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ÖZET 
 

 

 

 

SALDIRI TESPİT SİSTEMİNİN UYARILARINI SINIFLANDIRAN BİR 

YAKLAŞIM 

 

 

Farshid Pourabbas 

 

 

 

Bilgi Teknolojileri Yüksek Lisans Programı 

 

 

 

Tez Danışmanı: Prof. Dr. ADEM KARAHOCA 

 

Ocak 2014, 66 Sayfa 

 

Internet ağlarının büyümesi ile bugün, veri alışverişi güvenliği önemli bir görev olarak 

kabul edilmektedir. Bu nedenle, güvenlik araçlarının kullanımı gün geçtikçe 

artmaktadır. Saldırı tespit sistemleri bu araçlar arasında yer alıyor. Uyarı olarak bir 

ağdan alınan mesajı etiketlemek mümkündür, ancak sistem durumunu açıklamak 

mümkün değildir. Bazı yöntemler saldırı tespit sistemlerinden alınan uyarıların 

ilişkilendirilmesi yoluyla yukarıdaki sorunu çözmek için geliştirilmiştir. Uyarıları 

birbirleriyle ilişkilendiren yöntemlerle, sistem durumunu açıklamak mümkün 

olacaktır. Uyarıların korelasyon yöntemlerinin adımlarından biri de sınıflandırmadır. 

Sınıflandırma verimli bir şekilde gerçekleştirildiğinde daha iyi bir sistem durumu 

tanımlanabilir. Burada, uyarıları sınıflandırmak için bir yöntem geliştirilmiştir. 

 

Anahtar Kelimeler: Saldırı Tespit Sistemleri, Uyarılar, Sınıflama, ilişki, Veri 

Madenciliği 
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ABSTRACT 
 
 
 

 

AN APPROACH FOR CLASSIFYING ALERTS OF INTRUSION DETECTION 

SYSTEMS 

 
 

Farshid Pourabbas 
 
 
 

Master of Science in Information Technologies 
 
 
 

Supervisor: Prof. Dr. ADEM KARAHOCA 

January 2014, 66 Pages 

 
 

With the growth of the Internet networks today, security of data exchange is 

considered as an important task. Therefore, the use of security tools is increasing day 

by day. Intrusion detection systems are among these tools. They are only able to label 

a message received from a network as ‘alert’, but they are unable to describe system 

status. Some methods have been developed to solve the above problem through 

correlating the alerts received from intrusion detection systems. By correlating the 

interrelated alerts, the methods would be able to describe system status. One of the 

steps of correlation methods of alerts is to classify them. System status can be 

described well when classification is performed efficiently. Here, we present a method 

for classifying alerts.  

Keywords: Intrusion Detection Systems, Alerts, Classification, Correlation, Data 

Mining 
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1. INTRODUCTION 

 

Today, with the numerous attacks and sabotages occurring over networks and 

threatening performance of many customers and its users, security centers attempted to 

look for solutions to maintain security over the network more than ever. Various 

security tools, such as firewalls, intrusion detection systems, etc. are used to improve 

security level on a network. 

  

One of the major problems of intrusion detection systems is issuance of many alerts with 

low-level abstraction. To solve this problem, we need to have some methods to issue 

alerts with higher abstraction level while reducing alerts and removing wrong alerts. 

  

With respect to the very large volume of data passing over the network, importance and 

confidentiality of the data, necessity to maintain security and protect users’ data in 

today’s world, there is a pressing need to have a security system to be able to manage 

network and protect system against possible damages. 

 

In typical systems, the tools such as firewalls, antivirus software, and intrusion detection 

systems attempt to protect a network and defend against possible attacks. These tools are 

suitable solutions to reduce the impacts of computer attacks; however, they cannot be 

considered as an inclusive approach to protect and prevent network form possible 

damages. One of the tools that gained attentions recently is intrusion detection systems. 

They are able to detect and issue an alert. Two problems concerning intrusion detection 

systems are “A large number of received alerts” and “Wrong alerts”. 

  

With respect to the above items and the fact that the issued alerts have low abstraction 

levels, as a network manager would have no understanding of system status, we need a 

system to enable us to detect relationships between these alerts. This is realized by 

collecting alerts from intrusion detection systems and providing network manager with a 

high-level vision for the attacks taken place over the network.  
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‘Correlation of alerts’ means establishing a relationship between some alerts and 

promoting them to higher-level alerts whose management is more convenient for 

network manager. 

  

As data mining means extraction of useful information out of a large volume of data, it 

can be used as a method for correlating alerts. Some of the models proposed for 

correlating alerts enjoy data mining techniques; however, all these methods have some 

drawbacks that make us keep looking for some efficient methods with low 

computational and memory overhead.   

 

The rest of the article discusses the following items: Section two reviews literature, the 

proposed method is explained in section three, conclusions are brought about in section 

four, and section five discusses the results. 

 

 

1.1 PROBLEM STATEMENT  

Nowadays, numerous attacks and sabotages occurring in the network threatened many 

customers and users of the network; this issue has made the security companies look for 

ways, more than before, to protect the security of their networks. In order to enhance the 

security level of the network, they use various security tools such as intrusion detection 

systems, firewalls, and anti-viruses. 

 

Expansion of the network and the security devices always cause a lot of alerts from the 

network elements to be sent to the network administrator. Unfortunately, the number of 

these alarms is so high, and their abstraction level is so low that their analysis is not 

practically possible for the network administrators. In addition, many of these alerts are 

false positives. 

 

Intrusion detection systems are one of the available methods for monitoring the security 

status of the network and their analysis. 

 

Intrusion detection systems are an appropriate solution for reducing the impact of 
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computer attacks, but why they cannot be considered as a comprehensive solution for 

protecting and preventing from possible harms for the network. There are many reasons 

for this, which are noted in the following examples: 

 

i. The high number of received alerts: the first case is the high number of alerts 

generated by these tools, such that alert numbers received in a computer network may be 

about 15,000 alerts per second. Managing these alerts for a human user, who is supposed 

to monitor and manage the system, is very difficult and practically impossible. 

 

ii. False alerts: false alerts caused the decision-making not to be done properly in 

connection with the attacks on the network. These false alerts may exist in two forms. 

The first group is false positive alerts, including alerts generated wrongly. For example, 

suppose that Linux operating system has been installed on a victim system, and the 

attacker performs an attack which is capable of affecting the Windows operating system, 

if intrusion detection systems issue an alert, this alert certainly will be a false positive 

alert. The second group is false negative alerts, including alerts which must be generated 

by intrusion detection systems, but they have not been generated. These alerts are 

detectable by examining the previous and the next alerts. 

 

iii. Incapability of discovering complex attacks: the biggest problem of tools such as 

intrusion detection systems and firewalls is that they are incapable of detecting complex 

and multi-stage attacks. Nowadays cyber threats are not summarized in simple and one-

step attacks, and attackers, by working on the vulnerabilities of target systems, are trying 

to break the security system’s lock in some interconnected and interrelated stages, which 

cause the intrusion detection systems not to find the communication between various 

stages and to reveal behind the curtain of scenario. 

 

Considering the above reasons, we need a system that can find the relationship between 

these alerts, by collecting alerts from intrusion detection systems, to provide a high 

vision of network attacks for human user and the network monitoring system.  

 

Correlation of alerts means establishing a relationship between several alerts, and 

upgrading them to high level alerts that their management is easier for the network 
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administrators. 

 

Since data mining means extracting useful information from a massive amount of data, 

so it can be used as a method for correlating alerts. Some of the proposed methods of 

correlating alerts have utilized data mining techniques, but all of these methods have 

some weak points that still make us to provide efficient methods with low computational 

and memory overhead. 

 

In this thesis, in addition to reviewing the previous works in the field of correlating 

alerts and their analysis, we propose a method based on data mining (frequent pattern 

mining) for correlating alerts.  

 

1.2 BACKGROUND 

 

The aim of correlation is providing a comprehensive outlook of events occurring in the 

system for the system administers or the system replying to hack. Instead of generating 

hundreds of discrete and low-level alerts, the correlator presents a high-level alerts or a 

scenario to the system administer, by verifying the generated alerts and discovering their 

logical relations. 

 

Correlating is also known as construction of attack scenario or extraction of attack 

scenario. Works performed in the field of alerts correlation are divided into the 

following categories, based on how they correlate the alerts: 

 

1.2.1 Alert Correlation Cased on a Known Scenario: 

 

In these methods, causal relationships between alerts are expressed as attack scenario. 

Two alerts are correlated with each other, if the possibility of constructing of attack 

scenario exists with their combination.  The main problem of this category of methods is 

that if the attacker uses a new scenario for attack, these methods will not be able to 

correlate the alerts. The most important languages that are used in these methods to 

describe attacks include: 

STATL, LAMBDA, ADELE  
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Attack scenario can be achieved by two methods: 

a) Using previous knowledge  

b) Using machine learning techniques. 

 

Authors have used the method of prior knowledge to obtain attack scenarios. To fix the 

problem of slow attacks they have used queue graph to correlate the alerts. Queue graph 

is an attack graph, in which they put a queue instead of each exploit, and they put a 

variable instead of each security condition. Attack graph consists of a set of security 

conditions and exploits (Wang et al., 2006). 

 

Only one alert can be placed in each queue. When an alert is given, its corresponding 

exploit is specified and placed in the queue by using a function.  In this function, the 

mapping is performed by using prior knowledge. 

 

Identifying all the attack scenarios by using prior knowledge requires so much time and 

labor. These methods are not able to detect new attacks. To overcome these problems, 

machine learning techniques and data mining techniques used to extract the relationship 

between alarms. By using MLP and support vector machine classifier, the probability of 

correlation between two alerts based on the similarities among features of IP source, IP 

destination, destination port, and time stamp of alert is calculated (Zhu and Ghorbani, 

2006). 

 

In this method, when a new alert arrives, at first, a hyper alert possessing the alert which 

has the highest probability of correlating with new alert is defined by using MLP neural 

network and support vector machine classifier. If the probability of the obtained 

correlation was lower than the correlation threshold, the new alert would not be 

correlated with any alert. If the calculated probability was higher than the threshold, then 

correlation probability of new alert would be calculated by all of present alerts in the 

obtained hyper alert. 

 

Therefore, an alert would be correlated with the new alert that the difference between 

their probability and the highest probability, that previously were found, would be lower 

than the correlation sensitivity measure. If no alert was found for correlation, the new 
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alert would be place in a new hyper alert. 

 

AprioriAll algorithm has been used to correlate the alerts. AprioriAll is a sequential 

pattern mining algorithm. First, this algorithm is applied on a collection of alerts, and 

some collections of alert classes are generated as the output. Then these collections are 

converted into some graphs in which each node represents an attack class (Agrawal and 

Srikant, 2000). 

 

1.2.2 Alert Correlation Based on Rules 

 

Methods based on rules are one of the most significant methods in correlation between 

alerts, and many studies have been done on these methods. The idea of these methods is 

based on a principle that the attacks are not usually separated. Each attack provides the 

conditions for the next attack or the next stage of an attack. The relations between alerts 

in these methods are determined by applying the rules. Alert A is correlated with alert B, 

if alert A, based on existing rules, is prerequisite for alert B. 

 

In Xu and Ning, the concept of resource is used for indicating the prerequisite and the 

consequences of an attack. The resource may be a port, a service, and so on. The 

prerequisite of an attack is named input resource, and the consequence of an attack is 

named output resource. In this methods the causal relationships between resources is 

provided as rules, and they are used in the correlation between alerts. We used partial 

adaptation in this article; it means that if the result of an alert meets at least one of the 

prerequisites of the other alert, those two alerts would be correlated with each other’s 

(Xu and Ning, 2005).  

 

A language for describing the attacks has been introduced in “Building scenarios from a 

heterogeneous alert stream”. The concept of capability has been used in this language 

for expressing the prerequisites and consequences of attacks. Occurrence of each attack 

needs a series of capabilities, and this occurrence leads to the realization of a series of 

capabilities. The prediction of the next steps is possible in this method. In this method, 

all prerequisites of an attack must be satisfied, so that the attack would be considered. So 

one of the steps of a multi-step attack is not diagnosed by IDS, the attack scenario will 
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never be detected (Dain and Cunningham, 2002). 

 

In “Constructing attack scenarios through correlation of intrusion alerts”, “Ning et al” 

have paid attention to modeling of prerequisite relationship between alerts. Writers of 

this article have introduced a concept named hyper alert type. A hyper alert type is <fact, 

prerequisite, and consequence >. 

 

Fact: a set of features including information about the alerts. 

Prerequisite: a set of conditions required for the attack to be successful, which is 

described as a conjunction of a logical predicate. 

Consequence: The results of an attack which is described in the form of a collection of 

logical predicates.  

 

In this method, for correlating alerts, they are processed by a processor, in order to make 

hyper alerts. Then prerequisites of a hyper alert would be compared to the results of 

other hyper alerts, and if they are in accordance with each other, they would be 

correlated. 

 

In this method, a graph named correlation graph is used for displaying correlation 

results. In this graph each node is a hyper alert and each edge represents the correlation 

between them (Ning, Cui and Reeves, 2002). 

 

In another article by Ning “Building attack scenarios through integration of 

complementary alert correlation method”, a method is proposed for hypothesizing the 

missing alerts of intrusion detection systems. Authors of this article have combined 

methods based on similarity, prerequisite, and consequence, in order to recognize the 

attack scenarios in a high level manner (Ning, Xu, Christopher, Healey and Amant, 

2004). 

 

 Performance of rule-based methods depends on the prior knowledge and skill of the 

expert. These methods do not work well when facing new attacks. 
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1.2.3 Alert correlation based on statistic 

 

In these methods, if two alerts statistically depend on each other, they would correlate to 

each other. This category of methods requires a training database for mining attack 

scenarios. Thus, the efficiency of this category of methods depends on the amount of the 

credit of the database. Updating these methods is difficult. Because adding a new attack 

pattern needs retraining the system. 

 

In “A scalable continuous query system for internet databases” a Bayesian network is 

used for modeling the causal relationships between alerts. In this method alerts are 

shown by nodes, and causal relations are shown by edges (Chen, DeWitt, Tian and 

Wang, 2000) 

 

In another similar article, Ren et al have used Bayesian networks to extract information 

about causal relationship between alerts, and then reconstruct attack scenarios based on 

extracted information (Ren, Stakhanova and Ghorbani, 2010) 

 

1.2.4 Temporal correlation 

 

In these methods, two alerts are correlated to each other based on temporal relationships. 

Analysis of time series has been used to explore the causal relationship. In this method, 

alerts whose all features, except the temporal label, are the same is placed in one 

category. 

Therefore a hyper alert is made for each category, based on the time of occurrence. In 

fact each hyper alert is a graph in which the alerts of a category have been connected 

together other in a chronological order. Then each hyper alert is divided into time 

intervals, and the number of alerts of the hyper alert in these intervals is determined. The 

collection of these numbers is a time series for each hyper alert (Qin and lee, 2003). 

 

Lee and Keane have introduced a method in which causal relationships between alerts is 

analyzed by using Granger causality test (GCT). Granger causality test is a statistical 

analysis method based on time series that provide the possibility of analyzing the 

correlation of time series variable X with time series variable Y, by using statistical 
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hypothesis testing. Hyper alerts are made for analyzing time series of correlation of 

alerts, by integration of alerts which all values of all features, except time differences, 

are the same (Granger, 1999).   

 

Time series variables are modeled for all hyper alerts base on the number of alerts in the 

unit of time, and then the Granger causality test is performed. Granger causality test 

determines whether the variable X provides significant information about variable Y or 

not. If the answer is yes, then alert X could be the cause of the alert Y. This method is 

not highly dependent on prior knowledge (Reza Sadoddin, 2006). 

 

As it was mentioned, one of the methods appropriate for correlating alerts is the use of 

machine learning and data mining techniques. One of the data mining methods is the 

frequent pattern mining. Based on this fact that most of attacks have frequent sequential 

features, the issue of behavioral pattern mining of attack can be converted into frequent 

pattern mining of alerts. Frequent patterns are patterns which have been repeated in a 

data set with a frequency more than or equal to what is determined by the user as a 

threshold.  For example, some sets such as milk and bread, which are usually applied 

together in transactions of a transaction database in a store, are a set of frequent items. 

 

Sadoddin et al have presented a framework for real-time correlation of alerts based on 

the number of simultaneous occurrence of alerts. The presented framework provided a 

tool for processing a continuous stream of alerts. They have extracted frequent patterns 

using Fp-Growth algorithm, and then they create attack scenarios (Sadoddin, 2006). 

 

First in this method, alerts correlated to the graph structures, based on information of 

their connection considering alerts’ source and destination. Each of these structural 

patterns may reveal attack strategies, or normal models, which have been created by 

false positive alerts. Then the FP-Growth algorithm has been used for mining the 

sequential structures. FP-Growth algorithm uses FP_Tree, which provides a compact 

data structure for storing frequent candidate patterns. This method has some problems. 

According to the authors, creating an FP_Tree needs a lot of memory and if the tree gets 

larger, processing time may be reduced. 
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In this thesis we are going to provide a method for correlating alerts, so as to reduce the 

number of alerts, and also to produce alerts with a higher level of abstraction. In this 

thesis we will try to provide a method for correlating alerts received from intrusion 

detection system, by using the methods of frequent pattern mining, and to extract attack 

scenarios. 

 

1.3 RESEARCH OBJECTIVES 

 

1.3.1 Scientific Objectives: In this thesis, we are trying to review the existing methods 

for correlating alerts received from intrusion detection systems, and to provide a new 

method. 

 

1.3.2 Practical Objectives: in this thesis, we are trying to correlate the alerts received 

from IDS, and to extract attack scenarios. 

 

1.3.3 Specific Requirements of Research: Expansion of the network and the security 

devices always cause a lot of alerts from the network elements to be sent to the network 

administrator. Unfortunately, the number of these alarms is so high, and their abstraction 

level is so low that their analysis is not practically possible for the network 

administrators. In addition, many of these alarms are false positives. In this thesis we are 

trying to correlate the alerts in order to generate alerts with a higher level of abstraction. 

 

 

  



 

11 

 

2. MATERIALS AND METHODS 

 

 

2.1 CORRELATION METHODS ANALYSIS 

First of all two alert correlation methods are described and their weaknesses and 

strengths are explained. Second, a combination of the two methods is used to develop 

a new model: 

Alert correlation methods are classified into several groups. One of them uses machine 

learning techniques. The Zhu and Ghorbani method, which is described below, is an 

example of this type of methods. The advantage of these methods is that they do not 

require “formulated prior knowledge”.  

 

2.2 ZHU-GHORBANI METHOD 

The method introduced by Ghorbani and Zhu (2006) is classified into the group of 

methods based on machine learning. In this method, the correlation between two alerts 

is analyzed using neural networks, which act as a learner machine. Afterwards, the 

alerts are classified so that each group of alerts, known as a hyper-alert, represents a 

group of correlated alerts.  

This method utilizes the DARPA 2000 data set. This data set includes alerts generated 

by intrusion detection systems and saved as dump files. This method works by reading 

from a data set. The data is then prepared for process (because the data set contains 

raw data). Hence, preprocessing is necessary before implementing the method.  

Zhu and Ghorbani diagnose correlations based on 6 qualities of correlation, which are 

as follows: 
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a) Similarity Between Source IP Addresses Of Two Alerts: 

The source IP address of the alert reflects the identity of the attacker. Therefore, two 

attacks with one IP address are probably associated with one attack scenario and can 

be correlated. Similarities between two source IP addresses are calculated as follows: 

 

Sim (IP1, IP2) = 32
n

  

Source: B. Zhu, A. Ghorbani, (2006). Alert correlation for extracting attack strategies. 

International Journal of Network Security, vol. 3, no. 3, pp. 244–258. 

 

In the above relation, n stands for the maximum sequence of bits equal in quantity and 

32 is the length of an IP address. For example, the similarity value for the following 

two IP addresses is equal to 0.75: 

IP1=192.168.0.001=> 11000000 10101000 00000000 00000001   

IP2=192.168.0.201=> 11000000 10101000 00000000 10000001   

Source: B. Zhu, A. Ghorbani, (2006). Alert correlation for extracting attack strategies. 

International Journal of Network Security, vol. 3, no. 3, pp. 244–258. 

 

b) Similarity Between Destination IP Addresses Of Two Alerts: 

The significance of the similarity between destination addresses is way more than the 

similarity between source addresses. The reason is that probability of correlativity of 

two alerts with two different destination addresses is very low. In order to obtain the 

similarity between two destination IP addresses relation (1) is used.  

 

c) Identical Destination Port Numbers: 

Before an attacker can exploit the vulnerability of a service that is listening on a 

certain port, he should know whether the port is open. Hence, this is very important for 

correlation between two alerts.  
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d) Equality Of Current Alert Source IP Address And Previous Alert Destination IP 

Address: 

The reason for utilizing this capability is that attackers sometimes launch their attacks 

from another computer.  

 

e) Rollback Correlation Between Two Alerts: 

The value of this quality is between 0 and 1 and is obtained using the following 

relation. 

 

 N

k aac

aacb

aac

ji

ji

ji W

W

1 ),(

),(

),(
    

Source: B. Zhu, A. Ghorbani, (2006). Alert correlation for extracting attack strategies. 

International Journal of Network Security, vol. 3, no. 3, pp. 244–258. 

 

The term ),( ji aacW
in the above relation shows the correlation between two alerts in the 

Alert Correlation Matrix (ACM). In the following is described how the matrix is 

calculated.  

 

f) Frequency Of Correlations Between Two Alerts: 

The value of this quality is between 0 and 1. Values approaching zero indicate that the 

two alerts are rarely correlated. However, values close to one indicate that the two 

alerts are frequently correlated.  

 

After extracting the above qualities, it’s time for identifying correlations between two 

alerts. In this method, correlations are identified using the MLP model, which is a 

model of neural networks.  
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2.2.1 The MLP Model for Identifying Correlation between Two Alerts 

The neural networks employed here is a three-layer model with 6 neurons in the first 

layer, 7 neurons in the middle layer, and 1 neuron in the last (outer) layer. First an 

explanation of the network is required. We use data presented in the above mentioned 

source and use the network for analyzing the correlation between two alerts. That is to 

say, the aforementioned 6 qualities of the two alerts under study are calculated first 

and the values are used as the input for the neural network. The network output is a 

value that reflects the probability of existence of a correlation between the two alerts. 

The value is also used for creating the alert correlation matrix.  

 

2.2.2 Alert Correlation Matrix (ACM) 

The value (power) of the correlation between two alerts plays an important role in the 

analysis of attack patterns. It can reveal the causal relationships between two alerts. 

However, deciding on the value of correlation (or determining the power of the 

relationship between two alerts) is difficult since it requires wide knowledge of attacks 

and relations among them.  

 

Zhu and Ghorbani used the Alert Correlation Coefficient, which shows the weights of 

correlations between two alerts. The power of a correlation can be calculated based on 

this matrix. Hence, it provides more information on methods for correlating alerts and 

analyzing attack strategies. The matrix is used with an aim to create attack graphs that 

help to discover the strategies implemented by attackers. The following figure shows 

the alert correlation matrix for three alerts. The values of elements show the 

probability of correlation between two alerts that can be obtained by the correlation 

engine.  
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         Table 2.1: Alert Correlation Matrix (Acm) 

 

 

 

 

 
        Source: B. Zhu, A. Ghorbani, (2006). Alert correlation 

  

2.2.3 Correlation Method  

 

The output of the correlation engine is used for determining correlativity of two alerts. 

In the next step, a group of correlated alerts are shown. The group is named the hyper-

alert group. In the following is presented an algorithm for the creation of hyper-alerts. 

However, first some definitions are required to be presented: 

2.2.3.1 Hyper-alert: A hyper-alert is shown with the <V, E, C> ternary. V is the 

known as the vertices and shows the input alerts. E includes the edges and shows the 

relationship between two alerts. Finally, C shows the probability of correlativity of 

two alerts. 

Each hyper-alert includes a number of interconnected alerts that mark a type of attack. 

In order to create a hyper-alert two thresholds are defined: correlation threshold and 

sensitivity threshold.  

Correlation threshold is used for proving correlativity of two alerts. That is to say, the 

output of the correlation engine for the two alerts is compared with the correlation 

threshold. If the output exceeds the threshold the two alerts are known as correlated 

alerts; otherwise, they are considered uncorrelated alerts. In this method, the value of 

the correlation threshold is assumed to be 0.5. 

Normally when an alert is included in a hyper-alert, it connects to the last alert in the 

hyper-alert. However, when an alert is a sequence of several other alerts it should be 

connected to several alerts in the hyper-alert. The sensitivity threshold determines the 

alert in the hyper-alert that should be connected to the input alert. To this end, the 
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difference between the probability between two alerts and the probability between the 

received alert and other alerts in the hyper-alert is calculated. If the difference is less 

than the sensitivity alert, the incoming alert is connected to them. Here, the threshold 

is assumed to be 0.1.  

Figure 2.1: Algorithm, Correlation Method 

A: List of alerts 

r: Correlation threshold 

s: Correlation sensitivity 

initialize hyper-alert list H 

for all each alert ai in A 

for all hyper-alert hj that contains an alert aj 

such that the correlation probability of ai and aj is maximum 

m ← this maximum correlation probability 

if m > r then 

for each alert ak in hj 

if m-(probability between ak and ai) < s then 

connect ai with ak 

else 

create a new hyper-alert 

put ai in new hyper-alert 

Source: B. Zhu, A. Ghorbani, (2006). Alert correlation for extracting attack strategies. International 

Journal of Network Security, vol. 3, no. 3, pp. 244–258. 
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2.2.4 Creating the Attack Graph Using the Alert Correlation Matrix 

In this method ACM is used for creating the attack graph. The attack graph is created 

based on model data and output of the alert correlating algorithm. A typical attack 

graph is defined as follows: 

An attack graph is an oriented graph that is shown as G= (V, E, C). V stands for the 

word Vertices and refers to alert a. E stands for the word Edge and includes (vi, vj). It 

reflects the transition from alert ai to alert aj. Finally, C includes the ci,j collection, 

which shows the power of correlation between alerts ai and aj. The process of creation 

of an attack graph using ACM is illustrated in the following algorithm (Zhu and 

Ghorbani, 2006) 
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Figure 2.2: Algorithm, ConstrucGraphsFormACM(a,r) 

a: the starting alert of the attack graph 

r: the f  threshold 

initialize graph G 

initialize queue q 

q ←ai 

G ←ai 

While not q.isEmpty() 

a ← q.dequeue() 

for j ← 0 to number of alerts in ACM 

if 
f

aacell j ),(  > r 

if aj has not been visited 

q ←aj 

visit aj 

G ← G U (a,aj) 

Ci,j ← 
f

aacell j ),(  

G ← G U Ci,j 

Return (G) 

Source: B. Zhu, A. Ghorbani, (2006). Alert correlation for extracting attack strategies. International 

Journal of Network Security, vol. 3, no. 3, pp. 244–258. 
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2.2.5 Pros and Cons Of The Zhu-Ghorbani Method 

The advantage of this method is that it does not required prior knowledge. 

The disadvantage of this method is the relationships among alerts in a hyper-alert. It 

seems that the value of the sensitivity threshold is not appropriate because in practice 

only a few alerts are included in a hyper-alert. 

  

2.3 LEE METHOD 

Statistical methods are another means of correlating alerts. In these methods, Bayesian 

networks are commonly used for obtaining information on causal relationships among 

alerts. In the following a method is studied which uses Bayesian networks for 

obtaining information on relationships and regenerating attack scenarios.  

2.3.1 Alert Correlation 

In this method, first the alerts are aggregated and classified. Afterwards, classified 

alerts are prioritized prior to be subjected to correlation. Aggregation and classification 

of alerts lead to a reduction in redundancy of alerts. However, the important qualities 

of the alerts such as IP addresses, port number, etc. are retrained.  

In this stage, received alerts of one single attack are aggregated. Aggregated alerts 

with identical qualities are classified into one group named the hyper-alert. Alert 

prioritization assigns orders to hyper-alerts based on the network configuration. 

2.3.2 Probabilistic Inference For Alert Correlation 

Experiments indicate that when a system is attacked it is either turned into a target for 

future attacks or is used as a platform for attacks to other systems. Hence, a sequence 

of attacks to a specific host can be used as a proof for other probable attacks. Although 

it is possible to correlate these attacks using if-then sentences, it is not possible to 

express all attacks using this structure. Therefore, here a probabilistic inference model 

is used for correlating alerts. It is done by establishing an indicator system of a 

sequence of attacks and having prior knowledge of transition of attacks. In the 
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following is described how probabilistic inference can be used for a sequence of 

attacks to discover complex relationships among attacks.  

The following figure shows the correlation inference process. At the beginning, the 

evaluator analyzes one or several qualities of a sequence of alerts and sends the result 

to the inference model. Next, the inference model turns the results of evaluations by 

evaluators into a decision through calculation and distribution of correlation beliefs 

over the inference model (Bayesian network).  

                              Figure 2.3: Inference flowchart 

 

       Source: B. Zhu, A. Ghorbani, (2006). Alert correlation  

        

The above procedure includes the following steps: 

In the first step the alerts are accumulate and classified. The objective of this phase is 

to reduce redundancy among alerts. Alerts are accumulated based on their properties 

such as source IP address, destination IP address, destination port, etc. Next, alerts 

with identical properties are classified into one group and each group is called a hyper-

alert. 

In the second step the Bayesian network is used for explaining relations between 

alerts. These relations are derived from prior knowledge.  
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2.3.3 Bayesian Network 

The Bayesian network is a directed acyclic graph in which vertices show variables and 

edges show the relationships among them. In this network relationships are expressed 

as conditional probabilities. The Bayesian network has two parameters to be learnt. 

Learning in a Bayesian network refers to the process of learning these two parameters. 

The first parameter includes the probability of nodes without parents (the so called 

prior nodes). The second parameter is allocated to the conditional probabilities 

between parents and children (which are called evidence). 

The output from the Bayesian network depends on the precision of these two 

parameters. Hence, these parameters should be determined based on prior knowledge 

(Xu and Ning, 2005). 

 

2.2.4 Pros and Cons of the Lee Method 

a) The advantage of the method is that it explains the relationship between alerts 

based on useful statistical information. 

b) The disadvantage of this method is that it requires prior knowledge.  
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2.4 RECOMMENDED METHOD 

It seems that the two methods discussed above are successful in correlating alerts. In 

the following we are going to explain our plan using the two mentioned methods.  

The Alert Correlation Method (ACM) is useful for demonstrating correlation between 

two alerts and extracting an attack scenario. However, the relationship between alerts 

contained in a hyper-alert is not satisfactory. Hence, we are going to introduce a 

method for relating alerts. The relations among alerts can be used to create the attack 

graph.  

The method introduced by Lee requires prior knowledge. In fact, they obtain the attack 

scenario from the correlations between alerts. They skip the phase of alert 

classification and use the methods introduced by others instead.  

It can be said that building an attack scenario from classified alerts requires a 

completely network vision. The knowledge gained by the experts can be useful for 

creating an attack graph. In fact, the stronger the knowledge, the better the scenario 

will be. Hence, we are going to address the problem using data mining techniques and 

we are going to focus on the classification and correlation of alerts. 

The proposed method includes the following steps: 

a) The following steps are taken for each received alert. 

b) Alerts are classified using the fuzzy method explained below. First, using a multi-

layer neural network as the correlation engine the output for a pair of alerts is 

calculated.  

If the desired output exceeds the predefined threshold, we skip into stage 3; otherwise 

a new hyper-alert is created, which will include the above alert. 

c) The received alert is connected to all the available hyper-alerts. In addition, the 

square of the output from the correlation engine is used as the degree of 

membership for joining this alert to the existing alerts.  



 

23 

 

d) The attack patterns are compared to hyper-alerts in order to discover the attack 

mechanism. The fuzzy inference method can be used here as long as attack patterns 

are known.  

 

2.4.1 Using a Multi-Layer Neural Network As The Correlation Engine 

As it was explained in the Zhu-Ghorbani method, a multi-layer neural network can be 

used as a correlation engine. First, the neural network is examined using the following 

test samples. It shall be noted that the quality utilized in the Zhu-Ghorbani method is 

employed here as well.  

After teaching the above network it is put into use as follows. First, the qualities 

obtained from the received alert are compared to the last alerts in the hyper-alerts. 

Next, the values are transferred to the correlation engine. The network output shows 

the probability of correlativity of two alerts. If the value exceeds the determined 

threshold (threshold=0.5), it is attached to the last alert in the hyper-alert. It shall be 

noted that using this method one alert can be appeared in several hyper-alerts. The 

output from the correlation engine is used as the degree of membership for joining one 

alert to the desired hyper-alert.  

 

2.4.2 Using the Fuzzy Model for Establishing Connections Among Alerts 

When the output from the correlation engine for each received alert and the last alert in 

the hyper-alert exceeds the threshold value, the alert is included in the hyper-alert. The 

output from the correlation engine is also used as the degree of membership for joining 

the alert to the hyper-alert.  

After checking all alerts several hyper-alerts are obtained that can have one or several 

alerts (with different degrees of membership) in common. In order to illustrate the 

attack scenario the following steps are taken: 

a) First prior knowledge obtained from experts should be turned into fuzzy rules. 

b) Next using fuzzy inference model we relate hyper-alerts with attack scenarios. 
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It shall be noted that since the relationship of each alert with its succeeding alert is 

explained using degree of membership, the fuzzy inference model can be used.  

The main problem is turning prior knowledge o fuzzy rules. The reason is that 

precision of these rules affects the demonstration of attack scenarios. In addition, 

turning prior knowledge into fuzzy rules is another challenge.  

In the following the above mentioned method is compared to the Zhu-Ghorbani 

method.  

First, the first 30 alerts in the DARPA 2000 data set are extracted using sniffing 

software. Next, a matrix is created based on the resulting alerts. The matrix includes 6 

qualities including alert number, alert delivery time, alert source IP address, alert 

destination IP address, destination port number, and alert length. The described matrix 

is illustrated below. 

The 30 alerts are later used as the input for the proposed algorithm as well as the 

algorithm introduced by Ghorbani and Zhu. The output from these algorithms is as 

follows: 

a) Using the Ghorbani-Zhu method the total number of hyper-alerts was equal to 28. 

That is to say, there are only two hyper-alerts with two alerts and the rest of the 

hyper-alerts only include one alert. This quantitative output is far from reality 

because the combination of the above 30 alerts implies that a large number of alerts 

can be classified into one class.  

b) Using the method proposed in this paper only 1 hyper-alert was obtained and all the 

other 30 alerts were interconnected. 
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2.4.3 Information on Alerts Exported From DARPA 2000 Dataset into Matrixes 

Table 2.2: Information Exports From DARPA 2000 Dataset 

Destination Protocol Length Info 

Falcon.eyrie.af.mil TELNET 60 Telnet Data… 

Delta.peach.mil TCP 60 Telnet Data 

Falcon.eyrie.af.mil TELNET 60 
63281>telnet [ACK] Seq=2 Ack=2 

Win=33580 Len=0 

Falcon.eyrie.af.mil TCP 60 Telnet Data… 

Delta.peach.mil TCP 60 Telnet Data… 

Falcon.eyrie.af.mil TELNET 60 
63281> telnet [ACK] Seq=4 Ack=4 

Win=33580 Len=0 

Falcon.eyrie.af.mil TELNET 60 Telnet Data… 

Delta.peach.mil TELNET 60 Telnet Data… 

Falcon.eyrie.af.mil TCP 60 
63281> telnet [ACK] Seq=5 Ack=5 

Win=33580 Len=0 

Falcon.eyrie.af.mil TELNET 60 Telnet Data… 

Delta.peach.mil TELNET 60 Telnet Data… 

Falcon.eyrie.af.mil TCP 60 
63281>  telnet [ACK] Seq=6 Avk=6 

Win=33580 Len=0 

Falcon.eyrie.af.mil TELNET 60 Telnet Data… 

Delta.peach.mil TELNET 60 Telnet Data… 

Falcon.eyrie.af.mil TCP 60 
63281>  telnet [ACK] Seq=7 Ack=7 

Win=33580 Len=0 

Falcon.eyrie.af.mil TELNET 60 Telnet Data… 
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Delta.peach.mil TELNET 60 Telnet Data… 

Falcon.eyrie.af.mil TCP 60 
63281>  telnet [ACK] Seq=8 Ack=8 

Win=33580 Len=0 

Falcon.eyrie.af.mil TELNET 60 Telnet Data… 

Delta.peach.mil TELNET 60 Telnet Data… 

Falcon.eyrie.af.mil TCP 60 
63281> telnet [ACK] Seq=9 Ack=9 

Win=33580 Len=0 

Falcon.eyrie.af.mil TCP 60 Telnet Data… 

Delta.peach.mil TELNET 60 Telnet Data… 

Falcon.eyrie.af.mil TCP 60 
63281> telnet [ACK] Seq=10 

Ack=10 Win=33580 Len=0 

Falcon.eyrie.af.mil TELNET 60 Telnet Data… 

Delta.peach.mil TELNET 60 Telnet Data… 
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2.5 LITERATURE 

In Zhu-Ghorbani method correlation probability between two alerts is calculated based 

on similarity of features of source IP, destination IP, destination port, type of alert, and 

timestamps using Multi-Layer Perception (MLP) neural network and Support Vector 

Machines (SVM). In this method, when a new alert is received, a hyper-alert that 

includes an alert with maximum correlation probability with the new alert is specified 

using MLP and SVM. If the detected correlation probability was less than correlation 

threshold, the new alert is not correlated with any alerts. If the calculated probability 

exceeded threshold, correlation probability of the new alert is calculated with all the 

available alerts in the detected hyper-alert. After that, the alert is correlated with the 

new alert whose difference of probability with the highest probability detected earlier 

is less than criterion of correlation sensitivity. If there is no alert for correlation, a new 

alert is placed in a new hyper-alert (Zhu and Ghorbani, 2006). 

Following figure shows a framework presented for alert correlation. Unprocessed 

alerts are received continuously by integration unit. This unit correlates alerts to graph 

structures based on their connection information with respect to the source and 

destination of the alerts. Each structural pattern may show attack strategies or maybe 

the normal pattern created due to positive false alerts. The created patterns may change 

dynamically as long as they become fixed. The fixed structural patterns are transferred 

to the next unit to create a set of transactions for the following processes.  

    Figure 2.4: A framework for correlation between alerts 

 

Source: R. Sadoddin and A. A. Ghorbani, (2009) An incremental frequent structure    

mining framework for real-time alert correlation. April 2009. 
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In this method, features of source IPs, destination IPs, attack classes, and timestamps 

are used for different alerts. Feature of port is not used in this method as frequent 

patterns are shown by data graph structures, which are nodes of network hosts and 

edges of the alerts issued between hosts. On the other hand, a port is not an unreliable 

feature source (as each intruder can easily change his/her port) and value of destination 

port in most attacks is not important (Sadoddin and Ghorbani, 2009). 

In the method presented for creating candidate frequent patterns, transactions are 

created based on the connection information of corresponding alerts. Here, one method 

is presented for exploring frequent patterns incrementally and maintaining them in the 

reduced data structure (FP-tree). 

FP-Growth algorithm was used for exploring sequential structures. FP-Growth 

algorithm uses FP_Tree, which is a compressed data structure for storing frequent 

candidate patterns a concept called ‘source’ was used in D. Xu and P. Ning, “Privacy-

preserving alert correlation: A concept hierarchy based approach”, to show 

prerequisite and consequence of an attack. A ‘source’ can be a port, a service, etc. 

Prerequisite of an attack, input source, and its consequences is called ‘output source’. 

In this method, the causal relationships between resources were prepared in the form 

of rules and they are used to create correlations between alerts. Two alerts are 

correlated when the output source of either of them include one of the input sources of 

the other and/or lead to them.   

Minor compliance was used in this article. That is, if the result of an alert meets at 

least one of the prerequisites of another alert (regarding time relationship), those alerts 

will be correlated. 

 

2.6 PROPOSED METHOD SUMMARY 

Correlation of alerts has several steps as follows. First, alerts are classified after 

preprocessing. Then an attack scenario is created using the available alerts in a group. 

An attack scenario is strongly dependent on the earlier knowledge and classification 

quality. Earlier knowledge is meant the knowledge collected from professionals that 
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can help to create an attack graph (that expresses attack scenario). The richer and more 

accurate the knowledge is, the presented scenarios will be better. Therefore, we intend 

to focus on a part to be able to solve the problem using data mining techniques. As a 

result, we will concentrate on how to classify and correlate alerts.  

Our proposed method encompasses the following steps: 

i. For all the received alerts, we do the following steps. 

ii. Classification of alerts using the fuzzy method explained below. 

First, we calculate output for a pair of alerts using MLP neural network as a 

correlation engine. We teach the above neural network using training samples.  

If the relevant output were bigger than the predefined threshold, we would go through 

step 3; otherwise, we create a new hyper-alert and put above alert in it. 

We connect the received alert to all the available hyper-alerts and we use the second 

output power of the correlation engine as membership degree of the alert to the present 

hyper-alerts. 

 

2.6.1 Using Neural Network as a Correlation Engine 

As explained in the method of Zhu and Ghorbani, a multi-layer neural network can be 

used as a correlation engine. First, we teach the neural network using the following 

training samples. The features we used here are 

1- Source IP address, 2- Destination IP address, 3- Destination port number, and 4- To 

examine if destination IP address of the earlier alert is identical with the source IP 

address of the current alert    

After teaching the above network, it is used as follows. Here, we compare the features 

extracted from the received alerts and the ending alerts in infra-alerts and give their 

values to the correlation engine. The network output shows correlation probability of 

the two alerts. If this value exceeded the predefined threshold (We assumed threshold 

value equal to 0.5.), we connect it to the ending alert in the above hyper-alert. In this 
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method, one alert may appear in several hyper-alerts. We use output of correlation 

engine as membership degree of an alert to the relevant hyper-alert. 

  

2.6.2 Using Fuzzy Classification to Establish Relationship between Alerts 

When output of correlation engine exceeds threshold value for the received alert and 

final alert in a hyper-alert, we put the alert in that hyper-alert and use output of the 

correlation engine as membership degree of that alert to the hyper-alert.  

After examining all alerts, we will have several hyper-alerts that may have common 

alerts (but with different membership degree). 

 

 

2.7 HOW TO RUN THE PROGRAM 

The program folder contains some files and subfolders. The first subfolder named 

stack contains stack class. Therefore we use correlationAl2 algorithm in making attack 

graph. The next subfolder named data contains data sets extracted from DARPA2000 

data set using surveillance tools. 

The alert correlating algorithm and making Force and victim hyper-alerts are present 

in correlationAl function. First, type the 

dataIDS = xlsread('data\dataIDS2.xlsx'); 

Instruction in the command line till the data is read and is put in dataIDS variable. 

Then run the program like the following calling correlationAl function. 

Correlational (dataIDS); 

After finishing, the program returns a cell structure with the number of cells 

expressing the number of hyper-alerts, and each cell representing a hyper-alert. Each 

cell’s structure is like a matrix where the rows indicate alerts and the columns express 

their relationship. For instance, see the matrix below. 
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Table 2.3: Cell structure returns 

1 0 0.0 

2 1 0.9275 

3 1 0.7550 

 

Alert 1 is entered as the head of hyper-alerts which has no relations with any other 

alerts in the above matrix. Alert 2 is in relation with alert 1 (column 2, row 2 expresses 

this) and the amount of their relationship equals 0.9275 column 3, row 2). 

The CorrCal function is called in line 20 of this program. It takes 2 alerts, calculates 

their correlation amount using the correlation engine, and returns the result. 

The correlation engine is created in learnAl function. This function first calls the 

learning data set in line 9 and then creates a multi-layer neural network with following 

parameters in lines 10-18. 

a) Number of input layers: 3 

b) Number of first-layer neurons: 4 

c) Number of mid-layer neurons: 4 

d) Number of output neurons: 1 

The designed network starts learning using the learning data sets in line 24. The 

learned network is finally saved in line 26 of the program. You can either execute the 

program to see how, or use the saved network. 

The attack scenario is created (based on Zhu-Ghorbani method) in correlationAl2 

function. The ACM matrix is loaded in line 12. It is the same force and victim matrix 

whose creation method is described in calculateACM function. 

The difference between our method with the force and victim method is in the way of 

forming hyper-alerts and the way of alerts’ correlation. Our function is presented in 

‘fuzzyModel’ algorithm. We pay attention to properties extraction method for 

calculating correlation probability between the two models before analyzing the above 

function. Properties extraction is presented in featureMatching function. The data sets 

are loaded in lines 3-5 here. The first and second properties’ values which equals the 
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same source and target IP addresses respectively are calculated in lines 6-42. The next 

two properties which equal target port number and the same IP address for the present 

alert’s source and the IP address for the previous alert’s target are calculated in lines 

44-56. 

Parameters such as correlation threshold is set in fuzzyModel function lines 1-8 (note 

that relative names are used for variables and functions to understand the program). 

A loop is placed in line 9 to examine all alerts. Then it is examined that the above alert 

can correlate with which final present alert in hyper-alerts in loop 17. The correlation 

probability calculated in line 22 is compared with the threshold. If greater, it is put in 

that hyper-alert and the correlation probability is used as membership degree. This is 

done in lines 22-26. Otherwise, then a new hyper-alert is created and the above alert is 

placed in it. This is done in lines 34-36. Finally, the cell containing all hyper-alerts is 

returned. Each cell represents one hyper-alert. To elaborate more, suppose we have 

called the above function as the following. 

f = fuzzyModel (dataIDS); 

Then f is a cell structure whose number represents hyper-alerts at the end of program 

run. Suppose f is a cell structure of 1*5. Then, this represents 5 hyper-alerts. Just type 

the instruction below in the command line to see the internal alerts of a hyper-alert. 

F1 = f {1, 3} 

Therefore F will contain alerts forming hyper-alert 3 (to show, type it without ;).  
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3. FINDINGS 

 

It can be proved that this method leads to a better categorization. To do so, we assume 

that we received alert α1. Probability of correlation of this alert with the two alerts, 

which are within two different hyper-alerts, close to one another and it exceeds the 

threshold (0.5) we defined for instance, probability of 0.6 for its correlation with the 

alert in the first hyper-alert and 0.65 for its correlation with the alert in the second 

hyper-alert. As noticed, such difference is negligible. According to other classification 

methods, assume that we put this alert in the first hyper-alert, while, in fact, it is 

related to the second hyper-alert. It is due to the fact that correlation engine is unable 

to show their correlation favorably. This might be due to the accuracy of a learning 

machine (Learning machine’s accuracy cannot be hundred percent.) and/or due to lack 

of appropriate training. Therefore, by losing this alert in the second hyper-alert, we 

may not be able to extract attack scenario. (Assume a condition in which such mode is 

repeated several times.)   

     Table 3.1: Data For Learn       

1 1 0 1 1 1 1 

1 1 0 0 0 0 0.75 

1 1 0 0 0.5 0.5 0.85 

0.5 1 0 0 0.5 0.5 0.8 

0.5 0.5 0 0 0.1 0.3 0 

0 1 0 0 0.1 0.2 0 

1 0.5 0 1 0.5 0.3 0.65 

0 0 0 0 0 0 0 

0.5 1 0 0 1 1 0.85 

0.5 0.5 0 1 1 1 0.8 

1 1 0 1 0 0 0.9 

0.5 0.5 0 0 0.5 0 0 

0 0 0 1 1 1 0.65 

0 0 1 1 1 1 0.9 

0 0 1 0 0.5 0 0.8 

0 0 1 1 0.5 0.5 0.85 

0 0 1 0 0 0 0.8 

0.5 0.5 0 0 0.5 1 0 
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Now, assuming that we can have this alert in both hyper-alerts, we will be able to 

compensate defect of attack scenario by having the pertinent alert. We can consider 

constructing an attack scenario in a way to ignore construction algorithm of their 

scenario as soon as we observe the irrelevant alerts. It means that placing an alert in 

such hyper-alert cannot lead to confusion about attack scenario.   

We tested our algorithm on 30 sample alerts out of all the alerts of DARPA 2000 

dataset and the result was as follows: 

Using neural network and predefined threshold in Zhu-Ghorbani method, the alerts 

were classified into several groups. While we placed them in a group using their own 

method, this result was acceptable because all the alerts were somehow related to each 

other. Results can be shown on appendix A.12 and A.13. 
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Table 3.2: CorrelationAl Algorithm Output “correlationAl (dataIDS);”: 

1 0 0 

2 1 0.773381779 

3 0 0 

4 0 0 

5 0 0 

6 0 0 

7 0 0 

8 0 0 

9 0 0 

10 0 0 

11 1 0.807486488 

12 0 0 

13 0 0 

14 0 0 

15 0 0 

16 0 0 

17 0 0 

18 0 0 

19 0 0 

20 0 0 

21 0 0 

22 0 0 

23 0 0 

24 0 0 

25 0 0 

26 0 0 

27 0 0 

28 0 0 

29 0 0 

30 0 0 
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Table 3.3: FuzzyModel Algorithm Output “f = fuzzyModel (dataIDS);”: 

1 0 0 

2 1 0.773382 

3 2 0.773382 

4 3 0.999973 

5 4 0.773382 

6 5 0.773382 

7 6 0.999973 

8 7 0.773382 

9 8 0.773382 

10 9 0.999879 

11 10 0.807486 

12 11 0.807486 

13 12 0.999879 

14 13 0.773382 

15 14 0.773382 

16 15 0.999879 

17 16 0.807486 

18 17 0.807486 

19 18 0.999879 

20 19 0.773382 

21 20 0.773382 

22 21 0.999879 

23 22 0.807486 

24 23 0.807486 

25 24 0.999973 

26 25 0.807486 

27 26 0.807486 

28 27 0.999879 

29 28 0.773382 

30 29 0.773382 
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4. CONCLUSION 

 

Here, we aimed to present a better method for correlating alerts. In our method, first, 

we use MLP as a correlation engine. This engine specifies probability of correlation of 

two alerts. Then we classified alerts using an algorithm and present them in the form 

of a hyper-alert. The advantage of this method is that one alert can be placed in several 

hyper-alerts simultaneously. If one alert is placed in another group by mistake, such 

advantage will not lead to non-extraction of attack scenario of a hyper-alert.  

  



 

38 

 

REFERENCES 

 

Books 

F. Cuppens and R. Ortalo (2000). Lambda: A language to model a database for 

detection of attacks .In Recent Advances in Intrusion Detection, vol. 1907 of 

LNCS, pp. 197–216, Springer Berlin Heidelberg. 

Witten IH, Frank E. (2005). Data Mining: practical machine learning tools and   

     techniques. San Francisco: Morgan Kaufmann Publishers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 

 

Periodicals 

B. Zhu, A. Ghorbani, 2006. Alert correlation for extracting attack strategies.  

International Journal of Network Security, vol. 3, no. 3, pp. 244–258. 

C. Granger, 1999 .Investigating causal relations by econometric models and cross 

spectral methods. Econometrical, vol. 34, pp. 424–428. 

J.J. Davis, J.C. Andrew, 2011. Data preprocessing for anomaly based network intrusion 

detection:  a review. Journal of Computers and Security, vol. 30, 353–375. 

L. Wang, A. Liu, and S. Jajodia, 2006. Using attack graphs for correlating, 

hypothesizing, and predicting intrusion alerts. Computer communications, vol. 29, 

no. 15, pp. 2917–2933. 

O. M. Dain, R. K. Cunningham, 2002. Building scenarios from a heterogeneous alert 

stream. In Proceedings of IEEE Workshop on Information Assurance and 

Security, vol. 6, (United States Military Academy, West Point, NY), pp. 231–235. 

S.T. Eckmann, G. Vigna, and R. A. Kemmere, 2002.Statl: An attack language for state-

based intrusion detection. Journal of Computer Security, vol. 10, no. 1-2, pp. 71–

103. 

 

 

 

 

  



 

40 

 

Other Publications 

B. Morin, H. Debar, 2003. Correlation of intrusion symptoms: an application of 

chronicles. In: Proc. Of the 6th Int. Conf. on Recent Advances in Intrusion 

Detection (RAID’03), 2003, pp. 94–112. 

 

C. Michel, L. Mé. , 2001. Adele: An attack description language for knowledge-based 

intrusion detection. In Proceedings of the 16th Annual Working Conference on 

Information Security: Trusted Information: The New Decade Challenge, vol. 193, 

pp. 353–368, Kluwer, B.V. Deventer, Netherlands. 

 

D. Xu and P. Ning, 2005. Privacy-preserving alert correlation: A concept hierarchy 

based approach. In Proceedings of the 21st Annual Computer Security 

Applications Conference (ACSAC), pp. 537–546. 

 

H. Ren, N. Stakhanova and A. Ghorbani, 2010 .An online adaptive approach to alert 

correlation .In Proceedings of the 7th international conference on Detection of 

intrusions and malware, and vulnerability assessment, DIMVA’10, pp. 153–172. 

 

J.  Chen, D. J. DeWitt, F. Tian and Y. Wang, 2000 .A scalable continuous query system 

for internet databases .In Proceedings of ACM SIGMOD, pp.379–390. 

 

P. Ning, Y. Cui, and D. S. Reeves, 2002. Constructing attack scenarios through 

correlation of intrusion alerts. In Proceedings of the 9th ACM conference on 

Computer and communications security, (Washington, DC, USA), pp. 245–254 

 

P. Ning, D. Xu, Christopher, G. Healey, and R. S. Amant, 2004 .Building attack 

scenarios through integration of complementary alert correlation method .In 

Proceedings of the 11th Annual Network and Distributed System Security 

Symposium (NDSS), pp. 97–111. 

 

R. Agrawal, R. Srikant, 2000. Mining sequential patterns. In Proceedings of the 11th 

IEEE International Conference on Data Engineering (ICDE), (Taipei, Taiwan), 

pp. 3–14, IEEE Computer Society. 

 

R. Sadoddin, A. A. Ghorbani, 2009 .An incremental frequent structure mining 

framework for real-time alert correlation . Computers & Security, 200905/06 

 

Reza Sadoddin, 2006. Alert correlation survey, Proceedings of the 2006 International 

Conference on Privacy Security and Trust Bridge the Gap between PST 

Technologies and Business Services - PST 06 PST 06. 

 

Seyed Hossein Ahmadinejad, 2009. Alert Correlation Using Correlation Probability 

Estimation and Time Windows. In: International Conference on Computer 

Technology and Development, 11/2009.  

 

 

 

http://dx.doi.org/10.1109/ICCTD.2009.22
http://dx.doi.org/10.1109/ICCTD.2009.22
http://dx.doi.org/10.1109/ICCTD.2009.22


 

41 

 

S. Saeed, Gabriel Maciá-Fernández, and Jesús E. Díaz-Verdejo, 2013.A model-based 

survey of alert correlation techniques .Computer Networks.  

 

V. Holus, T. Parsons and P. O’Sullivan, J. Murphy, 2009 .Run-time correlation engine 

for system monitoring and testing. In: Proc. of the 6th IEEE Int. Conf. on 

Autonomic Computing (ICAC-INDST ’09), pp. 43–44. 

 

X. Qin, W .lee. , 2003. Statistical causality analysis of InfoSec alert data. In Proceedings 

of the 6th International Symposium on Recent Advances in Intrusion Detection 

(RAID), (Pittsburgh, PA), pp. 73–93. 

  

http://dx.doi.org/10.1016/j.comnet.2012.10.022
http://dx.doi.org/10.1016/j.comnet.2012.10.022


 

42 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 

 

APPENDIX A.1: correlationAl FUNCTION 

 

function hyperAlertList = correlationAl(ListOfAlert) 

  

    corrThreshold = 0.5; 

    corSensity = 0.1; 

    hyperAlert = zeros(1,3); 

    hyperAlertList = cell(1,1); 

    idxHyperAlert = 0; 

    preAlert = 0; 

    for m=1:size(ListOfAlert,1) 

        alert = m; 

        maxCorr = 0; 

        if(idxHyperAlert==0) 

            idxHyperAlert = idxHyperAlert+1; 

            hyperAlert(1,1) = alert; 

            hyperAlertList{1,idxHyperAlert} = hyperAlert; 

        else 

            for n=1:size(hyperAlertList,2) 

                hyperAlertS = hyperAlertList{1,n}; 

                for k=1:size(hyperAlertS,1) 

                    probCorr = 

corrCal(ListOfAlert(hyperAlertS(k,1),:),ListOfAlert(alert,:),preAlert); 

                    if(probCorr>maxCorr) 

                        maxCorr = probCorr; 

                        maxIdxHyperA = n; 

                        maxIdxA = k; 

                    end 

                end 

            end 

                if(maxCorr>corrThreshold) 

                    hyperAlertSelected = hyperAlertList{1,maxIdxHyperA}; 

                    flagFind = 0; 

                    for i=1:size(hyperAlertSelected,1) 

                        if(i==maxIdxA) 

                            continue; 

                        end 

                        probCorr = 

corrCal(ListOfAlert(hyperAlertSelected(i,1),:),ListOfAlert(alert,:),preAlert); 

                        if((maxCorr - probCorr)<corSensity) 

                            l = size(hyperAlertSelected,1); 

                            hyperAlertSelected(l+1,1) = alert; 

                            hyperAlertSelected(l+1,2) = i; 

                            hyperAlertSelected(l+1,3) = probCorr; 

                            hyperAlertList{1,maxIdxHyperA} = hyperAlertSelected; 

                            flagFind = 1; 

                        end 

                    end 
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                    if(i==1) 

                        l = size(hyperAlertSelected,1); 

                        hyperAlertSelected(l+1,1) = alert; 

                        hyperAlertSelected(l+1,2) = i; 

                        hyperAlertSelected(l+1,3) = probCorr; 

                        hyperAlertList{1,maxIdxHyperA} = hyperAlertSelected; 

                        flagFind = 1; 

                    end 

                    if(flagFind==0) 

                        hyperAlert(1,1) = alert; 

                        idxHyperAlert = idxHyperAlert+1; 

                        hyperAlertList{1,idxHyperAlert} = hyperAlert; 

                    end 

                end 

        end 

        preAlert = ListOfAlert(m,:); 

    end 

end 
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APPENDIX A.2: correlationAl2 FUNCTION 

 

function correlationAl2(listOfAlert) 

  

    stackObj = stack; 

    threshold = 0.1; 

    r = randi(size(listOfAlert,1)); 

    stackObj = stackObj.inqueue(listOfAlert(r,1)); 

    graphAttack = listOfAlert(r,1); 

    idxGraphAttack = 1; 

    visitedGraph = zeros(size(listOfAlert,1),1); 

     

    %acm = calculateACM(listOfAlert); 

    load acm; 

     

    isEmpty = stackObj.top; 

    while(isEmpty>0) 

        stackObj = stackObj.dequeue(); 

        alert =  stackObj.dequeuedElm; 

        for i=1:size(acmMatrix,2) 

            forwardCorrStr = acmMatrix(alert,i)/sum(acmMatrix(alert,:)); 

            if(forwardCorrStr>threshold) 

                if(visited(i,1)==0) 

                    stackObj = stackObj.inqueue(listOfAlert(i,1)); 

                    visitedGraph(i,1) = 1; 

                end 

                graphAttack(idxGraphAttack,2) = i; 

                graphAttack(idxGraphAttack,3) = acmMatrix(alert,i); 

                idxGraphAttack = idxGraphAttack+1; 

            end 

        end 

        isEmpty = stackObj.top; 

    end 

end 
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APPENDIX A.3: calculateACM FUNCTION 

 

function acmMatrix = calculateACM(listOfAlert) 

     

    %%Load correlation Engine 

        load ('netMlp.mat'); 

    %%End of Load correlation Engine 

     

    preAlert = zeros(1,size(listOfAlert,2)); 

    for i=1:size(listOfAlert) 

        alert = listOfAlert(i,:); 

        for j=1:size(listOfAlert) 

            [f1,f2,f3,f4] = featureMatching(listOfAlert(j,:),alert,preAlert); 

            preAlert = listOfAlert(j,:); 

            %% Load the Correlation Engine and Calculate probability of correlation  

                f = [f1;f2;f3;f4;]; 

                corrProb = sim(net,f); 

            %%End of Load the Correlation Engine and Calculate probability of 

correlation 

        

            acmMatrix(i,j) = corrProb;      

        end 

    end 

end 

             

 

 

APPENDIX A.4: readData FUNCTION 

 

 

function readData()     

    [data,path] = uigetfile('m2.csv'); 

    data = dataset('xlsfile',sprintf('%s\%s', path,data)); 

end 
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APPENDIX A.5: fuzzyModel FUNCTION 

 

function hyperAlertList = fuzzyModel(ListOfAlert) 

  

    corrThreshold = 0.5; 

    %corSensity = 0.1; 

    hyperAlert = zeros(1,3); 

    hyperAlertList = cell(1,1); 

    idxHyperAlert = 0; 

    preAlert = 0; 

    for m=1:size(ListOfAlert,1) 

        alert = m; 

        %maxCorr = 0; 

        if(idxHyperAlert==0) 

            idxHyperAlert = idxHyperAlert+1; 

            hyperAlert(1,1) = alert; 

            hyperAlertList{1,idxHyperAlert} = hyperAlert; 

        else 

            for n=1:size(hyperAlertList,2) 

                hyperAlertS = hyperAlertList{1,n}; 

                %for k=1:size(hyperAlertS,1) 

                l = size(hyperAlertS,1); 

                probCorr = 

corrCal(ListOfAlert(hyperAlertS(l,1),:),ListOfAlert(alert,:),preAlert); 

                if(probCorr>corrThreshold) 

                    hyperAlertS(l+1,1) = alert; 

                    hyperAlertS(l+1,2) =  hyperAlertS(l,1); 

                    hyperAlertS(l+1,3) = probCorr; 

                    hyperAlertList{1,n} = hyperAlertS; 

%                     for i=1:size(hyperAlertS,1)-1 

%                         probCorr = 

corrCal(ListOfAlert(hyperAlertS(i,1),:),ListOfAlert(alert,:),preAlert); 

%                         hyperAlertS(l+1,i+1,1) = i; 

%                         hyperAlertS(l+1,i+1,2) = probCorr^2; 

%                         hyperAlertList{1,n} = hyperAlertS; 

%                     end 

                else 

                    hyperAlert(1,1) = alert; 

                    idxHyperAlert = idxHyperAlert+1; 

                    hyperAlertList{1,idxHyperAlert} = hyperAlert; 

                end 

            end 

        end 

        preAlert = ListOfAlert(m,:); 

    end 

end 
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APPENDIX A.6: featureMatching FUNCTION 

 

function [f1,f2,f3,f4] = featureMatching(hyperAlertS,alert,preAlert) 

  

    addressIP = xlsread('data\addressIP.xlsx'); 

    hyAlIP = zeros(1,8); 

    alertIP = zeros(1,8); 

   %% Calculation of f1,f2 

    for k=3:4  

        for i=1:size(addressIP,1) 

            if(hyperAlertS(1,k)==addressIP(i,1)) 

                for j=2:5 

                    hyAlIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 

                end 

            end 

         

            if(alert(1,k)==addressIP(i,1)) 

                for j=2:5 

                    alertIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 

                end 

            end 

        end 

     

        %alIP = num2str(alertIP(1,5)); 

        %hyAIP = num2str(hyAlIP(1,5)); 

        for i=1:8 

            match = 0; 

            for j=i:8 

                if(alertIP(4,j)==hyAlIP(4,j)) 

                    match = match+1; 

                else 

                    break; 

                end 

            end 

            matchT(1,i) = match; 

        end 

        matchT = sort(matchT,'descend'); 

        if(k==3) 

            f1 = (24+matchT(1,1))/32; 

        else 

            f2 = (24+matchT(1,1))/32; 

        end 

    end  

   %%End of Calculation of f1,f2 

    

  %% Calculate another features 

    if(hyperAlertS(1,5)==alert(1,5)) 

        f3 = 1; 
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    else  

        f3 = 0; 

    end 

     

    if(preAlert(1,4)==alert(1,3)) 

        f4 = 1; 

    else  

        f4 = 0; 

    end 

  %%End of Calculate another features 

end 
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APPENDIX A.7: featureMatchForCls FUNCTION 

 

function [f1,f2] = featureMatchForCls(hyperAlertS,alert) 

  

    addressIP = xlsread('data\addressIP.xlsx'); 

    hyAlIP = zeros(1,8); 

    alertIP = zeros(1,8); 

   %% Calculation of f1,f2 

    for k=3:4  

        for i=1:size(addressIP,1) 

            if(hyperAlertS(1,k)==addressIP(i,1)) 

                for j=2:5 

                    hyAlIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 

                end 

            end 

         

            if(alert(1,k)==addressIP(i,1)) 

                for j=2:5 

                    alertIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 

                end 

            end 

        end 

     

        %alIP = num2str(alertIP(1,5)); 

        %hyAIP = num2str(hyAlIP(1,5)); 

        for i=1:8 

            match = 0; 

            for j=i:8 

                if(alertIP(4,j)==hyAlIP(4,j)) 

                    match = match+1; 

                else 

                    break; 

                end 

            end 

            matchT(1,i) = match; 

        end 

        matchT = sort(matchT,'descend'); 

        if(k==3) 

            f1 = (24+matchT(1,1))/32; 

        else 

            f2 = (24+matchT(1,1))/32; 

        end 

    end  

   %%End of Calculation of f1,f2 
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APPENDIX A.8: learnAl FUNCTION 

 

%This function learn a neural network to produce a probability of 

%correlation between two alerts. 

%Notice that the p and t parameters must be this way: p is a matrix which 

%it's rows show the features and it's columns show the elements. t also 

% is a matrix which it's rows show the class(Label)s and its columns show 

% elements. 

function learnAl() 

     

    load('dataNet.mat'); 

    MinAndMax = zeros(4,1); 

    MinAndMax = [MinAndMax ones(4,1)];  

    net = newff(MinAndMax,[4,1],{'tansig','tansig'}); 

    init(net); 

     

    net.trainParam.show = 50; 

    net.trainParam.lr = 0.05; 

    net.trainParam.epochs = 300; 

    net.trainParam.goal = 1e-5; 

     

    p = dataForLearn(:,1:4); 

    p = reshape(p,4,18); 

    t = dataForLearn(:,7); 

    t = reshape(t,1,18); 

    net = train(net,p,t); 

     

    save netMlp net; 

end 
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APPENDIX A.9: STACK FUNCTION 

 

classdef stack 

    properties 

        table = zeros(1,1); 

        top = 0; 

        dequeuedElm = 0; 

    end 

     

    methods 

        function obj = inqueue(obj,value) 

            obj.top = (obj.top)+1; 

            t = obj.top; 

            obj.table(t,1) = value; %('farshid'); 

        end 

         

        function obj = dequeue(obj) 

            t = obj.top; 

            obj.dequeuedElm = obj.table(t,1); 

            obj.table(t) = []; 

            obj.top = (obj.top)-1; 

        end 

    end 

end 
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APPENDIX A.10: corrCal FUNCTION 

 

function corrProb = corrCal(hyperAlertS,alert,preAlert) 

     

    addressIP = xlsread('data\addressIP.xlsx'); 

    hyAlIP = zeros(1,8); 

    alertIP = zeros(1,8); 

   %% Calculation of f1,f2 

    for k=3:4  

        for i=1:size(addressIP,1) 

            if(hyperAlertS(1,k)==addressIP(i,1)) 

                for j=2:5 

                    hyAlIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 

                end 

            end 

         

            if(alert(1,k)==addressIP(i,1)) 

                for j=2:5 

                    alertIP(j-1,:) = bitget(addressIP(i,j),8:-1:1,'uint8'); 

                end 

            end 

        end 

     

        %alIP = num2str(alertIP(1,5)); 

        %hyAIP = num2str(hyAlIP(1,5)); 

        for i=1:8 

            match = 0; 

            for j=i:8 

                if(alertIP(4,j)==hyAlIP(4,j)) 

                    match = match+1; 

                else 

                    break; 

                end 

            end 

            matchT(1,i) = match; 

        end 

        matchT = sort(matchT,'descend'); 

        if(k==3) 

            f1 = (24+matchT(1,1))/32; 

        else 

            f2 = (24+matchT(1,1))/32; 

        end 

    end  

   %%End of Calculation of f1,f2 

    

  %% Calculate another features 

    if(hyperAlertS(1,5)==alert(1,5)) 

        f3 = 1; 

    else  



 

54 

 

        f3 = 0; 

    end 

     

    if(preAlert(1,4)==alert(1,3)) 

        f4 = 1; 

    else  

        f4 = 0; 

    end 

  %%End of Calculate another features 

   

    %% Load the Correlation Engine and Calculate probability of correlation  

        load ('netMlp.mat'); 

        f = [f1;f2;f3;f4;]; 

        corrProb = sim(net,f); 

     %%End of Load the Correlation Engine and Calculate probability of correlation 

End 
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      APPENDIX A.11: NET MLP 

   

 

 

val = 

 

    Neural Network 

  

  

    dimensions: 

  

  

    connections: 

  

  

    subobjects: 

  

  

    functions: 

  

  

    weight and bias values: 

  

  

    methods: 
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APPENDIX A.12: ACM Matrix Output 
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 APPENDIX A.13: ACM Calculation Output “acm = calculateACM (dataIDS);” 
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