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ABSTRACT 

USE OF PARK TRANSFORMATION IN HARMONIC SUPPRESSION 

FOR WAVELET PACKET BASED BROKEN ROTOR BAR DETECTION 
 
 

Güran, Ferzan 
 
 

Electrical and Electronics Engineering 

Supervisor: Asst. Prof. Dr. Levent EREN 

 

 

September 2011, 45 pages 

 

 

 

Electric motors are the most important equipments of modern industrial production and 

services. Naturally, any problem concerning these electric machines decreases the 

efficiency of production and cause major losses in these facilities. Most of these failures 

occur as bearing, stator winding and broken rotor bar faults. Those faults can be 

recognized from the data gathered from the motor current signatures. 

General methods are based on using a notch filter for suppressing power system 

harmonics and then analyse the current signatures by the fourier analyse procedure. 

Working with time domain information or frequency domain information does not give 

the expected results. 

We in this study, used Park’s transformation for suppressing fundamental power system 

harmonic and wavelet packets to analyse the stator currents in order to identify broken 

rotor bar failures in an induction motor. In order to verify that the increase in the energy 

levels of fault associated frequency bands are indeed due to the broken rotor bars, 

spectral post processing with fast fourier transform is applied. 

Keywords: Induction Motors, Park’s Transformation, Fourier Analysis, Wavelets, 

Wavelet Packets. 
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ÖZET 

DALGACIK PAKETĠ KULLANILARAK KIRIK ROTOR ÇUBUĞU TESPĠTĠNDE 

HARMONĠK BASTIRIMI ĠÇĠN PARK DÖNÜġÜMÜNÜN KULLANILMASI 

 

 

Güran, Ferzan 

 

 

Elektrik ve Elektronik Mühendisliği 

DanıĢman: Yrd. Doç. Dr. Levent EREN 

 

 

Eylül 2011, 45 sayfa 

 

 

 

Elektrik motorları, modern endüstriyel üretim için en mühim ekipmanlardır. Bu 

ekipmanlarda meydana gelen herhangi bir aksaklık, üretim veriminin düĢmesine ve 

iĢletmelerde büyük kayıplara yol açmaktadır. Problemler sıklıkla rulmanlarda, stator 

sargılarında ve rotor çubuklarında görülür. Meydana gelen hatalar, motor akım 

iĢaretlerinden toplanan verilerle tanımlanabilir. 

Geleneksel olarak analizler, güç sistem harmoniklerinin band durduran filtrelerle 

elimine edilmesinden sonra akım iĢaretlerinin fourier dekompozisyonu ile 

gerçekleĢtirilir. Sadece zaman veya frekans domeninde analiz beklenen sonuçları 

vermemektedir. 

Bu çalıĢmada, motorun statorundan aldığımız akım iĢaretlerini güç sistem harmoniğini 

bastırmak için park dönüĢümüne tabi tuttuk. Bu dönüĢümden elde edilen akım 

bileĢenleri arızayı tespit için dalgacık paketleri ile analiz edildi. Ġlgili frekans bandları 

için enerji seviyelerinin tespiti yapılmıĢ olup, bandlardaki enerji seviyelerinin kırık rotor 

çubuklarından kaynaklandığını doğrulamak üzere hızlı fourier dönüĢümü ilgili bandlara 

uygulanmıĢtır. 

Anahtar Kelimeler: Asenkron Motorlar, Park DönüĢümü, Fourier Analizi, Dalgacıklar, 

Dalgacık Paketleri. 
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1. INTRODUCTION 

In today’s industrial applications, induction motors are used widely. As they are used 

heavily, they fail due to faults like bearing damage, insulation damage, broken rotor 

bars or over loading and so on. Heavy reliance of modern industry on these machines, 

enforces the need for monitoring the condition of these machines in order to avoid the 

unpredictable shutdowns. 

Bearing faults, insulation faults, and rotor faults are the primary causes of motor failures 

accounting for about a percentage of 50, 35, and 10 all induction motor failures 

respectively (Kliman 1997). Resulting as a number of problems, effective techniques 

are to be improved to detect, analyze and prevent electrical machine failures. One of 

these methods for detecting faults in electrical equipment is Motor Current Signature 

Analysis (MCSA), developed by scientists at Oak Ridge National Laboratory providing 

nonintrusive means for detecting the mechanical and electrical problems in both motor 

and driven equipment (Kryter and Haynes 1989). 

Signal processing operations such as Fourier and wavelet transforms help us determine 

the magnitude of the fault related frequencies. The changes in the amplitudes of fault 

frequencies indicate the state of the defect. 

Since the fundamental component amplitude is extremely high compared to the other 

components, smaller but important signals will be difficult to detect. This way, changes 

in the amplitude of some components related to the failure may be unnoticed. Usually, 

the fundamental component is suppressed by filtering the current signal in 

preprocessing. 

Analog filters are sensitive to temperature variations, which may shift the filter 

resonance frequency and degrade the desired response (Bonaldi, et al. 2003). Therefore, 

the use of digital filters is preferred. Generally, notch filters are used to remove the 

fundamental component.  

The subject of this study is detecting the broken rotor bar fault of an induction motor, 

using wavelet packet decomposition of motor current data. The current data is 
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preprocessed by Park’s Transformation to remove the fundamental component as the 

amplitude of the fundamental frequency is greater than the sideband amplitude. In the 

proposed method, there is no need for a notch filter, therefore, the proposed approach 

provides lower computational complexity. Furthermore, the transform will demodulate 

the fault frequency and provide better separation of signature frequency from the 

fundamental frequency.  

In the proposed method, three phase currents are going to be transformed to direct and 

quadrature components using Park’s transform algorithm. The signature frequency 

components are demodulated in magnetizing (id) and torque producing current (iq) 

obtained by the transform. The direct current component will be decomposed into 

equally spaced frequency bands by using all-pass implementation of elliptic IIR half-

band filter. Next, energy level of each frequency band is going to be calculated by 

determining rms values from WPCs of associated frequency bands. The changes in the 

energy levels of frequency bands in which broken rotor bar related current frequencies 

lie are monitored to detect motor fault condition.  

In order to verify that the increase in the energy levels of fault associated frequency 

bands are indeed due to the broken rotor bars, spectral post processing will be applied. 

Fast Fourier transform of the 0-7.5 Hz. band will be calculated. This will be the 

verification for both simulated and real data showing that the proposed approach is 

effective in detecting broken rotor bars. In all analysis, Matlab is used for its simplicity, 

high performance calculation ability and powerful visual data analyzing tools. 

Literature review will be presented in chapter two. Information about motor faults and 

motor current signature analysis is provided in chapter three. Signal processing methods 

including Fourier and wavelet transforms, broken bar detection procedure are cited in 

chapter four. Also dq0 transform, commonly known as Park’s transformation, which 

composes the most important part of our contribution to the subject is featured. In the 

following chapter test setup, results of simulated and test data are presented. The last 

chapter will be the conclusion part. 
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2. LITERATURE REVIEW 

Various methods are developed in signal processing. One of these methods is wavelet 

analysis, evolved in early 1900’s by Alfred Haar. The application of this method to 

seismic signals starts with J. Morlet in 1982. Ingrid Daubechies, opened the door for a 

new system of image compression that allows for the efficient storage of an image 

without sacrificing detail.  

Generally, Fourier transforms have been used in motor current signature analysis. By 

using the Fourier transform, fault signatures can be detected but time location is lost due 

to the lack of algorithm. Valens, described the superiorities of wavelets over Fourier 

analysis on mathematical and engineering aspects. 

Wavelets found a specific application area in electrical engineering because of its multi 

resolution analysis characteristic. Eren and Devaney (2001), analyzed the starting 

current transient of an induction motor is analyzed via discrete wavelet transform to 

detect bearing faults. The frequency subbands for bearing pre-fault and post-fault 

conditions were compared to identify the effects of bearing/machine resonant 

frequencies as the motor starts. Arslan, Orhan and Aktürk (2003), stated that data 

gathered from the motor can be used in fault analysis. ġeker and Ayaz (2003), extracted 

features from vibration signals measured from motors subjected to accelerated bearing 

fluting aging and detected the effects of bearing fluting at each aging cycle of induction 

motors. Eren, Devaney and Çekiç (2003), studied on the detection of broken rotor bar in 

an induction machine via wavelet packet decomposition. 

Bonaldi et al. (2003), by extracting the supply component frequency found that it is 

possible to improve the dynamic range of the A/D converter in order to get a more 

precise digitized signal and improve the failure detection. Cusido et al. (2006), analyzed 

the current spectra of dq0 Park components with MCSA method and claimed to 

improve earlier fault detection by using wavelet transform as signal analysis method 

and found it to be possible for reducing signal noise effects. 
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3. MOTOR FAULTS AND DETECTION METHODS 

3.1 MOTOR FAULTS 

Bearing and broken rotor bar faults are mechanical faults that occur motor failures. 

Insulation, rotor, stator winding and bearing faults are the most common problems 

resulting the motor failures. Major faults of electrical machines can broadly be 

classified as follows: 

 Stator faults resulting in the opening or shorting of one or more of a stator phase 

windings. 

 Abnormal connection of the stator windings 

 Broken rotor bar or cracked rotor end-rings 

 Static and/or dynamic air-gap irregularities 

 Bent shaft which can result in a rub between the rotor and stator, causing serious 

damage to stator core and windings. 

Motor Current Signature Analysis (MCSA) is the best possible option for its non-

intrusive approach and also uses the stator winding as the search coil (Mehla and 

Dahiya, 2007). 

3.2 MOTOR CURRENT SIGNATURE ANALYSIS 

Motor Current Signature Analysis (MCSA) is an electric machinery monitoring 

technology developed by the Oak Ridge National Laboratory. It provides a highly 

sensitive, selective, and cost-effective means for on-line line monitoring of a wide 

variety of heavy industrial machinery. Extensive test data support that MCSA has a 

number of inherent strengths, the most notable being that it: 

 Provides nonintrusive monitoring away from the equipment, 

 Provides degradation and diagnostic information comparable to conventional 

instrumentation, 
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 Offers high sensitivity to a variety of mechanical disorders affecting operational 

readiness, 

 Offers means for separating one form of disorder from another, 

 Can be used by relatively unskilled personnel. 

 Can be applied to high-powered and fractional horsepower machines, ac and dc 

motors (Pillay and Xu). 

A motor current signal is ideally a sinusoidal wave. We can represent the current either 

in terms of time or frequency. The amplitude of the peak in frequency is equal to the 

RMS amplitude of the sine wave. Conversion of the current from time to frequency 

domain is achieved using the Fast Fourier Transform (FFT). 

During actual operation, many harmonics will be seen in the motor signal, so that signal 

will show many peaks including line frequency and harmonics. This is known as the 

motor’s current signature. Analyzing these harmonics after amplification and signal 

conditioning will enable identification of the various motor faults. Certain harmonics 

come in on the supply and these are of little consequence. However harmonics are also 

generated due to various electrical and mechanical faults. All faults cause a change in 

the internal flux distribution, generating the harmonics. These are intermediate 

harmonics and can not be detected by standard harmonic analyzers. As fault generated 

harmonics appear only in the current spectrum but not in voltage, superimposition of 

current and voltage spectra can easily identify them. 
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4. FAULT DETECTION METHOD 

4.1 SIGNAL ANALYSIS 

A signal has two components, amplitude and frequency. Frequency and amplitude data 

can be identified in a constant plane, time domain. In signal analysis , defining a signal 

in the time domain forms the basic operations of signal analysis. 

The frequency and amplitude data of signals can be achieved by doing some 

mathematical operations. Signals encountered in real life applications are usually 

continuous time. To facilitate digital processing, a continuous time signal must be 

converted to a sequence of numbers. This process is known as sampling. After sampling 

signal can be analyzed in an electronic environment using mathematical operations. 

Extensive mathematical technique used for this analyze is the Fourier transform. 

4.1.1 Fourier Transform 

Fourier series clearly opens the frequency domain as an interesting and useful way of 

determining how circuits and systems respond to periodic input signals. Addressing 

these issues requires us to find the Fourier spectrum of all signals, both periodic and 

nonperiodic ones. We need a definition for the Fourier spectrum of a signal, periodic or 

not. This spectrum is calculated by what is known as the Fourier Transform.  

Mathematically, the process of Fourier analysis is represented by the Fourier transform: 

F    = ∫     
 

  
          (4.1) 

which is the sum over all time of the signal f(t) multiplied by a complex exponential. 

The results of the transform are the Fourier coefficients, which when F    multiplied 

by a sinusoid of appropriate frequency, yield the constituent sinusoidal components of 

the original signal.  
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The information provided by the integral, corresponds to all time values, since the 

integration is from minus to plus infinity over time. Whether the frequency component 

appears at time t1 or t2 it will have the same effect on the integration. This reminds us 

that Fourier transform is not suitable if the signal has time varying frequency, i.e., the 

signal is non-stationary (Polikar, 1994). 

4.1.2 Discrete Time Fourier Transform 

The Discrete Time Fourier Transform (DTFT) is a Fourier transform that operates on a 

periodic, discrete signals. If we imagine that we acquire an n sample signal, and want to 

find its frequency spectrum by using the DFT, the signal can be decomposed into sine 

and cosine waves with frequencies equally spaced between zero and one-half of the 

sampling rate. As mentioned before, padding the time domain signal with zeros makes 

the period of the time domain longer, as well as making the spacing between samples in 

the frequency domain narrower. As n approaches infinity, the time domain becomes a 

periodic, and the frequency domain becomes a continuous signal. This is the DTFT, the 

Fourier transform that relates an aperiodic, discrete signal, with a periodic, continuous 

frequency spectrum (Smith, 2003). 

4.1.3 Short Time Fourier Transform 

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier 

transform to analyze only a small section of the signal at a time a technique called 

windowing the signal. Gabor’s adaptation, called the Short-Time Fourier Transform 

(STFT), maps a signal into a two-dimensional function of time and frequency.  

STFT(τ,ω) = ∫                  
  

  
 (4.2) 

While the STFT’s compromise between time and frequency information can be useful, 

the drawback is that once we choose a particular size for the time window, that window 

is the same for all frequencies. Many signals require a more flexible approach where we 
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can vary the window size to determine more accurately either time or frequency (Misiti 

et al. 2006). 

4.1.4 Wavelets 

The fundamental idea behind wavelets is to analyze according to scale. Indeed, some 

researchers in the wavelet field feel that, by using wavelets, one is adopting a whole 

new mindset or perspective in processing data. 

Wavelets are mathematical functions that divide data into different frequency 

components, and then analyze each component with a resolution according to its scale. 

Their advantage over traditional Fourier method is; they can match physical situations 

where the signal contains discontinuities and sharp spikes. Wavelets were developed 

independently in the fields of mathematics, quantum physics, electrical engineering, and 

seismic geology. Interdisciplinary studies between these fields have led to many new 

wavelet applications such as image compression, turbulence, human vision, radar, and 

earthquake prediction (Graps, 1995). 

A wavelet is a waveform of effectively limited duration that has an average value of 

zero. Compare wavelets with sine waves which are the basis of Fourier analysis, 

sinusoids do not have limited duration they extend from minus to plus infinity. And 

where sinusoids are smooth and predictable, wavelets tend to be irregular and 

asymmetric. 

  

Figure 4.1: A db10 wavelet and a sine wave 
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Fourier analysis consists of breaking up a signal into sine waves of various frequencies. 

Similarly, wavelet analysis is the breaking up of a signal into shifted and scaled versions 

of the original (or mother) wavelet.  

Just looking at picture of a wavelets and a sine wave, we can see intuitively that signals 

with sharp changes might be better analyzed with an irregular wavelet than with a 

smooth sinusoid. It also makes sense that local features can be described better with 

wavelets that have local extent.( Misiti et al. 2006) 

4.1.5 Wavelet Transforms 

Wavelet Transform is a transform which localizes a function both in space and scaling 

and has some desirable properties compared to the Fourier transform. The difference 

between the two transform is, Fourier transform decomposes the signal into sines and 

cosines, in contrary the wavelet transform uses functions that are localized in both the 

real and Fourier space (http://gwyddion.net 2011). 

The wavelet transform or wavelet analysis is probably the most recent solution to 

overcome the shortcomings of the Fourier transform. In wavelet analysis the scalable 

window solves the signal-cutting problem. The window is shifted along the signal and 

the spectrum is calculated for every position. Then this process is repeated with scaling 

the window to a different value. The result will be the data of time-frequency 

representations of the signal, all with different resolutions. Because of this collection of 

representations we can speak of a multiresolution analysis. We can think the large scale 

as the big picture, while the small scales represent the zoomed situation. Wavelet 

transforms are broadly divided into three types: Continuous, Discrete and 

Multiresolution-based. 

http://gwyddion.net/
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The continuous wavelet transform (CWT); is defined as the sum over all time of the 

signal multiplied by scaled, shifted versions of the wavelet function  : 

CWT (scale, position) = ∫  
 

  
                             (4.3) 

•  (s,a) (t) = 
 

√ 
  

   

 
  

•   = Mother wavelet 

•   = Scale 

•   = Translation (shifting in time) 

•   = Function to be analysed 

The results of the CWT are wavelet coefficients C, which are a function of scale and 

position. Multiplying each coefficient by the appropriately scaled and shifted wavelet 

yields the constituent wavelets of the original signal. 

Wavelet analysis produces a time-scale view of a signal. Scaling a wavelet simply 

means stretching (or compressing) it. The scale factor works exactly the same with 

wavelets. The smaller the scale factor, the more “compressed” the wavelet. Shifting a 

wavelet simply means delaying (or hastening) its onset. Mathematically, delaying a 

function f (t) by k is represented by f (t-k). 

 

Figure 4.2: Wavelets of different scales and positions 
Source: D. Lee Fugal, Conceptual Wavelets In Digital Signal Processing 

The continuous wavelet transform is the sum over all time of the signal multiplied by 

scaled, shifted versions of the wavelet. This process produces wavelet coefficients that 

are a function of scale and position. 
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The discrete wavelet transform (DWT); is considerably easier to implement when 

compared to the CWT. Calculation of wavelet coefficients for every possible scale 

includes unnecessary information in to the signal. This causes the increase of the time 

taken for the calculation (Rioul, O., Vetterli). If the chosen scales and positions are 

taken at powers of two, analysis will be faster and more effective. 

W(s,a)=
 

√ 
∫      (

   

 
)    (4.4) 

where             and j,k      

    [ ]  ∑  [ ] [    ] 
     (4.5) 

     [ ]  ∑  [ ] [    ] 
     (4.6) 

g[n], h[n] and yx [k], are low pass and high pass filters and outputs respectively.  

One filter of the analysis (wavelet transform) pair is a lowpass filter (LPF), while the 

other is a highpass filter (HPF). Each filter has a down-sampler after it, to make the 

transform efficient. A lowpass filter produces the average signal, while a highpass filter 

produces the detail signal. The low-frequency content gives the signal its identity. The 

high-frequency content represents the nuance. In wavelet analysis, words 

approximations and details are mentioned often. The approximations are the high-scale, 

low-frequency components of the signal. The details are the low-scale, high-frequency 

components. 
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   (a) 

 

   (b) 

Figure 4.3: (a) Two band analysis filter bank. (b) Downsampling by two 

The original signal, passes through two complementary filters; low pass and high pass. 

If this operation is performed on a real digital signal, we come along with twice as much 

data as we started with. There exists a better and costless way to perform the 

decomposition using wavelets. O one point out of two may be kept in each of the two 

samples to get the complete information. If decomposition is repeated, it is called the 

wavelet decomposition tree. 

 

Figure 4.4: Wavelet decomposition tree (three levels). 

Low Pass Output 

High Pass Output 
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Figure 4.5: One-stage DWT with high-frequency noise added. 

In the wavelet transform, the frequency responses of the analysis filter bank are spaced 

logarithmically. 
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Figure 4.6: The frequency responses of analysis filter bank in WT case 

Wavelet Packet Decomposition method is a generalization of wavelet decomposition 

that offers a richer range of possibilities for signal analysis. In wavelet analysis, a signal 

is split into an approximation and a detail. Filtering and gathering wavelet coefficients 

goes from the output of low frequency filter only. In wavelet packet analysis, the details 

can also be split as well as approximations. This yields more than 2
2n-1

 different ways to 

encode the signal. This forms the wavelet packet decomposition tree. 
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Figure 4.7: Binary tree 

Wavelet packet decomposition has a constant frequency seperation. 
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Figure 4.8: Constant bandwidth separation 

4.2 Cracked or Broken Rotor Bar Detection 

Cracked or broken rotor bars account for about 10% of motor failures. If a broken rotor 

bar exists, no current will flow in the rotor bar. The cracked or broken rotor bars can be 

detected from the current spectrum by determining the magnitude of the frequency 

components caused by this type of fault. The frequencies that are present in air gap flux, 

fk, can be determined by the following equation (Kliman et al. 1988).  

 1ek

k

p
f f s s

 
 
 

  

   (4.7)  
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k = Harmonic index (k= 1,2,3,...)    

s = Per unit slip  

p = Number of fundamental pole pairs  

fe = Supply frequency 

Due to the structure of a normal winding, the current spectrum will contain harmonics 

as given in above equation for: k/p=1,5,7,11, etc. Then, the broken rotor bar frequencies 

frb, for k/p=1 can be determined by the following equation (Eren, Çekiç and Devaney 

2009). 

ƒb = ƒe (1±2ks), k=1,2,3…   (4.8) 

where ƒb represents the fault signature frequencies of the broken rotor bar. 

A well-known effect of a broken bar is the appearance of the so-called sideband 

components (Toliyat, Nand and Li (2005), Kliman et al. (2001), Benbouzid (2000)). 

These sidebands are found in the power spectrum of the stator current on the left and 

right sides of the fundamental frequency component. The lower side band component is 

caused by electrical and magnetic asymmetries in the rotor cage of an induction motor 

(Kliman et al. 2001), while the right sideband component is due to consequent speed 

ripples generated by the resulting torque pulsations. 

Generally, the frequencies of the sideband components are very close to the frequency 

of the fundamental component, but the magnitudes of the sideband components are in 

the range of -20 to -60 dB, which are considerably smaller than the magnitude of the 

fundamental component. it is considered the fact that the amplitude of the fundamental 

frequency is extremely high if compared to the other signature components. So, smaller 

but more important signature components will get buried in the fundamental 

component. If the fundamental component has not been removed or filtered, changes in 

the amplitude of some signature components related to a fault may not be noticed while 

the fault is getting worse. Therefore, to solve this problem analog notch filters are used 

to remove the fundamental component (Benbouzid (2000), Thomson and Fenger 
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(2001), Benbouzid et al. (1999)). We, in this study use Park’s transformation to remove 

the fundamental harmonic. 

4.3 PARK’S TRANSFORMATION 

This transformation is commonly used in three-phase electric machine models, where it 

is known as a Park transformation. It allows us to eliminate time-varying inductances by 

referring the stator and rotor quantities to a fixed or rotating reference frame (Krause, 

Wasynczuk, Sudhoff 1995). The transformation itself, known as the dq0 transformation, 

can be represented in a straightforward fashion in terms of the electrical angle θ (equal 

to poles/2 times the spatial angle θ) between the rotor direct axis and the stator phase-a 

axis (Fitzgerald, Kingsley and Umans 2003). 

 

Figure 4.9: Direct and Quadrature axis components 
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S; stator quantity to be the transformed (current, voltage, or flux), 𝜃 = ωt where 𝜃 is the 

angle between the rotor direct axis and stator phase a axis, we can write the 

transformation in matrix form as: 

  
  
  

 
 

 
[

   𝜃     𝜃           𝜃      

     𝜃      𝜃           𝜃      
 

 

 

 

 

 

]
  
  
  

  (4.9)  

and the inverse transformation as: 

  
  
  

 [

     𝜃      𝜃  
    𝜃           𝜃       
     𝜃           𝜃       

]
  
  
  

 (4.10) 

A third component, the zero-sequence component, is required to yield a unique 

transformation of the three stator-phase quantities; it corresponds to components of 

armature current which produce no net air- gap flux and hence no net flux linking the 

rotor circuits. As can be seen from equation (3.5), in a balanced condition, zero-

sequence component does not exist. According to equation (3.5), dq0 components can 

be expressed as: 

id = 
 

 
 [ia cos (2πfet) + ib cos (2πfet -2π/3) + ic cos (2πfet +2π/3)]   (4.11) 

iq = 
 

 
 [ia sin (2πfet ) + ib sin (2πfet -2π/3 )+ ic sin (2πfet +2π/3)]  (4.12) 

i0 = 0 (4.13) 
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where id and iq represent direct axis and quadrature axis currents. The phase currents 

with a rotor fault can be modelled as below;  

ia = A cos(2πfet) + AL cos (2πfet - 2πfbt) + AR cos (2πfet +2πfbt) (4.14) 

ib = A cos(2πfet - 2π/3) + AL cos (2πfet - 2πfbt -2π/3)  (4.15) 

+ AR cos (2πfet + 2πfbt - 2π/3)   

ic = A cos(2πfet +2π/3) + AL cos (2πfet - 2πfbt +2π/3)  (4.16) 

+ AR cos (2πfet +2πfbt+2π/3)  

where AL, AR, fe and fb are the lower side band magnitude, upper side band magnitude 

supply frequency and fault frequency of the broken rotor bar respectively. 

We get the expressions below by replacing (4.14), (4.15) and (4.16) as appropriate with 

ia, ib and ic in the equations (4.11) and (4.12). 

id = 
 

 
 [[A cos(2πfet) + AL cos (2πfet - 2πfbt) + AR cos (2πfet +2πfbt)] cos (2πfet) + 

[A cos(2πfet - 2π/3) + AL cos (2πfet - 2πfbt -2π/3) + AR cos (2πfet + 2πfbt - 2π/3)] 

cos (2πfet -2π/3) + [A cos(2πfet +2π/3) + AL cos (2πfet - 2πfbt +2π/3) + AR cos 

(2πfet +2πfbt+2π/3)] cos (2πfet +2π/3)] 

iq = 
 

 
 [[A cos(2πfet) + AL cos (2πfet - 2πfbt) + AR cos (2πfet +2πfbt)] sin (2πfet ) + 

[A cos(2πfet - 2π/3) + AL cos (2πfet - 2πfbt -2π/3) + AR cos (2πfet + 2πfbt - 2π/3)] 

sin (2πfet -2π/3 )+ [A cos(2πfet +2π/3) + AL cos (2πfet - 2πfbt +2π/3) + AR cos 

(2πfet +2πfbt+2π/3)] sin (2πfet +2π/3)] 
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From the multiplication identities of sines and cosines  

             
 

 
[                 ] (4.17) 

             
 

 
[                 ] (4.18) 

expressions become 

id=
 

 

 

 
(A[cos(4πfet)+cos(0)]+AL[cos(4πfet-2πfbt)+cos(-2πfbt)]+AR[cos(4πfet 

+2πfbt)+cos(2πfbt)] 

+A[cos(4πfet-4π/3)+cos(0)]+AL[cos(4πfet-4π/3-2πfbt)+cos(-2πfbt)]+AR[cos(4πfet- 

4π/3+2πfbt)+cos(2πfbt)] 

+A[cos(4πfet+4π/3)+cos(0)]+AL[cos(4πfet+4π/3-2πfbt)+cos(-2πfbt)]+AR[cos(4πfet 

+4π/3+2πfbt)+cos(2πfbt)]) 

iq = 
 

 
 
 

 
(A[sin(4πfet)-sin(0)]+AL[sin(4πfet-2πfbt)-sin(-2πfbt)]+ARsin(4πfet+2πfbt)-

sin(2πfbt)] 

+A[sin(4πfet-4π/3)-sin(0)]+AL[sin(4πfet-4π/3-2πfbt)-sin(-2πfbt)]+AR[sin(4πfet-

4π/3+2πfbt)-sin(2πfbt)] 

+A[sin(4πfet+4π/3)-sin(0)]+AL[sin(4πfet+4π/3-2πfbt)-

sin(2πfbt)]+AR[sin(4πfet+4π/3+2πfbt)-sin(2πfbt)]) 
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We know that, the sum of sines or cosines with equal amplitude and frequency 

displaced by      in phase is zero. By algebraic substitutions we get the simplified 

expression below 

id = AL cos (2πfbt) + AR cos (2πfbt)  (4.19) 

iq = AL sin (2πfbt) - AR sin (2πfbt) (4.20) 

As AL and AR are equal to each other, iq naturally becomes zero due to the equation 

(4.20). This brings out the reason of id to be chosen for signal pre-processing as current 

component. 

Also expressions (4.19) and (4.20) state that, supply frequency is removed and only 

faulty rotor bar frequency is contained in the transformed equations, which leads us the 

way of analyzing the stator currents without using any notch filter. 
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5. ASSESSING OF THE ALGORITHM AND  

TESTING WITH REAL DATA 

Matlab simulations are used to validate algorithm for the proposed method. After 

verifying the algorithm with simulated data, tests are carried out for both healthy and 

faulty (rotor with two broken bars) cases. Three phase currents are captured at 32 points 

per power system cycle for 256 cycles using the waveform capture capability of 

SquareD CM4000 Circuit Monitor. Then, the data is uploaded to a PC via the serial 

communication port and analyzed with the code written in matlab software. 

The captured data has a decomposable bandwidth of 960 Hz since the sampling is done 

32 points per power system cycle (60 Hz). The signal bandwidth is halved at each level 

and decomposing the signal by seven levels would achieve a 7.5 Hz bandwidth for each 

node. 

5.1 TEST SETUP 

The test system consists of a squirrel cage induction motor, a hysteresis dynamometer, 

Magtrol model HD-805, as the load, and a SquareD CM4000 Circuit Monitor for 

capturing motor current data. The test setup is depicted in figure 5.1. 
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Figure 5.1: Test setup for induction motor with a single broken rotor bar 

The current data is captured using the waveform capture capability of a SquareD 

CM4000 Circuit Monitor. The Circuit Monitor has an onboard memory chip that 

provides storage for the captured data. Then, the data is uploaded to a PC via the serial 

communication port. 

The sampled current signal contains the power system fundamental and other harmonic 

components. The broken rotor bar induced current spectrum components are 

significantly smaller than the power system harmonics in magnitude, therefore, some 

preprocessing of the signal is required to suppress the power system fundamental before 

the current signal is analyzed via wavelet packet analysis. The fundamental harmonic is 

eliminated by Park’s transformation to minimize the error due to its leakage. 

After transformation, the data is decomposed into equally spaced wavelet packets by 

using all-pass implementation of elliptic IIR half-band filter. Typically, 7.5 Hz wavelet 

packets would provide sufficient resolution for detecting broken rotor bar fault 

frequencies. 
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If the baseline of the wavelet packet coefficients is defined as the mean of these 

coefficients, non-zero baseline information may appear in a detail sub-band when the 

signal is contaminated by power system harmonic interference (Xu, 2005). The nonzero 

baseline stems from the contribution of harmonic interference only when special 

constraints among the interference between base frequency, sampling rate, and wavelet 

packet decomposition level is met. The baseline shifting is used to remove the effects of 

power system harmonics other than the fundamental. 

5.2 TEST PROCEDURE 

The basic steps of the algorithm are displayed in Figure 6.1. First baseline data for the 

motor is collected with a healthy set of bearings. The motor current data is then captured 

at user determined time intervals to check the status of bearings. The stator current data 

is notch filtered to suppress both the power system harmonics and rotor eccentricity 

frequency components. Then, the signal is decomposed into 7.5 Hz frequency bands 

using the fast wavelet packet algorithm. The all-pass implementation of elliptic half-

band filters is used in the fast wavelet packet filter algorithm. The resulting wavelet 

packet coefficients are used to calculate the rms values for defect frequency bands. 

Finally, rms values for defect frequency bands are compared to baseline data to detect 

bearing faults and identify the type of the fault.  
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Figure 5.2: Flow chart Diagram 

5.3 TESTING OF THE ALGORITHM USING SIMULATED DATA 

In this section, the effectiveness of the proposed algorithm is tested with simulated data. 

Before the proposed algorithm is tested with both simulated and real data, the real data 

for a motor with both healthy rotor bars and two broken bars are analyzed with Fourier 

transform. The results are shown in figure 5.3.  
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Figure 5.3: Both healthy rotor bars and two broken bars with Fourier transform 

Here the fundamental component is so high compared to broken rotor bar frequencies 

that healthy case cannot be discriminated from the faulty case. It is obvious from the 

figure that preprocessing of current signal is required to suppress the fundamental 

component. The preprocessing means additional computational burden. In the proposed 

method, the fundamental is suppressed by Park`s transformation and the fault signal is 

demodulated making it easier to identify at a minimal computational cost. 

The test data includes 6 Hz fault signal modulated to the line frequency of 60 Hz. The 

magnitude of the fault frequency component is designed to be 10 % of the fundamental 

component The matlab code for generating the faulty data is given in the Appendix A. 

The simulated data has a length of 8192 points at 32 point per cycle. 

One of the phase currents for the simulated data is depicted in figure 5.4. Here, only the 

first four cycles are plotted. 
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Figure 5.4: Simulated phase current  

The simulated data is depicted into direct and quadrature components using Park’s 

transformation. The direct current component is plotted in figure 5.5. The data length in 

this figure is 8192 sample points. It is obvious from the figure that there are 26 cycles in 

the observation period. Considering the fact that the simulated data had 256 cycles of 

the fundamental frequency (60 Hz) in 8192 sample points, the length of 26 cycles would 

correspond to the fault frequency very close to 6 Hz. 
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Figure 5.5: Direct current component from Park’s transformation 

The direct current component data is then decomposed into wavelet packets using the 

fast wavelet packet decomposition algorithm. Here, packets are designed such that each 

packet has 7.5 Hz bandwidth. Since the fault frequency is around 6 Hz, only the node 

that covers 0-7.5 Hz band must be analyzed. The wavelet packet coefficients for the 

fault associated node is plotted in figure 5.6. The coefficients plotted in this figure 

indicate a periodic waveform.  
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Figure 5.6: Wavelet Packet Coefficients 0-7.5 Hz. Band 

In order to verify that the energy associated with this band is due to 6 Hz fault 

component, the fast Fourier transform may be utilized. The result of the frequency 

analysis is shown in figure 5.7. Here, it is obvious from the figure that only frequency 

component in this frequency band is 6 Hz. 

After verifying that the algorithms works well with simulated data, the motor current 

data captured with SquareD Circuit Monitor is analyzed. 
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Figure 5.7: FFT of the direct component 

5.4 TESTING WITH HEALTHY MOTOR DATA 

In the second section, the proposed method is tested with real motor data. In the first 

part, a motor with no broken bars is tested. The motor is ran at 1740 rpm and full load. 

The dynamometer is used as the load. One of the phase currents for the captured data is 

depicted in figure 5.8. Here, only the first four cycles are plotted. 
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Figure 5.8: Healthy case phase current 

The captured data is decomposed into direct and quadrature components using Park’s 

transformation. The direct current component is plotted in figure 5.9. The data length in 

this figure is 8192 sample points. 

The direct current component data is then decomposed into wavelet packets using the 

fast wavelet packet decomposition algorithm. Here, packets are designed such that each 

packet has 7.5 Hz bandwidth. Since the fault frequency is around 4 Hz, only the node 

that covers 0-7.5 Hz band must be analyzed. The wavelet packet coefficients for the 

fault associated node is plotted in figure 5.10. The coefficients plotted in this figure do 

not indicate a periodic waveform. The energy level for this node is calculated to be 0.66 

Amperes. This value will be compared to the faulty case in the next section. 
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Figure 5.9: Direct current component 

 

Figure 5.10: Wavelet Packet Coefficients 0-7.5 Hz. Band 
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In order to verify that the energy associated with this band is due to 4 Hz fault 

component, the fast Fourier transform may be utilized. The result of the frequency 

analysis is shown in figure 5.11. Here, it is obvious from the figure that broken rotor bar 

frequency is not very pronounced here. 

 

Figure 5.11: FFT of the direct component 

5.5 TESTING WITH FAULTY MOTOR DATA 

In the second part, a motor with two broken bars is tested. The motor is ran at 1740 rpm 

and full load. The dynamometer is used as the load. One of the phase currents for the 

captured data is depicted in figure 5.12. Here, only the first four cycles are plotted. 

The captured data is decomposed into direct and quadrature components using Park’s 

transformation. The direct current component is plotted in figure 5.13. The data length 

in this figure is 8192 sample points. 
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The direct current component data is then decomposed into wavelet packets using the 

fast wavelet packet decomposition algorithm. Here, packets are designed such that each 

packet has 7.5 Hz bandwidth. Since the fault frequency is around 4 Hz, only the node 

that covers 0-7.5 Hz band must be analyzed. The wavelet packet coefficients for the 

fault associated node is plotted in figure 5.14. The coefficients plotted in this figure 

indicate a periodic waveform. The energy level for this node is calculated to be 1.89 

Amperes. This value is clearly much higher (about three times) than the healthy case 

analyzed in the previous section. 

 

Figure 5.12: Faulty case phase current 
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Figure 5.13: Direct current component 

 

Figure 5.14: Wavelet Packet Coefficients 0-7.5 Hz. Band 
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In order to verify that the energy associated with this band is due to 4 Hz fault 

component, the fast Fourier transform may be utilized. The result of the frequency 

analysis is shown in figure 5.15. Here, it is obvious from the figure that broken rotor bar 

frequency is vey pronounced here. 

 

Figure 5.15: FFT of the direct component 
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6. CONCLUSION AND FUTURE WORK 

The broken rotor bar frequency components are very small compared to the power 

system fundamental frequency component making broken rotor bar detection very 

difficult at rated speed operation. Usually some preprocessing is required to suppress 

the fundamental frequency resulting in further computational burden. It is also very 

difficult to suppress the fundamental frequency component without affecting the 

magnitudes of broken rotor bar related frequency components since they are very close 

to the fundamental. In this work, the use of Park`s transformation in fundamental 

frequency suppression for wavelet packet based broken rotor bar detection is proposed. 

In the proposed method, the fundamental frequency component is suppressed in direct 

current component obtained from Park`s transformation applied to three phase currents. 

This is also shown through mathematical derivations in section 4.3.  

Then, the direct current component is decomposed into equally spaced frequency bands 

by using all-pass implementation of elliptic IIR half-band filter. Next, energy level of 

each frequency band is calculated by determining rms values from WPCs of associated 

frequency bands. The changes in the energy levels of frequency bands in which broken 

rotor bar related current frequencies lie are monitored to detect motor fault condition.  

In order to verify that the increase in the energy levels of fault associated frequency 

bands are indeed due to the broken rotor bars, spectral post processing was applied. 

Both simulated and real data showed that the proposed approach is effective in detecting 

broken rotor bars.  

The performance of different filters in wavelet packet decomposition may be explored 

for future work. Also, different motor fault conditions such as bearing faults may be 

included in the future study. 
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APPENDIX 

A.1 WAVELET PACKET ALGORITHM 

b2=[0.519974 1]; 

a2=[1 0.519974]; 

b1=[0.145612596 1.016102 1]; 

a1=[1 1.016102 0.145612596 ]; 

t=[1:1:8192]; 

  

fid = fopen('healthy1.txt','r'); 

[D,COUNT] = fscanf(fid,'%f'); 

fclose(fid); 

Ic=D([7:7:COUNT]); 

Ib=D([6:7:COUNT]); 

Ia=-(Ib+Ic); 

  

figure(1); 

plot(t(1:128),downsample(Ia(1:512),4)); 

xlabel('Sample Number'); 

ylabel('Phase Current(A)'); 

  

for i=1:128*256 

Iq(i)=-Ia(i)*sin(2*pi*i/128)-Ib(i)*sin(2*pi*i/128-pi/1.5)-Ic(i)*sin(2*pi*i/128+pi/1.5); 

Id(i)=Ia(i)*cos(2*pi*i/128)+Ib(i)*cos(2*pi*i/128-pi/1.5)+Ic(i)*cos(2*pi*i/128+pi/1.5); 

I0(i)=Ia(i)+Ib(i)+Ic(i); 

end 

  

figure(2); 

plot(downsample(Id,4)); 

title('Direct Current Component'); 

xlabel('Sample Number'); 

ylabel('Direct Component(A)'); 
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grid on; 

%axis([0 8192 13,5 16,5]); 

beta=downsample(Id,4); 

  

for i=1:7 

 for k=1:2^(i-1)  

 ind=2*(k-1); 

[y1,y2]=downsample2(beta((k-1)*length(beta)/2^(i-1)+1:(k)*length(beta)/2^(i-1))); 

[y12]=filtre3(b1,a1,y1); 

[y22]=filtre2(b2,a2,y2); 

  

betax=(y12+y22)/sqrt(2); 

alfax=(y12-y22)/sqrt(2); 

clear y12; 

clear y22; 

beta(ind*length(beta)/2^(i)+1:(ind+1)*length(beta)/2^(i))=betax; 

beta((ind+1)*length(beta)/2^(i)+1:(ind+2)*length(beta)/2^(i))=alfax; 

end 

end 

mag7=abs(fft(beta(1:64))); 

  

figure(3); 

plot(beta(1:64)); 

title('Wavelet Packet Coefficients 0-7,5 Hz. Band'); 

  

Tx=[7.5/32:7.5/32:7.5]; 

figure(4); 

plot(Tx(6:32),mag7(6:32)); 

title('FFT Spectrum'); 

xlabel('Frequency Hz.'); 

ylabel('Magnitude'); 
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A.2 SIMULATION ALGORITHM 

for i=1:32*256 

Va(i)=10*cos(2*pi*i/32); 

Vb(i)=10*cos(2*pi*i/32-pi/1.5); 

Vc(i)=10*cos(2*pi*i/32+pi/1.5); 

end 

modsin =sin(0.1*pi*t/32); 

xt=1+0.1*modsin; 

Va=Va.*xt; 

Vb=Vb.*xt; 

Vc=Vc.*xt; 

for i=1:32*256 

Vq(i)=-Va(i)*sin(2*pi*i/32)-Vb(i)*sin(2*pi*i/32-pi/1.5)-Vc(i)*sin(2*pi*i/32+pi/1.5); 

Vd(i)=Va(i)*cos(2*pi*i/32)+Vb(i)*cos(2*pi*i/32-pi/1.5)+Vc(i)*cos(2*pi*i/32+pi/1.5); 

V0(i)=Va(i)+Vb(i)+Vc(i); 

end 

beta=Vd; 

for i=1:7 

 for k=1:2^(i-1)  

  ind=2*(k-1); 

[y1,y2]=downsample2(beta((k-1)*length(beta)/2^(i-1)+1:(k)*length(beta)/2^(i-1))); 

[y12]=filtre3(b1,a1,y1); 

[y22]=filtre2(b2,a2,y2); 

betax=(y12+y22)/sqrt(2); 

alfax=(y12-y22)/sqrt(2); 

clear y12; 

clear y22; 

beta(ind*length(beta)/2^(i)+1:(ind+1)*length(beta)/2^(i))=betax; 

beta((ind+1)*length(beta)/2^(i)+1:(ind+2)*length(beta)/2^(i))=alfax; 

end 

end 

mag7=abs(fft(beta(1:64))); 

plot(mag7(3:64)); 
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A.3 FILTERING FUNCTIONS 

function [yw2]=filtre3(b,a,x) 

xx=[x x]; 

  

for i=1:length(b)-1 

 yw(i)=0; 

end 

for i=length(b):length(xx) 

 yw(i)=b(1)*xx(i)+b(2)*xx(i-1)+b(3)*xx(i-2)-a(2)*yw(i-1)-a(3)*yw(i-2); 

  

end 

yw2=yw(length(xx)/2+1:length(xx)); 

 

function [yw2]=filtre2(b,a,x) 

xx=[x x]; 

  

for i=1:length(b)-1 

 yw(i)=0; 

end 

for i=length(b):length(xx) 

 yw(i)=b(1)*xx(i)+b(2)*xx(i-1)-a(2)*yw(i-1); 

end 

yw2=yw(length(xx)/2+1:length(xx)); 

  

function xx = myg(L) 

for i=0:2^L-1 

 x=0; 

 y=mgraycode(i,L); 

 for j=L:-1:1 

 x=x+y(L-j+1)*2^(j-1); 

 end 

 xx(i+1)=x;  

 end 
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