

i

THE REPUBLIC OF TURKEY

BAHCESEHIR UNIVERSITY

A FRAMEWORK FOR DEVELOPING ONLINE

MULTIPLE KINECT INTERACTIONS

Master of Science Thesis

MUHAMMED EMRE AKKOYUN

ISTANBUL, 2014

i

ii

THE REPUBLIC OF TURKEY

BAHCESEHIR UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

A FRAMEWORK FOR DEVELOPING ONLINE

MULTIPLE KINECT INTERACTIONS

Master of Science Thesis

MUHAMMED EMRE AKKOYUN

Supervisor: Asst. Prof. Dr. Övgü ÖZTÜRK

ISTANBUL, 2014

iii

THE REPUBLIC OF TURKEY

BAHCESEHIR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

Name of the thesis: A Framework for Developing Online Multiple Kinect Interactions

Name/Last Name of the Student: M.Emre Akkoyun

Date of the Defense of Thesis: 16.01.2014

The thesis has been approved by the Graduate School of Natural and Applied Science.

Prof. Dr. Tunç BOZBURA

 Graduate School Director

 Signature

I certify that this thesis meets all the requirements as a thesis for the degree of Master of

Arts.

 Assist. Prof. Dr. Tarkan AYDIN

 Program Coordinator

 Signature

This is to certify that we have read this thesis and we find it fully adequate in scope, quality

and content, as a thesis for the degree of Master of Arts.

Examining Comittee Members Signature____

Thesis Supervisor -----------------------------------

Assist. Prof. Dr. Övgü ÖZTÜRK

Member -----------------------------------

Assist. Prof. Dr. Tarkan AYDIN

Member -----------------------------------

Assoc. Prof. Dr. Alper TUNGA

iv

ACKNOWLEDGMENTS

I would never have been able to finish my master thesis without the guidance of supervisor Asst.

Prof. Dr. Övgü ÖZTÜRK, help from friends, and support from my family also my manager at

Turkcell.

I would like to express my deepest gratitude to my advisor, Asst. Prof. Dr. Övgü ÖZTÜRK, for her

excellent guidance, caring, patience, and providing me with an excellent atmosphere for doing

research.

I would like to thank Avedis Boyacı, who as a good manager, was always willing to help and give

his best suggestions.

I would also like to thank my parents,my sister Dr.Esma Akkoyun Bilgi and my nephew Bugra.

They were always supporting me and encouraging me with their best wishes. I also want to thank

my relatives to show patience to me for not visiting them. Finally, I would like to thank my nephew,

1 year old Bugra Bilgi. He was always there to increase my life energy and help me to get ride of

from thesis stress.

Muhammed Emre Akkoyun

19 December, 2013

v

 ÖZET

A FRAMEWORK FOR DEVELOPING ONLINE MULTIPLE KINECT INTERACTIONS

M.Emre Akkoyun

Bilgisayar Mühendisliği

Tez Danışmanı: Yrd. Doç. Dr. Övgü Öztürk

 Aralık 2013, 56 Sayfa

Bu çalışma Microsoft firmasının ürettiği kinect kameralarının ürettiği verilerin internet üzerinden

işlenmesiyle ilgilenmektedir. Kinect kameralara internet üzerinden direk olarak erişmek bügünün

teknoloji dünyası için popüler konuların başında gelmektedir. Çok sayıda yazılım mühendisi ve

araştırma firmaları bu sıcak konu üzerinde çalışmaktadırlar ve kullanıcılara bununla ilgili çözümler

sunmaktadırlar. Ancak bu çözümlerin avantajları ve dezavantajları bulunmaktadır. Bu

dezavantajların başında kinect verisi internet üzerinden işlenirken kullanılan yoğun ağ bant genişliği

problemidir, çünkü kinect kameraların ürettiği veriler direk olarak internet ortamı üzerinde

işlenirken ağ üzerinde ciddi miktarda bir yük oluşturmaktadır. Bu nedenle kinect kameralar için

yazılım geliştiren mühendislerin bunları dikkate alması gerekmektedir ve üretilen veriler internet

ortamında işlenmeden önce gereksiz veriler ayıklanıp temizlenmelidir. Bu uygulamalar ayrıca

kinect kamera verilerine istemci tarafında çalışan javascript kodları üzerinden eriştikleri için bu

uygulamalar sadece lokal bilgisayarlarda çalışabilecek bir yaklaşım sergilemektedir ve birden çok

kinect kamera verisinin aynı internet tarayıcısında görüntülenmesi konusu imkansız hale

gelmektedir. Bu çalışmada uygulama geliştirmede karşılaşılan bu problemlere çözüm bulunmuştur.

Özetle; ağ sistemlerindeki bant genişliğinin yoğun kullanılmasından kaynaklanan problemleri

çözmek için kinect verileri internet ortamı üzerinde işlenmeden önce gereksiz veriler ayıklanmıştır

ve uygulamalar için gerekli veriler ayıklandıktan sonra JSON formatına dönüştürülerek ağ bant

genişliğinin mümkün olduğunca az miktarda kullanılması sağlanmıştır. Birden çok kinect

kameradan alınan verilerin aynı anda senkron bir şekilde gösterebilmek için ise uygulama sunucu

tarafı ve istemci tarafı olmak üzere iki alt program olarak yazılmıştır. Bu uygulama geliştirme

yaklaşımı sayesinde birden çok kinect kamera verisi aynı internet tarayıcısında datalar ağ üzerinden

ayrı ayrı işlenerek görüntülenebilecektir. Ayrıca bu geliştirme yaklaşımı sayesinde farklı firmaların

ürettiği iskelet takip eden cihazlar için de sunucu uygulama tarafında küçük değişiklikler yaparak

farklı cihazlar için de uygulama geliştirme altyapısı sağlanmış olur.

Anahtar Kelimeler: Kinect Kamera, Görüntü Derinliği Takibi, İskelet İzleme, İnternet Veri

Aktarımı

vi

ABSTRACT

A FRAMEWORK FOR DEVELOPING ONLINE MULTIPLE KINECT INTERACTIONS

M.Emre Akkoyun

Computer Engineering

Thesis Supervisor: Assistant Prof. Dr. Övgü Öztürk

December 2013, 56 Pages

This study deals with the Microsoft kinect camera data streaming over internet. Accessing a kinect

camera over internet is so popular nowadays. Many developer and research company are working

on this hot topic and find several solutions. Most of this applications have some avantages and

disadvantages. The main disadvantage of this applications is consuming network bandwidth heavily

when transferring kinect data over internet. Because transferring whole of kinect data binds heavily

mass of data to the network, so the developers of kinect applications should consider about this

topic and should mine and comb out the unnecessary kinect data. This applications also directly

access the kinect device from javascript and this approach only works for local applications and not

support multiple kinecting display on one browser. There is no best case solutions for this kind of

problems. In this study solutions have been found for this problems and disadvantages. Briefly ; for

network bandwidth problems kinect data has been mined and unnnecesarry kinect data combed out

and the necessary data converted in json format before streaming over network, and for multiple

kinect support; application divided into two parts which are server side application and client side

application and with the help of this approach some performance problems cleared and network

bandwith problem also cleared before network streaming and also with this approach more than one

kinect cameras data could streamed over network and displayed on a single web page. On the other

hand; with the approach which is used at this study can be implemented for other depth streaming

devices with just making modifications on server side application.

Keywords: Kinect Camera, Depth Streaming, Skeleton Tracking, Datastreaming Over Internet.

vii

TABLE OF CONTENTS

 TABLES………….. v

 FIGURES…………...vi

 CODES……………..vii

1. INTRODUCTION .. xi

2.RELATED WORKS .. 4

2.1 KINECT FOR WINDIWS SDK JAVASCRIPT API ... 4

2.2 ZIGFU – ZIGJS API ... 7

3.PROGRAMMING WITH KINECT ... 8

3.1 INITIALIZATION PHASE ... 8

3.2 KINECT DATA STREAMING .. 9

4.HTML5 , CANVAS and WEB-SOCKET and JSON ... 14

4.1 WHAT IS HTML5? .. 14

4.2 WHAT IS CANVAS? ... 14

4.2.1 Canvas and Hardware Acceleration... 15

4.3 WEB-SOCKET ... 16

4.3.1 The WebSocket Protocol ... 17

4.4 JSON.. 18

5.MULTIPLE KINECT STREAMING APPLICATION .. 20

5.1 KINECT STREAMING SERVER SIDE APPLICATION ... 21

5.1.1 User Module Initialization ... 21

5.1.2 Kinect Camera Initialization .. 24

5.1.3 Web-Socket Initialization .. 25

5.1.4 Kinect Data Processing .. 26

5.2 KINECT STREAMING CLIENT SIDE APPLICATION .. 31

5.2.1 Kinect Login Page ... 31

5.2.2 Game Room Page .. 33

6.EXPERIMENTAL STUDY ... 36

6.1 WEB SERVICE SOLUTION .. 38

6.2 TRANSFERRING XML FILES SOLUTION... 38

6.3 Test Phase of The Application ... 39

7.CONCLUSION & DISCUSSION .. 43

REFERENCES .. 45

viii

TABLES

Table 3.1 Kinect Device Connection Status .. 13

Table 3.2 Color Streaming Data Formats and Properties .. 14

Table 4.1 Web Socket Protocol Client to Server Handshake Request…………………….............25

Table 4.2 Web Socket Protocol Server to Client Handshake Response……………………...........25

Table 6.1 Application Test Phases Table……………………………….………………………......50

ix

FIGURES

Figure 1.1 Microsoft Gibraltar framework architecture ... 8

Figure 3.1 Depth Streming data model .. 14

Figure 3.3 Kinect Skeleton Tracking Joint Positions ... 14

Figure 4.1. HTML5 Canvas Element coordinate scheme ... 16

Figure 4.2 HTML5 Web Socket Architecture ... 18

Figure 4.3 WebSocket dataframe data scheme .. 19

Figure 5.1 Multi Kinect Application Scheme ... 20

Figure 5.2 Server Side Application Sequence Diagram .. 29

Figure 5.3 Server Side Application Flow Chart Diagram .. 29

Figure 5.4 Login Page Wrong Login Attempt .. 31

Figure 5.5 Login Page Console Application not Runned .. 31

Figure 5.6 Server Side Application Flow Chart Diagram ... 36

Figure 6.1 Locally Connected Kinect Camera Data Streming and Displaying 47

Figure 6.2 Remotely Connected Kinect Camera with Single User... 48

Figure 6.3 Remotely Connected Kinect Camera with Multiple User ... 49

x

CODES

Code 2.1 Configuring a Kinect camera at Kinect for Windows JavaScript API 12

Code 2.2 Kinect For Windows Javascipt API event listener .. 13

Code 2.3 ZigFu Locally Connected Kinect Camera Skeleton Streming Code 14

Code 3.1 Kinect Camera RGB Data Event Handler ... 17

Code 3.2 Kinect Camera Depth Data Event Handler .. 18

Code 3.3 Kinect Camera Skeleton Data Event Handler ... 18

Code 4.1 JSON Data Format Example Code ... 27

Code 5.1 User Module Initialization ... 29

Code 5.2 Getting available port value and the IP adress .. 30

Code 5.3 User Module Initialization MySql Database Login Operation ... 31

Code 5.4 Updating User Port Value Mysql Database Operation .. 32

Code 5.5 Initialization of connected Kinect Camera ... 33

Code 5.6 Initialization of Web Sockets for transferring the Connected Kinect Data 33

Code 5.7 Registered Kinect Camera Skeleton Frame Ready Handler Code 34

Code 5.8 Finding the Primary Skeleton from Skeleton depth value ... 35

Code 5.9 Skeleton Data JSON Contract Code with C# Programming Language 36

Code 5.10 Serializing and Converting Kinect Skeleton Data to JSON Format 37

Code 5.11 Client Side Application Login Controller Code ... 39

Code 5.12 Logged In User’s Another User Selection Code .. 42

Code 5.13 User selection Code triggers a Javascript Function Form BackEnd C# Code 43

Code 5.14 Triggered JavaScript Function which creates a Web Socket Client 43

xi

1 INTRODUCTION

The rapid evoluation in technology (web technologies and hardware technologies) gives huge

opportunities for researchers or companies to create hardware based web applications. So, accesing

a hardware device such as, RGB Cameras, depth Cameras from a web site is so popular nowadays

for this researchers and companies. The time when embedded devices and factory-floor machines

had only minimal interaction with humans is gone. Today, the ability to access a device from

anywhere is expected. This is a significant challenge when we are heavily constrained by hardware

size and costs. However, with commonly available software components and a little knowledge, we

can incorporate a "universal" access interface for data gathering/surveillance that maintains a small

footprint and that is secure
1

. With this approach many companies and researchers creates

applications and frameworks for accessing hardware devices from web technologies, for example;

Microsoft announced a framework which is called Gibraltar for accessing hardware devices from a

web application. Gibraltar’s architecture is shown in Figure 1.1:

Figure 1.1 Microsoft Gibraltar framework architecture

After accesing a hardware device succesfully, another important topic starts which is streaming

this devices data over internet in real time. Streaming RGB camera data over internet was

popular for last 5 years. There was many applications for streaming RGB cameras data over

internet , for example many chat applications are support this feature. After RGB cameras ,

1
 J. Webb, J.Ashley (2009). Beginning Kinect Programming with Microsoft Kinect SDK.

2

depth cameras has been found. Nowadays, many manufacturer creates their own depth cameras ,

for example Asus Xtion PRO and Microsoft Kinect.

Figure 1.2 Comparison of old and new generation applications

Kinect cameras is a motion sensing input device created by Microsoft for XBOX 360 game

consols and Windows PC’s. The Kinect sensor is a horizontal bar connected to a small base

with a motorized pivot and is designed to be positioned lengthwise above or below the video

display. The device features an "RGB camera, depth sensor and multi-array microphone running

proprietary software",which provide full-body 3D motion capture, facial recognition and voice

recognition capabilities. After Microsoft announced this technology, 24 million units of the

Kinect sensor had been shipped and also announced that at new generation personal computers

the kinect cameras will be placed integrated. At this point Microsoft created interest on

developers and companies for developing applications on this device, but most of the developed

applications just working on Windows and Xbox 360 at offline mode. There is limited

applications developed for kinect which is working on internet. This work is also related about

how to develop kinect applications on internet and stream the kinect data over network.

Also evoluation of web technologies makes easier to stream a kinect camera device data over

network. With innovation of HTML5 technology which is standardized at December 2012,

gives many significiant opportunities to researchers and companies to stream and process a

video input device data. In particular, HTML5 adds many new syntactic features. These include

the new <video>, <audio> and <canvas> elements, as well as the integration of scalable vector

graphics (SVG) content. These features are designed to make it easy to include and handle

multimedia and graphical content on the web without having to resort to proprietary plugins and

3

APIs
2
. In this study used element for displaying kinect data is the Canvas tag. Canvas tag

enables the web browser to natively manipulate, compose, and layer image data [4]. Another

advantage of HTML5 technology is the Web-Socket API for transferring the kinect data over

network. WebSocket API resolves the issue of sending data directly to the client by allowing the

browser to maintain an asynchronous socket connection to a server. By maintaining this

connection, the client is able to instantly send data to the server without needing to re-establish a

connection. Additionally, the server is able to send data to the client at any time while the

connection remains open. The WebSocket API defines a simple protocol to transfer information,

and provides a method for creating secure connections which is beneficial for authentication

purposes
3
.

Figure 1.3 HTML5 Web Socket Protocol

This study is the combination of this technologies to stream kinect data over internet and display

this data on web browsers , because there is no best practice of transferring and displaying

kinect data over internet , and there is some studies for achieving this problem but the main

problem of this applications are using bandwith heavily and connecting to a remote kinect

camera is not possible. The difference of this study is to solve this problems, not using bandwith

heavily and transferring a remote kinect cameras depth data over network.

2
 J. Webb, J.Ashley (2009). Beginning Kinect Programming with Microsoft Kinect SDK (pp. 151-187)

3
 Retrieved December 9, 2013, http://en.wikipedia.org/wiki/Kinect

4

2 RELATED WORKS

2.1 KINECT FOR WINDOWS SDK JAVASCRIPT API

The Kinect for Windows SDK JavaScript APIs give HTML5 applications access to Kinect data

for interactions and visualization. This allows HTML5 applications running in a browser to

connect to the sensor through a server running on the local computer. You can use this to create

kiosk applications on dedicated computers. The web server component is a template that can be

used as-is or modified as needed.
4
 This API enables to connect a kinect server with the help of

javascript. When a web page loads , API connects to a locally connected Kinect camera. But

this API does not allow to connect a remote Kinect camera , so this is the reason why we did not

choose this API for this study.

This API has some advantages and disadvantages. The main advantage of the API is , this API

enables to stream all type of Kinect camare data. For using this property the user’s need is just a

configuration file. The users also can configure the background removal property which is the

main observable property of the application. The configuration file is like below :

Code 2.1 Configuring a Kinect camera at Kinect for Windows JavaScript API

var configuration = {

 "interaction" : {

 "enabled": true,

 },

 "userviewer" : {

 "enabled": true,

 "resolution": "640x480", //320x240, 160x120, 128x96, 80x60

 "userColors": { "engaged": 0xffffffff, "tracked": 0xffffffff },

 "defaultUserColor": 0xffffffff, //RGBA },

 "backgroundRemoval" : {

 "enabled": true,

4
 Retrieved September 9, 2013, http://msdn.microsoft.com/en-us/library/dn435664.aspx

5

 "resolution": "640x480", //1280x960

 },

 "skeleton" : {

 "enabled": true,

 },

 "sensorStatus" : {

 "enabled": true,

 }

 };

sensorToConfigure.postConfig(configuration);

The main disadvantage of the application is , the application only takes the locally connected

Kinect cameras data. For enabling to connect a remote Kinect camera developers should

implement a WPF service to stream the Kinect data. But, this solution also does not allow to

stream multiple Kinect data , so this is the another reason for why we did not choose this API.

With WPF service the schematic of the application is like below.

Figure 2.1 Microsoft Kinect Javascript API with WPF Service

6

After accessing a Kinect camera another topic is how to stream and parse this Kinect data. The

API gives some functionality about how to stream the Kinect data and how to parse this Kinect

data. The developers should add an event listener to stream the Kinect camera’s data. And this

data is at JSON format so the event listener code will be like below.

Code 2.2 Kinect For Windows Javascipt API event listener

sensor.addStreamFrameHandler(function(frame) {

 switch (frame.stream) {

 case Kinect.SKELETON_STREAM_NAME:

 for (var iSkeleton = 0; iSkeleton < frame.skeletons.length; ++iSkeleton) {

 var skeleton = frame.skeletons[iSkeleton];

 skeleton.trackingId;

 skeleton.trackingState;

 skeleton.position;

 for (var iJoint = 0; iJoint < skeleton.joints.length; ++iJoint) {

 var joint = skeleton.joints[iJoint];

 joint.jointType;

 joint.trackingState;

 joint.position;

 }

 }

 break;

 }

});

This API gives some features to stream Kinect data and parse this data ,but does not correspond our

needs for streaming the Kinect data over internet so we did not choose this API for this study.

7

2.2 ZIGFU – ZIGJS API

ZigJS allows to have motion-controlled websites using a few lines of code. Written in idiomatic

JavaScript, it interacts seamlessly with most popular JavaScript frameworks, including JQuery,

prototype.js, and MooTools. The ZDK JavaScript bindings gives access to the depth, image, and

skeleton data from the Kinect as well as control over the type of user engagement and some

higher-level abstractions for user interface components.
5

This API has some advantages and disadvantages while streaming depth and skeleton data. The

main advantage of the API is , the API allows streaming not only Kinect camera data, but also

other types of depth devices such as, Asus X-Motion. But the main disadvantage of the API is it

only supports locally connected depth device. So we did not choose this API to implement this

study. An example Kinect data streaming code example is like below . This example code gets

the Kinect skeleton data and extraxts the position of the head from skeleton data and displays

the position of the head on the screen.

Code 2.3 ZigFu Locally Connected Kinect Camera Skeleton Streming Code

var engager = zig.EngageUsersWithSkeleton(1);

 engager.addEventListener('userengaged', function(user) {

 console.log('User engaged: ' + user.id);

 user.addEventListener('userupdate', function(user) {

 console.log('Head position: ' + user.skeleton[zig.Joint.Head].position);

 });

 });

 engager.addEventListener('userdisengaged', function(user) {

 console.log('User disengaged: ' + user.id);

 });

zig.addListener(engager);

5
 Retrieved Decemver 7, 2013, http://zigfu.com/en/zdk/javascript/

8

3 PROGRAMMING WITH KINECT

Every Kinect application has certain basic elements. The application must detect or discover

attached kinect sensors. It must then initialize the sensor. Once initialized, the sensor produces

data, which the application then processes. Finally, when the application finishes using the

sensor it must properly uninitialized the sensor.

3.1 INITIALIZATION PHASE

Application development with kinect starts with KinectSensor object which placed at

Microsoft.Kinect namespace. The initialization phase of the Project starts with Kinect

initialization. Then KinectSensor status flag which name is KinectStatus ,set to an appropriate

status. This status value is listed below.

Table 3.1 : Kinect Device Connection Status

KinectStatus What it means

Undefined The status of the attached device cannot be

determined.

Connected The device is attached and is capable of

producing data from its streams.

DeviceNotGenuine The attached device is not an authentic Kinect

sensor.

Disconnected The USB connection with the device has been

broken.

Error Communication with the device produces errors.

Initializing The device is attached to the computer, and is

going through the process

of connecting.

InsufficientBandwidth Kinect cannot initialize, because the USB

connector does not have the

necessary bandwidth required to operate the

device.

NotPowered Kinect is not fully powered. The power provided

9

by a USB connection is

not sufficient to power the Kinect hardware. An

additional power adapter

is required.

NotReady Kinect is attached, but is yet to enter the

Connected state.

3.2 KINECT DATA STREAMING

After KinectSensor’s KinectStatus flag has been set to the Connected , Kinect device will be

ready for data streaming. Kinect cameras provides different types of data for streaming. This

data types are ; ColorImageStream , DepthStream , Skeleton Tracking Stream and

AudioStream. After the initialization phase of kinect programming, the programmer should

enable this streamings and register streaming event handlers to initialized kinect camera.

Sample codes for enabling data stream and registering event handlers is like below :

a. Color Image Stream :

KinectDevice.ColorStream.Enable();

KinectDevice.ColorFrameReady += Kinect_ColorFrameReady;

b. Depth Image Stream:

KinectDevice.DepthStream.Enable();

KinectDevice.DepthFrameReady += KinectDevice_DepthFrameReady;

c. Skeleton Tracking Stream:

this._KinectDevice.SkeletonStream.Enable();

this.KinectDevice.SkeletonFrameReady +=KinectDevice_SkeletonFrameReady;

After event handlers has been registered to the kinect camera, when the camera produces

new data the event handler will be triggered. A kinect camera can produce 30 frames of data

per second for color image streaming , 60 frames of data per second for depth streaming, and

30 frames of data per second for skeleton stremaing. Event handlers sample code is like

below :

10

a. Color Image Streming :

Code 3.1 : Kinect Camera RGB Data Event Handler

void Kinect_ColorFrameReady(object sender,ColorImageFrameReadyEventArgs e)

{

using(ColorImageFrame frame = e.OpenColorImageFrame())

{

if(frame != null){

byte[] pixelData = new byte[frame.PixelDataLength];

frame.CopyPixelDataTo(pixelData);

}

}

When the Kinect camera produces a RGB data frame , Microsoft Kinect SDK calls the

registered event handler method which is shown ar Code 3.1. At this code EventArgs

contains the produced data frame. This data frame is a byte array, and the developer can

manipulate this data according to application requirements.

b. Depth Streaming :

Code 3.2 : Kinect Camera Depth Data Event Handler

void Kinect_DepthFrameReady(object sender,DepthImageFrameReadyEventArgs e)

{

this._LastDepthFrame = e.OpenDepthImageFrame();

this._LastDepthFrame.CopyPixelDataTo(this._DepthImagePixelData);

}

11

When the Kinect camera produces a depth data frame , Microsoft Kinect SDK calls the

registered event handler method which is shown ar Code 3.2. At this code EventArgs

contains the produced data frame. This data frame is a byte array, and the developer can

manipulate this data according to application requirements.

c. Skeleton Streaming :

Code 3.3: Kinect Camera Skeleton Data Event Handler

private void KinectDevice_SkeletonFrameReady(object sender,

SkeletonFrameReadyEventArgs e){

 using(SkeletonFrame frame = e.OpenSkeletonFrame()){

 frame.CopySkeletonDataTo(this._FrameSkeletons);

 // Do Some Data operations

 }

}

When the Kinect camera catches a skeleton at captured frame, Microsoft Kinect SDK calls

the registered event handler method which is shown at Code 3.3. At this code EventArgs

contains the produced skeleton data. This data frame is a class object which is at namespace

SkeletonFrame,and this skeleton frame contains maximum 6 persons to track their skeleton

data, , and the developer can manipulate this data according to application requirements.

While the data streaming , programmer should consider about the data size and should

choose the suitable data streaming format for own program. Data format examples is like

below. Color Streming data formats shown at table 1.2 below :

Table 3.2 : Color Streaming Data Formats and Properties

ColorImageFormat What it means

RgbResolution640x480Fps30 The image resolution is 640x480, pixel data is

RGB32 format

at 30 frames per second.

RgbResolution1280x960Fps12 The image resolution is 1280x960, pixel data

12

is RGB32

format at 12 frames per second.

YuvResolution640x480Fps15 The image resolution is 640x480, pixel data is

YUV format at

15 frames per second.

RawYuvResolution640x480Fps15 The image resolution is 640x480, pixel data is

raw YUV

format at 15 frames per second

While configuring the Kinect camera at the initialization phase of the application , the developer

can choose one of this color image formats, and the Kinect camera produces the RGB data

according to this configurative Color Image Format value.

Kinect camera produces 16 bits of data for depth streaming process. This data model is shown at

Figure 3.2.

Figure 3.2 : Depth Streming data model

This means for a 640*480 resolution frame kinect produces 16*640*480 bits. Also programmers

can determine the player with mask 0000 0111.

At skeleton tracking, when the Kinect camera captures a skeleton , the Microsoft Kinect SDK

produces a SkeletonFrame data, and this data contains the skeleton joint’s x,y,z, positions to

determine the skeletons position. SkeletonFrame data can contain maximum 6 people’s skeleton

data, because Kinect camera tracks maximum 6 people at real time. This joints is shown at Figure

3.3 which kinect camera produces.

13

Figure 3.3 : Kinect Skeleton Tracking Joint Positions

Source : J. Webb, J.Ashley (2009). Beginning Kinect Programming with Microsoft Kinect SDK (pp. 158-

160)

14

4 HTML5 , CANVAS and WEB-SOCKET and JSON

4.1 WHAT IS HTML5?

HTML5 is the latest evolution of the standard that defines HTML. The term represents two different

concepts. It is a new version of the language HTML, with new elements, attributes, and behaviors,

and a larger set of technologies that allows more diverse and powerful Web sites and applications.
6

With HTML5 evolution , for submission to developers some new features and concepts has been

come. HTML5 allows developers to communicate with the server in new and innovative ways.

Table 4.1 : New Features of HTML5 Technology

Offline & Storage allowing webpages to store data on the client-side locally and operate

offline more efficiently.

Multimedia making video and audio first-class citizens in the Open Web

2D/3D Graphics & Effects allowing a much more diverse range of presentation options

Performance & Integration providing greater speed optimization and better usage of computer

hardware.

Device Access allowing for the usage of various input and output devices

Styling letting authors write more sophisticated themes

As shown at Table 4.1 HTML5 technology gives some significiant features to developers to

develop more interactive and innovative solutions. HTML5 technology gives opportunity to

communicate with input devices synchroneous. This is the main reason why we choose this

technology at our project.

4.2 What is CANVAS?

Officially a canvas is "a resolution-dependent bitmap canvas which can be used for rendering

graphs, game graphics, or other visual images on the fly". In layman's terms, the canvas is a new

element in HTML5, which allows you to draw graphics using JavaScript. It can be used to render

text, images, graphs, rectangles, lines gradients and other effects dynamically. Drawing on the

canvas is via the canvas 2D API. This API contains a plethora of functions that give you the power

6
 Retrieved December 11, 2013, https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

http://msdn.microsoft.com/en-us/library/ff975057.aspx

15

to draw pretty much anything you like on the canvas
7
 In this study we used canvas element also ,

because canvas objects gives opportunity to drav the streamed Kinect cameras data. With the

reference to the canvas elements context , we could draw the skeleton shapes on 2D surface.

Every canvas element has x and y coordinates. X being the horizontal coordinate and y being the

vertical coordinate. The following image shows these coordinates on a canvas.

Figure 4.1. : HTML5 Canvas Element coordinate scheme

When we think about our project, while Kinect cameras data has been arrived to the browser , we

parse this data and show this data on this canvas object with the help of x and y coordinate with

some mathematical equations.

4.2.1 Canvas and Hardware Acceleration

Using canvas is the best way to learn about hardware acceleration on the web. In earlier versions of

browsers, graphics rendering – like most compute intensive tasks – was handled by the CPU, the

central processing unit. Modern browsers have been innovating in this area by shifting graphic-

intensive tasks to the GPU, the graphics processing unit, to render the graphics and text on a web

page using Direct2D and DirectWrite. The allocation of these tasks to the GPU cores not only

accelerates the graphics processing but also eases the load on the CPU while it takes care of the

serial tasks more efficiently.
8

7
 Retrieved December 11, 2013, https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

8
 Retrieved December 8, 2013,http://www.html5canvastutorials.com/

16

When we send drawing commands to the canvas, the browsers sends them directly to the graphics

hardware without further development on your part. The hardware acceleration works incredibly

fast to deliver real time animations and interactive graphics, without slowing down the surrounding

user experience we're delivering.

4.3 WEB-SOCKET

The HTML5 WebSockets specification defines an API that enables web pages to use the

WebSockets protocol for two-way communication with a remote host. It introduces the WebSocket

interface and defines a full-duplex communication channel that operates through a single socket

over the Web. HTML5 WebSockets provide an enormous reduction in unnecessary network traffic

and latency compared to the unscalable polling and long-polling solutions that were used to

simulate a full-duplex connection by maintaining two connections.
9

In this study we also used HTML5 Web Sockets to stream remote connected Kinect cameras

skeleton and the depth data. Because of the uninterrupted connection support of the Web-Socket

technology we choosed this technology. Also web socket technology reduces the network traffic

and latency for real time applicatios like our application. And web socket technology also supports

the secured connections and proxies . So these benefits of the technology is the reasons why we

choose this technology for this study.

Figure 4.2 : HTML5 Web Socket Architecture

9
 Retrieved Decemver 10, 2013,http://www.websocket.org/aboutwebsocket.html

17

4.3.1 The WebSocket Protocol

The WebSocket protocol was designed to work well with the existing Web infrastructure. As part of

this design principle, the protocol specification defines that the WebSocket connection starts its life

as an HTTP connection, guaranteeing full backwards compatibility with the pre-WebSocket world.

The protocol switch from HTTP to WebSocket is referred to as a the WebSocket handshake.

The browser sends a request to the server, indicating that it wants to switch protocols from HTTP to

WebSocket. The client expresses its desire through the Upgrade header:

Table 4.1 : Web Socket Protocol Client to Server Handshake Request

GET ws://echo.websocket.org/?encoding=text HTTP/1.1

Origin: http://websocket.org

Cookie: __utma=99as

Connection: Upgrade

Host: echo.websocket.org

Sec-WebSocket-Key: uRovscZjNol/umbTt5uKmw==

Upgrade: websocket

Sec-WebSocket-Version: 13

If the server understands the WebSocket protocol, it agrees to the protocol switch through the

Upgrade header.

Table 4.2 : Web Socket Protocol Server to Client Handshake Response

HTTP/1.1 101 WebSocket Protocol Handshake

Date: Fri, 10 Feb 2012 17:38:18 GMT

Connection: Upgrade

Server: Kaazing Gateway

Upgrade: WebSocket

Access-Control-Allow-Origin: http://websocket.org

Sec-WebSocket-Accept: rLHCkw/SKsO9GAH/ZSFhBATDKrU=

Access-Control-Allow-Headers: content-type

http://websocket.org/
http://websocket.org/

18

At this point the HTTP connection breaks down and is replaced by the WebSocket connection over

the same underlying TCP/IP connection. The WebSocket connection uses the same ports as HTTP

(80) and HTTPS (443), by default.

Once established, WebSocket data frames can be sent back and forth between the client and the

server in full-duplex mode. Both text and binary frames can be sent in either direction at the same

time. The data is minimally framed with just two bytes. In the case of text frames, each frame starts

with a 0x00 byte, ends with a 0xFF byte, and contains UTF-8 data in between. WebSocket text

frames use a terminator, while binary frames use a length prefix.
10

Figure 4.3 : WebSocket dataframe data scheme

4.4 JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans

to read and write. It is easy for machines to parse and generate. It is based on a subset of the

JavaScript Programming Language, JSON is a text format that is completely language independent

but uses conventions that are familiar to programmers of the C-family of languages, including C,

C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal

data-interchange language.
11

 JSON data format uses universal data structures. Virtually all modern

programming languages support this data structures. It makes sense that a data format that is

interchangeable with programming languages also be based on these structures. JSON data format

is built in two data formats. A collection of name/value pairs. In various languages, this is realized

as an object, record, struct, dictionary, hash table, keyed list, or associative array.

An ordered list of values. In most languages, this is realized as an array, vector, list, or sequence.

Because of the JSON format is the closest to the javascript programming language , and also we

used javascript at client side to handle the kinect data , we choosed this technology for

interchanging the data. If we want to list the advantages of the JSON data format , briefly we can

10

 Retrieved Decemver 10, 2013,http://www.websocket.org/aboutwebsocket.html
11

 Retrieved Decemver 13, 2013,http://www.json.org/

19

say that interchanging a data makes the data more clear , more efficient and scalable for other

applications. Because, using JSON objects means your data has a strict, standardized structure.

With this strict structure in place there is less chance for error. The application receiving the JSON

data knows what to expected and how to receive the data.
12

 Here is an example of how json data

looks like.

Code 4.1 : JSON Data Format Example Code

{

 "total":3,

 "results":[

 {"id":3459,"fname":"Leon","sname":"Revill"},

 {"id":3460,"fname":"Darth","sname":"Vader"},

 {"id":3461,"fname":"Samwise","sname":"Gamgee"}]

 }

 }

12

 Retrieved Decemver 13, 2013,http://www.json.org/

20

5 MULTIPLE KINECT STREAMING APPLICATION

Accessing a kinect camera over internet is so popular nowadays. Many developer and research

company are working on this hot topic and find several solutions. Most of this applications have

some avantages and disadvantages. The main disadvantage of this applications is consuming

network bandwidth heavily when transferring kinect data. Because transferring whole of kinect data

binds heavily mass of data to the network, so the developers of kinect applications should consider

about this topic and should mine and comb out the unnecessary kinect data. This applications also

directly access the kinect device from javascript and this approach only works for local applications

and not support multiple kinecting display on a single browser. There is no best case solutions for

this kind of problems. In this thesis solutions have been found for this problems and disadvantages.

Briefly ; for network bandwidth problems kinect data has been mined and unnnecesarry kinect data

combed out and the necessary data converted in json format before streaming over network, and for

multiple kinect support; application divided into two parts which are server side application and

client side application and with the help of this approach some performance problems cleared and

network bandwith problem also cleared before network streaming and also with this approach more

than one kinect cameras data could streamed over network and displayed on a single web page.

Schematic of this approach is like below :

Figure 5.1 : Multi Kinect Application Scheme

Web Server

Depth Data RGB Data Skeleton Data Depth Data RGB Data Skeleton Data Depth Data RGB Data Skeleton Data

Kinect Camera Kinect Camera
Kinect Camera

USER / Server Side
Application

USER/ Server Side
Application

USER /Server Side
Application

Display :
HTML5

Display :
HTML5

Display :
HTML5

Transferring The
Kinect Data

trough
WebSockets in
JSON Format

Transferring The
Kinect Data

trough
WebSocketsin
JSON Format

Transferring The
Kinect Data

trough
WebSocketsin
JSON Format

Sending The
Kinect Data

trough
WebSockets in
JSON Format

Sending The
Kinect Data

trough
WebSockets in
JSON Format

Kinect Camera
produces

Depth,RGB and
the Skeleton Data

Kinect Camera
produces

Depth,RGB and
the Skeleton Data

Kinect Camera
produces

Depth,RGB and
the Skeleton Data

Client Side
Application

Thesis is composed of from two applications. First application is the server side application and

second application is the client side application

21

5.1 KINECT STREAMING SERVER SIDE APPLICATION

The server side application is a console application which briefly doing this operations. The user

logins to the system and the system assigns a suitable port to this user with the help of a web servis

located at client side, after this operation , application takes the frame data from the kinect camera

and tracks the skeletons from this data and find the primary skeleton and serialize primary

skeletons data to json format and finally write this json data to a assigned port for client applications

to read from this port.

Server Side Application composed of from 4 sections.

5.1.1 User Module Initialization

When the user runs the server application the console application asks to user a username and

password for logged in the application. If the user doesn’t provide correct username and password

combination the user can not be reach the application. Else; if the username , password combination

is correct the application asks the local machine which port is available for transferring the kinect

camera data. With this port value and the locale machine’s IP adress the users port and ip adress

will be updated at database while the user is active and session is not expired.

Code 5.1 : User Module Initialization

user=Dao.doLogin(userName, password);

 if (user != null) {

 string port = getAvailablePort();

 user.port = port;

 Dao.updateUserPort(user);

}

At Code 5.1 getAvailablePort() function returns the applications runs machine’s IP adress and an

available port value at local machine to communicate with the remote client application.

GetAvailablePort() function code is like below :

22

Code 5.2 : Getting available port value and the IP adress with using System.Net.Networking

namespace

public static string getAvailablePort() {

 string returnPort = ""; bool isAvailable = true;

 IPGlobalProperties ipGlobalProperties = IPGlobalProperties.GetIPGlobalProperties();

TcpConnectionInformation[] tcpConnInfoArray =

ipGlobalProperties.GetActiveTcpConnections();

 for (int port = 400; port <= 9999; port++)

 {

 foreach (TcpConnectionInformation tcpi in tcpConnInfoArray)

 {

 if (tcpi.LocalEndPoint.Port == port)

 {

 isAvailable = false;

 break;

 }

 if (isAvailable) {

 returnPort = port.ToString();

 break;

 }

 String strHostName = string.Empty;.

 strHostName = Dns.GetHostName();

 IPHostEntry ipEntry = Dns.GetHostEntry(strHostName);

 IPAddress[] addr = ipEntry.AddressList;

 return addr[0].ToString() + ":" + returnPort;

 }

23

At this function the application firstly looks at the active TCP connections at the local machine with

the System.Net.Networking namespace. After finding the active TCP connections with the function

“GetActiveTcpConnections“, applications defines a port with a for loop which is not in use. After

port value has been defined , application gets the local machine’s IP adress in IPv6 protocol format

with using “ IPHostEntry ipEntry = Dns.GetHostEntry(strHostName)” function which is located

at System.Net package. After port and the IP value defined successfully function returns this value

in “IP Adress : Port” format.

This database operation codes is like below :

Code 5.3 : User Module Initialization MySql Database Login Operation

public static User doLogin(string userName,string password) {

 MySqlConnection connection = new MySqlConnection(MyConString);

 MySqlCommand command = connection.CreateCommand();

 MySqlDataReader Reader;

 command.CommandText = "SELECT * " + "FROM User " +

 "WHERE UserName = '" + userName + "' AND UserPassword = '" + password + "'";

 connection.Open();

 Reader = command.ExecuteReader();

 User user = new User(); Reader.Read();

 if (Reader.HasRows) {

 user.userName= Reader["UserName"].ToString();

 user.password = Reader["UserPassword"].ToString();

 user.userId = Int32.Parse(Reader["UserId"].ToString());

 user.port = Reader["Port"].ToString();

 user.gameRoom = Reader["GameRoom"].ToString();}

 Reader.Close();

 connection.Close();

 return user; }

24

At Code 5.3 application connects to the MySql database. After connection done successfully

application runs a select query at database with user’s provided username and password value. If

the user exists at User table , function returns a user object to the main application.

Update Port :

 Code 5.4 : Updating User Port Value Mysql Database Operation

public static void updateUserPort(User user)

 {

 MySqlConnection connection = new MySqlConnection(MyConString);

 MySqlCommand command = connection.CreateCommand();

 command.CommandText = "Update User " +

 "SET Port = '" + user.port+ "' WHERE UserId = '" + user.userId+ "'";

 connection.Open();

 command.ExecuteNonQuery();

}

At Code 5.4 successfully logined user’s port and the Ip value updates with the value of returned

value from “getAvailablePort” which is described at Code 5.2.

After the initialization of user and the user port , the next action is initialization of Kinect camera.

5.1.2 Kinect Camera Initialization

At Kinect camera initialization phase skeleton tracking will be enabled for the connected Kinect

camera and if the application can connect to this camera ,a listener function named

“kinect_SkeletonFrameReady” will be registered to connected camera . When the camera captures a

skeleton , the Microsoft Kinect SDK will call this registered function. After all of this operations the

camera will be ready for skeleton data streaming.

25

Kinect initialization code is like below.

Code 5.5 : Initialization of connected Kinect Camera

private static void InitilizeKinect(){

kinect = KinectSensor.KinectSensors.FirstOrDefault(s => s.Status ==

KinectStatus.Connected);

 if (kinect != null) {

 kinect.SkeletonStream.Enable();

 skeletonData = new

Skeleton[kinect.SkeletonStream.FrameSkeletonArrayLength];

 kinect.SkeletonFrameReady += new

EventHandler<SkeletonFrameReadyEventArgs>(kinect_SkeletonFrameReady); //

 kinect.Start();

}

5.1.3 Web-Socket Initialization

After kinect camera has been initialized and the application defined a suitable port and IP value,

application creates a WebSocket for streaming the Kinect camera data.

Initialization of a Web Socket is like below code :

Code 5.6 : Initialization of Web Sockets for transferring the Connected Kinect Camera data

 private static void InitializeSockets(string port) {

 _sockets = new List<IWebSocketConnection>();

 var server = new WebSocketServer("ws://localhost:" + port);

 server.Start(socket => {

 socket.OnOpen = () => {

 _sockets.Add(socket);

 };

 socket.OnMessage = message => {

 Console.WriteLine(message);

 };

 }

};

26

5.1.4 Kinect Data Processing

After all operations completed succesfully , and the kinect camera initialized succesfully a handler

function should be registered succesfully to the kinect camera for calling at every data process

action. In this case just skeleton tracking function will be enabled and when a skeleton object

recognized, the event handler will be called by the Kinect SDK.

Code 5.7 : Registered Kinect Camera Skeleton Frame Ready Handler Code

private static void kinect_SkeletonFrameReady(object sender,

SkeletonFrameReadyEventArgs e)

{

 using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame())

 {

 if (skeletonFrame != null && skeletonData != null)

 {

 skeletonFrame.CopySkeletonDataTo(skeletonData);

 }

 }

 if (skeletonData.Length > 0) {

 Skeleton primaryUser = GetPrimarySkeleton(skeletonData);

 string json = primaryUser.Serialize();

 foreach (var socket in _sockets)

 {

 socket.Send(json);

 }

 }

}

At this point ; skeleton’s data is ready for processing and the handler method reached the data, but

the application should choose the primary user for our business model.Kinect may catch more than

one skeleton data so; for achieving this operation,application finds the closest skeleton wtih the

27

skeletons depth data.For achieving to find the closest skeleton form the skeleton list , code

compares the skeletons depth value and decides which skeleton is closest to the camera.

Extracting the primary user’s skeleton data can be reached from code below :

Code 5.8 : Finding the Primary Skeleton from Skeleton depth value

private static Skeleton GetPrimarySkeleton(Skeleton[] skeletons) {

 Skeleton skeleton = null;

 if (skeletons != null)

 {

 for (int i = 0; i < skeletons.Length; i++)

 {

 if (skeletons[i].TrackingState == SkeletonTrackingState.Tracked)

 {

 if (skeleton == null)

 {

 skeleton = skeletons[i];

 }

else

 {

 if (skeleton.Position.Z > skeletons[i].Position.Z) {

 skeleton = skeletons[i];

 }

 }

 return skeleton;

 }

 }

 }

After the primary skeleton data extracted from all skeletons data , application should serialize this

data because skeleton object is not serializable and too big for network access. If the application

sends the primary skeleton’s data directly to the client application, client apllication should be

28

handle this data at backend and this case is very bad for performance considerations. So the server

application converts and serializes the skeleton data.

Skeleton data consists a skeleton ID , and a joint list. Joint list also consists joints and each joint has

an x,y,z coordinates and a jointId. For transferring this data over a network the application has a

serialize method which converts this skeleton data to JSON format and writes this JSON data to

initialized port.

Skeleton data JSON format is like below :

Code 5.9: Skeleton Data JSON Contract Code with C# Programming Language

 [DataContract]

 class JSONSkeletonCollection{

 [DataMember(Name = "skeletons")]

 public List<JSONSkeleton> Skeletons { get; set; }

 }

 [DataContract]

 class JSONSkeleton {

 [DataMember(Name = "id")]

 public string ID { get; set; }

 [DataMember(Name = "joints")]

 public List<JSONJoint> Joints { get; set; }

 }

 [DataContract]

 class JSONJoint{

 [DataMember(Name = "name")]

 public string Name { get; set; }

 [DataMember(Name = "x")]

 public double X { get; set; }

 [DataMember(Name = "y")]

 public double Y { get; set; }

 [DataMember(Name = "z")]

 public double Z { get; set; }

 }

29

And a serialize function converts the skeleton’s data to this JSON format. This function code is like

below :

 Code 5.10 : Serializing and Converting Kinect Skeleton Data to JSON Format

public static string Serialize(this Skeleton skeleton)

 {

 JSONSkeleton jsonSkeleton = new JSONSkeleton

 {

 ID = skeleton.TrackingId.ToString(),

 Joints = new List<JSONJoint>()

 };

 foreach (Joint joint in skeleton.Joints)

 {

 Joint scaled = joint.ScaleTo(640, 480);

 jsonSkeleton.Joints.Add(new JSONJoint

 {

 Name = scaled.GetHashCode().ToString(),

 X = scaled.Position.X,

 Y = scaled.Position.Y,

 Z = scaled.Position.Z

 });

 }

 return Serialize(jsonSkeleton);

}

This converted data will be transferred over network from oppened Web Socket connection while

kinect camera tracks skeletons.

30

Server side applications sequence diagram is like below :

Figure 5.2 : Server Side Application Sequence Diagram

ConsoleForm User Kinect Sensor SkeletonData SkeletonJSONData SocketData

Login()

InitiailizeKinect()

SkeletonFrameReady()

Serialize()

WritetoSocket()

SkeletonReady()

UserNotFound

Flow chart of the server side application is like below :

Figure 5.3 : Server Side Application Flow Chart Diagram

Start

Enter
Username &

Password

Login()

User==null GetAvailablePort()

T

F

Initialize Kinect() Initialize Sockets()

SkeletonFrameready() SerializeSkeletonData()
SendData to

WebSockets()

31

5.2 KINECT STREAMING CLIENT SIDE APPLICATION

Second part of the study is kinect streaming client side application. Client side application is

Microsoft .NET Web Application which is deployed on a Microsoft IIS Server. It consists from a

Login.aspx page , a Kinect.aspx page and an asmx Webservice for server side applications to ask

suitable port. All of the business for displaying kinect data on web page is doing by javascript files

because web pages is constructed on web sockets which server side applications write their data to

this web sockets. Client Side application composed of 4 parts.

5.2.1 Kinect Login Page

User of the system logins to the system with userName/Password combination. If this combination

is true then application takes the user’s information and stores this information at HttpSession

object. If the user doesn’t run the server applcation before the login operation application warns the

user to run the server application because before connecting to the client system user have to run

server application to take a port for transporting the kinect data to this client application. If the user

has runned the server application before login operation ,client application loads the user port value

from database and stores it at HttpSession which mentioned before and redirect the user to

KinectDataStreaming page. Login operation Code is like below:

Code 5.11 : Client Side Application Login Controller Code

 User loggedInUser = Dao.doLogin(txtUserName.Text, txtPassword.Text);

 if (loggedInUser == null) {

 "Wrong UserId/Password Combination";

 }

 else{

 if (loggedInUser.port == "")

"Firstly run the Console Application For Connecting Kinect";

 else{

 Session.Add("CurrentUser", loggedInUser);

 Response.Redirect("Kinect.aspx");

 }

32

And here is some screenshots from the login page of the system :

If the username / password combination is incorrect :

Figure 5.4 : Login Page Wrong Login Attempt

If the user gives the correct username/password combination and doesn’t run the Kinect Server

application before login operation :

Figure 5.5 : Login Page Console Application not Runned

33

5.2.2 Game Room Page

After login operation done succesfully and the server side application has been runned , user will be

redirected to game room page. On page load of this page , system looks at the user’s gameroom

value from database and if the value is null , a list of available users ,who runs the console

application and has a valid port value ,will be appear and the current user can choose one of this

users for playing the game with. After choosing a user from the list , current user’s and the selected

user’s gameroom value will be the same value and they will can see each others kinect data and

their port values will be send to the page as parameter for reading the kinect datas. If the user’s

gameroom value is not null this means that, another user has been choosed the user and set a

gameroom value to this user and at page load the user will be redirect to this gameroom and a list of

active users will not be appear to this user. Displaying kinect datas on a web page constructed with

the help of HTML5 canvas objects. After all initialization phase of the page finished from backend

of the code a javascript function will be triggered and this javascript function creates web socket

connection at page and HTML5 canvas object will be filled with data which come from this server

ports. Page load code is looks like below :

Code 5.12 : Logged In User’s Another User Selection Code

 if (currentUser.gameRoom == "")

 {

 lblStatus.Text = "Please Select a user";

 if (!Page.IsPostBack) {

 ListItem defaultItem = new ListItem("Please Select", "-99");

 drpActiveMembers.Items.Add(defaultItem);

 List<User> userList = Dao.getLoggedInAndNotActiveUsers();

 foreach (User usr in userList)

 {

 ListItem item = new ListItem(usr.userName, usr.port);

 drpActiveMembers.Items.Add(item);

 }

 }

 }

34

//If LoggedIn user is registered to a room , Find other user at same room

 else {

List<User> userList =

Dao.getOtherUserorUserListFromGameRoomInfo(currentUser.gameRoom,

currentUser.port);

 secondUser = userList[0];

 lblStatus.Text = "Currently Connected to " + secondUser.userName;

 drpActiveMembers.Visible = false;

 //Trigger client side websockets function sequencially,

 //First user will be Session User

 //Second user will be other gameRoom user

string posttext = "createSocketConnection('" + currentUser.port + "');";

ClientScript.RegisterStartupScript(GetType(), "Create Socket Connection",

posttext, true);

 }

When current user chooses an active user from activeUsers list below code block will be run :

Code 5.13 : User selection Code triggers a Javascript Function Form BackEnd C# Code

 //The selected user will be registered with current User at same Room

 if (drpActiveMembers.SelectedItem.Value != "-99"){

secondUser = Dao.getUserFromPortInfo(drpActiveMembers.SelectedItem.Value.ToString());

 Guid g = Guid.NewGuid();

 string GuidString = Convert.ToBase64String(g.ToByteArray());

 GuidString = GuidString.Replace("=", "");

 GuidString = GuidString.Replace("+", "");

 User currentUser = (User)Session["CurrentUser"];

 Dao.updateUserGameRoom(currentUser, secondUser, GuidString);

 lblStatus.Text = "Currently Connected to " + secondUser.userName;

 drpActiveMembers.Visible = false;

35

 //Trigger client side websockets function sequencially,

 //First user will be Session User

 //Second user will be other gameRoom user

 string posttext = "createSocketConnection('" + currentUser.port+"');";

 ClientScript.RegisterStartupScript(GetType(), "Create Socket Connection",

posttext, true);

 }

If gameroom has been setted scenario , a javascript will be called form serverside code which sends

the port values as parameter to this javascript function. This javascript function opens a web socket

connection at client side , and from this port kinect data will be listened and received JSON data

will be parsed at this function. And parsed value will be display on HTML5 canvas object. This

JSON data has x,y,z coordinate for each joint of the skeleton and according to this coordinates

canvas fill method will be called because canvas also use x,y coordinate to fill. This javascript

function is like below :

Code 5.14 : Triggered JavaScript Function which creates a Web Socket Client

 var socket = new WebSocket("ws://" + portValue + "/KinectHtml5");

 socket.onmessage = function (evt) {

 status.innerHTML = "Kinect data received.";

 var jsonObject = eval('(' + evt.data + ')');

 context.clearRect(0, 0, canvasHalfLength, canvas.height);

 context.fillStyle = "#FF0000";

 context.beginPath();

 for (var i = 0; i < jsonObject.skeletons.length; i++) {

 for (var j = 0; j < jsonObject.skeletons[i].joints.length; j++) {

 var joint = jsonObject.skeletons[i].joints[j];

context.arc(parseFloat(joint.x), parseFloat(joint.y), 10, 0, Math.PI * 2,true);

 }

 context.closePath();

 context.fill();

36

After Web Socket Client has been created data streamng starts for two people. And the screenshoot

of the page is like below :

Figure 5.5 : Screen Shot of Client Side application

Kinect Client Side application’s flowchart is like below :

Figure 5.6 : Server Side Application Flow Chart Diagram

Start

Login Page

User==null

T

GameRoom Page

CurrentUser.ga
meRoom == null

ChooseActiveUser
FromActiveUserList

CreateWebSockets
from UserPort

values

T F

Socket.onmessage()
Parse Json data and

Update Kinect
Skeleton

37

6 EXPERIMENTAL STUDY

In this study lots of techniques has been tried to stream Kinect cameras depth and skeleton data for

finding the optimal network solution. Because the main purpose for kind of this applications is,

using network bandwith not heavily, transferring the data uninterrupted and transferring only the

necessary data not whole of the kinect data.

In the start phase of the study Microsoft Kinect Javascript API has been tried for transferring the

Kinect skeleton and depth data. This API has some advantages and disadvantages. This API’s

advantages are enabling streaming the whole type of the Kinect data such as RGB data , depth data

and the skeleton data.,and gives some javascript functions to parse this datas at at client side. The

another advantage is it gives an excellent api functions for hand gesture recognition. The Microsoft

Kinect Javascript API’s disadvantages are, it only supports single Kinect connection and does not

transfer the Kinect data over network and also running only on a local Kinect camera. To get better

solution this API does not used for our solution.

Another tried framework for transferring Kinect depth and skeleton data over internet was ZigFu

Javascript library. This library has some advantages and disadvantages also. The advantages are

ZigFu Javascript library supports not only Microsoft Kinect cameras but also supports Asus Depth

Camera Xtion and other depth cameras. And this library also has various javasciprt functions to

parse and process the depth data. But the main disadvantage was this framework again work only

for locally connected depth camera and does not allow remote Kinect camera data processing over

network.

In fact, while exploring the Kinect data processing technologies, we find many solutions for

processing the Kinect depth and skeleton data at client side , but none of this solutions support

remote Kinect camera data processing ,and transferring the depth and skeleton data over internet is

not possible, and also all of this technologies only support for a single Kinect camera data

processing. So; we created a solutions for processing Kinect skeleton and depth data over internet ,

and with this solution multiple Kinect cameras data can be shown on a single web page. For bring

this solution to maturity we tried many technologies for finding an optimum solution.

38

6.1 Web Service Solution

With this approach for transferring a locally connected kinect cameras data to the internet, the main

idea was when the kinect camera produces new data the server application which mentinoed at

section 4.1 triggers the web service which is deployed at client side application, and the client side

application takes the sended depth and skeleton data and parse this data. After parsing operation the

data will be shown on a web page. But, when we implemented this solution we recognized that

calling a web service for a real time application like ours application , is mot an optimum solution.

Because, web service technology in some cases can treat asynchronous and this disadvantage

effected our solution because our solution is a real-time application so the data must be synchronous

with the application. Also in some cases we recognized that the data interrupted when we use web

service technology to transfer the Kinect camera data. So we did not prefer this technology for

transferring a remote Kinect camera data and we preferred the web socket technology for

transferring the data over network. Because web socket technology supports synchronized data

processing and if any error does not occurred data transferring will be uninterrupted.

6.2 Transferring XML Files Solution

After choosing the transferring technology as web-socket technology , another topic was which data

type will be streaming. Firstly, we converted the skeleton data and the depth data to the xml files,

and this converted data sended to the web page over websocket protocol. But, after transferring the

data, we recognized that processing and parsing of an xml file reduces performance of the

application too much. And this xml data is 2 times bigger than the data which is converted into the

JSON format. When programiing a real time application, developers should think about the

performance. In our applcaiton we also should think about the performance, becasuse a kinect

camera produces 30 frames per second and while transferring this data over internet we should

think about the data sizes. So we did not want to use network bandwidth heavily , we didn’t use the

XML files to transfer the Kinect camera data over internet. Another issue for why we did not

choose XML files for transferring the data is, the parsing operation of a file at client side with

javascipt again reduces the performance of the application.

39

The XML file which is used for transferrind the Kinect skeleton and depth data is shown below.

Code 6.1 : Skeleton Data in XML File Format

<?xml version="1.0" encoding="utf-8"?>

<joints>

 <joint>

 <id>Head</id>

 <xposition>45.6</xposition>

 <yposition>13.2</yposition>

 <zposition>3.4</zposition>

 </joint>

 <joint>

 <id>Left Arm</id>

 <xposition>43.6</xposition>

 <yposition>14.2</yposition>

 <zposition>3.5</zposition>

 </joint>

 …

</joints>

6.3 Test Phase of The Application

In test phase of our application we firstly tested streaming of locally connected Kinect camera data.

In local streaming we observed that there is no network latency occurred on local and the streaming

of a locally Kinect camera works stable, and also no data interruption occurred. And also we could

track and display the seated skeleton data. Here is some screen shots from locally connected camera

tests.

40

Figure 6.1 : Locally Connected Kinect Camera Data Streming and Displaying

As seen at Figure 6.1 data transmission has been done successfully. After local tests , we tested our

application at cloud and at a real network topology. The first test at cloud has done with a single

user on a cloud application. Data loss has noot been observed .The streamed data for each second

was approximately 5K * 30 fps (Frame per Second) . Total data value was approximately ~150 K

for each second with a single person test. The screen shot of remotely connected Kinect camera

skeleton data display at Figure 6.2 .

Figure 6.2 : Remotely Connected Kinect Camera with Single User

After remotely connected single user test , we tested the application with two people, each of this

user has remotely connected Kinect camera and connects to the same cloud service. And they could

41

see eah others skeleton data. But; at this test we observed some data losses. For each user the

streamed data was approximately 5K * 30 fps (Frame per Second) . Total data value was

approximately ~150 K. The people count was 2 so the for each seconf the network traffic was ~300

K. So we observed some data loses. The screen shot of remotely connected Kinect camera skeleton

data display for two people at Figure 6.3.

Figure 6.3 : Remotely Connected Kinect Camera with Multiple User

As seen at Figure 6.3 because of the network latency and the data losses the shape of the skeletons

deformed.

While we are testing the application , we also observed the WebSocket traffic with a Gooegle

Crome browser plugin to check if the sended and received data is correct or not. When we check

this data we realized at each phase of the test the data sended successfully (sometimes with small

42

data losses) to the clients,but sometimes with a network latency. This is the reason of why the

shapes displayed deformed on a browser.

When we combine all of this informations and result on a table. The table will be like below :

Table 6.1 : Application Test Phases Table

Kinect Camera Status People Count Transferred Data Size per

Second

Data Losses Observed ?

Locally Connected Single ~150 K Byte NO

Remotely Connected 1

Camera

Single ~150 K Byte NO

Remotely Connected 2

Camera

Multiple Between ~290 K and ~300K YES

43

7 CONCLUSION & DISCUSSION

With the evolution of web technologies and the depth camera technologies most of the research lab

and schools work to combine this kind of technologies to stream and interchange the depth cameras

data over internet. Also research companies has found some solutions for this problem. But most of

this applications which mentioned before in this study , only stream locally connected depth

cameras data. The main idea of this study was to solve this problem and stream not only locally

connected depth cameras data but also remote connected depth cameras data over internet

synchroneous. To achieve this solution we selected Microsoft Kinect Camera for depth camera and

the Web Socket technology for the network data streaming. Because Microsoft Kinect camera

works more stable than the other depth cameras, and web socket technology supports the

synchroneous data streaming. Also we choosed to transfer the data in JSON data because JSON

data is fully supported by the javascript API. After finishing of the study we deployed the

application on Microsoft Windows Azure cloud world to test the our thesis is working on real world

or not. We also tested our application on mobile devices such as Apple Ipad, and we see that our

application works on a cloud server and the remote connected Kinect data can be displayed on web

browsers and the mobile browsers which supports the websocket protocol. Today, Most of the

modern browsers supports Web Socket protocol.

Finally ;when we think about where we can use this framework, we found many useful usage area.

Because of the application is platform independent , the users can use this application at all of

browsers which supports the web-socket technology . This property increases the area of usage. For

example ;we can use it at remote rehabilitation center project. Most of the people rejects the

rehabilitation treatment after injuries, and at some cases the rehabilitation center treatments cost too

much for the people. To perevent people from this cases , we can use this application, because we

can track all of the skeleton data online. Another future work can be elderly people remote skeleton

tracking project. Most of the elderly people is living alone at their home, and in some cases dealing

with them couldn’t be possible. With this system because of we can stream skeleton data of the

people online, at extreme cases we can make an alarm mechanism to notify the elderly people

relatives about there is an extreme case at house. Another future project can be ; online dressing

room project. Most of the people uses e-markets for buying some clothes without seeing what they

buy and how the dress will be seen on her own. With the help of this project people can see the

clothes on their own body to have an idea how the dress will look like , and also we have all of the

44

data to measure the body size , with this data we can make a recommendation about which size of

dress to buy. Another one is ; online gaming with skeleton tracking concept. With the help of this

project people can play online games with their body movements, for example they can play table

tennis oppositely or can play penalty shooting game again oppositely and many other games.

In conclusion , streaming skeleton and the depth data over internet can be used for many industrial

project.

45

REFERENCES

[1] J. Webb, J.Ashley (2009). Beginning Kinect Programming with Microsoft Kinect SDK.).

 SoutheastCon, Proceedings IEEE.

[2] D. J Mickens,L. Zhao,J. Qiu (2010). Gibraltar: Exposing Hardware Devices to Web Pages Using

 AJAX. San Diego

[3] World Wide Web Consortium (2010). HTML5 Differences from HTML4.

[4] A. Wessels , M.Purvis ,J.Jackson ,S. Rahman (2010). Remote Data Visualization through

 WebSockets

[5] Retrieved Decemver 9, 2013,http://en.wikipedia.org/wiki/Kinect

[6] Retrieved Decemver 9, 2013,http://msdn.microsoft.com/en-us/library/dn435664.aspx

[7] Retrieved Decemver 9, 2013,http://advertboy.wordpress.com/2011/04/10/silverlight-kinect

 -apps-of-tomorrow/

[8] Retrieved Decemver 11, 2013, https://developer.mozilla.org/en-

 US/docs/Web/Guide/HTML/HTML5

[9] Retrieved Decemver 10, 2013,http://www.websocket.org/aboutwebsocket.html

[10] Retrieved September 9, 2013,http://msdn.microsoft.com/en-us/library/dn435664.aspx

[11] Retrieved Decemver 7, 2013,http://zigfu.com/en/zdk/javascript/

[12] Retrieved Decemver 8, 2013,http://www.html5canvastutorials.com/

[13] Retrieved Decemver 13, 2013,http://www.json.org/

[14] G. Xing, S.Tian1, H.Sun3, W. Liu, H. Liu (2013). People-following System Design for Mobile

 Robots Using Kinect Sensor , 25th Chinese Control and Decision Conference (CCDC)

[15] A. P. Lanari, M. Hayashibe, P. Poignet (2011) , Joint Angle Estimation in Rehabilitation with

 Inertial Sensors and its Integration with Kinect

http://www.websocket.org/aboutwebsocket.html
http://msdn.microsoft.com/en-us/library/dn435664.aspx
http://zigfu.com/en/zdk/javascript/
http://www.html5canvastutorials.com/

46

[16] P. H. Shum, S. L. Ho, Y. Jiang,, S. Takagi (2013). Real-Time Posture Reconstruction for

 Microsoft Kinect

[17] J. Konrad, M. Wang, P.Ishwar (2012). 2D-to-3D Image Conversion by Learning Depth from

 Examples

[18] G. Tao, P.S. Archambault, M.F. Levin (2013). Evaluation of Kinect Skeletal Tracking in a

 Virtual Reality Rehabilitation System for Upper Limb Hemiparesis

[19] X. Wang, Q. Ma,W.Wang (2012). Kinect Driven 3D Character Animation Using Semantical

 Skeleton

[20] J. Fabian, T. Young, P. Jones (2012). Integrating the Microsoft Kinect With Simulink: Real-

 Time Object Tracking Example

[21] Z. Xiao, F. Mengyin, Y.Yi . L.Ningyi (2012). 3D Human Postures Recognition Using Kinect.

 4th International Conference on Intelligent Human-Machine Systems and Cybernetics

[22] H. Mohamedi , T.Val , L. Andrieux, A.Kachouri , Using a Kinect WSN for home monitoring:

 principle, network and application evaluation

[23] Y. Gu, H. Do, Y.Ou, W. Sheng (2012). Human Gesture Recognition through a Kinect Sensor.

 International Conference on Robotics and Biomimetics

[24] A. L.Mendez, M.Alcoverro, M. Pardas, J.R. Casas (2011). Real-Time Upper Body Tracking

 with Online Initialization using a Range Sensor. IEEE International Conference on

Computer Vision Workshops

[25] J. Fu, D. Miao, W.Yu, S.Wang, Y.Lu, S.Li (2013). Kinect-Like Depth Data Compression.

