010]

> Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ [cited August, 2008]
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The label is just used for calculating errors (in regression) and accuracy (in
classification).

The general information about parts of LIBSVM is given below. The changes on
LIBSVM code and used hyper-parameters in the study are explained (Table 2.2).

Table2.2: Hyper parameters of LibSVM

Options / Hyper Default
Parameters of SVM | Value Types

0--C-SvC

) 1--nu-SVC

;?\r/nmtype. SELLYPE | fefault0 | 2 -- one-class SVM

3 -- epsilon-SVR

4 -- nu-SVR

0 -- linear: u™v
1 -- polynomial: (gamma*u™*v + coef0)"degree

-t kernel type: set type 2 -- radial basis function: exp(-gamma*|u-v|*2)

default 2

of kernel function 3 -- sigmoid: tanh(gamma*u'*v + coef0)
4 -- pre-computed kernel (kernel values in
train_file)

-g (y) gamma: set

gamma in kernel default 1/k

function

-¢ (C) cost: set the

parameter C of C- default 1

SVC, epsilon-SVR,
and nu-SVR
Source: http://www.csie.ntu.edu.tw/~cjlin/libsvm/ [cited November, 2009]

Cost is the penalty factor or error tolerance. If it is too large, it has a high penalty for
nonseparable points and it may store many support vectors and overfit. If it is too small,
it may have underfitting (Figure 2.8).
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underfitting good fit overfitting

Figure 2.8 : Underfitting and Overfitting

2.2.1 How to use LIBSVM Classes

2.2.1.1 Usage of “svm-train”

Usage: svm_train [options] train_file [model_file]

train_file contains the training dataset. svm_train generates the model file. Below, the

usage examples are provided:

>java svm_train -s 1 -t 0 -c 10 train_file model_file

Train a classifier with linear kernel, value of Cost is chosen 10 and the other options are

chosen default.
>java svm_train -s 3 -t 2 —g 0.5 train_file model_file

Solve a SVM regression problem with RBF kernel, the value of gamma is 0.5 and the

other options are chosen default.

2.2.1.2 Usage of “svm-predict”

Usage: svm-predict test_file model_file output_file

test_file includes the testing dataset which will be predicted. svm_predict produces
output in the output-file.
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2.2.1.3 Usage of “svm-toy”

This is a simple and useful graphical program which is programmed in Java for
classification of data using the options of SVM. Change button chooses the class label
(1, 2 and 3). The data is obtained by pressing points to the screen after selecting colors.
Run button is used to obtain a model and separates the data. Clear button clears the
screen. Save button is used to store the data seen on the screen. Load button is used to
install the saved data. Each color point on the screen has a label (1, 2 and 3) and two

features (x-axis and y-axis).

Below a very simple svm-toy example is provided (Figure 2.9, Figure 2.10).

E svim_toy

e

Figure 2.9 : Before running svm-toy

20



EEX

Figure 2.10 : After running svm-toy

As shown in Figure 2.9 and Figure 2.10 it is seen two classes which are separated in a
plane. The options are chosen RBF kernel, Cost is chosen 100. The data is recorded
under the name of toyl. Table 2.3 shows the toyl dataset.

Table 2.3 : Toy 1 dataset

Class Label index:featurel index:feature2
1 1:0.096 2:0.104
1 1:0.078 2:0.152
1 1:0.160 2:0.108
1 1:0.132 2:0.192
1 1:0.276 2:0.096
1 1:0.234 2:0.206
1 1:0.062 2:0.322
3 1:0.420 2:0.298
3 1:0.452 2:0.202
3 1:0.414 2:0.210
3 1:0.518 2:0.064
3 1:0.352 2:0.292
3 1:0.212 2:0.366
3 1:0.330 2:0.370
3 1:0.394 2:0.094
3 1:0.170 2:0.244
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The example of training a classifier with RBF kernel, the value of Cost is chosen 100
and the other options are chosen default. The training dataset is toyl. After training
dataset the results in Figure 2.11 are obtained.

C:\libsvm-2_.89\java>java svm_train -t 2 -c 100 toyl model
*

optimization finished, #iter = 18

nu = 0.3140414842826386

obj -405.1444193732676, rho = 1.0074778087108636

nSvV 6, nBSV = 3

Total nSV = 6

Figure 2.11 : Training results from command prompt

nu is the hyper-parameter of nu-SVC and nu-SVR. obj is the optimal objective value,
rho is the bias term. nSV and nBSV are number of support vectors and bounded support

vectors, respectively.

2.2.2 Pre-computed Kernel Type

There are special kernel types for some problems. Pre-computed kernel type is one of
them. Pre-computed kernel is not a new type of kernel. User can calculate the kernel-
matrix first, and then the option of pre-computed kernel is selected. It is no need to
calculate kernel-matrix again by SVM. This way is suitable for the dataset which has a
large number of features. Pre-computed kernel type can be a perfect solution for

computing time-saving way.

The following format is an instance of training dataset with the option of pre-computed
kernel. It is assumed that there are L training instances. K(X, y) is the kernel value of the

instances x and y.

<label> 0:i 1:K(xi,x1) ... L:K(xi,xL)

The following format is an instance of testing dataset with the option of pre-computed
kernel.

<label> 0:? 1:K(x,x1) ... L:K(x,xL)
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? may be any number.

In Figure 2.12, linear kernel is used. The calculation of kernel-matrix is calculated as
follows:

Training instances Pre-computed Form
20 |1 0 1 0 20 | 0:1 |12 |23 3:3

10 |1 2 2 1 > |10 [ 0:2 | 1:3 | 2:10 | 34

30 |3 0 0 1 30 |03 |13 |24 3:3
Testing instance

Pre-computed Form

5 1 1 1 0 5 01 (1.2 |25 3:3

Figure 2.12 :  Computation of pre-computed kernels

Computing time of the program can be decreased by using pre-computed kernel type.
As mentioned in subsection 3.1.2, pre-computed kernel type considerably improves the
computing time on featured datasets. If there are not many features in a dataset using
this parameter could be unnecessary.

Any subset of the training dataset is usable as a new dataset. Leave-one-out cross-
validation mentioned in subsection 2.3.2 is applicable for the programs with the option
of pre-computed kernel. If the method leave-one-out is applied to the training dataset,
the corresponding row of pre-computed form of the dataset is separated for testing as
shown in Figure 2.13. In other words, for example if the second row of training dataset
in Figure 2.12 is separated for testing, to separate the second row of the pre-computed
form of the dataset is enough to test.

Training instances Pre-computed Form

Lo 20 [T O [T JoO ’—>20 01 [ 12 |23 |33
3.rom{30 |3 |0 |O |1 30 [0:3 [1:3 [24 |33

Figure 2.13 : Subset of kernel matrix
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EQ. 2.34 implies that the kernel matrix in Figure 2.13.

K(11) K(1,3)] _ [2 3 (2.34)

K331 K33)] 13 3

2.3 OPTIMIZATION AND EVALUATION OF SVM ACCURACY

LIBSVM is received from its source and then svm_train and svm_predict classes first
combined to a single class and then modified. Leave-one-out cross-validation and grid
search methods are added to the program. Leave-one-out is used to show how cross-
validation regression/classification is accurate. Grid search method is used to select the
most appropriate parameter combination by trying all parameter combinations.
Bootstrap resampling method is applied to prostate cancer data to have more accurate

results.

2.3.1 k-fold Cross-Validation

In k-fold cross-validation, dataset D is divided into k subset ramdomly D,, D,, ..., Dy.
Each subset is called as fold. For each of iterations one fold is separated and remaining

dataset is trained.

Kohavi (1995) suggests that stratified 10-20 fold cross validation should be used for
accuracy estimation, and multiple runs of 3-5 fold cross validation should be used for

model selection.

2.3.2 Leave-One-Out Cross-Validation

In LOOCV, one instance is separated and the training is applied on other instances to
have the model. To test the model the instance separated is used. In this method each
instance is tested once. The purpose of this operation is to measure the correctness of
the prediction or classification. Because of its computational cost k-fold cross validation

applications are more advantageous then this method.
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2.3.3 Grid Search Method

This method is used for finding optimal parameter values. Grid search method give
better results when it is used with cross validation since the parameters (C and y) are
selected properly as a result of checking the corresponding points of the selected

parameters on each instance.

In this thesis grid search method and cross-validation used together to find the best fit
hyper parameter combination. The kernel type selected is RBF because of its better

performance.

2.3.4 Bootstrap Resampling Method

In this method datasets generated from observations are used for having more accurate
statistical predictions. Using whole data sets for predictions causes costs time and
money. Therefore samples (resamples or bootstrap samples) are needed which represent
data better. Here, various size and amount of data sets can be generated by resampling
the observations which are randomly replaced in a dataset having any size. In this way
maximum possible information can be retrieved from a given dataset. This method is

developed by Bradley Efron in 1979 and named as Bootstrap (Resampling) Method.

To use the bootstrap resampling method there is no need to have a large number of
samples. Besides, this method gives more accurate results compared to classical
methods (Hesterberg. 2003).

24  DATASET DESCRIPTION

2.4.1 Synthetic Dataset

In this study, before using original dataset it is created synthetic one which are written
to obtain statistical outputs. The synthetic dataset has nine variables. In the dataset, the
last three columns are Glandular (G), Stromal (S) and Cancer (C) tissue percentages.
The synthetic dataset consists of six metabolites. The algorithm provided in Figure 2.14,
is written for G and must be applied for both S and C to complete one cycle of the

synthetic dataset instance generator (each cycle generates 12 samples).
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Algorithm: Generating Synthetic Dataset
Input: N, number of instance
Output: D, a set of dataset
Method:
1. Dofori=12,..,N
2 For each possible order of G (G,S,C or G, C, S etc...)
3. Choose random G € [0, 1]
4 For each metabolites of G (Ga or Gb)
(if Ga is random then)
Gae([0, 0.45]||[0.55, 1])

5. Compute ch = =6
1-2.Ga

6 Add Gaand Gb to D

7. Choose random R € [0, 1]

8 Compute S = R.(1 —G)

9 Compute C=(1—-G —S5)

10. Add for each tissue (G, S,C)to D

Figure 2.14 :  Algorithm of generating synthetic dataset

In creating the synthetic dataset the following equations and the algorithm are used;

(G+S+C)=1 (2.35)

The sum of tissues is equal to 1 according to the Eqg. 2.34. R is a random double. In
Figure 2.14, Step 3 indicates that G is generated as a random variable in between 0 and
1. Also Step 8 indicates that S is connected to G and also S is a random number, too.
Moreover, Eq. 2.34 and Step 9 shows that C is connected to both G and S together. C is

calculated by subtracting the sum of the others from 1.

This algorithm is repeated for every permutation of the configuration of each tissue. In
other words, each round of repetitive the arrangement of tissues changes, such
asG,s,c—-G,,S-5,6G,—-S5,C,6G—-C,G,S—C,S,G. For example, in the fourth
round of algorithm, line 3 is changed as S € [0, 1], Step 8 is changed as C = R.(1 —5)
and Step 9 is changed as G = (1 — S — () for creating an instance. Ga, Gb, Sa, Sh, Ca
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and Cb are metabolites belong to the specific tissues; G, S and C respectively. Each

tissue type has two metabolites.

G =Ga+Gb-2GaGh (2.36)

The Eq. 2.35 is repeated for G, S and C, separately. Eq. 2.34 and Eq. 2.35 are the main
equations of the synthetic dataset. At every turn of algorithm in Figure 2.14, one of the
synthetic metabolites of a specific tissue must be chosen randomly. The equation on
Step 5 is repeated for every random metabolites of each tissue. To place the variables
(tissues and metabolites) in the dataset homogeneously is aimed for creating the dataset.
As aresult 12 different instances are created from many different possible cases.

According to Step 5 if Ga is chosen randomly then Ga can be in between 0 and 0.45 or
0.55 and 1. The range from 0.45 to 0.55 is not used as a rule. The border values are not
included. If Ga is chosen randomly then Gb can not be a random number or vice versa.
In other words, for a minimal dataset Gb is selected randomly to create the minimal

dataset instances. This process is repeated for every metabolites of each tissue.

The minimal dataset must have 12 instances because of the random cases. Therefore the
number of instances in a dataset must be multiples of 12 e.g. 12, 24, 48... In other
words, the dataset is used as the form of multiples of 12 clusters. It is produced the same
type instances as requested. For example; if the number of instance is 24, then
consequently each instance type is used twice in the dataset. Each cluster of the
synthetic dataset is generated randomly. In other words, the same dataset cluster is

never used twice.

Table 2.4 shows the real copy of the generated data which has 12 instances, the minimal
dataset cluster. If Table 2.4 is examined the connectivity of the synthetic tissue types
and metabolites can be seen among themselves and separately.
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Table 2.4 : Generated the minimal synthetic dataset

Ga Gb Sa Sb Ca Cb G M Cc

0,71261 0,89902 0,39118 |-0,84561 | 0,7183 0,58585 |0,33033 |0,20715 | 0,46252

-0,05582 0,61414 0,87477 |0,74327 |2,71565 |0,60032 [0,62689 [0,31766 |0,05545

0,30382 -0,54957 10,26711 |0,29113 |0,37002 |0,53499 [0,08819 [0,40271]0,5091

0,58797 0,3769 -0,40192 |0,23069 |0,57408 [0,74207 |0,52166 |0,01421|0,46413

0,24505 0,71541 0,34571 |-1,07703 | 0,5993 1,12039 |0,60984 |0,01337|0,37679

-1,11473 0,55234 -0,86294 |0,37033 |-0,28131 [0,29806 |0,66902 |0,14653|0,18445

0,42123 1,65192 0,43276 |-3,1442 ]0,32384 |-0,04331 [0,68147 [0,00995 | 0,30858

0,33696 0,3276 1,80315 [0,68274 |[0,29844 |0,58059 |0,44378 |0,02373|0,53249

0,35266 0,74987 0,42411 |-2,01594 |0,24358 |0,12608 [0,57363 [0,11813]0,30824

4,39058 0,55432 0,35337 ]0,59769 |0,15724 |0,34535 [0,07737 [0,52865|0,39399

0,71662 1,57252 0,74875 ]0,21999 |0,61205 |1,27928 |[0,03533 [0,63931]0,32536

1,57438 0,7278 -1,03319 |0,39504 |-0,0743 [0,77105 |0,01051 |0,17816|0,81134

2.4.2 Real-World Datasets
2.4.2.1 Colon (Colorectal) cancer dataset

Colon cancer is a disorder which influences colon and rectum. The colon is the part of
the digestive system. Tumors of the colon are growths arising from the inner wall of the
large intestine which is a muscular tube from the small intestine to the rectum. Benign
tumors of the large intestine are called polyps. Malignant tumors of the large intestine
are called cancers. Benign polyps do not spread to other parts of the body. Benign
polyps are not life-threatening but if benign polyps are not removed from the body, they
can become cancerous over time. Cancer of the colon can damage adjacent tissues.
Cancer cells can also break away and spread to other organs®. Colon cancer is the fourth
leading cause of cancer in Turkish men and the second cause of cancer in Turkish
females according to Turkish Statistical Institute (2010).

In this section, the colon cancer dataset is used for classification. The corresponding
dataset has 33 instances and 4 features (obtained from an original 188 features). Each
instance is obtained from biopsy of a human being creating the class label (O or 1) for

that instance as healthy or unhealthy.

® http://www.medicinenet.com/colon_cancer/article.htm [cited December, 2010]
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2.4.2.2 Leukemia dataset

Leukemia is a cancer type that starts in the tissue that forms blood. To understand
cancer, it is needed to know how normal blood cells form. Most blood cells develop
from cells in the bone marrow called stem cells. Bone marrow is the soft material in the
center of most bones. Stem cells mature into different kinds of blood cells. Each kind
has a special job: White blood cells help fight infection, red blood cells carry oxygen to
tissues throughout the body and platelets help form blood clots that control bleeding.
White blood cells, red blood cells, and platelets are made from stem cells as the body
needs them. When cells grow old or get damaged, they die, and new cells take their
place. In a person with leukemia, the bone marrow makes abnormal white blood cells
which are called leukemia cells. Unlike normal blood cells, leukemia cells don't die
when they should. They may crowd out normal white blood cells, red blood cells, and
platelets. This makes it hard for normal blood cells to do their work’,

Leukemia dataset (Golub et al. 1999) 8 is especially chosen to show how pre-computed
kernel option saves computing time according to the other kernel types of SVM.
Leukemia dataset has 38 instances, 2 classes (1 and -1) and 7129 features.

2.4.2.3 Prostate cancer dataset

Prostate cancer is a malignant tumor that consists of cells from the prostate gland that is
located at the base of the urinary bladder. Also prostate gland is an organ that surrounds
the first part of the urethra. All prostate cancers do not behave similarly. Some types of
prostate cancer grow slowly and produce no appreciable signs for many years. But some
aggressive types grow and spread more rapidly than others. This type cancer can cause a
significant shortening of life expectancy in men affected by them. As the cancer
advances, however, it can spread beyond the prostate. Moreover, the cancer also can
spread throughout other areas of the body, such as the bones, lungs, and liver.

The cause of prostate cancer is unknown. The risk factors for prostate cancer include
age, genetics, hormones and such environmental factors. The chances of developing

” Source at: http://www.medicinenet.com/leukemia/article.htm [cited December, 2010]
® Available at: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ [cited October, 2010]
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prostate cancer increase with age. Prostate cancer is common over the age of 80, while
rarely seen in men younger than 40.° Prostate cancer is the second leading cause of
deaths from cancer in Turkish men according to Turkish Statistical Institute (2010).

PIMR method is reconstructed for the prostate cancer dataset. The purpose of using the
prostate cancer dataset is to obtain results on a real dataset. This dataset has 130 rows
and 22 columns. The first three columns of the dataset indicate Glandular, Stromal and
Cancer tissue percentages, respectively. The other 19 columns are metabolites which
belong to only one of the views as indicated by an array that we called the partition
table. Originally, we use the partition that we are given with by the UNC biomedical
engineering group (see Figure 2.15; Keshari et al. 2009). In the dataset, each row is an
instance which is obtained from biopsy of a different healthy or unhealthy person. As
the testset we use the whole database. The training dataset is generated using bootstrap
resampling method out of the whole dataset. In other words, the training dataset is a
random subset of the testing dataset (not all test samples are used during training and
this process is repeated a number of times for statistical significance).

As mentioned above the total number of metabolites is 19. Glandular tissue type has 4
metabolites, Stromal has 6, and cancer has 9 metabolites. Figure 2.15 shows the cluster

of tissues with their members.

® Source at: http://www.medicinenet.com/prostate_cancer/article.htm [cited September, 2010]
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Figure 2.15: Spectral clustering of views

2.5 PARALLEL INTERACTING MULTI-VIEW REGRESSION (PIMR) ON
SYNTHETIC DATA

In this section, to motivate it, PIMR is first tried on a synthetic dataset. The generated
training and test datasets have instances with 3 target variables and six features, the
features are organized into 3 views (2 features per target variable), as shown in Figure
2.16.

Tissue percentages View-1 Metabolites View-2 Metabolites
y A A y A

Targets 1, 2, 3 Feature 1 Feature 2 Feature 3 Feature 4

Targets 1, 2, 3 Feature 1 Feature 2 Feature 3 Feature 4

Figure 2.16 :  Structure of instances (two instances and two views are shown)
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2.5.1 Training and Testing Phases of PIMR on Synthetic Data

SVM involves training and testing phases. In other words, PIMR contains these phases
in itself. In the training phase, the training dataset is used, but in the testing phase both
the training and testing datasets are used. The main purpose of using the training dataset
is to obtain a regressor which is used to obtain a predicted output/prediction in testing
phase. By establishing a relationship between target and features of a view, SVM
creates a function called regressor in regression. A separate regressor is produced for
each view. The target is estimated using features and predictions of other views (Figure
2.17).

Training Dataset

v v
Model / Testing /
Training Regressor |  Predicting »Predicted
Phase - Phase g Output
SVM
A

I
Testing Dataset

Figure 2.17 :  Training and testing phases of PIMR

PIMR algorithm is divided into two parts as training and testing processes. In Figure

2.18 the training processes of PIMR algorithm on synthetic data is provided.
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Algorithm: PIMR Training Algorithm
Input: K: sequence #
Method:
1. Dofork = 1,2.. K:
2. Randomly generate TD¥: Training dataset /12 x k instances are generated // k is chosen 25
3. Gy Sy, Co=0;
4. Dofori = 0,1... I: {/literation
5. [model: Mg, predicted output: Gi+1]k « SVM_learn(input: [Ga, Gb, S;, C1, Tg)*
[model: Mg, predicted output: Si+1]k « SVM_learn(input: [Sa, Sb, G;, C;], Ts)*
[model: M;, predicted output: CL-H]k « SVM_learn(input: [Ca, Cb, G;, S;], T.)*
6.  Output RMSE(G;), RMSE(S;), RMSE(C)), r¢;, & 1&;, o(RMSE(G))) , s (RMSE(S})),
o(RMSE(C)), (1), o(1d,). o(r2:)
7. Gy < Giin Gpiey I
[Sis1 < Si in Syiew]”

[Ciy1 < CiinCpigy, ¥ }//end for
Figure 2.18 :  Training algorithm of PIMR on synthetic data

The training phase of PIMR algorithm the training dataset which involves generated
12 x k instances is trained and a regressor/model is generated to use for testing phase of
SVM. This process is repeated for every views of training dataset and for three
iterations of PIMR. k is also used for the sequence number of training and testing
datasets. In other words, the number k shows the current processes and instance
quantity of the datasets. G,, S, and C, variables in testing dataset initialize to O (step 3).
The iterations start with step 4 in Figure 2.18. The next part of the algorithm is
described in more detail in conjunction with the testing algorithm. In Figure 2.19 the
testing processes of PIMR algorithm on synthetic data is provided.
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Algorithm: PIMR Testing Algorithm
Input: K: sequence #
Randomly generate PD: Predicting dataset // instance number is chosen 2400
Method:
1. Dofork = 1,2..K:
2. Gy, Sy, Co=0;
3. Dofori = 0,1... I:{/literation
4 [ predicted output: Gy, 1¥ « SVM _learn(input: [Ga, Gb, S;, C; 1, Tg, MGYL-)k
[ predicted output: S;,, 1¢ « SVM_learn(input: [Sa, Sb, G;, C; 1, Ts, Msyi)k
[ predicted output: Cyyy 1 < SVM_learn(input: [Ca, Cb,G;, S; 1, Tg, Mcyi)k
5. Output RMSE(G;), RMSE(S;), RMSE(C)), v2;, 7% 72;, s(RMSE(G))) , s(RMSE(S;)),
a(RMSE(C)), a(18,), o (), o(1E:)
6. [Giy1 < GiinGyipy]"
[Sis1 < Si in Syiew]”

[Ci+1 < Ci in Cview]k

K (1-(G:i+S:+C))?
7.  Compute E; = \/[M] /I RMSE of total error for G + S + C

8.  Output RMSE(E,), o(RMSE(E;)) } /lend for

Figure 2.19:  Testing algorithm of PIMR on synthetic data

A testset with 2400 instances is generated. In other words, in Figure 2.19, k = 0 means
minimal synthetic dataset with 12 samples, k = 1 means the dataset which consist 24
instances. K indicates the instance quantity of the last dataset. G, S,, C, variables in

testing dataset initialize to O (step 2). In step 4 iterations start.
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Figure 2.20 :  Training phase of views on synthetic data

Testing Dataset (Cpiew) Testing

QOO OO

Figure 2.21 : Testing phase of views on synthetic data

Testing Dataset (Gyiew) Testing
. »| Phase of
@ <y D D[] s
Testing Dataset (Sy;pw) Testing
.y Phase of
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In Figure 2.20 and Figure 2.21 Gyiew, Spiew @Nd Cyiey, in SVM learning (training ve
testing phases) processes are shown. The spiral structure of PIMR is expressed by the
iterations. PIMR has three iterations and the mutual interaction of views is assumed to
be in a stable condition at the end of these iterations. In general, the purpose of the
iterations can be summarized as follows; the output of the first iteration is the input of
the second one and the output of the second iteration is the input of the third one. Thus,

it can be declared that the method has affected items from each other. It is assumed the
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mutual interaction is stable after the third iteration. The views run in parallel. Based on

Figure 2.20 and Figure 2.21 above the following results can be summarized.

In the 1% iteration, the training dataset (training Gyiew1) (€. target T; and the
features Ga, Gb, Sy, Cy) is trained in the training phase and a regressor (M ) is
generated. The same training dataset is tested using the regressor M;, in the
testing phase and training G, of training dataset is generated as predicted output
(Figure 2.20). In the second side of the 1% iteration, the testing dataset
(testing Gyiew 1) 1.€. the target T; and the features Ga, Gb, Sy, C, are tested with
the regressor that generated previously and then G, of testing dataset is obtained
as predicted output in testing phase (Figure 2.21). The outputs are stored for use
in the 2" iteration.

In the 1% iteration, the training dataset (training Sview1) (i.€. target Ts and the
features Sa, Sb, Gy, Cy) is trained in the training phase and a regressor (Ms ) is
generated. The same training dataset is tested using the regressor Mg, in the
testing phase and S; of training dataset is generated as predicted output (Figure
2.20). In the second side of the 1% iteration, the testing dataset (testing Sview1)
i.e. the target T and the features Sa, Sb, G,, C, are tested with the regressor that
generated previously and then S; of testing dataset is obtained as predicted
output in testing phase (Figure 2.21). The outputs are stored for use in the 2™
iteration.

In the 1% iteration, the training dataset (training Cyiew 1) (i.€. target T, and the
features Ca, Cb, G,, Sy) is trained in the training phase and a regressor (M ) is
generated. The same training dataset is tested using the regressor M., in the
testing phase and C, of training dataset is generated as predicted output (Figure
2.20). In the second side of the 1% iteration, the testing dataset (testing Coiew.1)
i.e. the target T and the features Ca, Ch, G, S, are tested with the regressor that
generated previously and then C; of testing dataset is obtained as predicted
output in testing phase (Figure 2.21). The outputs are stored for use in the 2™

iteration.
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The training and predicting processes are actualized in SVM. The 2" iteration serves as

a link between the 1% and the 3" iteration. The specific iteration uses the predicted

outputs of the 1% iteration as inputs and generates outputs which are inputs for the 3™

iteration. Based on Figure 2.20 and Figure 2.21 the following results can be

summarized.

In the 2" iteration, the features G, S, are removed and the generated
targets S;, C; are added to training Gy, , and the constant features Ga, Gb with
the target T;; are trained in the training phase and a regressor (M 1) is generated.
The same training G,y » IS tested using the regressor M; ; in the testing phase
and G, of training dataset is generated as predicted output (Figure 2.20). In the
second side of the 2" iteration, the features G,, S, are removed and the
targets S;, C; incoming from the previous iteration are added to training Gey »
and the features Ga, Gb with the target T; using the regressor M ; are tested all
together and then testing G, is obtained as predicted output in testing phase
(Figure 2.21). The outputs are stored for use in the 3" iteration.

In the 2" iteration, the features G, C, are removed and the generated
targets Gy, C; are added to training S, » and the constant features Sa, Sb with
the target T are trained in the training phase and a regressor (Ms,) is generated.
The same training Sy, » IS tested using the regressor M, in the testing phase
and S, of training dataset is generated as predicted output (Figure 2.20). In the
second side of the 2" iteration, the features G,, C, are removed and the
targets G, C; incoming from the previous iteration are added to training S, 2
and the features Sa, Sb with the target T using the regressor M are tested all
together and then testing S, is obtained as predicted output in testing phase
(Figure 2.21). The outputs are stored for use in the 3" iteration.

The 2" iteration processes of C,;,, are similar to Gy;e,, and Sy;e, -

The same processes of the 2™ iteration are acceptable for the 3" and the other iterations

of PIMR. Figure 2.14 shows a complete structure of PIMR on synthetic dataset.
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Figure 2.22 :  Complete picture of PIMR

2.5.2 Classical Single-View Regression on Synthetic Data

In Figure 2.23 the training and testing processes of CSR algorithm on synthetic data is
provided.



Algorithm: CSR algorithm
Input: K: sequence #, TD*, PD
Method:
1. Dofork = 1,2..K:
2. [ model: Mg, predicted output: G 1¥ « SVM_learn(input: [Ga,Gb,Sa,Sb,Ca,Cb ], T; )*
[ model: Mg, predicted output: S 1* « SVM_learn(input: [Ga, Gb,Sa,Sb,Ca,Cb],Ts )*
[ model: M., predicted output: C 1¥ « SVM_learn(input: [Ga, Gb, Sa,Sb,Ca,Cbh ], T, )*
3. Output RMSE(G), RMSE(S), RMSE(C), ¢, 72 12, o(RMSE(G)) , o (RMSE(S)),
o(RMSE(C)), 6(1), a(1:2), o(r2)} llend for

Figure 2.23 :  Algorithm of classical single-view regression on synthetic data

In Figure 2.23, below the processes are applied k times. The outputs obtained are
replaced with the previous target and used as input to the next. In other words, G,
replaces G, at the second time of loop. Values and places of other variables in G,;,,, do

not change.

OO [08%s
©OS| | ©&E

Training Dataset Testing Dataset

MG
Regressor

A 4

Predicting Phase —>®

Figure 2.24 :  Gyjew ONn synthetic data for CSR

A
Training Phase

In Figure 2.24, classical single view regression is shown for G,;.,,. The same figure is
acceptable for a few changes to S,;c, and C,;.,,. Classical single-view regression can

be summarized as below.
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e Training G, (i.e. Ga,Gb,Sa,Sbh,Ca, Cb and T;) is trained in the training phase
and the regressor M is generated. Testing G,;.,, IS tested using M in testing
phase and G, is generated.

e Training S,y (i.. Ga,Gb,Sa,Sh,Ca,Cb and Ts) is trained in the training phase
and the regressor Mg is generated. Testing S,;.,, IS tested using Mg in testing
phase and S, is generated.

e Training Cy;.,, (i.e. Ga,Gb,Sa,Sh,Ca,Cbh and T,) is trained in the training phase
and the regressor M, is generated. Testing C,;.,, IS tested using M. in testing

phase and C; is generated.

The targets (T; Tsand T;) are also delivered to the testing phase and compared with
produced G;,S; and C; values and statistical results are obtained. Then root mean
squared error and correlation coefficient values are obtained. The results will be

avaluated in the section experimental results.

2.6 PIMR ON SYNTHETIC PROSTATE CANCER DATASET

In Figure 2.25 the training processes of PIMR algorithm on the synthetic prostate cancer
data is provided. The pseudocode of PIMR algorithm is included in Appendix. In Figure
2.25, the random set of integers is generated for specifying which instances belong to
the training dataset. k indicates the sequence number of the processes and the instance
quantity of the datasets. These random integers are generated for every random training
dataset TD*, which contains k units instance in itself. The metabolites are partitioned
into views corresponding to the partition table PT. We do these experiments to show
that when the natural organization of the variables into views are not preserved, the
multi-view approach does not have the advantage over CSR.
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Algorithm: PIMR Training Algorithm
Input: K: sequence #, D: database, PT' partition table
Method:
1. Generate randomly RS: Random set of integers // each of these numbers indicates the number of a
row in D.
2. Dofork =1,2..K:
3. Generate random training dataset TD* subset of D using RS, denominate columns using PT
4. Gy Sy Co=0;
5. Dofori = 0,1... I.{/literation
6 [model: Mg, predicted output: Gi+1]k « SVM_learn(input: [Getaporites: Siv Cil, Tg)*
[model: Mg, predicted output: Si+1]k « SVM_learn(input: [Spetapotites: Gir Cil, Ts)*

[model: M;, predicted output: CL-H]k « SVM_learn(input: [Crretaporites: Gir S1, Tc)¥
7. Output RMSE(G;), RMSE(S;), RMSE(C)), r¢;, & 1&;, o(RMSE(G))) , s (RMSE(S})),
a(RMSE(C)), 0(rZ,), o(rd:), o(rZ;)
8. [Giy1 « GiinGpieyl*
[Sis1 < Siin Spiew]”

[Ciy1 < CiinCpigy, ¥ }/lend for

Figure 2.25:  Training algorithm of PIMR on prostate cancer dataset

In Figure 2.26 the testing processes of PIMR algorithm on prostate cancer data is

provided.
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Algorithm: PIMR Testing Algorithm
Input: K: sequence #, D: database, PT: partition table
Method:
4. Generate predicting PD using the whole D, denominate columns using PT
5. Dofork = 1,2.. K:
6. Gy Sy Co=0;
7. Dofori = 0,1... I:{/literation
8. [ predicted output: G, 1¥ « SVM_learn(input: [Gmerapotitess St Ci 1 Tg MGYL-)k
[ predicted output: S, 1¥ « SVM_learn(input: [Spmetapotitess Gi» Ci 1. T, Msyi)k
[ predicted output: Ciq 1 < SVM_learn(input: [Coerapoiitess Gir Si 1, T, Mcyi)k
9. Output RMSE(G;), RMSE(S;), RMSE(C)), r¢;, & 1&:, o(RMSE(G))) , s (RMSE(S})),
a(RMSE(C)), a(1&,), o (), o(1E:)
10. [Giy1 < G;in Gy, J*
[Sis1 < Si in Syiew]”

[Cis1 < Ciin Cpipy]* } /1 end for

K (1-(G:+5:+C)))?
11. Compute E; = \/[M] /I RMSE of total error for G +S + C

12.  Output RMSE(E;), o(RMSE(E))) } //end for

Figure 2.26 :  Testing algorithm of PIMR on prostate cancer data

The iteration processes of training and testing algorithms of PIMR on prostate cancer

are visualized in Figure 2.27 (G e, IS chosen for illustration).
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Figure 2.27 :  Iterations of G, ON prostate cancer data

Figure 2.27 is summarized as below.

e In the 1% iteration, training Gyiew1 (1.€. the target T; and the features Sy, Cy,
spermidine, citrate, spermine and polyamines) is trained in the training
phase of SVM; and M, (regressor/model of Glandular) is generated. In the
other side of the 1% iteration, G, is obtained as output from testing Gyiew 1 IN the
testing phase usingMg ;. Testing G ;e 1 1S just used for testing.

e In the 2" iteration, training Gyiew (1.€. the target T; and the features S;, C,
sermidine, citrate, spermine and polyamines) is trained in the training
phase of SVM, and M, (regressor/model of Glandular) is generated. In the
other side of the 2" iteration, G, is obtained as output from testing Gyiew 2 IN the

testing phase using Mg ,. Testing G ;e » IS just used for testing.
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e In the 3" iteration, training Gyiews (1.€. the target T; and the features S,, C,,
spermidine, citrate, spermine and polyamines) is trained in the training
phase of SVM; and Mg s (regressor/model of Glandular) is generated. In the
other side of the 3 iteration, G is obtained as output from testing Gyiew 3 IN the

testing phase using M 3. Testing G ;e 3 IS just used for testing.

Each of training dataset mentioned above is tested using the corresponding regressor
and then the generated output is stored to feed the other views. The target and

metabolites have constant values for all iterations.

Griewr Sview and Cyiey run in parallel, but there is not a connection between the views,
so it is called single view. The metabolites are the same for each of the views but the

targets are different so the generated regressors are different, too.
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3. EXPERIMENTAL RESULTS

3.1 PRELIMINARY RESULTS

3.1.1 Analysis of Accuracy Results on Colon Cancer Dataset

Leave-one-out cross-validation (LOOCV) method is used on colon cancer dataset. In
classification mode, each time 32 of 33 samples are trained, remaining one is tested
according to LOOCV. Grid search method is applied to classification program for
increasing the accuracy of SVM. In other words, grid search method is applied changing
both gamma and cost values. Also, the option pre-computed kernel is selected to apply
the program. The Java version of LIBSVM does not include the grid search method and
LOOCV. It is included cross validation method but the method is not useful for the aim
of the program. Grid search yields to select the optimal parameter for obtaining the
better results. LIBSVM reads the data from file. It causes waste of time. So it is
preferred to transfer the data to an array first. The data is transmitted from the array.
Table 3.1 provides the results of grid search method.

Table 3.1: Accuracy scores of grid search method on colon cancer data

Gamma

0102|0304 |05|06|07|08]09]1

001 |13 (14 |17 |17 |17 |17 |17 |17 |17 | 17
0.02 |13 (14 |17 |17 |17 |17 |17 |17 |17 | 17
0.04 |13 (14 |17 |17 |17 |17 |17 |17 |17 | 17
008 |13 |14 |17 |17 |17 |17 |17 |17 |17 | 17
016 |20 |23 |26 |26 |24 |24 |22 |21 |20 |20
032 |27 |28 |29 |29 |29 |28 |28 |27 |26 |26
064 |28 |29 (29 |29 |29 |29 |30 |30 |30 |30
1.28 |27 |28 |28 |27 |28 |29 |29 |29 |29 |29
256 |28 |25 (26 |28 |29 (29 |29 |29 |29 |29
512 |26 |25 (28 |28 |30 (30 |29 |29 |29 |29
1024|125 |27 |29 |29 |30 |30 |29 |29 |29 |29
2048 |26 |28 (29 |29 |30 (30 |29 |29 |29 |29
4096 | 27 |29 |29 |29 |30 |30 (29 (29 |29 |29
819228 |29 (29 |29 |30 (30 |29 |29 |29 |29
163.8 128 |29 |29 (29 |30 |30 |29 |29 |29 |29

Cost

Table 3.1 has 10 columns and 15 rows which belong to y and C parameters,

respectively. The table shows the accuracy of LOOCYV on classification.
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The type of SVM is C-SVC and kernel type is pre-computed, the other options are
chosen default. Figure 3.1 shows the results are better if the C is selected higher than

5.12 and y is selected in the range of 0.5 and 0.6.

25-30

20-25
m 15-20
m 10-15
m 5-10
m0-5

Figure 3.1 : Accuracy scores of grid search method on colon cancer data

3.1.2 Saving Computing Time with Pre-computed Kernel Type

Pre-computed kernel option is useful for saving of computing time in a dataset which
has many features. Studies show that classification accuracies are achieved by using
grid search method where pre-computed kernel type is selected. LOOCV method is
used for both programs. One of the 62 instances is separated and 61 instances are
trained. Then the instance separated is used for testing. This process is repeated until all
instances are trained. Svm-type, C-SVC and other parameters are selected as default.

Table3.2: Comparison of the methods
Methods Grid search and Precomputed kernel type, grid | Improvement
leave one out search and leave one out
Time 441444 ms 6574 ms 434870 ms
(7.36 min.) (0.11 min.) (7.25 min.)
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As shown in Table 3.2 selecting pre-computed kernel type parameter improves
execution time of the program, considerably. Pre-computed kernel form of the program
runs 67 times faster and the improvement is 7.25 minutes according to the program not
including the option.

3.2 RESULTS ON SYNTHETIC DATA

In this section, the performance of PIMR is compared to classical single-view
regression (CSR). Below the set of instances are obtained by taking the average of 30
loops. This process is incurred to obtain more robust and realistic results.

0,35
0,3
0,25
0,2
0,15
0,1
0,05

RMSE

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Number of Instance

== fiter 1-GaGhSC-> G == #iter 2-GaGhSC-> G
#iter 3-GaGbSC-> G ==¢=GaGbSaSbCaCbh-> G

Figure 3.2 : RMSE of G,y 0N synthetic data
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Figure 3.3: RMSE of Sy 0n synthetic data
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Figure 3.4 : RMSE of Cy, 0n synthetic data

Figure 3.2, Figure 3.3 and Figure 3.4 show Root Mean Squared Error (RMSE) of the
prediction of Glandular, Stromal and Cancer tissue scores. The row denotes RMSE; the
column denotes the number of instance. Each instance group is obtained by taking the
average of 30 loops. In other words, each of the datasets which has 12, 24... 180
instances, respectively, is generated 30 times. Glandular, Stromal and Cancer scores are

obtained by using the mean of RMSE for each dataset group. The iterations are the units
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of PIMR. Here, when the results of PIMR method is compared to that of CSR method, it
can be seen that as the number of instance increases, the error rate decreases faster in
PIMR method as expected. Among the iterations of PIMR, iteration 2 has the least
error. As a result; PIMR has less error in its output compared to the CSR method.
Iteration 1 has the same error despite the use of less data compared with the other

iterations.
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Figure 3.5 : RMSE of views on synthetic data

In Figure 3.5 the total RMSE results of the Glandular, Stromal and Cancer views are
provided. For the iterations of the PIMR, total error rate is decreasing as the number of
instances increases as expected. For the PIMR iterationl, the error rate is worse than the
other iterations. From this point PIMR iteration 2 becomes performing better as the

number of instances increases.
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Figure 3.6 : RMSE of G With a different pattern

0,35

0,3 -

A4
0,25 € S )(H—,\( 5% ¢ — <7 5
0,2

RMSE

0,15

01
0,05

O T T T T T T T T T T T T T T
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180

Number of Instance

== #iter 1-GbCbGC-> S==#iter 2-GbCbGC-> S
==fhe=H#iter 3-GhCbGC-> S==¢=GaGbSaSbCaCbh-> S

Figure 3.7 : RMSE of S, With a different pattern
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Figure 3.8 : RMSE of C, with a different pattern

In Figure 3.6, Figure 3.7 and Figure 3.8 Gyiew, Sview and C,iew are available with a

different pattern. In other words, it is embed metabolites in views, randomly. As a

result, RMSE rates of each view progress in a stable way as the number of instances

increases as

expected.
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Figure 3.9 : SCC of Gy 0On synthetic data
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Figure 3.10 : SCC of S,jew 0N synthetic data
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Figure 3.11: SCC of C,e 0n synthetic data

In Figure 3.9, Figure 3.10 and Figure 3.11 rows indicate the values of squared

correlation coefficient (SCC) and columns indicate number of instance. Each instance

group is generated 30 times and SCC average is taken from the numbered set of data. It

can be seen from these figures that PIMR always provides better correlations and as the

number of instances increases correlation performances of the PIMR iterations increase
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faster than that of CSR method as expected. Iteration 1 has the same correlation

performance compared with the other iterations of PIMR.

0,03
w 0,025
S
= 002
S 0015
g 0,01
& 0,005
0 T T T T T T T T T T T T T T 1
12 24 36 48 60 72 84 96 108 120 132 144 156 168 180
Number of Instance
== fiter 1-GaGbhSC-> G —l=#iter 2-GaGhSC-> G
== fiter 3-GaGhSC-> G =¢=GaGbSaSbCaCbh-> G
Figure 3.12 : Standard deviation for RMSE of G, 0n synthetic data
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Figure 3.13 : Standard deviation for RMSE of S, 0n synthetic data
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Figure 3.14 : Standard deviation for RMSE of C,;.,, 0n synthetic data

In Figure 3.12, Figure 3.13 and Figure 3.14, rows indicate the standard deviation of root
mean squared error and columns indicate the number of instance. Here, each of the used
datasets is calculated by taking the average of 30 loops of the specific sets of data
groups as previously mentioned. Standard deviation shows how much dispersion there
is from its mean. In the charts, standard deviation decreases as the number of instances
increases as expected. The decreasing of standard deviation shows the results are closer
to the average. PIMR for Gyiew and Syiew Shows the same performance with CSR. But
Cuiew Of CSR shows better performance. Moreover, PIMR is counted to have better

improvement because of its generation with fewer features.
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Figure 3.15: Standard deviation for RMSE of views on synthetic data
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Figure 3.15 shows standard deviation of RMSE of total views. Standard deviation of
views for all iterations is balanced and performs better as the number of instances
increases. After the number of total instances is 156, all iterations have the same and
stable standard deviation.
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Figure 3.16 : Standard deviation for SCC of Gy;e On synthetic data
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Figure 3.17 : Standard deviation for SCC of S, 0n synthetic data
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Figure 3.18 : Standard deviation for SCC of C,;, 0n synthetic data

In Figure 3.16, Figure 3.17 and Figure 3.18 the charts show the standard deviation for
squared correlation coefficient. Standard deviation of PIMR iterations is higher than
CSR as the small number of instance. However, the performance success of standard
deviation for SCC is the same as the number of instances increases. Iteration 1 is
counted to have better improvement despite it has higher deviation compared with the
others.

3.3 RESULTS ON PROSTATE CANCER DATASET

Prostate cancer dataset has 19 metabolites hereinbefore. The metabolites are distributed
according to the partition table. In the partition table each row represents a tissue. The
tissue G’s members are selected 7, 14, 15, and 18 columns, the tissue S’s members are
selected 2, 5, 8, 11, 12 and 13 columns, the last tissue C’s members are selected 0, 1, 3,
4, 6, 9, 10, 16 and 17 columns of prostate cancer dataset. The selection process is
random; therefore, the different layouts may give the same result.

The training dataset is randomly selected 10 instances at a time from the whole dataset
in the first turn of the system and this process is repeated 30 times. The actual results
are obtained after the repeats. In other words, bootstrap resampling method is applied to
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prostate cancer dataset for obtaining more efficient results. In the second turn the
training dataset is randomly selected 20 instances and this process is repeated until the
number of instances is 130, i.e. 13 times and each time the process is repeated 30 times
as mentioned above. The following results are obtained.
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Figure 3.19 : RMSE of G, On prostate cancer data
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Figure 3.20 : RMSE of Sy, On prostate cancer data
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Figure 3.21 : RMSE of C,;e 0N prostate cancer data

In Figure 3.19, Figure 3.20 and Figure 3.21 above the RMSE characteristics of PIMR
and CSR methods are provided for each Glandular, Stromal and Cancer views.
According to these results, for the views Glandular and Stromal CSR always perform a
better error performance compared to the PIMR method. However, for Cyiew, PIMR has
a better error characteristic if the number of instances is lower than about 110. Actually,
it can be considered that the iterations of PIMR show better performance compared to

CSR due to the fact that iterations are trained with less features.
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Figure 3.22 : RMSE of views on prostate cancer data
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In Figure 3.22 the total RMSE characteristics of both methods are provided. In PIMR as
the number of instance increases the characteristic decreases however it is for the small
number of instances. For the PIMR iterationl, the error rate is worse than the other
iterations. From this point PIMR iteration 2 becomes performing better as the number of
instances increases.
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Figure 3.23 :  SCC of Gyey ON prostate cancer data
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Figure 3.24 : SCC of S,jew ON prostate cancer data
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Figure 3.25: SCC of Cw On prostate cancer data

In Figure 3.19, 3.20, 3.21, correlation performances of the PIMR and CSR methods are
provided for each view. According to these results, the correlation of Cyiew is always
higher than that of CSR. For the views G and S, correlation achieved by the PIMR is
lower than CSR. Iteration 1 is lower for Gyiew and Syiew as expected.
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Figure 3.26 : Standard deviation for RMSE of G, On prostate cancer data
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Figure 3.27 : Standard deviation for RMSE of Sy, 0n prostate cancer data
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Figure 3.28 : Standard deviation for RMSE of C,;., On prostate cancer data

In Figure 3.26, Figure 3.27 Standard deviation of Gyiew, Sview Shows a stable
characteristic as the number of instances increases. The best deviation belongs to
iteration 1 of Cyiew. In the overview, the iterations of PIMR show better performance
than CSR.
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Figure 3.29 : Standard deviation for RMSE of views on prostate cancer data

Figure 3.29 shows that that standard deviation of error rate is decreasing as the number
of instances increases.
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Figure 3.30 : Standard deviation for SCC of G On prostate cancer data
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Figure 3.31 : Standard deviation for SCC of S, On prostate cancer data
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Figure 3.32 :  Standard deviation for SCC of C,,, On prostate cancer data

In Figure 3.30, Figure 3.31 and Figure 3.32, the distribution of standard deviation for
correlation is unbalanced. The charts show the sudden fluctuation for many set of
instances. It is observed that the iteration 1 of Syiew Shows lower deviation performance
compared to CSR and the other iterations. The correlation deviation for Gyiew and Syiew
is higher as the number of instances increases. The iterations of PIMR for Cyiew have
lower deviation as the number of instances increases. The standard deviation of CSR for
Cuiew IS generally high but balanced after 110. PIMR shows a better performance for

Cuiew aS the number of instances increases.
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4. DISCUSSION AND CONCLUSION

In this thesis, an SVM-based multi-view multiregression approach was tried on
synthetic and real-world datasets. Given a dataset divided into views, in this study, it
was our aim to analyze the effect of the interactions between views, each one of which
is primarily responsible for predicting a separate target variable. Firstly, a synthetic toy
dataset was generated for analyzing this effect as a simulation of the real metabolomics
prostate cancer dataset. The accuracy, the root mean squared error and squared
correlation coefficient rates, of PIMR on synthetic and prostate cancer dataset were
better than the classical single-view regression approach. Such good results were not
seen when using different (shuffled) metabolite views instead of the true ones. As a
future direction, the metabolites of prostate cancer dataset (or within the views) may be
reduced using feature selection methods such as mRMR (Peng et al. 2005, Sakar and
Kursun 2010).
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APPENDIX A

Algorithm: Pseudocode of the PIMR method on prostate cancer dataset

Input: D: Database, P: Partition table, n_Ip, n_I, c: user defined number,
Output: results tables of rmse, correlation, standard deviations of rmse and correlation
Method:

1. PROCEDURE main()

2 READ D:database

3 READ P:partition table

4. RETURN testing_data <- CALL procedure get_testing_data();

5 COPY G, S and C members of testing_data as new members to .

testing_data

6. CLEAR the G, S and C of testing_data
7. FOR is less than n_Ip
8. FOR data_id is less than ¢
9. RETURN training_data <- CALL procedure .
get_training_data();
10. SET temp_testing_data <- CLONE testing_data
11. COPY G, S and C members of training_data as new .
members to training_data
12. CLEAR the G, S and C of training_data
13. FOR j is less than 3 //it runs 3 iterations
14, CALL procedure compute_gsc(P, training_data, .
temp_testing_data);
15. CHANGE G, S and C values of temp_testing_data
with outputs
16. CHANGE G, S and C values of training_data with
outputs
17. REMOVE outputs of temp_testing_data
18. REMOVE outputs of training_data
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19.

20.
21.

22,

23.
24,
25.
26.
27.
28.
29.
30.
31.

32.
33.
34.
35.

36.
37.
38.
39.

40.
41.

42.
43.

CALL procedure .
compute_error_of_gsc(temp_testing_data);
END for
CALL procedure compute_gsc(P, training_data, .
temp_testing_data);
CALL procedure .
compute_error_of_gsc(temp_testing_data );
END for
END for
PRINT Root Mean Squared Error
PRINT Squared correlation coefficient
COMPUTE Standard Deviation for Root Mean Squared Error
PRINT Standard Deviation for Root Mean Squared Error
COMPUTE Standard Deviation for Squared correlation coefficient
PRINT Standard Deviation for Squared correlation coefficient
END procedure

PROCEDURE get_training_data()
ADD random lines of D to training_data
RETURN training_data

END procedure

PROCEDURE get_testing_data()
ADD whole data in D to testing_data
RETURN testing_data

END procedure

PROCEDURE compute_gsc(P, training_data, temp_testing_data)
FOR each pattern // G_SCGx, S_GCSx, C_GSCx, G_GxSxCx, .
S_GxSxCx, C_GxSxCx
SET training_array <- set array for related pattern according to P
CALL procedure train(training_array);
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44,
45.
46.
47.

48.
49,
50.

51.
52.

53.

54.

55.
56.
57.
58.
59.

60.
61.
62.
63.

SET output <- CALL procedure predict(model, training_array);
COPY outputs as new members to training_data
SET temp_testing_array <- set array for related pattern
SET output <- CALL procedure predict(model, .
temp_testing_array);
COPY outputs as new members to temp_testing_data
END for
END procedure

PROCEDURE compute_error_of_gsc(temp_testing_data){
COMPUTE root mean squared error of G, S and C(G+S+C) members of
testing_data
COMPUTE squared correlation coefficient of G, S and C(G+S+C) .
members of testing_data

END procedure

PROCEDURE train(training_array)
SET SVM parameters to user defined value
TRAIN training_array
DETERMINE model

END procedure

PROCEDURE predict(testing_array)
TEST testing_array
RETURN output

END procedure
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