
T. C.
BAHÇEŞEHİR ÜNİVERSİTESİ

The Graduate School of Natural and Applied Sciences
Applied Mathematics

COUNTING AND LISTING A SPECIAL CLASS OF
DIRECTED GRAPHS

Master of Science Thesis

Mehmet Emin GÖNEN

Supervisor: Assoc. Prof. Atabey KAYGUN

Istanbul, 2013

T. C.
BAHÇEŞEHİR ÜNİVERSİTESİ

The Graduate School of Natural and Applied Sciences
Applied Mathematics

Title of the Master’s Thesis : Counting and Listing a Special Class of Directed
Graphs

Name/Last Name of the Student : Mehmet Emin GÖNEN
Date of Thesis Defense : 15 August 2013

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

Assoc. Prof. F. Tunç BOZBURA
Acting Director

I certify that this thesis meets all the requirements as a thesis for the degree of Master of
Science.

Prof. Nuri KURUOĞLU
Program Coordinator

This is to certify that we have read this thesis and that we find it fully adequate in scope,
quality and content, as a thesis for the degree of Master of Science.

Examining Commitee Members:

Assoc. Prof. Atabey KAYGUN (Supervisor) :

Asst. Prof. Süreyya AKYÜZ :

Asst. Prof. Maksat ASHYRALIYEV :

ACKNOWLEDGMENTS

First of all, I would like to send my special thanks to my thesis supervisor Assoc. Prof.
Atabey Kaygun, for his great supervision, guidance and encouragement. I am also great-
ful to him for his trust in me. He has always supported me in bad and good times, never
let me give up and helped me so much to keep my motivation.

I wish to express my sincere thanks to Prof. Nuri Kuruoğlu, the coordinator of master
program. If he did not accept me to master program, I did not finish this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Asst. Prof.
Süreyya Akyüz and Asst. Prof. Maksat Ashyraliyev, for their encouragement and insight-
ful comments.

My very specific thanks go to Gamze Akgun, who was always there for me, making
the distance shorter. And for many many other things that cannot be listed here... Her
encouragement and constant support, together with her endless patience, I was able to
overcome many difficulties during this study and also in general.

The huge thanks go to the my friends for tea time talk. Especially Deniz Topuz, Kübra
Çetin, Nurdan Kuru, Sena Cüre, Ayşegül Aydınoğlu and Isıl Türkan.

And last but not least, I would like to thank my family for the unconditional love and
support throughout my life. Without them nothing would be possible.

Finally, I am greatful to TUBITAK-BIDEB for the financial support througout my under-
graduate and master studies.

15 August 2013 Mehmet Emin GÖNEN

iii

ABSTRACT

COUNTING AND LISTING A SPECIAL CLASS OF DIRECTED GRAPHS

Gönen, Mehmet Emin

Applied Mathematics
Supervisor: Assoc. Prof. Atabey KAYGUN

August 2013, 50 Pages

In this thesis, we count and list a special class of directed graphs. We consider directed
graphs which are transitively reduced and do not contain cycles. These directed graphs
have also unique sources and unique sinks. In the text, we called such directed graphs
as “admissible digraphs”. Such directed graphs find applications in bioinformatics and
network flow theory. We constructed explicit algorithms to count and list admissible
digraphs with a specific number of vertices. Our counting algorithm is not exact, it gives
us an upper bound on the number of admissible digraphs with a certain number of vertices.
On the other hand, our listing algorithm is exact and list all admissible digraphs of certain
vertex set size.

Keywords: Graph Theory, combinatorics, network flow, bioinformatics, algorithms

iv

ÖZET

YÖNLENDİRİLMİŞ ÇİZGELERİN ÖZEL BİR SINIFININ SAYILMASI VE
LİSTELENMESİ

Gönen, Mehmet Emin

Uygulamalı Matematik
Tez Danışmanı: Doç. Dr. Atabey KAYGUN

Ağustos 2013, 50 Sayfa

Biz bu tezde yönlendirilmiş çizgelerin özel bir sınıfını saymaya ve listelemeye çalıştık.
Göz önünde bulundurduğumuz bu yönlendirilmiş çizgeler geçişli indirgenmişlerdir ve
çevre içermemektedirler. Ayrıca bu yönlendirilmiş çizgeler tek giriş düğümü ve tek çıkış
düğümüne sahiptirler. Bahsettiğimiz yönlendirilmiş çizgeleri metinde “geçerli yönlendiril-
miş çizgeler” olarak adlandırdık. Bunların biyoinformatik ve ağ akışı kuramı alanlarında
uygulamaları bulunmaktadır. Düğüm sayıları belirli olan geçerli yönlendirilmiş çizgeleri
saymak ve listelemek için aşikar algoritmalar oluşturduk. Sayma algoritmamız bize kesin
sonuç değil, düğüm sayıları belli olan geçerli yönlendirilmiş çizgelerin sayıları üstünden
üst sınır vermektedir. Buna karşılık, liste algoritmamız bize kesin sonuç vermektedir ve
bütün geçerli yönlendirilmiş çizgeleri düğüm kümesinin boyutu üzerinden listelemekte-
dir.

Anahtar Kelimeler: Çizge Kuramı, Kombinatorik, Ağ akışı, Biyoinformatik, Algorit-
malar

v

TABLE OF CONTENTS

1. INTRODUCTION . 1

2. PRELIMINARY DEFINITIONS . 4

2.1 HASSE SUBGRAPHS AND TRANSITIVE CLOUSURE 4

3. ADMISSIBLE DIRECTED GRAPHS. 7

3.1 DECOMPOSING ADMISSIBLE DIGRAPHS ALONG ARTICULA-
TIONS AND HORIZONTAL COMPOSITION . 8

3.2 VERTICAL COMPOSITION AND DECOMPOSING 1-CONNECTED
ADMISSIBLE DIGRAPHS. 12

4. ALGORITHMS . 17

4.1 CONCLUSION . 20

5. GRAPH ORDERING. 23

6. ALGORITHMS WITH GRAPH ORDERING . 29

REFERENCES . 33
APPENDICES . 35

vi

1. INTRODUCTION

In this study, we count and list a special set of directed graphs. Our directed graphs
contain finitely many vertices and edges. They have the following properties:

1. They are transitively reduced

2. They do not contain cycles

3. They have unique sources and unique sinks

We called our graphs as “admissible digraphs”. We build up algorithms for counting and
listing such graphs. Our algorithms use two specific composition operations which we
called “vertical” (Definition 3.8) and “horizontal” (Definition 3.5) composition.

The literature for listing directed graphs is rather meek on the subject. On the other hand,
the literature for counting is quite deep (1), (2), (3), (6), (8). However, most of these
studies do their counting using generating functions (Especially (4), (7), (9)). But we do
not follow this route in this study.

In the paper (9), Robinson counts digraphs with a source and a sink. His strategy is to
enumarate configurations in which there is a designated out-component and a seperate
designated in-component. He uses generating functions for counting which he calles
G(x) and C(x). C(x) is an exponential generating function for the set of labeled strongly
connected digraphs and G(x) is an exponential geenerating function for the set of all
labeled digraphs. The number of such graphs is exponential ingrowth so is ours.

In the paper (7), Liskovec study a similar subject. He gives two new formulas for the
number of rooted digraphs with a source. One of the formulas contains the sum of the
cyclic indexes of the automorphism groups of connected rooted graphs. The paper also
contains the numerical values of rooted digraphs with a source on n vertices.

In the book (4), Harary and Palmer enumarate different types of graphs. Blocks and
acyclic digraphs are class of graphs which contain admissible digraphs. A Block is a
graph which is connected, nontrivial and has no articulations. In our thesis, we call such
graph as 1-connected digraphs. 1-connected digraphs have no articulations. Harry and

Palmer enumarate blocks by using generating functions (on page 10). This function is also
exponential. In another chapter of their book (on page 19), they count acyclic digraphs.
They use recursive formula

ap = ∑
p
k=1 ap,k

where ap is the number of labeled acyclic digraphs with p vertices and ap,k is the number
of labeled acyclic digraph with p vertices which have exactly k ≥ 1 vertices of in-degree
zero. While we are generating admissible digraphs, we use a similar recursive formula
(on page 19).

Studies which we mentioned above are about counting graphs. There are also some stud-
ies about composition and decomposition of graphs. In the paper (1), Cunningham and
Edmans defined such decompositions on graphs. There is a similarity between their de-
composition and our decomposition. They defined non-separable graphs (on page 734).
According to definition, we realized that a graph is 1-connected if and only if it is non-
separable. 1-connected digraphs are prime with recpect to horizontal decomposition
(Proposition 3.6). But 1-connected digraphs are vertically decomposible. Therefore hori-
zontal decomposition and decomposition in that study have similarities. They also defined
prime graphs but our definition of prime graphs (Definition 3.19) is different from their
definition (on page 735).

Finally, in the paper (3), Gessel uses digraph decomposition which are defined quite dif-
ferent from our definition of decomposition. In Gessel’s paper, a simple decomposition
for graphs yield generating fuctions for counting graphs by edges and connected compo-
nents. In their decomposition, they choose a vertex and remove it and its incident edges.
By applying this decomposition to connected graphs, they recover some known formulas
for counting connected graphs by edges and for counting trees by inversion. And they get
Tutte polynomial of the complete graphs by using such decomposition.

Graph decompositions are also closely related to graph searching problems. In the paper
(5), Kreutzer and Ordyniak said that an important concept in the theory of graph search-
ing games is monotonicity. The importance of monotonicity in the context of graph de-
compositions results from the observation that many decompositions, like tree- and path-
decompositions, can be defined in terms of monotone winning strategies for the searcher
(Definitions on page 4689).

2

Admissible digraphs are algebraic objects. The set of isomorphism class of admissible
digraphs with horizontal composition is monoid. Here, our identity element is single ver-
tex without edge. However, if we choose the operation as vertical composition then there
is no identity element. Hence, the set of isomorphism class is semi-group not monoid.
Our prime elements are 1-connected admissible digraphs and admissible digraphs with
articulations. 1-connected admissible digraphs are prime with respect to horizontal de-
composition and admissible digraphs with articulations are prime with recpect to vertical
decomposition. We can decompose admissible digraphs along articulations. Using hori-
zontal and vertical compositions, we find recursive formulas and we adapt these formulas
to our algorithms. We developed explicit counting algorithms without appealing to gen-
erating functions in this thesis (Chapter 4). However, our counting algorithms give us
an upper bound not an exact result. As we explaine in Chapter 4 vertical composition
operation is commutative. Therefore there is a double counting problem in our counting
algorithms. We defined graph ordering (Definition 5.2) to overcome this double count-
ing problem. We also developed explicit listing algorithms using graph ordering as well
(Chapter 6).

3

2. PRELIMINARY DEFINITIONS

Definition 2.1. A directed graph (or a digraph in short) is a pair (V,E) where V is a

set and E ⊆ (V ×V)\∆(V) where ∆(V) = {(v,v)| v ∈ V}. The elements of V are called

vertices and the elements of E are called edges. The opposite graph of a graph G = (V,E)

is a pair Gop = (V,Eop) where

Eop = {(v,v′) ∈V ×V | (v′,v) ∈ E}

Let U ⊆V be a subset. The full subgraph of G on U is the graph

G(U) := (U, (U×U)∩E)

Definition 2.2. Let G = (V,E) be a digraph. A vertex v ∈ V is called a source if there

exists w ∈V such that (v,w) ∈ E and there is no v′ ∈V with the property that (v′,v) ∈ E.

A vertex v ∈V is called a sink if v is a source in Gop.

Definition 2.3. Let G = (V,E) be a digraph. A sequence of vertices (v0, . . . ,vn) is called

a path if (vi,vi+1) ∈ E for every i = 0, . . . ,n− 1. A path (v0, . . . ,vn) is called a cycle if

v0 = vn.

Definition 2.4. A digraph G = (V,E) is called reduced digraph if there is a path from vi

to v j where vi,v j ∈V then (vi,v j) /∈ E.

2.1 HASSE SUBGRAPHS AND TRANSITIVE CLOUSURE

Definition 2.5. Assume G = (V,E) is a directed graph and H is a subgraph of G. A

subgraph H is called Hasse subgraph of G if

1. Vertex set of H is equal to vertex set of G.

2. Let (a,b) is an edge in H. If (a,b) is removed from H then there is no path in H

connecting a to b.

3. Let a,b ∈V . There is a path from a to b in H if and only if there is a path from a to

b in G.

4

Algorithm 1 An algorithm finding a Hasse subgraph of directed graphs.
function HASSE(G)

for all x in edge list of G do
delete the edge x from G
u← shortest path from the source of x to the target of x
if the length of u is equal to 0 then

add the edge x to G
end if

end for
return G

end function

Definition 2.6. Let G = (V,E) be a directed graph. cl(G) is called the transitive closure
of G if

1. Vertex set of cl(G) is equal to vertex set of G.

2. Assume a,b ∈ V . If there is path between a and b in G then there must be an edge

between a and b in cl(G).

3. Any transitive subgraph of (V,V ×V) is contained by cl(G).

Algorithm 2 An algorithm finding the transitive closure of directed graphs.
function TRANSITIVECLOSURE(G)

for all x in vertex set of G do
for all y in vertex set of G do

u← the shortest path between x and y
if the length of u is bigger than 2 then

add the edge (x,y) to G
end if

end for
end for
return G

end function

Remark 2.1. Transitive closure operator behaves like the topological closure operator.

Hence;

1. If G is transitive then cl(G) = G.

2. If H ⊆ G then cl(H)⊆ cl(G).

5

3. cl(cl(G)) = cl(G).

Proposition 2.1. Assume G is transitive and H is a Hasse subgraph of G then transitive

closure of H is G.

Proof. Assume cl(H) 6= G. Then cl(H) ⊂ G since G = cl(G) and closure operator re-
spects set inclusion. If cl(H)⊂ G then there exists an edge (a,b) in G which is not in H.
If there is no edge between a and b in H then there is no path between them in H. There-
fore, a and b are connected in G and they are not connected in H which is a contradiction.
Hence cl(H) = G.

Proposition 2.2. Let G be a digraph which contains K3(complete graph of 3 vertices).

Then Hasse subgraph of G is not unique.

Proof. Proof by counter example:

Let G = (V,E) = K3 be a digraph and E = {(0,1),(1,0),(1,2),(2,1),(0,2),(2,0)}, V =

{0,1,2} . Then E1 = {(0,2),(2,0),(1,2),(2,1)} and E2 = {(0,1),(1,2),(2,0)} are Hasse
subgraph of G. Therefore Hasse subgraph of G is not unique.

Proposition 2.3. Every directed acyclic graph has a unique Hasse subgraph.

Proof. Assume G is a directed acyclic graph and H1,H2 are hasse subgraphs of G. Since
H1 and H2 are different graphs, there exists an edge (a,b)∈H1 and (a,b) /∈H2. If (a,b)∈
H1 then a and b are connected in G hence they must be connected in H2. Then there
exist a vertex c and a path α = (a, . . . ,c, . . . ,b) in H2. If a and c are connected in H2 then
they must be connected in H1, in addition if c and b are connected in H2 then they must
be connected in H1. Hence there exists a path between a and c,and there exists a path
between c and b in H1. A path α = (a, . . . ,c, . . . ,b) must contain (a,b) since H1 is Hasse
subgraph. If (a,b) ∈ α then we get a cycle in H1 which is a contradiction because G is
acyclic. Hence G has a unique Hasse subgraph.

6

3. ADMISSIBLE DIRECTED GRAPHS

Definition 3.1. We will call a digraph G = (V,E) as admissible if

1. G has no cycles.

2. G has a unique source and a unique sink.

3. G is a reduced digraph.

The size of an admissible digraph is the number of elements in the vertex set V . Usually,

we represent the unique source by s and the unique sink by t.

Lemma 3.1. G is an admissible digraph if and only if Gop is an admissible digraph.

Proof. The only difference between G and Gop is the direction of edges. Hence if G has
no cycle neither does Gop. Assume v1 and v2 in G. If there is a path from v1 to v2 in G

then (v1,v2) is not in G since G is reduced. Thus, there is a path from v2 to v1 in Gop and
(v2,v1) is not in Gop. Hence Gop is also reduced. Moreover, the source of G is the sink of
Gop and the sink of G is the source of Gop. Hence Gop is admissible.

Lemma 3.2. Let G be a digraph. If G has a unique source and a unique sink, then every

vertex of G is connected to the source and the sink via path.

Proof. Assume v1 is a vertex in G and it is not the source. Then there exists a vertex v2 in
G which is connected to v1 since v1 is not the source. If v2 is the source then we are done,
if not then we proceed by induction. We have finitely many vertices, therefore ultimately
the last vertex must be the source. Hence every vertex is connected to the source. If we
consider Gop, then we conclude that every vertex in G is connected to the sink because
the source of Gop is the sink of G.

Definition 3.2. An admissible digraph G = (V,E;s, t) is called k-connected if for every

subset V ′ of size k of V \{s, t} the full subgraph G(V \V ′) on V \V ′ has a path connecting

the source to the sink. An admissible digraph is called disconnected if it is not connected.

A vertex v in a graph G = (V,E) is called an articulation if

G\ v := G(V \{v})

7

is disconnected.

3.1 DECOMPOSING ADMISSIBLE DIGRAPHS ALONG ARTICULATIONS AND
HORIZONTAL COMPOSITION

In this section we assume G = (V,E;s, t) is an admissible digraph of size n with k articu-
lations a1, . . . ,ak.

Proposition 3.3. Any path (s,v1, . . . ,vm, t) connecting s to t contains all of the articula-

tions. Moreover, any path connecting s to t contains the articulations in the same order.

Proof. Let α = (s,v1, . . . ,vm, t) be a path connecting s to t. Assume there exists an articu-
lation a j such that for all i = 1, . . . ,m we have vi 6= a j. Then removing a j from G does not
affect this path. This contradicts with the fact that a j is an articulation. Hence, every ar-
ticulation appears in α . Now, assume that we have two articulations a and a′, and also that
we have two paths α = (s,v1, . . . ,vm, t) and β = (s,u1, . . . ,um, t) where there is a subpath
(a,vi, . . . ,v j,a′) connecting a′ to a in α while there is another subpath (a′,u`, . . . ,us,a)

connecting a to a′ in β . Then we get a cycle in G, which is a contradiction. So, articula-
tions appear with a specific order in every path connecting s to t.

Definition 3.3. Let (a1, . . . ,ak) be the ordered sequence of articulations appearing in

their natural order and s = a0, t = ak+1. We define for 0≤ m≤ k let Um ⊆V

Um := {v ∈V | any path connecting s to v has the articulations a0, . . . ,am in it}

It is clear that U0 ⊃U1 ⊃ ·· · ⊃Uk. Similarly, for 0≤ m≤ k let

Wm = {v ∈V | any path connecting v to t has the articulations am+1, . . . ,ak in it }

and then W0 ⊂W1 ⊂ ·· · ⊂Wk.

Lemma 3.4. For i = 1, . . . ,k−1 we define Vi =Ui∩Wi. Then for every i 6= j

Vi∩Vj =

{ai+1} if j = i+1

/0 if |i− j|> 1

8

Proof. Assume without loss of generality that i < j. We see that

Vi∩Vj =Ui∩Wi∩U j∩Wj =U j∩Wi

This is because U j ⊂Ui and Wi ⊂Wj. Let v ∈Vi∩Vj =U j ∩Wi. Then any path from s to
v contains the articulations a1, . . . ,ai, . . . ,a j in order, and since v ∈Wi any path from v to t

contains the articulations ai+1, . . . ,a j, . . . ,ak also in order. But then we have a cycle since
there is a path from a j to v and another path from v to a j. This is a contradiction unless
j = i+1 and v = a j.

Lemma 3.5. Let u ∈ Vi and v ∈ Vj for some i, j. If (u,v) is an edge then either i = j, or

j = i+1 and v = ai+1.

Proof. Assume i > j. Since all paths from s to u contain the articulations a1, . . . ,a j, . . . ,ai

and all paths from v to t contain the articulations a j+1, . . . ,ai, . . . ,ak we get a cycle on ai.
This is a contradiction. Now, assume i < j. Let α = (s,u1, . . . ,u`,u) be a path from s to
u which necessarily contains the articulations a1, . . . ,ai, and let β = (v,v1, . . . ,vm, t) be a
path from v to t which necessarily contains the articulations a j+1, . . . ,ak. Then the path

(s,u1, . . . ,u`,u,v,v1, . . . ,vm, t)

is a path from s to t which skips the articulations between ai and a j. This is also a
contradiction unless j = i+1 and v = ai+1.

Proposition 3.6. Let a0 := s and ak+1 := t. Then for each i = 0, . . . ,k the full subgraph

G(Vi) is an admissible 1-connected digraph in which ai is the unique source and ai+1 is

the unique sink.

Proof. Assume we have an element w ∈ Vi. Since all paths connecting s to w ∈ Vi ⊆Ui

pass through ai, the element w can not be a source unless w = ai. Similarly, all paths con-
necting w to t must pass through ai+1 since w ∈ Vi ⊆Wi. Thus w can not be sink unless
w = ai+1. Assume G(Vi) has an articulation a ∈Vi. Then this articulation is also an artic-
ulation of G and a must appear between ai and ai+1 in order because of Proposition 3.3.
This is a contradiction. Thus G(Vi) is a 1-connected admissible digraph.

Definition 3.4. Let G = (V,E,s, t) and G′ = (V ′,E ′,s′, t ′) be two directed admissible di-

graphs. A morphism of admissible digraphs φ : G→ G′ is a map φ : V →V ′ such that

9

1. φ(s) = s′ and φ(t) = t ′.

2. When extended to a map φ × φ : V ×V → V ′×V ′ it restricts to a map of edges

(φ ×φ)|E : E→ E ′.

We will use to φV and φE to denote repectively φ : V → V ′ and (φ × φ)|E : E → E ′. A

morphism of admissible digraphs φ is called a monomorphism (resp. epimorphism or

isomorphism) if φV is injective (resp. surjective or bijective.)

Lemma 3.7. Assume G and G′ are two admissible digraphs and let (aq, . . . ,ak) and

(a′1, . . . ,a
′
`) be the sequences of articulations appearing in G and G′ in their natural or-

ders. If φ : G→ G′ is an isomorphism of admissible digraphs then k = ` and φ(ai) = a′i
for every i = 1, . . . ,k.

Proof. If (s,v1, . . . ,vn−1, t) is a path of length n from s to t in G then (s′,φ(v1), . . . ,φ(vn−1), t ′)

is a path from s′ to t ′ in G′ of length n in G′. Hence a is an articulation in G if and only if
φ(a) is an articulation in G′. This way we conclude that the number of articulations for G

and G′ are equal. Since any path in G from s to t contains all articulations in their natural
order, and the same is true for G′, we conclude that the natural order for the images of the
articulations is (φ(a1), . . . ,φ(ak)).

Proposition 3.8. Assume G is an admissible digraph and let (a1, . . . ,ak) be its sequence

of articulations. Let G(Vi) be the full subgraph of G with whose source and target is ai and

ai+1 respectively as we constructed in Proposition 3.6 for i = 0, . . . ,k. Then φ restricts to

graph automorphisms of the form φi : G(Vi)→ G(Vi) for i = 0,k.

Proof. One can think of Vi as the subset of vertices which appear in some path from ai to
ai+1. Then the result follows after using Lemma 3.7.

Definition 3.5. Let G1 and G2 be two admissible digraphs. We define the horizontal
composition G1 ◦h G2 as the new graph obtained from G1 and G2 taking the union of

vertices and edges, then identifying the unique sink t1 and the unique source s2.

Proposition 3.9. Let G1 and G2 be two admissible digraphs, and G be a digraph that is

formed by horizontal composition of G1 and G2. Then G is an admissible digraph.

Proof. In this proof we represent that G1 = (V1,E1) , G2 = (V2,E2) , s is the source of G1

, m is the sink of G1(source of G2) and t is the sink of G2.

10

1. Assume that G has a cycle. Then the vertices of cycle are in V1 or in V2 or in
V1 ∪V2. If vertices are in V1 or in V2 then we get a conradiction since G1 and G2

are admissible digraphs, therefore they do not have any cycle. Now suppose that
vertices are in V1∪V2 and we represent cycle as α = (v0, . . . ,vn, . . . ,v0). If the cycle
start and finish the vertex in G1(or G2) then it must pass through the vertex m at
least two times, if not then there must exist another common vertex of G1 and G2.
However, this is a conradiction since the only common vertex of G1 and G2 is m. If
the cycle includes the vertex m at least two times then there exist a cycle in G1 and
there exist another cycle in G2 which is also a conradiction. Hence G has no cycle.

2. If we compose G1 and G2 horizontally, then the only vertex whose degree changes
is m. However m cannot be source or sink of G. Therefore the unique source of G

is s which is the source of G1 and the unique sink of G is t which is the sink of G2.

3. Assume v1 and v2 are vertices of G1 ◦h G2 and assume there is a path from v1 to v2.
If v1,v2 ∈ V1 or v1,v2 ∈ V2, then there is no edge between v1 and v2 since G1 and
G2 are reduced. Without loss of generality, v1 ∈ V1 and v2 ∈ V2. In the horizontal
composition, we do not add edges hence there is no edges between vertices of G1

and G2. For this reason, there is also no edge between v1 and v2 in this case.
Therefore G1 ◦h G2 is reduced.

Definition 3.6. One can form a monoid out of isomorphism classes of admissible di-

graphs. Given two admissible digraphs G1 and G2, their product is the horizontal com-

position of G1 and G2. In order to make this set into a monoid, we must add a trivial

admissible digraph ε which consists of a single vertex (thus we have a graph where s = t)

and no edges.

Definition 3.7. Assume (M, ·,e) is a monoid. For every p,x ∈ M we will write p|x if

there exists u,v ∈M such that x = upv. An element p ∈M is called prime when for every

x,y ∈M if p = xy then p = x or p = y.

Theorem 3.10. The set of isomorphism classes of admissible digraphs is a free monoid

on the set of 1-connected admissible digraphs and 1-connected admissible digraphs are

prime with respect to horizontal composition.

Proof. Let S be the set of isomorphism classes of admissible digraphs. For an admissible
graph X , we will use [X] to denote the isomorphism class of X in S. Then the trivial

11

admissible digraph ε which consists of a single vertex is the identity element since for
every admissible graph G we can easily see that

G◦h ε = ε ◦h G = G

This proves ε is the identy element with respect to ◦h in S. Assume P is a 1-connected
admissible graph, and let X = (VX ,EX ,sX , tX) and Y = (VY ,EY ,sY , tY) be two admissible
graphs such that P = X ◦h Y . Note that tX = sY in X ◦h Y and it becomes an articulation
point if |VX | > 1 and |VY | > 1. This would be a contradiction since P contains no articu-
lation points. This means |VX | = 1 or |VY | = 1 which is equivalent to [X] = ε or [Y] = ε

which in turn equivalent to [Y] = [P] or [X] = [P].

Proposition 3.11. Assume G is an admissible digraph. If G contains m articulations then

G is a unique horizontal product of m prime digraphs.

Proof. We will give the proof by induction on the number of articulation points. If G has
1 articulation then G is prime so it is unique. Assume G′ and G′′ has m articulations, G

has m+1 articulations and G = G′ ◦h P1 = G′′ ◦h P2 where P1 and P2 are prime. Consider
the sink of G. It is obvious that the sink of G is the sink of P1 and P2. Moreover, the edges
related to the sink are same in P1 and P2. If we delete the sink and the edges connected to
the sink, then the remaining graphs are still identical. Now we have finitely many sinks. If
we continue this process until we obtain a single sink which is the sink of G′ and G′′, we
realize that P1 and P2 are identical. By induction hypothesis G′ = G′′ is written uniquely
as a product of m prime digraphs.

3.2 VERTICAL COMPOSITION AND DECOMPOSING 1-CONNECTED AD-
MISSIBLE DIGRAPHS

Definition 3.8. Let G1 and G2 be two admissible digraphs. We define the vertical com-

position G1 ◦v G2 as the new graph obtained from G1 and G2 taking the union of vertices

and edges, then identifying the unique sources s1 and s2, and then identifying the unique

sinks t1 and t2.

Remark 3.1. No cycle passes through the sink or the source, because the source has only

out-arrows and the sink has only in-arrows.

12

Proposition 3.12. Let G1 = (V1,E1) and G2 = (V2,E2) be two admissible digraphs, and

G be a digraph formed by vertical composition of G1 and G2. Then G is an admissible

1-connected digraph.

Proof. 1. In vertical composition, we identify the unique sources s1 and s2 (repre-
sented by s), and we identify the unique sinks t1 and t2 (represented by t). Therefore
G has a unique source s and a unique sink t.

2. Assume G has a cycle. Then this cycle cannot be in G1 or G2, since they are ad-
missible digraphs. Therefore, vertices of cycle must be in V1∪V2. Without loss of
generality, assume cycle start in G1 and it passes through a vertex in G2. Then it
must go through source or sink, because the only common vertices after the identi-
fication are the source and the sink. However cycle cannot include the source or the
sink by Remark 3.1, we get a contradiction. Therefore G has no cycle.

3. Suppose there is a path from v1 to v2 in G1 ◦v G2. Then we have three cases;

(a) v1, v2 ∈V1 or

(b) v1, v2 ∈V2 or

(c) v1 ∈V1 and v2 ∈V2(or vice versa)

G1 and G2 are reduced therefore if (a) or (b) is true then there is no edge between
v1 and v2. We do not add edges in the vertical composition. So in this case too,
there is no edge between v1 and v2. Hence G1 ◦v G2 is reduced.

What remains to be shown is that G is 1-connected. If we remove one vertex in G1 then G2

has path connecting s to t or if we remove one vertex in G2 then G1 has path connecting
s to t. Therefore G is an admissible 1-connected digraph.

Lemma 3.13. The operation of vertical composition ◦v is commutative that means if G1

and G2 are admissible digraphs then G1 ◦v G2 = G2 ◦v G1.

Proof. In the vertical composition, we just identify the unique sources of digraphs and
also we identify the unique sinks of digraphs. Therefore, there is no difference between
G1 ◦v G2 and G2 ◦v G1.

13

Example 3.1. Assume the following graphs are G1 and G2 which are admissible digraph

We can easily see that G1 ◦v G2 = G2 ◦v G1

Proposition 3.14. Suppose that G1 and G2 are admissible digraphs. If G1◦v G2 is reduced

then G1 6= A1 or G2 6= A1.

Proof. We will prove the contrapositive. Without loss of generality, assume G1 = A1.
Then there is an edge between the source of G1 ◦v G2 and the sink of G1 ◦v G2, because
G1 = A1. Also there is a path from the source of G1 ◦v G2 to the sink of G1 ◦v G2, since
G2 is admissible. Then G1 ◦v G2 is not reduced.

Remark 3.2. Vertical composition ◦v has no unit element. Therefore the set of isomor-

phism class with operation ◦v is not monoid but semi-group. Moreover, we have to rede-

fine prime digraphs with respect to ◦v.

Definition 3.9. Assume G is an admissible digraph. G is decomposed by the following

way;

1. Delete the source and the sink of G,

2. Find connected components of G,

3. Add one source and one sink to each components back seperately.

Decomposition operation of G is represented by decomp(G). decomp(G) is a multi-set

valued function.

14

Definition 3.10. (Vertically prime) G is vertically prime if for all A,B A 6= G and B 6=
G⇒ G 6= A ◦v B where A and B are admissible digraphs. That means if G is not prime

then we can write G as the composition of two admissible digraphs.

Proposition 3.15. Assume P is an admissible digraph. P is vertically prime if and only if

decomp(P) = {P}.

Proof. (⇐) By definition of vertically prime.

(⇒) If we delete the source and the sink of P then we have one connected component
since P is prime with respect to the vertical composition. Then adding one source and one
sink to this component brings about reobtaining P. Hence decomp(P) = {P}.

Corollary 3.16. Assume G is an admissible digraph and decomp(G) = {A1, · · · ,An}.
Then each Ai’s are prime admissible digraph.

Proof. We know that vertical decomposition operation cannot decompose vertically primes.
Hence all elements in the multi-set of decomp(G) are vertically prime.

Proposition 3.17. If G and H are admissible digraphs then the decomposition of G◦v H

is same as the disjoint union of the decomposition of G and the decomposition of H i.e ;

decomp(G◦v H) = decomp(G)tdecomp(H)

We take the disjoint union in the sense of multi-set disjoint union.

Proof. If G and H are prime digraphs with respect to vertical composition then the proof
is done. Now assume we decompose G ◦v H and we take a digraph, say A, from this de-
composition set. Suppose this digraph neither in decomp(G) nor in decomp(H). There-
fore some part of A is in decomp(G) and the other part of A is in decomp(H). It means
that A can be decomposed but this is a contradiction since A is prime. Hence if we de-
compose G ◦v H, then all digraphs in decomp(G ◦v H) are either in decomp(G) or in
decomp(H).

Proposition 3.18. If A1, · · · ,An are prime admissible digraphs then decomp(A1 ◦v · · · ◦v

An) = {A1, · · · ,An}.

15

Proof. decomp(A1 ◦v · · · ◦v An) = decomp(A1)t·· ·tdecomp(An) = {A1}t· · ·t{An}=
{A1, · · · ,An}

Lemma 3.19. Assume Ai’s and B j’s are prime and G = A1 ◦v · · · ◦v An = B1 ◦v · · · ◦v Bm.

Then n=m and {A1, · · · ,An}= {B1, · · · ,Bn}.

Proof. decomp(A1◦v · · ·◦v An)= {A1, · · · ,An} and decomp(B1◦v · · ·◦v Bm)= {B1, · · · ,Bm}.
Hence {A1, · · · ,An} = {B1, · · · ,Bm}. However if two multiset are equal then the number
of elements must be equal. Hence n = m and {A1, · · · ,An}= {B1, · · · ,Bn}.

Lemma 3.20. Every 1-connected admissible digraph is a unique product of prime di-

graphs (w.r.t ◦v).

Proof. We know that vertical composition of admissible digraphs is 1-connected admis-
sible digraph. Now, assume G is 1-connected admissible digraph and

G = A1 ◦v · · · ◦v An = B1 ◦v · · · ◦v Bm

where Ai’s and B j’s are vertically prime. Then by Lemma 3.19 n = m and {A1, · · · ,An}=
{B1, · · · ,Bn}. But if two multi-sets are equal then for all i there exists j such that Ai = B j

where i, j = 1, · · · ,n. Moreover ◦v is commutative, hence G = A1 ◦v · · · ◦v An is the unique
product for G.

16

4. ALGORITHMS

In this chapter, we are going to find the number of admissible digraphs and the list of
all admissible digraphs by using specific algorithms which we will develop. We assume
S(n,k) denotes the set of all admissible digraphs of size n with k articulations, G(n) de-
notes the set of all admissible 1-connected digraphs of size n and U(n) denotes the set of
all admissible digraphs of size n. First of all, we will write algorithms which count the
number of admissible digraphs.

Algorithm 3 An algorithm counting all admissible digraphs of size n with k articulations.
Input: n > 0 and k > 0

function COUNTS(n,k)
if n = 0 or n = 1 then

return 0
else if n 6 k+1 then

return 0
else if k = 0 then

return COUNTG(n)
else if n = k+2 then

return 1
end if
Sum = 0
for all i in (2,n-1) do

Sum← Sum+COUNTG(i) ·COUNTS(n+1− i,k−1)
end for
return Sum

end function

In Algorithm 3 , we consider admissible digraph of size n with k articulations as the
horizontal composition of admissible 1-connected digraph and admissible digraph with
k−1 articulations. In other words, we break admissible digraph into two pieces such that
one part is admissible 1-connected digraph and the other part is admissible digraph with
k−1 articulations. Therefore, in computation we use recursive formula

CountS(n,k) = ∑
n−1
i=2 CountG(i)CountS(n+1− i,k−1)

Our algorithms are recursive, therefore we must specify the base cases seperately. If the
graph has n vertices and n−2 articulations, then this graph is straight line graph in which

17

all vertices except the source and the sink are articulations. Therefore, in the algorithm
we return 1 for this graph in case of n = k+2. Moreover, if the graph has no articulation
which means k = 0, then we return the number of 1-connected admissible digraphs with
size n.

Algorithm 4 An algorithm counting all admissible 1-connected digraphs of size n.
Input: n > 0

function COUNTG(n)
if n = 0 or n = 1 then

return 0
else if n = 2 then

return 1
else if n = 3 then

return 0
else if n = 4 then

return 1
end if
Sum = 0
for all i in (3,n-1) do

for all j in (1,i-2) do
Sum← Sum+COUNTS(i, j) ·COUNTU(n+2− i)

end for
end for
return Sum

end function

Vertical composition is quite helpful for Algorithm 4. We write admissible 1-connected
digraphs as the vertical composition of admissible digraphs. For this computation we use
the recursive formula

CountG(n) = ∑
n−1
i=3 ∑

i−2
j=1CountS(i, j)CountU(n+2− i)

In vertical composition, first we take admissible digraph with at least one articulation and
the other graph is any admissible digraph. This is the reason why j must through from
1 to i− 2 in the sum. Also in algorithm, if n = 2 we take the digraph which has a just
one edge, if n = 4 we take C4 which has a unique source and a unique sink. Hence the
algorithm return number 1 for these base cases.

For listing all admissible digraphs in Algorithm 5 , we collect admissible digraphs with
articulations from 0 to n−2. Thus, we use formula

18

Algorithm 5 An algorithm counting all admissible digraphs of size n.
Input: n > 0

function COUNTU(n)
if n = 0 or n = 1 then

return 0
end if
Sum = 0
for all k in (0,n-2) do

Sum← Sum+COUNTS(n,k)
end for
return Sum

end function

CountU(n) = ∑
n−2
k=0 CountS(n,k)

After writing algorithms which count the number of admissible digraphs, now we are
going to generate algorithms which list the elements of admissible digraphs. For writing
the list algorithms, we will use a modified version of the recursive formulas we applied in
counting algorithms.

Algorithm 6 An algorithm listing all admissible digraphs of size n with k articulations.
Input: n > 0 and k > 0

function LISTS(n,k)
if n = 0 or n = 1 then

return /0
else if n 6 k+1 then

return /0
else if k = 0 then

return LISTG(n)
else if n = k+2 then

return {•→ •· · ·• → •}
end if
Set = /0
for all i in (2,n-1) do

Set← Set ∪LISTG(i)◦h LISTS(n+1− i,k−1)
end for
return Set

end function

In Algorithm 6, we see the horizontal composition X ◦h Y (Definition 3.5) in the last for
loop where X and Y are sets of admissible digraphs. We extend ◦h to sets by taking all

19

possible horizontal composition α ◦h β for all α ∈ X and β ∈Y . Special cases are similar
with cases in the count algorithms.

Algorithm 7 An algorithm listing all admissible 1-connected digraphs of size n.
Input: n > 0

function LISTG(n)
if n = 0 or n = 1 then

return /0
else if n = 2 then

return {•→ •}
else if n = 3 then

return /0
else if n = 4 then

return

• //

��

•

��
• // •

end if
Set = /0
for all i in (3,n-1) do

for all j in (1,i-2) do
Set← Set ∪LISTS(i, j)◦v LISTU(n+2− i)

end for
end for
return Set

end function

In the Algorithm 7, procedure in the algorithm 6 for the horizontal composition is same
as the vertical composition X ◦v Y (Definition 3.8) in the for loop. We extend ◦v to sets by
taking all possible vertical composition α ◦v β for all α ∈ X and β ∈ Y .

The Algorithm 8 is just modified version of the Algorithm 5. Instead of counting, this
algorithm find the list of all admissible digraphs with size n.

4.1 CONCLUSION

After writing these algorithms, we observe that they do not count the number of admis-
sible digraphs exactly. There are over counts. Actually the numbers that our algorithms

20

Algorithm 8 An algorithm listing all admissible digraphs of size n.
Input: n > 0

function LISTU(n)
if n = 0 or n = 1 then

return /0
end if
Set = /0
for all k in (0,n-2) do

Set← Set ∪LISTS(n,k)
end for
return Set

end function

find are upper bounds, because our algorithms count isomorphic digraphs more than once
in some cases.

For example, consider the admissible digraphs with 6 vertices below;

1

2
3

4

5

6

1

2 53

4

6

When our algorithms find the list of G(6), these graphs are in the list as seperate digraphs.
Hence they are counted as different digraphs according to the algorithms. However, these
digraphs are isomorphic. Therefore, it is a mistake that they are counted seperately. Ac-
tually, not the horizontal composition but the vertical composition leads to such a mistake
since vertical composition is commutative but our algorithm does not take this into ac-
count. We have to do something to avoid these overcounts.

Remark 4.1. In order to prevent double counting, we will define well-ordering over ad-

missible digraphs. We draw inspiration from ordered partitions of natural numbers. Let

n and k be natural numbers. p(n,k) is the number of ordered k-partition of n such that

21

n = a1 +a2 + · · ·+ak

where ai ≤ 1 and a1 ≤ a2 ≤ ·· · ≤ ak. For example, p(5,3) = 2 since 3- partition of 5 are

5 = 1+ 1+ 3 and 5 = 1+ 2+ 2. If we do not order the partition then 5 = 1+ 1+ 3 is

counted three times as 5 = 1+1+3, 5 = 1+3+1, 5 = 3+1+1

22

5. GRAPH ORDERING

Definition 5.1. Assume that we have two pairs α = (x1,y1) and β = (x2,y2). We say that

α ≤ β if;

1. x1 < x2 or

2. If x1 = x2 then we ask y1 < y2 or

3. If x1 = x2 and y1 = y2 then α = β

Definition 5.2. Assume G1 = (V1,E1) and G2 = (V2,E2) are digraphs. We say that G1 ≤
G2 if

1. |V1|< |V2| or

2. If |V1|= |V2| then we require |E1|< |E2| or

3. If |V1|= |V2| and |E1|= |E2| then we define the ordering as fallows: Suppose that G1

and G2 are two admissible digraphs and |V1|= |V2| , |E1|= |E2|. Assume we order

the edge-lists of two graphs G1 = {(v1,u1),(v2,u2), · · · ,(vn,un)} where (vi,ui) ≤
(vi+1,ui+1) and G2 = {(v′1,u′1),(v′2,u′2), · · · ,(v′n,u′n)} where (v′i,u

′
i) ≤ (v′i+1,u

′
i+1).

We say G1 < G2 if there exists i ∈ {1,2, · · · ,n} such that (v j,u j) = (v′j,u
′
j) for

j = 1,2, · · · , i−1 and (vi,ui)< (v′i,u
′
i). This is a generalization of lexicographical

ordering.

Example 5.1. Let G1 = {(0,1),(0,2),(1,3),(2,3)} and

G2 = {(0,1),(1,2),(1,3),(2,4),(3,4)}. The number of vertices of G1 is less than the

number of vertices of G2, thus G1 < G2.

Example 5.2. Let G1 = {(0,1),(1,2),(2,3),(3,4)} and

G2 = {(0,1),(1,2),(1,3),(2,4),(3,4)}. The number of vertices of G1 and G2 are equal.

However the number of edges of G1 is less than the number of edges of G2, thus G1 < G2.

Example 5.3. Let G1 = {(0,1),(0,2),(1,3),(2,3),(3,4)} and

G2 = {(0,1),(1,2),(1,3),(2,4),(3,4)}. The number of edges and vertices of G1 and G2

are equal. However G1 < G2, since in the edge-list (0,1) = (0,1) but (0,2)< (1,2).

23

Remark 5.1. Horizontal and vertical composition do not change the total number of

edges. In other words, if G has n edges and H has m edges then either G◦h H or G◦v H

has n+m edges.

Lemma 5.1. Let G be an admissible digraph with k vertices and H be an admissible

digraph with l vertices. Then G ◦h H has k + l − 1 vertices and G ◦v H has k + l − 2
vertices.

Proof. In the horizontal composition, we identify the sink of G and the source of H and
in the vertical composition we identify the source of G and the source of H, the sink of G

and the sink of H. Hence G◦h H has k+ l−1 vertices and G◦v H has k+ l−2 vertices.

Remark 5.2. In our algorithms, every graph has a specific representation. Vertices are

subset of N without gaps. Assume G1 = (V1,E1,s1, t1) and G2 = (V2,E2,s2, t2) are admis-

sible digraphs. In the horizontal and vertical composition, we define labelling as follows;

In the horizontal composition G1 ◦h G2, vertex labels of G1 do not change and labels of

vertices of G2 increase by t1.

After the vertical composition G1 ◦v G2, every vertex in G1 (except its sink) has same

labelling as in G1, and we increase the label of the vertices of G2 (except the source of

G2) by t1−1. In the vertical composition, we identify the source of G1 and the source of

G2 and also we identify the sink of G1 and the sink of G2. The label of s1 and s2 does not

change and the label of t1 and t2 is equal (t1+ t2−1) since we use specific representation.

Example 5.4. The following graphs G1 and G2 are admissible digraphs. We easily un-

derstand labelling of horizontal and vertical composition in figures;

0

1

2

3

0

1 2

3

0 1 2 3

4

5

6

24

0

1

2

3

0

1 2

3

0

1

4
3

2

5

Proposition 5.2. Suppose that G = (V,E) and H = (V ′,E ′) are two admissible digraphs.

If G < H then for every other admissible digraphs A and B we have;

1. A◦h G◦h B < A◦h H ◦h B

2. A◦v G◦v B < A◦v H ◦v B

Proof. For the horizontal composition, the proof can be reduced to A ◦h G < A ◦h H and
G◦h B < H ◦h B. For the vertical composition, it is enough to prove that A◦v G < A◦v H

since the vertical composition is commutative. Before we begin to the proof, we define
A = (V1,E1), B = (V2,E2). If G < H then we have three cases;

1. |V |< |V ′| or

2. |E|< |E ′| or

3. G is less than H with respect to the well-ordering we defined item by Definition 5.2

If |E|< |E ′| then |E1|+ |E|< |E1|+ |E ′| and |E2|+ |E|< |E2|+ |E ′|. Moreover if |V |<
|V ′| then |V1|+ |V |−1< |V1|+ |V ′|−1 , |V2|+ |V |−1< |V2|+ |V ′|−1 and |V1|+ |V |−2<
|V1|+ |V ′| − 2. Therefore the proof is done for cases (1) and (2) by Remark 5.1 and
Lemma 5.1. Now, assume |V |= |V ′|, |E|= |E ′| and G<H. Therefore we have to take into
account their edge-lists. In the horizontal composition, labels of first graph do not change
and labels of second graph change by Remark 5.2. Thus if G < H then A ◦h G < A ◦h H

and G◦h B < H ◦h B. In the vertical composition, if G < H then A◦v G < A◦v H again by
Remark 5.2.

25

Definition 5.3. Φ(n) is the unique admissible digraph with n vertices such that there is

an edge from the source to every vertex except the sink and there is an edge from every

vertex to the sink. However, there are no edges between other vertices. It is easily seen

that Φ(n) has 2(n−2) edges.

0

1 2 · · · n−2

n−1

Proposition 5.3. Φ(n1)◦v Φ(n2) = Φ(n1 +n+2−2)

Proof. From the definition of vertical composition.

Proposition 5.4. Φ(n1)◦h Φ(n2)< Φ(n1 +n2−1)

Proof. Φ(n1 + n2− 1) has n1 + n2− 1 vertices and 2[(n1 + n2− 1)− 2] edges. If we
compose Φ(n1) and Φ(n2) horizontally then Φ(n1)◦h Φ(n2) has n1 +n2−1 vertices and
2(n1−2)+2(n2−2) edges. 2n1 +2n2−8 < 2n1 +2n2−6, therefore Φ(n1)◦h Φ(n2) <

Φ(n1 +n2−1).

Proposition 5.5. Φ(n) is the largest admissible digraph with n vertices with respect to

the order we defined earlier.

Proof. Assume G is an admissible digraph with n vertices. We want to prove that forall
G, G < Φ(n). We do the proof by induction;

Basis step: n = 3. Φ(3) is the only admissible digraph with 3 vertices, so it is the largest.

26

Now assume G has articulations and Gi has ni vertices for i = 1,2, · · · ,k then we can
write;

G = G1 ◦h G2 · · · ◦h Gk < Φ(n1)◦h Φ(n2)◦h · · · ◦h Φ(nk) by Proposition 5.2

and also for n = n1 +n2 + · · ·+nk− k−1 we can write;

Φ(n1)◦h Φ(n2)◦h · · ·Φ(nk)<Φ(n1+n2+· · ·+nk−k−1)=Φ(n) by Proposition 5.4

If G has no articulation then;

G = G1 ◦v G2 · · · ◦v G j < Φ(n1)◦v Φ(n2)◦v · · · ◦v Φ(n j) by Proposition 5.2

and for n = n1 +n2 + · · ·+n j−2(j−1)

Φ(n1)◦v Φ(n2)◦v · · ·◦v Φ(n j)<Φ(n1+n2+· · ·+n j−2(j−1))=Φ(n) by Proposition 5.3

Therefore G < Φ(n) for all n. That means Φ(n) is the largest admissible digraph with n

vertices.

Remark 5.3. An is the line digraph with n vertices.

Proposition 5.6. An1+n2−2 < An1 ◦v An2

Proof. An1+n2−2 has n1+n2−2 vertices and n1+n2−3 edges. An1 ◦v An2 has n1+n2−2
vertices and n1 + n2− 2 edges. n1 + n2− 3 < n1 + n2− 2 therefore An1+n2−2 < An1 ◦v

An2 .

Proposition 5.7. An1+n2−1 = An1 ◦h An2

Proof. By definition of horizontal composition.

Proposition 5.8. An is the smallest admissible digraph with n vertices (with respect to

order we defined).

Proof. Assume G is an admissible digraph with n vertices. We want to prove that forall
G, An < G. We do the proof by induction;

27

Basis step: n = 2. A2 is the only admissible digraph with 2 vertices, so it is the smallest.

Now assume G has articulations and Gi has ni vertices for i = 1,2, · · · ,k then we can
write;

G = G1 ◦h G2 · · · ◦h Gk > An1 ◦h An2 ◦h · · · ◦h Ank by Proposition 5.2

and also for n = n1 +n2 + · · ·+nk− k−1 we can write;

An1 ◦h An2 ◦h · · ·Ank = An1+n2+···+nk−k−1 = An by Proposition 5.7

If G has no articulation then;

G = G1 ◦v G2 · · · ◦v G j > An1 ◦v An2 ◦v · · · ◦v An j by Proposition 5.2

and for n = n1 +n2 + · · ·+n j−2(j−1)

An1 ◦v An2 ◦v · · · ◦v An j > An1+n2+···+n j−2(j−1) = An by Proposition 5.6

Therefore G > An for all n. That means An is the smallest admissible digraph with n

vertices.

28

6. ALGORITHMS WITH GRAPH ORDERING

As we mentioned before, our algorithms do not count all admissible digraphs due to
several reasons. As we explained earlier, our counting algorithm depends on decompos-
ing our graphs both vertically and horizontally until we reach vertically and horizontally
indecomposable graphs. If we have an admissible digraph G, firstly we horizontally de-
compose G, then we vertically decompose all connected components of G. We continue
this process until we just have the specific digraph with two vertices called A1. Hence all
admissible digraphs we want to count are generated by A1 using horizontal and vertical
composition even though there other graphs which are irreducible in this sense such as
the graph below.

0

1

2

3

4

5

Moreover, our counting algorithm will over-count those graphs which can be reduced
to A1 due to the fact that vertical composition is commutative and the algorithm counts
different permutations of the vertical compositions as distinct even though it should not.
In this chapter we would like to correct this-over count, and develop precise algorithms to
list all admissible graphs which under recursive horizontal and vertical decompositions all
reduce to the irreducible graph A1. We will solve this problem using the graph-ordering
we developed in Chapter 5.

In these algorithms, we use graph ordering to overcome the isomorphism problem we
mentioned above. Our algorithms are going to give us the list of admissible digraphs
which are less than or equal to a given admissible digraph. All of our algorithms take two
values: a digraph and the number of vertices. We assume,

29

• ListArt(G,n) denotes the set of all admissible digraphs (less than or equal to a given
digraph) of size n with at least one articulation

• ListOne(G,n) denotes the set of all 1-connected admissible digraphs of size n which
are less than or equal to a given digraph

• List(G,n) denotes the set of all admissible digraphs of size n which are less than or
equal to a given digraph

If we want to find the list of digraphs with n vertices, we have to choose the given di-
graph as Φ(n) since Φ(n) is the largest admissible digraph with n vertices (from Proposi-
tion 5.5).

Algorithm 9 An algorithm listing all admissible digraphs H ≤ G of size n with at least 1
articulation.
Input: n > 1

function LISTART(G,n)
if n = 2 then

return /0
else if n = 3 then

return {•→ •→ •}
end if
Set← /0
for all i in (2,n-1) do

A = ListOne(Φ(i), i)
B = List(Φ(n− i+1),n− i+1)
for all (x,y) in A×B do

if x◦h y≤ G
Set← Set ∪{x◦h y}

end for
end for
return Set

end function

In Algorithm 9, we list all admissible digraphs with at least one articulation which are
less than or equal to G. We consider admissible digraph with at least one articulation as
the horizontal composition of 1-connected admissible digraph and any admissible digraph
of apprapriate sizes. Therefore in our computation we use the recursive algorithm.

In mathematical form, the algorithm above describes the following set decomposition

ListArt(G,n) =
⋃n−1

i=2 ListOne(Φ(i), i)◦h List(Φ(n+1− i),n+1− i)

30

Algorithm 10 An algorithm listing all one-connected admissible digraphs H ≤ G such
that |H|= n.
Input: n > 1

function LISTONE(G,n)
if n = 2 then

return {•→ •}
else if n = 3 then

return /0
else if n = 4 then

return

end if
Set← /0
for all i in (3,n-1) do

A = ListArt(Φ(i), i)
for all x in A do

B = List(x,n− i+2)
for all y in B do

if x◦v y≤ G
Set← Set ∪{x◦v y}

end for
end for

end for
return Set

end function

31

Algorithm 11 An algorithm listing all admissible digraphs H ≤ G with size n.
Input: n > 0

function LIST(G,n)
if n = 0 or n = 1 then

return /0
end if
Set← /0
A = ListArt(G,n)
B = ListOne(G,n)
Set← A∪B
return Set

end function

We extend ◦h to sets by taking all possible horizontal composition (Definition 3.8) x ◦h y

for all x ∈ ListOne(Φ(i), i) and y ∈ List(Φ(n+ 1− i),n+ 1− i). The only restriction is
horizontal composition of x and y must be less than or equal to G. We have to write the
base cases because our algorithm is recursive. It is easy to see that there is no admis-
sible digraph of size 2 with at least one articulation. Therefore, for n ≤ 2 we return the
empty set. Also, the only admissible digraph with at least one articulation which has three
vertices is line digraph of size three.

We use the vertical composition in Algorithm 10. For this algorithm, we consider any
1-connected admissible digraph as the vertical composition of admissible digraph with
at least one articulation (such digraphs are indicomposable vertically) and any admissi-
ble digraph. Unlike the horizontal composition, it is diffucult to write the set inclusion
for the vertical composition. As we mentioned before, vertical composition is commuta-
tive operation. Therefore, we have to use graph-ordering to get correct list in this algo-
rithm. The idea comes from the partition of natural numbers. For example, 2-partition
of 3 without order are 1+ 2 and 2+ 1. But if we use increasing order, it is just 2+ 1.
Hence in this algorithm when we compose two admissible digraphs vertically, the first
digraph is always bigger then the second digraph. We first take a digraph, say x, from
the set of ListArt(Φ(i), i) and then we choose the second digraph, say y, from the set of
List(x,n− i+2). Admissible digraphs in the set List(x,n− i+2) are less than or equal to
x. Therefore, x is always bigger than or equal to y. For base cases, if n = 2 we take the
digraph which has a just one edge, if n = 4 we take C4 which has a unique source and a
unique sink.

32

In Algorithm 11, we just take the union of one-connected admissible digraphs and ad-
missible digraphs with at least one articulation points. Therefore, we find the list of all
admissible digraphs.

33

BIBLIOGRAPHY

[1] Cunningham, W.H., Edmonds, J., “A Combinatorial Decomposition Theory,”
Canadian Journal of Mathematics, pp. 734-765, no. 3, 1980.

[2] Enomoto H., “Graph Decomposition without Isolated Vertices”, Theoretical Com-

puter Science, pp. 111-124, no. 1, 1995.

[3] Gessel Ira M., “Enumerative Applications of a Decomposition for Graphs and Di-
graphs”, Discrete Mathematics, pp. 257-271, no. 1-3, 1992.

[4] Harary F., Palmer E.M.,“Graphical enumaration”, Academic Press, 1973.

[5] Kreutzer S., Ordyniak S.,“Digraph Decompositions and Monotonicity in Digraph
Searching”, Theoretical Computer Science, pp. 4688-4703, no. 35, 2011.

[6] Linial N., “Graph Decomposition without Isolates”, Theoretical Computer Science,
pp. 16-25, no. 1, 1984.

[7] Liscovec V.A., “Enumeration of Rooted Digraphs With a Source”, Vesci Akad.

Navuk BSSR Ser. Fiz.-Mat. Navuk, pp. 35-44, no. 3, 1973.

[8] Robinson R.W., “Counting Labeled Acyclic Digraphs”, New directions in the the-

ory of graphs, pp. 239-273, no. 1-3, 1973.

[9] Robinson R.W., “Counting Digraphs with Restrictions on the Strong Components”,
Combinatorics and graph theory ’95, ,Vol. 1, pp. 343-354, 1995.

34

APPENDICES

A.The python codes for hasse diagrams and transitive closure

We use Python in all codes as our programming language.

import igraph

Moreover, we will use igraph, a python package for basic operations on graphs.

def hasse(G):

for x in G.get_edgelist():

G.delete_edges([x])

u = G.get_shortest_paths(x[0],x[1])

if len(u[0]) == 0:

G.add_edges([x])

return G

This code finds the hasse diagram of a given digraph. The command get edgelist()

gives us the edge list of a digraph as the tuple of vertices. G.get shortest paths(v1,v2)

finds the shortest path between two vertices. First of all, we select an edge from the di-
graph, we mark the source and the sink of this edge and we delete this edge. Then we find
the shortest path between such source and such sink. If this path has length zero which
means that there is no path between these vertices, we add the deleted edge. If there is a
path between these vertices, we do not add that edge.

def tranClosure(G):

for i in G.vs():

for j in G.vs():

x= G.vs()[i]

y= G.vs()[j]

35

u = G.get_shortest_paths(x,y)

if len(u[0]) > 2:

G.add_edges([(x,y)])

return G

We find the transitive closure of a given digraph by using above code. G.vs() gives as
the vertex set of G. We consider all paths between any two vertices by means of a double
for loop. If the shortest path between two vertices is greater than 1 which means that
there is no edge between these vertices but there is a path, then we add an edge between
such vertices.

36

B.The python code for counting algorithms

def S(n,k):

if n <= 0 or k < 0:

result=0

elif n <= k+1:

result=0

elif n == (k+2):

result=1

elif k == 0:

result=G(n)

else:

result=0

for m in range(2,n):

(result)=(result) + G(m)*S(n+1-m,k-1)

return (result)

The function S(n,k) finds the number of admissible digraphs of n vertices with k artic-
ulations. You can see the details of code on page 17 in Algorithm 3.

The range(2,n) command gives us this list 2,3, · · · ,n−1. We also use this command
in the code below.

def G(n):

if n <= 1:

result=0

elif n == 2:

result=1

elif n == 3:

result=0

elif n == 4:

result=1

else:

37

result=0

for m in range(3,n-1):

for l in range(1,m-1):

(result)=(result)+S(m,l)*U(n+2-m)

return (result)

The function G(n) finds the number of 1-connected admissible digraphs of n vertices.
(For details see the page 18 in Algorithm 4)

def U(n):

if n <= 1:

result=0

else:

result=0

for k in range(0,n-1):

(result)=(result) + S(n,k)

return (result)

The function U(n) finds the number all admissible digraphs of n vertices. (For details
see the page 18 in Algorithm 5)

38

We use memoization to count admissible digraph to speed up the calculation. In comput-
ing, memoization is an optimization technique used primarily to speed up calculation by
having function calls avoid previously calculated results. buffer variables (which are
python dictionaries) provide us to memoize the results. When we used memoization, we
found the results faster.

bufferS = dict()

bufferG = dict()

bufferU = dict()

def S(n,k):

try: result = bufferS[(n,k)]

except:

if n <= 0 or k < 0:

result=0

elif n <= k+1:

result=0

elif n == (k+2):

result=1

elif k == 0:

result=G(n)

else:

result=0

for m in range(2,n):

result=result + G(m)*S(n+1-m,k-1)

bufferS.update({(n,k):result})

return(result)

def G(n):

try: result = bufferG[n]

except:

if n <= 1:

result=0

39

elif n == 2:

result=1

elif n == 3:

result=0

elif n == 4:

result=1

else:

result=0

for m in range(3,n-1):

for l in range(1,m-1):

result=result + S(m,l)*U(n+2-m)

bufferG.update({n:result})

return(result)

def U(n):

try: result = bufferU[n]

except:

if n <= 1:

result=0

else:

result=0

for k in range(0,n-1):

result=result + S(n,k)

bufferU.update({n:result})

return(result)

40

C.The python code for listing algorithms

Now, we are going to write the code for list algorithms. We use some new funtions in this
code. product(f, A, B) applies a function f (x,y) to all x in A and all y in B and
the resulting set. hcat(G1,G2) composes two admissible digraph horizontally as we
defined in Remark 5.2 and vcat(G1,G2) composes two admissible digraph vertically
as we defined in Remark 5.2. (lshift(G,n) and rshift(G,n) are used in the
function vcat() in order to satisfy labelling correctly)

def product(f, A, B):

return [f(x,y) for x in A for y in B]

def hcat(G1,G2):

N = max(G1)

return G1 + map(lambda x: x+N,G2)

def lshift(G,n):

N = max(G)

return map(lambda x: x if x<N else x+n-1,G)

def rshift(G,n):

return map(lambda x: x+n-1 if x>0 else x,G)

def vcat(G1,G2):

return lshift(G1,max(G2)) + rshift(G2,max(G1))

def listS(n,k):

if n <= 1 or k < 0:

return []

elif n <= k+1:

return []

elif k == 0:

return listG(n)

elif n == k+2:

41

tupe = []

for i in range(n-1):

tupe += [i,i+1]

return [tupe]

elif n == k+1:

return []

else:

temp = []

for m in range(2,n):

temp += product(hcat,listG(m),listS(n+1-m,k-1))

return temp

def listG(n):

if n <= 1:

return []

elif n == 2:

return [[0,1]]

elif n == 3:

return []

elif n == 4:

return [[0,1,0,2,1,3,2,3]]

else:

temp = []

for m in range(3,n-1):

for l in range(1,m-1):

temp += product(vcat,listS(m,l),listU(n+2-m))

return temp

def listU(n):

if n <= 1:

return []

42

else:

temp = []

for k in range(0,n-1):

temp += listS(n,k)

return temp

43

We again use memoization in the code below to get the list faster. The code here is
memoized version of the code in Appendix C.

bufferS = dict()

bufferG = dict()

bufferU = dict()

def listS(n,k):

try: temp = bufferS[(n,k)]

except:

if n <= 1 or k < 0:

temp = []

elif n <= k+1:

temp = []

elif k == 0:

temp = listG(n)

elif n == k+2:

temp = []

for i in range(n-1):

temp += [i,i+1]

return [temp]

elif n == k+1:

temp = []

else:

temp = []

for m in range(2,n):

temp += product(hcat,listG(m),listS(n+1-m,k-1))

bufferS.update({(n,k):temp})

return(temp)

def listG(n):

44

try: temp = bufferG[n]

except:

if n <= 1:

temp = []

elif n == 2:

temp = [[0,1]]

elif n == 3:

temp = []

elif n == 4:

temp = [[0,1,0,2,1,3,2,3]]

else:

temp = []

for m in range(3,n-1):

for l in range(1,m-1):

temp += product(vcat,listS(m,l),listU(n+2-m))

bufferG.update({n:temp})

return(temp)

def listU(n):

try: temp = bufferU[n]

except:

if n <= 1:

temp = []

else:

temp = []

for k in range(0,n-1):

temp += listS(n,k)

bufferU.update({n:temp})

return(temp)

45

D.The python code for listing with order algorithms

In this code, we use order relation between admissible digraphs in order to prevent double
counting. The reason why we need this version is explained in conclusion on page 20.

While defining order, we have to use some functions.

def tograph(a):

N=len(a)

H=igraph.Graph((N/2)+1)

H.to_directed()

for i in range(0,N,2):

H.add_edge(a[i],a[i+1])

return H

The function tograph() takes a sequence which is our notation of digraphs and turns it to a

digraph.

def tosequence(g):

N=2*len(g.get_edgelist())

n=0

A=range(N)

for e in g.get_edgelist():

A[n]= e[0]

n=n+1

A[n]= e[1]

n=n+1

return A

The function tosequence() takes a digraph and turns it to a sequence. There is a difference

between the notation for digraphs in igraph and our notation for digraphs. Functions hcat()

and vcat() cannot work for the notation of digraphs in igraph. Therefore, we need functions

tograph() and tosequence() to change the notation.

def phi(n):

46

G= igraph.Graph(n)

G.to_directed()

for i in range(1,n-1):

G.add_edges([(0,i)])

G.add_edges([(i,n-1)])

return tosequence(G)

phi(n) is a function which gives us the largest admissibble digraph with n vertices, i.e. Φ(n).

(See the page 26)

from operator import itemgetter, attrgetter

We will need the command ittemgetter since this command help us in ordering which we

defined on Definition 5.2.

def compare_graph(A,B):

G = tograph(A)

H = tograph(B)

e1=G.ecount()

e2=H.ecount()

v1=G.vcount()

v2=H.vcount()

if v1 < v2:

return -1

elif v2 < v1:

return 1

elif v1 == v2 and e1 < e2:

return -1

elif v1 == v2 and e2 < e1:

return 1

else:

Glist=sorted(G.get_edgelist(), key=itemgetter(0))

Hlist=sorted(H.get_edgelist(), key=itemgetter(0))

if Glist < Hlist:

return -1

47

elif Hlist < Glist:

return 1

elif Hlist == Glist:

return 0

compare graph(A,B) takes two sequences. Then, by using the fuction tograph(), it turns

sequences to digraph and it compares them.

48

def ListArt(G,n):

if n <= 1:

return []

elif n ==2:

return []

elif n ==3:

return [[0,1,1,2]]

else:

temp = []

for i in range(2,n):

A=ListOne(phi(i),i)

B=List(phi(n-i+1),n-i+1)

for x in A:

for y in B:

H=hcat(x,y)

if compare_graph(G,H)== 1:

temp += [H]

return temp

The function ListArt(G,n) finds the set of all admissible digraphs (less than or equal to a

given digraph) of size n with at least one articulation. Remember that we consider admissible

digraph with at least one articulation as the horizontal composition of 1-connected admissible

digraph and any admissible digraph of apprapriate sizes. Therefore in this fuction, we use the

command hcat(). (For the details of algorithm see the page 30)

def ListOne(G,n):

if n <= 1:

return []

elif n == 2:

return [[0,1]]

elif n == 3:

return []

elif tograph(G).vcount()>=4 and n == 4:

return [[0,1,0,2,1,3,2,3]]

else:

temp = []

49

for i in range(3,n):

A=ListArt(phi(i),i)

for x in A:

B = List(x,n-i+2)

for y in B:

H=vcat(x,y)

if compare_graph(G,H)== 1:

temp += [H]

if G == phi(n):

temp += [G]

return (temp)

The function ListOne(G,n) gives us the set of all 1-connected admissible digraphs of size n

which are less than or equal to a given digraph. And we use vcat() since we consider any 1-

connected admissible digraph as the vertical composition of admissible digraph with at least one

articulation and any admissible digraph. (For the details of algorithm see the page 32)

def List(G,n):

if n <= 1:

return []

else:

temp = []

A=ListArt(G,n)

B=ListOne(G,n)

temp = A + B

return temp

The function List(G,n) lists the set of all admissible digraphs of size n which are less than

or equal to a given digraph. Here, + uses for union of lists. (For the details of algorithm see the

page 33)

50

