

T.C.

BAHÇEŞEHİR UNIVERSITY

DESIGN OF PARALLEL PAGERANK ALGORITHM

M.S. Thesis

Murat HAKSAL

Istanbul, 2011

T.C.

BAHCESEHIR UNIVERSITY

The Graduate School of Natural and Applied Sciences

Computer Engineering

Title of the Master‟s Thesis : Design of Parallel PageRank Algorithm

Name/Last Name of the Student : Murat HAKSAL

Date of Thesis Defense : 09.09.2011

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

 Assoc. Prof. F. Tunç BOZBURA

 Acting Director

This is to certify that we have read this thesis and that we find it fully adequate in scope,

quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members:

Assoc.Prof. ADEM KARAHOCA (Supervisor) :

Asst.Prof. Y.BATU SALMAN :

Asst.Prof. ALPER TUNGA :

ii

ABSTRACT

DESIGN OF PARALLEL PAGERANK ALGORITHM

Haksal, Murat

Computer Engineering Graduate Program

Supervisor: Assoc. Prof. Adem Karahoca

May 2011, 30 pages

The purpose of this thesis is to encode a parallel software which will compute

PageRank values efficiently for large scaled networks. Such a parallel computation will

be able to perform computation for multi-core and multi-processor hardware structures.

The purpose of this thesis, encoding and actual results of parallel PageRank

computations are presented: CPU, memory, and I/O characteristics of the computations

are presented for .Net platform. A computational profile of various steps of the

algorithm is provided: Resource consumption during data-read, PageRank

computations, and results persistence is presented. The performance of parallel

computation is presented by contrasting various figures between sequential computation

and parallel computations with various numbers of Windows threads.

Microsoft .NET and specifically C# programming language were used for software

implementation of Parallel PageRank Algorithm. A new library arranging programming

operation in multi-core hardware structures was supplied for the latest version of

Microsoft .NET platform (4.0). This library was used for parallelization works in

software.

Microsoft has recognized the importance of parallelism, and has incorporated various

technologies into its solutions spectrum: Task Parallel Library for multi-core

computation, and Message Passing Interface employed under HPC Server can be

utilized to parallelize computations. This thesis used Task Parallel Library to implement

a multi-threaded extension of PageRank algorithm. The language of choice was C#.

Key Words: Link Analysis, Parallelization for multi-core, .Net Thread Parallel Library

iii

ÖZET

Parallel PageRank Algoritma Tasarımı

Haksal, Murat

Bilgisayar Mühendisliği Yüksek Lisans Programı

Tez Danışmanı: Doç. Dr. Adem Karahoca

Mayıs 2011, 30 Sayfa

Bu tezin amacı, büyük ölçekli şebekeler(network) için, PageRank değerlerini verimli

olarak hesaplayacak paralel bir yazılımı kodlamaktır. Bu tür bir paralel hesaplama, çok-

çekirdekli ve çok-işlemcili donanım mimarileri için hesaplama yapabilecektir.

Bu tez kapsamında paralel PageRank algoritma tasarımı, paralel PageRank

hesaplamaları kodlaması ve hesaplama için gerçek sonuçlar sunulmaktadır. Kaynak

tüketimi ve veri okuma, PageRank hesaplamaları sırasında sonuçları detaylı

sunulmuştur: farklı yaklaşımlar ile algoritmanın hesaplama profili sağlanmıştır. .Net

platformu için CPU, bellek ve hesaplamaların I/O özellikleri sunulmaktadır: Sıralı ve

paralel hesaplamalar için arasında hesaplama performansı Microsoft windows işletim

sistemi kanallarının (Microsoft Windows threads) sayıları ile sunulmaktadır.

Paralel PageRank Algoritmasının yazılım implementasyonu için Microsoft .NET

platformu, ve spesifik olarak da C# programlama dili kullanılmıştır. Microsoft, .NET

platformunun en son versiyonunda (4.0), çok-çekirdekli donanım mimarilerinde

programlamayı düzenleyen yeni bir kütüphane tedarik etmiştir. Bu kütüphane,

yazılımdaki paralelizasyon işleri için kullanılmıştır.

Microsoft paralellik önemini kabul etmektedir ve parallelik için çeşitli teknolojiler

geliştimiştir: çok-çekirdekli hesaplamalar için Task Parallel Library ve HPC Server

altında çalışan Message Passing Interface (MPI) ile hesaplamaları paralizasyonu için

kullanılabilir. Bu tez, PageRank algoritması multi-threaded bir uzantısı uygulamak için

Task Parallel Library kullanılmıştır. Tercih edilen programlama dili C # „tır.

 Anahtar Kelimeler: Link Analizi, Çok çekirdekli ve çok işlemcili donanım mimarileri

için paralelizasyon, .Net Thread Parallel Library

iv

TABLE OF CONTENTS

LIST OF TABLES ... v

LIST OF FIGURES .. vi

ABSTRACT ... ii

ÖZET ... iii

1. INTRODUCTION .. 1

2. BACKGROUND... 3

2.1 WHAT IS PAGERANK? ... 3

2.2 PARALLEL COMPUTING ... 4

2.2.1 Data Partioning (Data Parallelism) ... 5

2.2.2 Functional Partitioning/Decomposing (Task Parallelism) 6

2.3 PREVIOUS STUDIES ... 7

2.4 SOCIAL RELATION REPRESENTATION 10

2.5 APPLICATION REQUIREMENTS .. 11

3. MATERIAL AND METHODS ... 13

3.1 DATASET .. 13

3.2 ALGORITHM .. 16

4. FINDINGS .. 26

5. CONCLUSION ... 29

REFERENCES

CV

v

LIST OF TABLES

Table 2.1: Binary link data structure of Twitter dataset..7

Table 2.2: Block based data structure of Twitter dataset..8

Table 2.3: Split-Accumulate Data structure of Twitter dataset.8

Table 3.1: Data structure of Twitter dataset..12

Table 3.2: Data structure of Twitter dataset adapted for algorithm..............................14

Table 4.1: Squential And Parallel PageRank Calculation Time Cost...........................28

Table 4.2: PageRank Calculation Memory Cost…………...28

Table 5.1: Squential And Parallel PageRank Calculation Time Cost...........................30

vi

LIST OF FIGURES

Figure 2.1: Data Partitioning..5

Figure 2.2: Task Partitioning...6

Figure 2.3: Social relation between Twitter user...10

Figure 3.1: PageRank calculation workflow using squential.......................................15

Figure 3.2: PageRank calculation workflow using parallel...19

Figure 4.1: Cost Distribution...27

Figure 4.2: Thread Workload..27

Figure 4.3: Thread Workload Contentions..28

1

1. INTRODUCTION

The goal of this thesis is to provide a parallel extension of PageRank algorithm that is

used to compute the relative values of nodes in a large network. Such an extension

would allow efficient and scalable computation for very large datasets.

Applications of PageRank algorithm and its extension are numerous: Google uses it to

rank the webpages in internet for efficient information retrieval. Meanwhile, it can be

virtually used in every domain where there is a network of entities, and attaching some

sort of relative importance to each node carries some value. A striking example is

attaching “network values” to subscribers in a Telecom network. Churn management

and cross-selling are important applications in Telecom industry (Ahn H. et al, 2010).

If a network value can be attached to each subscriber (a node), it can be utilized to

determine valuable subscribers, or it can be utilized to communicate a marketing

message to most valuable subscribers in the network. Hence, network values a

computed by PageRank algorithm and its variants have a number of practical

applications in various industries where a set of entities heavily interact with each other.

PageRank algorithm is based on the key heuristic that the “value” of a node in a

network is proportional to the sum of the node values that are connected. This heuristic

eventually gives rise to an eigen-vector computation of a large sparse matrix. In a large

network, storage of “connection matrix”, and iterative computation of eigen-vector can

be a daunting task. If the number of new entrants into the network is large (in-flow) or

the number of deserters is large (out-flow), or the number of emerging/dying

connections is large; efficient computation of network values become indispensable.

“Efficient computation” in this sense equals to parallel computation of network values

in various parallelism scenarios; data-parallelism, multicore parallelism and distributed

parallelism. This thesis presents algorithms and implementations of data parallelism and

multicore parallelism by employing Microsoft technologies.

Microsoft has recognized the importance of parallelism, and has incorporated various

technologies into its solutions spectrum: Task Parallel Library for multi-core

2

computation, and Message Passing Interface employed under HPC Server can be

utilized to parallelize computations. This thesis used Task Parallel Library to implement

a multi-threaded extension of PageRank algorithm. The language of choice was C#.

The methods are the PageRank algorithm implementations of data parallelism and

multicore parallelism by employing Microsoft technologies.

The thesis is structured as follows: The first section presents the basic concepts

revolving around the parallelization of PageRank algorithm. It describes the “vanilla”

PageRank algorithm, the basic heuristic behind the algorithm, the set of mathematical

equations derived from this heuristic, the computational requirements (CPU, I/O,

storage), and a literature review of PageRank computations.

In the second sections, data structures that were used in the computations are described

in detail. Partitioning of data for parallel computation lies at the core of large scale

parallelization of many algorithms, and PageRank is no exception. This section

describes the way data is partitioned before it is read into the memory for subsequent

computation.

The third section presents the details of the PageRank algorithm that has been actually

employed to compute the network values. The methodology behind parallelization, and

the technologies supporting this methodology is provided in detail

In the fourth section, actual results of parallel PageRank computations are presented:

CPU, memory, and I/O characteristics of the computations are presented. A

computational profile of various steps of the algorithm is provided: Resource

consumption during data-read, PageRank computations, and results persistence is

presented. The performance of parallel computation is presented by contrasting various

figures between sequential computation and parallel computations with various numbers

of Windows threads.

Finally, the conclusion section presents various future extensions of the algorithms and

methodologies presented in this thesis: The distributed, and temporal extensions are of

primary importance.

3

2. BACKGROUND

2.1 WHAT IS PAGERANK?

The PageRank algorithm defines the PageRank value of a node in a network as a linear

combination of the PageRank values of the nodes related to that particular node. The

algebraic formulation of such a definition is as follows:

(1.1)

In the Formula 1.1, u represents a node in the network; whereas B(u) represents the

node set related to that particular node. PR(u) is the PageRank value of the node u. The

d parameter in the formula is defined as a damping factor.

The Formula 1.1 equation system can be briefly stated as follows:

(1.2)

In the Formula 1.2 equation, the A matrix represents the connection between nodes,

whereas p is the vector containing the PageRank values. Such computation of the

PageRank value is the computation of the eigen-vector (Marcus & Minc 1988) value

corresponding to a specific eigen-value (value of “1”) . For a large-scale network, this

4

computation is performed iteratively: A random PageRank value is assigned, and the

following iteration is repeated until the norm difference between consecutive PageRank

vectors is omissible:

(1.3)

The damping factor ensures convergence of the PageRank vector.

2.2 PARALLEL COMPUTING

Parallel computing depends on the premise that large-scaled computations can be

divided into small computations and calculated simultaneously (Almasi, G.S. &

Gottlieb A. 1989). In recent years, parallel computing has become an important issue

thanks to the multi-core and/or multi-processor hardware structures which are a direct

result of the developments in hardware structures. (Asanovic et al 2006). Parallel

computing uses the data parallel model (data) parallelization and task parallel model

(task) approaches for multi-processor and/or multi-core hardware structures. There is

one task and multiple data for the data parallel model while there are multiple tasks and

multiple data. The first step of the parallel program design is to separate the problem

into chunks. These chunks should be distributable to multiple processes. This process is

known as decomposition/partitioning.

Parallel computing consists of four basic steps(Trobec R et al 2009, p.13):

 partioning (decomposition to a maximum number of concurrently executable tasks)

 communication analysis (evaulating the amount of communication among tasks)

 granularity control (reduction of communication requirements by agglomeration)

 mapping (assigning tasks to proccesors of the model)

Matching the processes with real processors (mapping) Load balancing is the most

important issue in parallel computations. It is important to ensure that after the work

5

has been separated into smaller tasks, that these tasks are the same as or similar to

each other in terms of work load. Otherwise, unwanted results may be detected due

to poor parallelization, unequal processes and idle process(es).

There are two ways to make decomposed computation in parallel processes:

 Data set (domain) partitioning/decomposition

 Functional partitioning/decomposition

2.2.1 Data Partioning (Data Parallelism)

Data belonging to the problem is separated into chunks. Therefore, each parallel process

works on a certain chunk of data.

 Figure 2.1: Data Partitioning

We can decompose the data set for data partitioning horizontally and/or vertically. In a

matrix data set, we can make line based, column based and line and column based

decompositions. This choice depends on the problem to be computed.

D

Task1

Task2

Task3

Task4

A

Task1

Task2

Task3

Task4

T

Task1

Task2

Task3

Task4

A

Task1

Task2

Task3

Task4

6

2.2.2 Functional Partitioning/Decomposing (Task Parallelism)

Work belonging to the problem is separated into chunks. Therefore, each parallel

process works on a certain chunk of the work.

Figure 2.2: Task Partitioning

The approach to be used for decomposing the work into chunks relates to the problem to

be computed.

Data

Task 1 Task 2 Task 3 Task 4

7

2.3 PREVIOUS STUDIES

The distributed computation (PC-Cluster) method for the computation of the PageRank

algorithm is detailed. Memory utilization, I/O utilization and synchronization costs are

compared regarding data-partitioning for parallelization, using 3 different techniques,

and the findings are presented. An Efficient Partition-Based Parallel PageRank

Algorithm (Manaskasemsak B. & Rungsawang A. 2005)

Binary Link Structure file was used for data structure.

 src_id (4 bytes)

 out_degree (4 bytes)

 dest_id (4 bytes each)

Table 2.1: Binary link data structure of Twitter dataset.

Src_id
Out_degree Dest_id

1
4 9 102 256 324

2
5 3 178 203 278 345

3
5 5 10 196 313 335

4
3 2 285 299

...
... ...

Three detailed approaches for data partitioning;

Partition-based parallel PageRank algorithm: All network data are equally partitioned

based on the number of processors, and then sequentially assigned to each processor

based on their respective source id‟s (src_id). PageRank values of all Destination Id‟s

(dest_id) that are assigned a Source Id (src_id) are computed. (Table 1)

PageRank values of each associated node (dest_id) are computed and assigned to the

relevant PageRank vector. These values are re-computed in each iteration.

8

Block Based Algorithm: The entire network is equally partitioned, and then Source Id

(src_id) and Destination Id (Dest_id) orders are held with the number(num) value of this

order. Then, these are assigned to the processor relevant to this order. Destination Id‟s

are computed with a Source Id (src_id) dependent order.

Table 2.2: Block based data structure of Twitter dataset.

Src_id
Out_degree Num Dest_id

1
4 1 9

2
5 1 3

...
...

Src_id Out_degree Num Dest_id

1
4 1 102

2
5 1 178

...
...

Split-Accumulate algorithm: The entire network is equally partitioned, and a

Destination Id is sequentially assigned to each relevant processor. Source Id‟s (src_id)

are computed with a Destination Id dependent order.

Table 2.3: Split-Accumulate data structure of Twitter dataset.

Dest_id In_degree Src_id

1 2 11 12

2 3 4 8 13

3 1 2

...

9

As a result, processor number-dependent findings are presented for I/O cost,

synchronization and memory utilization, using Partition-Base, Block-Based and Split-

Accumulate approaches. Memory utilization, I/O utilization and synchronization

findings for Partition-base yielded the best results.

Asynchronous PageRank computation in an interactive multithreading environment The

thread level parallelism method for the computation of the PageRank algorithm is

detailed. The asynchronous approach was used to minimize synchronization costs, it

was compared with synchronous computations and the findings were presented. (Kollias

G.& Gallopoulos E. 2007).

Adjacency matrix, transition matrix and stochastic matrix were used as data structures.

The Jhyton framework was used for computations, instead of Java Virtual Machine.

Jylab Framework was used for asynchronous computations. The threading domain

model for pagerank computations was detailed.

The results yielded that the synchronization cost for the synchronous computation of the

PageRank value (thread-join) was greater than the cost of asynchronous computation.

Asynchronous implementations were detailed in order to reduce the mentioned costs.

Two basic approaches for PageRank computation, the EigenSystem and LinearSystem,

were detailed; parallelization approaches were presented. Computations were performed

using the PageRank Iterations method under EigenSystem approach, as well as Jacobi

Iteration, GMRES (Generalize Minimum Residual), BICG (Biconjugate Gradient),

BICGSTAB (Biconjugate Gradient Stabilized) methods under the Linear System

approach, and the findings were presented for each of the mentioned five methods.

(Gleich D. & Zhukov L. & Berkhin P. Fast Parallel PageRank: A Linear System

Approach 2004).

Sparse matrix was used as the data structure.

The Portable, Extensible Toolkit for Scientific Computation (PETSc) was used for the

computation of the abovementioned methods. Data-partitioning technique was used for

10

parallelization, the matrix was equally partitioned based on the number of processors,

and computation of each equal partition was performed by PETSc.

The BiCGSTAB and GMRES approaches yielded the best results based on the iteration

number and time cost criteria.

 Focused Page Rank in Scientific Papers Ranking, The implementation of the PageRank

algorithm was detailed for other scientific paper citations within the content of the

scientific papers. The links given in the PR algorithm were re-formulated as citation

counts. 266788 publications were used as the dataset. The findings revealed that there is

a relationship between the quality of the given publication citations and the publication

itself.

2.4 SOCIAL RELATION REPRESENTATION

Figure 2.3 demonstrates the relation between users of Twitter, one of the social

networks. This relation is demonstrated from A node to B node (A B).

 Figure 2.3:Social relation between Twitter user

11

Demonstration of these nodes is a Directed Graph demonstration. Each node has a

relation with another node for Directed Graph. This relation (edge) was processed in the

data model as FromNode, ToNode. For PR(u), PR(v) values in the PageRank algorithm,

PR(u) indicates PageRank value for FromNode and PR(v) indicates PageRank value for

ToNode.

2.5 APPLICATION REQUIREMENTS

2.5.1 Computing Requirements

The most obvious requirement, particularly for scientific and technical applications, is

the number of floating-point processes required for realizing the computation.

Estimating this number for simple computations is relatively easy. Even a rough

estimate is generally possible in complicated processes. It is possible to make

predictions using books on numerical analyzes.

An example of computing requirements is given below. A 2 GHz processor can run a

2x10
9

floating-point process in a second. For this processor, computing which requires 1

billion floating-point processes will take just half a second (Gropp W., Lusk E., and

Sterling T., 2003). However, the aim in terms of general system performance should be

considered when thinking about computing requirements.

Memory: Memory requirements of the computation influences the performance cost of

application significantly. Memory should have a capacity which is sufficient to store all

data required for the application. Cache memory is very important for the performance

of some applications. In virtual memories, a part of disk space is used as memory. The

whole of the virtual memory space can be accessed by the application. Virtual memories

increase the capacity of memory with low costs. However, access time is much more

than main memory since data is stored on disk. Therefore, virtual memories are not used

for high performance computations.

12

Input/ Output: Results of the processes should be stored in permanent storage spaces,

such as the files on disk. Parallel execution enables the processes to be made very

rapidly. The performance of input / output system is predicted in proportion to this.

13

3. MATERIAL AND METHODS

3.1 DATASET

3.1.1 Datasource

Twitter dataset was used for the computation of the algorithm. Twitter dataset was

obtained from Stanford Large Network Dataset Collection, and consists of 1.47 billion

users (node/vertex) and 41.17 billion follower relations (node relation/edge). This

dataset was chosen because it has the biggest network data in the data source. The large

size of the data is significant in terms of providing details for computing performance

matrixes. The size of the Twitter dataset is approximately 30 gigabyte in a 64 bit file

system (File System).

3.1.2 Data structure

Data in the dataset consists of two basic data: these are User and Follower data. User

data indicates the identity value of the Twitter user. It demonstrates each node for

algorithm. Follower is the identity value of the user who follows Twitter. For

algorithm, data of node relating to each node represents a meaning. Data structure in the

dataset is detailed in Table 2.1.

Table 3.1: Data structure of Twitter dataset.

Column Name Data Type

User Integer

Follower Integer

14

3.1.3 Database

The data structure received from the datasource was not suitable for the computation of

algorithm and therefore had to be made suitable. The dataset received from the

datasource was partitioned to provide scalability of dataset computation.

The process of

indexation of data arose from a need to provide access to data after partitioning(Powell,

G. 2006, s.193-213). The database was used for indexation of dataset and performance

optimizations of data access. Microsoft Sql Server 2008 was assigned as the database.

Microsoft Sql Server Management Studio was used to transfer the said dataset to the

database and to index it.

3.1.4 Data Preprocessing

Data structure required by algorithm is the number of nodes, relating nodes and relating

nodes of relating nodes. The data structure in the datasource was not suitable for

algorithm. ETL techniques were used to make the data suitable for the data structure

required by algorithm. Microsoft Sql Server 2008 Query Editor was used to apply ETL

techniques.

 The dataset was grouped in accordance with User data and the number of relating

Follower datasets was received. Grouped dataset was associated with the Follower data

of the present dataset, and the dataset was scanned and saved as a new dataset.

This process was costly in terms of memory, processor and time. Execution of this

process during computation of algorithm influences the computation cost negatively due

to large size of data. Therefore, it was executed only once. The data structure of the

dataset is detailed in Table 3.2. Said structured data was used for the computation of the

algorithm. Thus, data access for the computation of algorithm was reduced to data

reading only.

15

Table 3.2: Data structure of Twitter dataset adapted for algorithm

Column Name Data Type

FromNodeId Integer

ToNodeId Integer

OutGoing Integer

3.1.5 Dataset Indexing

The dataset received from the datasource was partitioned to provide scalability of

dataset computing.

The process of indexation of data arose from a need to provide

access to data after partitioning (Powell, G. 2006, s.193-213). There are two basic

approaches for indexing methodology: Clustered Index and NonClustered Index.

Clustered Index enables the dataset to be indexed physically. NonClustered Index is the

indexation of physical address of data. Clustered Index was preferred for indexation of

dataset. This is because, in the computation of algorithm, partitioned data is scanned

sequentially and physically sorted data is required. The indexing process was

configured according to User data. Indexation of large scaled data is a costly process in

terms of time and source usage. Optimization of these costs was carried out by

Microsoft Sql Server. For the Indexing process, parallelization techniques were used by

Microsoft Sql Server and usage of memory and processor was optimized.

16

3.2 ALGORITHM

In the computation of PageRank, two algorithms were developed, namely sequential

and parallel; and the algorithms were detailed with pseudo codes and work flows.

3.2.1 Sequential Algorithm

A sequential PageRank algorithm consists of four basic stages. These have been

detailed as work flow in Figure 2.3 diagram. The initialize stage is the stage when

algorithm parameters are received and parameters required for computation are

prepared. In this stage, datasource appropriate to database connection, database and

relating table (connection string) information is prepared. PageRankVector to be used in

calculation content is created; data structure is Dictionary<int,float> type.

The stage after the initialize stage is ComputePageRank. In this stage, the PageRank

value is calculated for each node and this value is assigned to the value of the relating

node of AfterPageRankVector. After computations are completed for all nodes, distance

value between AfterPageRankVector and BeforePageRankVector is shifted until it

becomes lower than 0.001. This stage is the termination criteria of the algorithm.

 Figure 3.1: PageRank Calculation Workflow Using Sequential

Start

•Set DataSource

•Set Damping
Factor

Initialize
•Read DataSource

•Calculate
PageRank

Calculate
PageRank

• CalculateVector
Distance

Terminitaion
Criteria

End

17

Algorithm 2.1:Squential PageRank Pseudo Code

1. Initialize

1.1. SET Algorithm Parameters

1.1.1. SET Algorithm Data Source=TwitterRepository

1.1.2. SET Damping Factor

1.2. SET PageRank Vector =BeforePageRankVector

2. Compute PageRank

2.1. Do

2.1.1. CALL TwitterRepository.Read Grouped by FromNode RETURNINGGroupedNodes

2.1.2. FOR each groupNodesof GroupedNodes

2.1.2.1. For each node ofgroupNodes

2.1.2.1.1. IF firstIteration

2.1.2.1.1.1. SET node of BeforePageRankVector=1.0

2.1.2.1.2. End If

2.1.2.2. End For

2.1.2.3. CALLCalculatePageRankNode with BeforePageRankVector, groupNodes

andDampingFactor RETURNING NewPageRankValue

2.1.2.4. SETnodeofAfterPageRankVector = NewPageRankValue

2.1.3. End For

2.2. WHILE CALL CalculateVectorDistance with BeforePageRankVector and

AfterPageRankVectorRETURNING distanceValue<0.001

2.3. Enddo

3.2.1.1 Initialize

Pseudo codes of the Algorithm 2.1 Sequential PageRank computation algorithm are

given. The algorithm receives datasource and damping factor values as parameters.

BeforePageRankVector is created in the initialize stage of the algorithm. Data structure

is Dictionary<int,float> type for C# language.

18

3.2.1.2 Compute PageRank & Termination Criteria

In computation stage, an iteration is generated with Do-While (Algorithm 2.1: 2.1-2.3).

PageRank values are computed for each node in iteration. For termination of iteration,

distance of iteration PageRankVector values continuing with PageRankVector that is

the result of previous iteration are computed; this value is shifted until it becomes lower

than 0.001. The Formula 2.1 was used for computation of PageRank Vector distance.

 (2.1)

Algorithm 2.1: Sequential PageRank computation algorithm is read from datasource

database in each iteration content between lines 2.1 and 2.3. Read data is grouped in

accordance with FromNode(User) and stored in memory (GroupedNodes Line:2.1.1).

Groped data (GroupedNodes) is taken to iteration(Line:2.1.2). Iteration is started again

for each node in accordance with each grouped data within iteration(Line:2.1.2.1). In

initial iteration(Line:2.1.2.1.1), default value (1.0) is assigned for each node for

BeforePageRankVector created in initialize stage(Line:2.1.2.1.1.1).

3.2.1.3 Calculate PageRank For Each Node

Algorithm 2.2:Calculate PageRank For Each Node Pseudo Code

1. METHOD CalculatePageRankNode with PARAMETERS:BeforePageRankVector,GroupedNodes

andDampingFactor

1.1. SET SumOfPageRankValue=0

1.2. FOR each node ofgroupNodes

1.2.1. SETToNodePageRankValue= BeforePageRankVector[node.ToNodeId]

1.2.2. SET tempValue= ToNodePageRankValue / node.Outgoing

19

1.2.3. SET SumOfPageRankValue += tempValue

1.3. End FOR

1.4. RETURNING (1-DampingFactor + (DampingFactor* SumOfPageRankValue)

2. End METHOD

CalculatePageRankNode method is called for computation of PageRank value for each

node (Line: 2.1.2.1.3); node in iteration is given as parameter with

BeforePageRankVector.CalculatePageRankNodeAlgorithm 2.2 is detailed

(Line:2.1.2.3). Result of CalculatePageRankNode method is assigned to PageRank

value of node value related to AfterPageRankVector (Line:2.1.2.4).

The method receives three parameters for computation of PageRank value for each node

in Algorithm 2.2. Vector retaining PageRank values computed in previous iteration

(BeforePageRankVector) is given to node collection grouped in accordance with

FromNode(User) and the DampingFactor method as a parameter. The method creates an

iteration for grouped node collection (Line:1.2). In iteration content, PageRank value of

relating node of each node grouped in accordance with PageRank algorithm is received

from BeforePageRankVector(Line:1.2.1) and divided into the number of relating nodes

of relating node (Line:1.2.2); result is summed for each grouped node (Line:1.2.3).

Relating value for each grouped node is multiplied to DampingFactor value suitable for

PageRank algorithm, summed with 1-DampingFactor and concluded as the result of the

method (Line 1.4).

3.2.2 Parallel Algorithm

Parallel PageRank algorithm consists of five basic stages. These have been detailed as

work flow in Figure 2.4 diagram. Initialize stage is the stage when algorithm parameters

are received and parameters required for computation are prepared. In this stage,

datasource appropriate to database connection, database and relating table (connection

string) information is prepared. PageRankVector to be used in calculation content is

20

created; data structure is Dictionary<int,float> type. DegreeOfParallelism is taken as

the parameter and this parameter demonstrates the degree of parallelism of algorithm.

Different processor threads will be opened for partitioning data suitable for this value

and computation. In Initialize Parallel Task stage, in accordance with the

DegreeOfParallelism value given, the criteria regarding that data partitioning will be

performed at which node intervals are determined by reading datasource. After data

partitioning criteria are determined, inquiries suitable for datasource are prepared in this

stage. Then, threads are opened by the processor suitable for DegreeOfParallelism

value and ComputePageRank stage is started for each thread. Each thread computes a

PageRank value for each node on partitioned dataset and this value is assigned to the

value of relating node of AfterPageRankVector. In order to provide computation

consistency, synchronization is provided between threads. After computations are

performed for each grouped node, distance value between AfterPageRankVector and

BeforePageRankVector is shifted until it becomes lower than 0.001. This stage is the

termination criteria of algorithm.

 Figure 3.2: PageRank calculation workflow using parallel

Start

• Set DataSource

• Set Damping
Factor

Initialize
• Define Partitioning

Criteria

• Create Thread

Initialize
Parallel Task

• Read DataSource

• Calculate
PageRank

Calculate
PageRank

• CalculateVector
Distance

Terminitaion
Criteria

End

21

Algorithm 2.2:Parallel PageRank Pseudo Code

1. Initialize

1.1. SET Algorithm Parameters

1.1.1. SET Algorithm Data Source=TwitterRepository

1.1.2. SET Damping Factor=0.85

1.1.3. SET Degree of Parallelism = degreeOfParallelism

1.2. SET PageRank Vector =BeforePageRankVector

2. Initialize Parallel Task

2.1. CALL TwitterRepository.Read Partition by degreeIndex RETURNING partitioningCriteria

2.2. FOR degreeIndex of degreeOfParallelism

2.2.1. CALLnewThreading ofcomputeParallelPageRankwith partitioningNodeCriteria

2.3. END FOR

3. Compute Paralel PageRank

3.1. DO

3.1.1. While(INTERLOCKED.Read(IncrementalThreadingTaskValue) !=0)

3.1.1.1. Thread.Sleep(1000)

3.1.2. EndWHile

3.1.3. IF IsFirst=false

3.1.4. SET BeforePageRankVector =AfterPageRankVector

3.1.5. End IF

3.1.6. CALL TwitterRepository.PartitionRead Grouped by FromNodeWith

partitioningNodeCriteria RETURNINGGroupedNodesPointer

3.1.7. FOR each groupNodesof GroupedNodesPointer

3.1.7.1. FOR each node ofgroupNodes

3.1.7.1.1. INTERLOCKED.INCREMENT IncrementalThreadingTaskValue

3.1.7.1.2. IF node of BeforePageRankVector Is Null

3.1.7.1.2.1. SET node of BeforePageRankVector=1.0

3.1.7.1.3. End IF

3.1.7.1.4. CALL CalculatePageRankNode with BeforePageRankVector , groupNodes

and DampingFactor RETURNING NewPageRankValue

3.1.7.1.5. INTERLOCKED.DECREMENT IncrementalThreadingTaskValue

3.1.7.1.6. WHILE waitAllThreadsInCompution by self iterations

3.1.7.1.6.1. CALL threadSleepwith 10 milisecond

3.1.7.1.7. EndWHILE

3.1.7.1.8. SETnodeofAfterPageRankVector = NewPageRankValue

3.1.7.2. End FOR

3.1.8. End For

3.2. WHILE CALL CalculateVectorDistance with BeforePageRankVector and

AfterPageRankVectorRETURNING distanceValue<0.001

3.3. END DO

22

3.2.2.1 Initialize

Initialize stage pseudo codes of Algorithm 2.2-1. Parallel PageRank computation

algorithm has been given. Algorithm receives datasource, damping factor value and

parallelization number for computation parallelization as parameter.

BeforePageRankVector is created in initialize stage of algorithm. Data structure is

Dictionary<int,float> type for C# language. DegreeOfParallelism is taken asnumerical

parameter for parallelization of computation. DegreeOfParallelism default value is the

total number of the processor core in hardware structure where computation will be

performed.

3.2.2.2 Initialize Parallel Task

Initialize Parallel Task stage pseudo codes of Algorithm 2.2-2. Parallel PageRank

computation algorithm has been given. In accordancewith the DegreeOfParallelism

value given as a parameter to algorithm, data number in datasource is taken, divided to

DegreeOfParallelism value and it is determined approximately how many partitioned

data will be received for each part. During this process, datasource is scanned;

FromNode is partitioned in accordance with the number in DegreeOfParallelism

parameter (Line:2.1). Within this stage, split is avoided for nodes(FromNode) for each

partitioned data group. Data partitioning process is detailed in part 3.2.2.2.1 Data

Partitioning. Outputs of data partitioning process are the starting and ending node values

determining at which node intervals parts will be performed(E.g.: PartitionI:

FromNodeId between 12 and 11457, PartitionII: FromNodeId 11457 and 45025,etc).

Load balancing is attempted in data partitioning process. For this purpose, workloads of

parts are very close to each other provided that there is no split. After data partitioning

process is completed, iteration is started in accordance with the value of

DegreeOfParallelism which is given. In each iteration content, thread is created for

processor. Computation function and criteria of related partitioned dataset are given to

each created thread and work assignments are identified. Threads that are created as a

result of iteration assignments determining which partitioned datasets will be used for

computation are carried out. Computation is started when iteration ends.

23

3.2.2.2.1 Data Partitioning

In Manaskasemsak B. & Rungsawang A. , (2005) An Efficient Partition-Based Parallel

PageRank Algorithm essay, memory usage, I/O usage and synchronization costs of

three different data partitioning approaches have been compared and their findings are

detailed. In Manaskasemsak B. &Rungsawang A. (2005) essay, findings for Partition-

based parallel PageRank algorithm, Block Based Algorithm and Split-Accumulate

algorithm techniques are provided. While the details of approaches in this essay are

analyzed, problem identification appropriate to the result for which data partitioning

approach gives the best result was carried out.

In accordancewith the DegreeOfParallelism value given as a parameter to algorithm,

data number in datasource is taken and divided to DegreeOfParallelism value, and it is

determined approximately how many partitioned data will be received for each part.

During this process, datasource is scanned; FromNode is partitioned in accordance with

the number in DegreeOfParallelism parameter (Line:2.1). Within this stage, split is

avoided for nodes (FromNode) for each partitioned data group. Data partitioning

process has been detailed in part 3.2.2.2.1 Data Partitioning. Outputs of data partitioning

process are the starting and ending node values determining at which node intervals

parts will be performed (E.g.: PartitionI: FromNodeId between 12 and 11457,

PartitionII: FromNodeId 11457 and 45025,etc). Load balancing was attempted in the

data partitioning process. For this purpose, workloads of parts are very close to each

other, provided that there is no split.

3.2.2.3 Compute PageRank & Termination Criteria

In computation stage, an iteration is generated with Do-While (Algorithm 2.1: 3.1-3.3)

This iteration is used for the fading function in PageRank algorithm. PageRank values

are computed for each node in iteration separately. For termination of iteration, distance

of iteration PageRankVector values continuing with PageRankVector that is the result

of previous iteration are computed; these values are shifted until it becomes lower than

0.001. The Formula 2.1 was used for computation of PageRankVector distance.

24

 (2.1)

Algorithm 2.2: Parallel PageRank computation algorithm is the function which

generates the enumerator pointer in order to receive data from datasource in accordance

with the partitioning criteria determined in line 3.1.1 initialize stage. As a result of this

function, iteration of enumerator point in line 3.1.3 is started. Data in this iteration is

grouped in accordance with FromNode and given to the iteration in Line 3.1.7. In the

iteration content in line 3.1.7.1, Interlocked class is used in order to provide

synchronization between threads located in Microsoft.Net Threading library. Said class

takes an integer statement whose data type is long and raises the present number,

IncrementalThreadingTaskValue with Increment method by 1. This value indicates how

many works have been completed at current time for threads and it is used for

synchronization. Value given to Increment method starts from 0 and rises up to

DegreeOfParallelism value. This means that there are as many threads as

DegreeOfParallelism value in iteration content within t time. Provision of

synchronization has been detailed in part 3.2.2.3.1. In Line 3.1.7.1.2, a check is carried

out to determine if there is any value computed previously for node in iteration. If there

is no assigned value, 1.0 assignment is carried out according to the related value of

vector in Line 3.1.7.1.2.1 as default value. CalculatePageRankNode function is called in

Line 3.1.7.1.4 and PageRank value is computed for each node. Assignment is carried

out to the related node value of AfterPageRankVector. In order to provide

synchronization between threads located in Microsoft.Net Threading library, Decrement

function of Interlocked class is called and the number is decreased by 1 to indicate that

related thread in iteration has completed the computation for that iteration. For this

iteration, distance value between AfterPageRankVector and BeforePageRankVector is

shifted until it becomes lower than 0.001. This stage is the termination criteria of

algorithm.

25

3.2.2.3.1 Synchronization

It is a class which allows various processes to be performed on Interlocked class

variables in Microsoft.Net Platform System.Threading library used by multiple threads.

These variables may be value type or they can be any kind of object. Increment,

Decrement and Exchange, Read methods are available in Interlocked class. Increment

method takes a long data type as parameter and raises the given parameter value by one

value. During this process, other threads cannot perform any change or read on these

variables. Decrement method decreases the given parameter by one value. During this

process, other threads cannot perform any change or read on these variables. Exchange

method is used to assign the values of objects. During this process, other threads cannot

perform any change or read on these variables. Read method returns the value of that

parameter if there is no process performed on parameter. If there is a writing process at

that moment, reading process can be pended from other threads and value result is given

after the processes of other threads are completed.

During the computation of algorithm, results achieved after PageRank value in tasks

partitioned for all nodes is parallel computed are assigned to the relating node value of

relating PageRank vector after computation. During the computation of PageRank value

of a node in PageRank algorithm, PageRank value of relating node is needed. If another

iteration starts before an iteration finishes, two different PageRank values are generated

in PageRank vector. Therefore, update of values belonging to the related vector is

required after the computation of each partitioned task is completed. For this purpose,

each task raises the number of completed tasks by one value at the beginning and

decreases it by one value when it is completed with tasks numbers logic. Tasks in other

threads are waited to be completed within the stage after the completion of initial

iteration. Algorithm 2.2: In Parallel PageRank Pseudo Code 3.1.1 line,

IncrementalThreadingTaskValue is expected to be 0 in case that relating tasks are

completed. Related threads are put into sleep mode until it becomes 0 and checked

again. After the computations of all threads are completed, computation finishes for

related iteration and PageRank vector is updated. Algorithm 2.2: Parallel PageRank

Pseudo Code 3.1.4 Line 3.1.4)

26

4. FINDINGS

In order to obtain the benchmarks between Parallel computation of PageRank

Algorithm, Time Cost and Workload values were considered. Microsoft Visual Studio

2010 Performance Profiler was used to measure these values. Related computations

detailed under efficiency Values are for the initial iteration of PageRank computation.

4.1 EFFICIENCY

In order to analyze the performance efficiency of algorithm, time cost, workload, cost

distribution and memory approaches were detailed.

4.1.1 Time cost

Sequential computation of PageRank algorithm achieved a 126.151 second time saving

and parallel computation of algorithm achieved a 54.802 second time saving.

Parallelization of algorithm realized an improvement of 43.44% time saving.

Table 4.1 Sequential And Parallel PageRank Calculation Time Cost

Approach Time Degree Of Parallelism

Sequential 126.151 Seconds -

Parallel 54.802 Seconds 4

4.1.2 Cost Distribution

When analyzing cost distribution of Parallel PageRank algorithm, data reading and data

partitioning form 65.4% of the whole cost. The part of 31.1% forms the calculation and

assignment of data to thread isolation suitable for PageRank vector.

27

Figure 4.1: Cost Distribution

4.1.3 Workload

Workload distribution regarding 4 Threads used for Parallel algorithm was provided.

Thread 1 no. 5152, Thread 2 no. 5544, Thread 3 no. 5944, and Thread 4 no. 73000. The

last thread shows an indication.

Figure 4.2: Thread Workload

28

Four threads were used for computation of the Parallel PageRank algorithm. Said four

threads are equal to the core number in the computation machine.

Figure 4.3: Thread Workload Contentions

4.1.4 Functions Allocating Most Memory

When memory usage of the Parallel PageRank algorithm is detailed, memory usage is

81.66% for data access and data partitioning, 8.12% for PageRank vector and 10.22%

for PageRank vector.

Table 4.2 PageRank Calculation Memory Cost

Functions Bytes %

DataAccess & Partioning 81.66%

PageRank Calculation 8.12%

PageRank Vector 10.22%

29

5. CONCLUSION

This thesis presented a parallelized extension of vanilla PageRank algorithm for multi-

core architectures. Parallelism of PageRank algorithm is essential for it to be useful in

large-network setting. The steps of parallelism at is applied in this thesis can be listed as

follows:

1. Data partitioning

2. Updating PageRank vector at each computing unit(a single thread)

3. Updating entire PageRank vector

4. Repeat(2-3) until convergence

5. Persist the resulting PageRank vector into the database

The results in this thesis are presented with the data partitioning step included. Data

partitioning step can be excluded from the computation if the data is partitioned before

the computation which would normally be the case in a production environment.

The results indicate that, parallelism shows a significant increase in the performance of

PageRank algorithm as it is measured in terms of computations time with everything

else held constant.

When memory usage of the Parallel PageRank algorithm is detailed, memory usage is

81.66% for data access and data partitioning, 8.12% for PageRank vector and 10.22%

for PageRank vector.

When analyzing cost distribution of Parallel PageRank algorithm, data reading and data

partitioning form 65.4% of the whole cost. The part of 31.1% forms the calculation and

assignment of data to thread isolation suitable for PageRank vector.

30

Table 5.1 Sequential And Parallel PageRank Calculation Time Cost

Approach Time Degree Of Parallelism

Sequential 126.151 Seconds -

Parallel 54.802 Seconds 4

Sequential computation of PageRank algorithm achieved a 126.151 second time saving

and parallel computation of algorithm achieved a 54.802 second time saving.

Parallelization of algorithm realized an improvement of 43.44% time saving.

The next two extensions of the PageRank algorithms are in two directions: Adapting the

algorithm to distributed architectures, and adapting the algorithm to temporal dynamics

of the network where connections are created and destroyed in time.

31

REFERENCES

Books

Almasi, G.S., & Gottlieb, A., 1989. Highly parallel computing. Redwood City,

CA: Benjamin-Cummings publishers.

Baeza-Yates R.A., & Boldi P., & Castillo. C. 2008. Generic damping functions

for propagating importance in link-based ranking. Internet Mathematics, Volume

5 .ISSN: 1542-7951 pp:445–478.

Brin S.,& Page L. 1998.The anatomy of a large-scale hypertextual web search

engine. Computer Networks and ISDN Systems, 33(3):107–117,

El-Ghazawi T., & Carlson W., & Sterling T., & Yelick K., 2005 UPC:

Distributed Shared Memory Programming, Wiley.

Gropp W.,& Lusk E., & Sterling T., 2003. Beowulf Cluster Computing with

Linux. The MIT Press, 2nd edition,.

Langville, A.N. & Meyer, C.D., 2006. Google’s PageRank and Beyond: The

Science of Search Engine Rankings. Princeton, NJ,USA: Princeton University

Press.

Marcus, M., & Minc, H. 1988. Introduction to Linear Algebra. New York,

USA:Dower publications.

Powell, G. 2006. Beginning Database Design. IndianaPolis:Wrox.

Trobec R, Vajtersic M and Zinterhof P. , 2009.Parallel computing: Numerics,

Applications, and Trends. ISBN 978-1-84882-409-9 Springer,

http://portal.acm.org/citation.cfm?id=160438

32

Publications

Ahn, H.,& Song, C., & , Ahn J.J., & Lee, H.Y., & Kim, T.Y., & Oh, K.J. 2010,

Using Hybrid Data Mining Techniques for Facilitating Cross-selling of a Mobile

Telecom Market to develop Customer Classification Model. Proceedings of the

43rd Hawaii International Conference on System Sciences.

Asanovic, K. & Bodik, R. & Catanzaro, B.C. & Gebis, J.J.& Husbands, P. &

Keutzer, K. & Patterson, D. & Plishker, W.L. & Shalf, J. & Williams, S.W. &

Yelick, K.A. 2006. The Landscape of Parallel Computing Research: A View from

Berkeley. University of California, Berkeley. Technical Report No. UCB/EECS-

2006-183

Boldi, P., & Santini M., & Vigna S. 2005. Pagerank as a function of the damping

factor. In WWW ’05: Proceedings of the 14th internationa conference on World

Wide Web., New York, NY, USA.

Cha M., & Mislove A., & Gummadi K. 2009. A measurement-driven analysis of

information propagation in the Flickr social network. In Proc. of the 18th

international conference on World Wide Web., Madrid,SPAIN.

Gleich D., & Zhukov L., & Berkhin P., 2004. A Linear System Approach. Yahoo!

Technical Report http://www.stanford.edu/~dgleich/publications/dgleich-

prlinear.pdf [April,2011]

Haveliwala T. 1999. Efficient computation of pagerank. Technical Report 1999-

31,Stanford InfoLab.

Haveliwala T., & Kamvar S.,& Klein D., & Manning C.,& Golub C. 2003.

Computing PageRank using Power Extrapolation. http://www.stanford.edu/

taherh/papers/extrapolationII.pdf [February 2011]

Hwu W.,& Keutzer K.,& Mattons T. July/August 2008. The Concurrency

Challenge. IEEE Design and Test of Computers. pp. 312-320.

John, W. & Amy, R.G., 2007. Parallelizing the computation of pagerank. In Proc.

5th Workshop On Algorithms And Models For The Web-Graph (WAW), pp:202-

208.

Kollias, G. & Gallopoulos, E., 2007. Dagstuhl Seminar Proceedings 07071 Web

Information Retrieval and Linear Algebra Algorithms.

http://drops.dagstuhl.de/opus/volltexte/2007/1065/

Krapivin, M. & Marchese, M., 2008. DOI 10.1007/978-3-540-89533-6

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.stanford.edu/~dgleich/publications/dgleich-prlinear.pdf
http://www.stanford.edu/~dgleich/publications/dgleich-prlinear.pdf
http://drops.dagstuhl.de/opus/volltexte/2007/1065/

33

Langville A.N. & Meyer C.D., 2004. Deeper Inside PageRank. http://mac01-

wi428b.math.ncsu.edu/langville/DeeperInsidePR.pdf

Manaskasemsak, B. &Rungsawang, A. 2005. An Efficient Partition-Based

Parallel PageRank, (0-7695-2281-5/05 IEEE)

Marcus M., & Minc H. 1988. Introduction to Linear Algebra. New York: Dover

Page, L. & Brin, S., & Motwani, R., & Winograd T. 1999. The pagerank citation

ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab,

Previous number = SIDL-WP-1999-0120.

Ryoo S., & Rodrigues, C.,& Stone, S., & Baghsorkhi, S., & Ueng, S., & Stratton

J., & Hwu W., 2008. Program Optimization Space Pruning for a Multithreaded

GPU. Proceedings of the 2008 International Symposium on Code Generation and

Optimization. New York, USA.

Sun, E., & Rosenn I., & Marlow C., & Lento T., 2009. Gesundheit! modeling

contagion through facebook news feed. In Proc. of International AAAI

Conference on Weblogs and Social Media.

Wicks, J.R., & Greenwald, A. 2007 More efficient parallel computation of

pagerank. in SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR

conference on Research and development in information retrieval. New York,

NY, USA:pp:861–862.

West, J., & Althouse, B., & Bergstrom, C., & Rosvall, M., & Bergstrom, T. 2007.

Ranking and mapping scientific knowledge. http://www.eigenfactor.org [June

2010]

http://mac01-wi428b.math.ncsu.edu/langville/DeeperInsidePR.pdf
http://mac01-wi428b.math.ncsu.edu/langville/DeeperInsidePR.pdf

34

CURRICULUM VITEA

Name/Surname : Murat HAKSAL

Adress : Cevizlik Mah. Kartopu sok. Kuşluk Apt. No:2 Bakırkoy/Istanbul

Place & Birthday: Hamburg, 1981

Primary School : Gaziantep Gazi İlk Ögretim Okulu, 1996

High Schoole : Gaziantep Lisesi, 2000

B.S : Çağ Üniversitesi- İşletme, 2005

M.S. : Bahçeşehir Üniversitesi Bilgisayar Mühendisliği, 2011

Name of Schoole : Fen Bilimleri Enstititüsü

Name : Bilgisayar Mühendisliği Yüksek Lisans Programı

Industrial Experinces : Eczacibasi-Intema 2003-2005, BilgeAdam 2005-...

