
T. C.
BAHÇEŞEHİR UNIVERSITY

WAREHOUSE MODELLING AND VERIFICATION

FOR DECISION SUPPORT SYSTEM:

TRANSPORTATION SYSTEM

M. S. Thesis

Mert SUN

İstanbul, 2011

T. C.
BAHÇEŞEHİR UNIVERSITY

The Graduate School of Natural and Applied Sciences

Computer Engineering Graduate Program

WAREHOUSE MODELLING AND VERIFICATION

FOR DECISION SUPPORT SYSTEM:

TRANSPORTATION SYSTEM

M. S. Thesis

Mert SUN

Supervisor: Prof. Oya KALIPSIZ

İstanbul, 2011

T.C
BAHÇEŞEHİR ÜNİVERSİTESİ

The Graduate School of Natural and Applied Sciences
Computer Engineering Graduate Program

Title of the Master’s Thesis : Warehouse Modelling and Verification for Decision
Support System: Transportation System

Name/Last Name of the Student : Mert SUN
Date of Thesis Defense : 23.08.2011

The thesis has been approved by the Graduate School of Natural and Applied Sciences

 Assoc. Prof. F. Tunç BOZBURA

 Acting Director

This is to certify that we have read this thesis and that we find it fully adequate in scope,
quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members:

Prof. Oya KALIPSIZ (Supervisor) :

Assist. Prof. Övgü Öztürk :

Assist. Prof. Egemen Özden :

ii

ABSTRACT

WAREHOUSE MODELLING AND VERIFICATION FOR DECISION SUPPORT

SYSTEM: TRANSPORTATION SYSTEM

Sun, Mert

Computer Engineering Graduate Program

Supervisor: Prof. Oya KALIPSIZ

August, 2011, 109 pages

In the competitive transportation sector, there’s a great need for managers to analyze the

data of business processes without interrupting the daily work of an On-Line

Transaction Processing (OLTP) system. The new technologies and concepts have given

the opportunity to the companies for analyzing faster and more detailed results with

using the Decision Support System (DSS). Improvements in the data warehousing

technologies expanded the view of the business about the decision making. With the

On-Line Analysis Processing (OLAP) concepts of the data warehouse, presentation of

the data through multidimensional views and graphical displays provide great support

for the decision-makers. With new DSS technologies, transportation companies will get

chance to analyze their business more efficiently. In this thesis, we analyzed the

structure of OLTP of a transportation company and we proposed the most suitable DSS

model as a data warehouse based model. For the DSS data warehouse database, we

modeled a hybrid structure which is suitable for the business functions’ data of the

transportation company.

Keywords: Warehouse systems, transportation company systems, data warehouse

hybrid structure

iii

ÖZET

KARAR DESTEK SİSTEMLERİ İÇİN VERİAMBARI MODELLEMESİ VE

GERÇEKLEMESİ: TAŞIMACILIK SİSTEMİ

Sun, Mert

Bilgisayar Mühendisliği Master Programı

Danışman: Prof. Oya KALIPSIZ

Ağustos, 2011, 110 sayfa

Rekabete dayalı taşımacılık sektöründe, yöneticilerin günlük işleyişte kullanılan

çevirmiçi transaksiyonel işlem sistemlerini (OLTP) etkilemeden, iş süreçlerine ait

verinin analizini yapmaya çok önemli derecede ihtiyaçları vardır. Yeni teknolojiler ve

konseptler, Karar Destek Sistemleri’ni (DSS) kullanacak olan şirketlere daha hızlı ve

daha detaylı analiz sonuçlarına ulaşabilmek için fırsatlar sunmaktadır. Veri ambarı

teknolojilerindeki gelişmeler iş dünyasının karar destek kavramlarıyla ilgili bakış açısını

genişletmiştir. Online analiz proses (OLAP) konseptleri sayesinde veriambarlarının

sağladığı, verinin çok boyutlu ve grafiksel gösterim imkanı, karar destek uzmanlarına

çok önemli destek sağlamıştır. Yeni DSS teknolojilerinden faydalanacak olan

taşımacılık sektöründeki şirketler, kendi iş süreçlerinin analizini çok daha etkili

yapabilme şansına sahip olabileceklerdir. Bu tezde, bir taşımacılık şirketinin OLTP

yapısı analiz edildi ve bu yapıya en uygun olacak, veritabanı bazlı bir DSS modeli

geliştirildi. Taşımacılık şirketinin iş süreçleri için kullandığı veri göz önünde

bulundurularak, hibrit yapıda bir veri ambarı DSS sistemi modellendi.

Anahtar Kelimeler: Veri ambarı sistemi, taşımacılık şirketi sistemleri, hibrit modelli

veri ambarı yapısı

iv

CONTENTSS

LIST OF
FIGURES……………………………………………………………….…...VII

LIST OF
TABLES……………………………………………………………………VIIII

1. INTRODUCTION……………………………………………………….…………1

2. DECISION SUPPORT SYSTEM (DSS)………………………………….…….… 4

 2.1 DECISION SUPPORT SYSTEM (DSS)…………………………….……...4

 2.2 NEEDS FOR DSS……………………………………………………….…...5

 2.3 DIFFERENCE BETWEEN DSS AND OLTP………………………………5

 2.4 HISTORICAL DEVELOPMENT OF DSS…………………………………6

 2.5 DDS’S DEVELOPMENT FRAMEWORKS………………………………..9

 2.6 BENEFITS OF DSS………………………………………………………...10

 2.7 DECISION SUPPORT SYSTEM STRUCTURE………………………….11

3. WAREHOUSE MODEL FOR THE DECISION SUPPORT SYSTEM……..…..14

 3.1 DATA WAREHOUSE……………………………………………………..14

 3.2 FEATURES OF DATA WAREHOUSE…………………………………..16

 3.3 DATA WAREHOUSE ARCHITECTURES………………………………19

 3.4 EXTRACTION, TRANSFORMATION, AND LOAD (ETL)…………...21

 3.5 DATA WAREHOUSE DATABASE DESIGN…………………………...23

 3.5.1 THE RELATIONAL MODEL…………………………………….…24

 3.5.2 THE MULTIDIMENSIONAL MODEL………………………….…26
3.6 ONLINE ANALYTICAL PROCESSING OLAP…………………………....26

4. THE DSS NEED OF THE TRANSPORTATION COMPANY…………..…….36

 4.1 TRANPORTATION COMPANY ANALYSIS……………………….…..36

 4.2 TRANPORTATION COMPANY NEEDS…………………………….….36

 4.3 PROBLEMS OF THE COMPANY……………………………….……….38

v

5. VERIFYING DSS FOR TRANSPORTATION COMPANY………….……..…39

 5.1 CHOOSING AND DESIGNING THE DATA WAREHOUSE MODEL..39

 5.2 ETL PROCESSES…………………………………………………………..42

 5.3 CHOOSING THE ANALYZING TOOL………………………………….45

 5.4 BUILDING ANALYZING OBJECTS OF THE WAREHOUSE………...48

 5.4.1 CREATING ANALYTICAL REPORTING PROJECT………….48

 5.4.2 DEFINING OBJECTS OF THE PROJECT………………………52

 5.4.3 CREATING OLAP CUBES………………………………………64

 5.4.4 CREATING REPORTS…………………………………………...68

 5.4.5 CREATING DASHBOARDS…………………………………….70

 5.5 VERIFYING DATA CONSISTENCY……………………………………71

 5.6 BENEFITS OF THE NEW SYSTEM……………………………………..72

 5.6.1 VERIFICATION OF THE DEVELOPING TIME………….……73

 5.6.2 VERIFICATION OF THE QUERY PERFORMANCE………....74

 5.6.3 DSS'S EXTRA CAPABILITIES AND ADVANTAGES………..75

CONCLUSION………………………………………………………………………77

REFERENCES……………………………………………………………………….79

APPENDICIES………………………………………………………………………81

APPENDIX A…………………………………………………………………..82

APPENDIX B…………………………………………………………………...94

APPENDIX C………………………………………………………………….106

CURRICULUM VITAE……………………………………………………………110

vi

LIST OF FIGURES

Figure 2.1 : DSS Structure…………………………………………………………..11

Figure 3.1 : Data warehouse components…………………………………………..15

Figure 3.2 : Three-tier data warehouse architecture………………………………20

Figure 3.4 : ETL process………………………………………………………....….22

Figure 3.5 : Classical relational database design…………………………………...25

Figure 3.6 : Star join design…………………………………………………….……26

Figure 3.7 : Star Schema………………………………………………………….….31

Figure 3.8 : Snowflake Schema………………………………………………….…..31

Figure 5.1 : Cargo data of the OLTP System……………………………………....39

Figure 5.2 : The SQL code for creating the cargo fact table………………………41

Figure 5.3 : Cargo’s dimensions……………………………………………………..42

Figure 5.4 : ETL structure…………………………………………………………..43

Figure 5.5 : Before insert and before update triggers……………………………...44

Figure 5.6 : Creating a project with BI tool………………………………………...48

Figure 5.7 : Adding tables to the Warehouse Catalog……………………………..50

Figure 5.8 : Configuration objects of the transportation DSS system……………51

Figure 5.9 : The structure of facts…………………………………………………..52

Figure 5.10 : ‘Total Cargo Price’ Fact……………………………………………...53

Figure 5.11 : Facts of the project……………………………………………………54

Figure 5.12 : Attributes of the project……………………………………………...55

Figure 5.13 : Relation between ‘Region’ and ‘Branch’ attributes………………..56

Figure 5.14 : Relations between ‘waybill’, ‘shipment’ attributes………………..57

Figure 5.15 : ‘Waybill’ attribute relations between lookup tables……………….59

Figure 5.16 : Defining the region attribute………………………………………...60

Figure 5.17 : Region, branch and cargo attributes………………………………..61

Figure 5.18 : Attribute’s relations………………………………………………….62

Figure 5.19 : ‘Gonderi Toplam Tutarı’ metric……………………………………64

Figure 5.20 : Intelligent cube usage………………………………………………..65

Figure 5.21 : Cargo Cube…………………………………………………………..66

vii

Figure 5.22 : Cargo Cube SQL…………………………………………………….67

Figure 5.23 : Design of the ‘Branch’s giro report’…………………………………68

Figure 5.24 : ‘Branch’s giro report’s SQL…………………………………………69

Figure 5.25: Giro analysis dashboard………………………………………………71

Figure 5.26 : Unit’s giro effects with the ‘distance’………………………………..75

viii

LIST OF TABLES

Table 2.1 : Differences between operational and derived data……………………..6

Table 3.1 : A simple table……………………………………………………………24

Table 5.1 : The comparison of the Design Effort......………………………………48

Table 5.2 : The comparison of Deployment and Admin Effort ……..……………49

Table 5.3 : Comparison of the data between DSS and OLTP System……………72

Table 5.4 : Development time with DSS and OLTP System………………………74

Table 5.5 : Running queries’ period………………………………………………...75

1. INTRODUCTION

The business in transportation sector is constantly changing and developing. Day after

day it’s becoming more complex. Organizations are under pressures to respond quickly

to these changing conditions. With the growing of the sector, new products are

developed such as new transportation methods. Companies have to be agile and they

must make quick strategic, tactical, and operational decisions which are very complex.

For making such decisions, considerable amounts of relevant data, information and

knowledge is required. When preparing these data, processing must be done quickly,

frequently and usually requires some computerized support.

Competition in the transportation sector today is based not just on price but also on

quality, timeliness, customization of products, and customer support. In addition,

organizations must be able to frequently and rapidly change their mode of operation,

reengineer processes and structures, and innovate in order to adapt to their changing

environments. Decision support technologies such as intelligent systems can empower

people by allowing them to make good decisions quickly, even if they lack some

knowledge. (Turban, Sharda, Delen 2007)

The new technologies and concepts are always developint in the IT world. Computer

applications have moved from transational processing and monitoring activities to

problem analysis and solution applications, and much of the activity is done with Web-

based technologies. IT tools such as data warehousing, Online Analytical Processing

(OLAP), dashboards, and the use of the Web for decision support are the cornerstones

of today’s modern management. Managers must have high-speed, networked

information systems such as wireless systems to assist them with their most important

task: making decisions.

Since the Internet and Web servers and tool’s development, there have been dramatic

changes in how decision makers are supported. Most important, the Web provides

access to a vast body of data, information, and knowledge available around the world. It

2

also provides a common, user-friendly graphical user interface that is easy to learn to

use and readily available.

DSS enables the managers to perform many analysis quickly and at a low cost. Web-

based DSS can improve the collaboration process of a group and enable its members

who are in different places. In addition of that, DSS can increase the productivity of

staff support. With DSS, extremely great data of the business can be analyzed. (Turban,

Sharda, Delen 2007) With using wireless technology, managers can access information

anytime and from anyplace, analyze and interpret it.

In this thesis, a transportation company is analyzed. The company’s needs are

determined. The problems which the company has are listed. With these analysis, the

decision subjects are defined.

For covering decision makers’ needs of the transportation sector, the modern data

warehouse based DSS are analyzed. Also, the best structure of the data warehouse is

researched which is most suitable to the transportation sector’s business needs and the

company’s OLTP systems.

With choosing the best suitable techniques, the data warehouse structure is modeled for

the company. For developing analyzing layer, the analyzing tools are compared and the

most suitable tool is selected. With the analyzing tool, business intelligence layer is

structured.

This thesis consists of five chapter. In the first chapter, DSS are defined and their

benefits are analyzed. Their differences between the OLTP systems are researched. The

framework and the structure of the DSS is explained.

In the second chapter, data warehouse is researched. The features, structures and

architectures of the data warehouse are explained. Also the ETL processes are analyzed.

Data warehouse’s database design and models are researched.

3

In the third chapter, transportation company’s DSS need is analyzed. The problems

about making decisions are researched.

In the forth chapter, the transportation company is analyzed. It’s functional needs are

defined. The problems that the transportation company has are defined.

In the fifth chapter, according to the analysis of the company’s needs and the OLTP

system’s structure, most suitable structure of the data warehouse is researched. ETL

processes are developed. Data warehouse analyzing objects are designed. OLAP Cube’s

of the DSS are developed. Reports and dashboards are explained. Data warehouse DSS

is verified. The modeled DSS system and OLTP systems are compared. The benefits of

the data warehouse DSS model is defined.

4

2. DECISION SUPPORT SYSTEM (DSS)

2.1 DECISION SUPPORT SYSTEM (DSS)

A Decision Support System (DSS) is an interactive computer based system which helps

decision makers utilize data and models to solve unstructured problems. (Keen and

Scott-Morton (1978))

Decision Support Systems include knowledge-based systems. A DSS is an interactive

software-based system intended to help decision makers compile useful information

from a combination of raw data, documents, personal knowledge, or business models to

identify and solve problems and make decisions. (Power, 2004).

An important role of a Decision Support System is to provide information for users to

analyze situations and make decisions. A Decision Support System provides

information for employees to make decisions and do their jobs more effectively. (V.

Poe, 1998)

Decision Support Systems are used to collect data, analyze and shape the data that is

collected, and make sound decisions or construct strategies from analysis. Whether

computers, databases, or people are involved usually does not matter.

Typical information that a decision support application might gather and present would

be:

• Accessing all of your current information assets, including legacy and relational

data sources, cubes, data warehouses

• Comparative sales figures between one week and the next

• Projected revenue figures based on new product sales assumptions

• The consequences of different decision alternatives, given past experience in a

context that is described

5

2.2 NEEDS FOR DSS

Every one of the past attempts at providing strategic information to decision makers was

unsatisfactory. The cycle of strategic information provision in the past always revolves

in these phases:

a. User needs information

b. User requests reports from IT

c. IT places request on backlog

d. IT creates ad hoc queries

e. IT sends requested reports

Here are some of the factors relating to the inability to provide strategic information:

• IT receives too many ad hoc requests, resulting in a large overload. With limited

resources, IT is unable to respond to the numerous requests in a timely fashion.

• Requests are not only too numerous, they also keep changing all the time. The

users need more reports to expand and understand the earlier reports.

• The users find that they get into the spiral of asking for more and more

supplementary reports, so they sometimes adapt by asking for every possible

combination, which only increases the IT load even further.

• The users have to depend on IT to provide the information. They are not able to

access the information themselves interactively.

• The information environment ideally suited for making strategic decision

making has to be very flexible and conducive for analysis. IT has been unable to

provide such an environment. (Ponniah, 2001)

2.3 DIFFERENCE BETWEEN DSS AND OLTP

Online transaction processing (OLTP) database applications are optimal for managing

changing data. OLTP uses operational data. These applications typically have many

users who are performing transactions at the same time that change real-time data, in

other words OLTP is a live database (accomodates inserts, deletes, updates etc).

(MSDN 2005). But DSS is used for making analysis of the organization’s data. Because

6

of the differences in usage of these two systems, their structures and characteristics are

also different. The basic differences between DSS and OLTP are shown in Table 2.1.

Table 2.1 : Differences between operational and derived data (Inmon, 2005)

2.4 HISTORICAL DEVELOPMENT OF DSS

Since the beginning of the organization of business processes into functions that

optimized record keeping and thereby the ability to compete successfully in the

marketplace, there has been a need to display or report on the basic information that was

used by the direct functional processes. The business processes were distilled and

encoded in programming languages that provided a concise set of actions to be

performed on the data. The data used for the processes were arranged in the most

optimal structure possible to ensure rapid movement through the programs that

represented the captured business processes. (Tupper, 2009).

The structure of the data for optimal processing for the business did not represent some

of the information (interpreted data) necessary to monitor or project trends in the

business. The structure that allowed rapid processing of transaction-type activity

7

impeded the process of interpreting the information and arranging it in a format that

allowed business decisions to be based on it.

The early DBMSs (database management systems) did not help the situation, since they

tended to be inflexible and required that the data be arrayed in a pattern that the

processing requirements for a specific business process needed. If other business

processes needed that same data, then their business need was captured in a separate

data structure.

Peter G. W. Keen and Michael S. Scott-Morton (1978) developed some concepts of

business decision classification and decision support strategies for use in reporting and

projective analysis. Theirs was the first comprehensive look at the business need to

provide intelligence on the processing of the data for monitoring and control purposes.

In their work on decision support they identified three classes of decisions: structured

decisions, semistructured decisions, and unstructured decisions. (Tupper, 2009).

Structured decisions were made by operating management. Because they were regarded

as needing certain expertise to be accomplished. We know now that these decisions are

easily automated and generally choose to computerize them.

Semistructured decisions are less easily automated because they rely on judgment,

intuition, and experience of management. The data that are needed for these

semistructured decisions usually lies in the detail data of the business processes and can

be retrieved for interpretation.

Unstructured decisions are decisions that rely completely on human intuition and

analysis. The data needed for these must be formulated and structured for the purpose of

presentation for evaluation, analysis, and assessment.

The structured decision classification was the set of data currently used for transaction

processing systems. The set of data that is applicable for semistructured decisions is

what is considered as reporting system data. And finally, the set of data associated with

the classification of unstructured decisions is regarded as ad hoc query data.

8

Ralph Sprague and Eric Carlson's(1982) book Building Effective Decision Support

Systems was an important milestone that provided a practical overview of how

organiations could and should build DSS. (Power, 2002).

In the early 1990's, a shift occured from mainframe-based data-driven DSS to

client/server DSS. Some desktop OLAP tools were introduced at this period. In 1992-

1993, vendors recommended object-oriented technology for building "re-usable"

decision support capabilities. Also, some of the first data warehouse were completed.

In 1994, many companies started to upgrade their network infrastructures. Database

Management System vendors changed their focus from On-Line Transaction Processing

(OLTP) and recognized that decision support was different from OLTP and started

implementing real OLAP capabilities into their databases (Powel, 2004)

The modern era in decision support systems started in about 1995 with the specification

of HTML 2.0, the expansion of the World Wide Web in companies, and the

introduction of handheld computing. (Power, 2009).

In 1997, the data warehouse became the cornerstone of an intergrated knowledge

environment that provided a higher level of information sharing across an organization,

enabling faster and better decision making. In 1998, enterprise poerformence

management and balanced scorecard systems were introduced to update the executive

information systems of the 1970s and 1980s.

In 2000 and 2001, application service providers (ASPs) began hosting some application

software and some of the techical infrastructure for decision support capabilities. More

sophisticated decision portals have also been introduced that combine information

portals, knowledge management, business intelligence, and communications-driven

DSS in an integrated Web enviroment.

Today, the Web 2.0 technologies, mobile-integrated communication and computing

devices, and improved software development tools have revolutionized DSS user

interfaces. Additionally, the decision support data store back-end is now capable of

rapidly processing very large data sets. (Power, 2009).

9

Modern DSS are more complex and more diverse in functionality than DSS built prior

to the widespread use of the World Wide Web. Today, we are seeing more decision

automation with business rules and more knowledge-driven decision support systems.

Current DSS are changing the mix of decision-making skills needed in organizations.

Building better DSS may provide one of the “keys” to competing in a global business

environment.

The following attributes are increasingly common in new and updated decision support

systems. Some attributes are more closely associated with one category of DSS, but

sophisticated DSS often have multiple subsystems. Attributes of contemporary DSS

include the following:

a. Multiple, remote users can collaborate in real-time using rich media.

b. Users can access DSS applications anywhere and anytime.

c. Users have fast access to historical data stored in very large data sets.

d. Users can view data and results visually with excellent graphs and charts.

e. Users can receive real-time data when needed.

2.5 DEVELOPMENT FRAMEWORKS OF DSS

DSS systems are not entirely different from other systems and require a structured

approach. Such a framework includes people, technology, and the development

approach.

DSS technology levels (of hardware and software) may include:

a. The actual application that will be used by the user. This is the part of the

application that allows the decision maker to make decisions in a particular problem

area. The user can act upon that particular problem.

b. Generator contains Hardware/software environment that allows people to easily

develop specific DSS applications. This level makes use of case tools or systems

such as Crystal, AIMMS, and iThink.

c. Tools include lower level hardware/software. DSS generators including special

languages, function libraries and linking modules

10

An iterative developmental approach allows for the DSS to be changed and redesigned

at various intervals. Once the system is designed, it will need to be tested and revised

for the desired outcome. (Sprague, Carlson,1982)

2.6 BENEFITS OF DSS

DSS is the abbreviated form of Decision support systems and comprises of information

systems based on a network of computers. DSS also includes knowledge-based systems,

which support the decision-making activities in an organization. DSS supports the

management of an organization and helps them in decision making. These decisions

might be changing rapidly and are not specified in advance. There are many benefits of

DSS both for the management and the organization as a whole. These benefits include:

a. Saves time: Research has demonstrated that decision support systems help to reduce

decision cycle time for an organization. DSS provides timely information, which is then

used for decision making and results in enhanced employee productivity.

b. Improves efficiency: Another advantage of DSS is efficient decision making,

resulting in better decisions. This is because use of DSS results in quick transfer of

information, better data analyses, thus resulting in efficient decisions.

c. Boosts up interpersonal communication: Use of DSS in an organization helps to

improve interpersonal communication between same level of employees and between

management and employees.

d. Provides competitive advantage: Use of decision support system in an organization

provides a competitive advantage over other organizations which do not use DSS.

e. Helps in reducing cost: Research and case studies reveal that use of DSS in an

organization helps in making quicker decisions and reduce cost.

f. High satisfaction among decision makers: In DSS computers and latest technology

aids the decision making process. It thus results in higher satisfaction among decision

makers, reduces frustrations among them, and form perceptions that superior

information is being used. They gain a confidence and satisfaction that they are good

decision makers.

11

g. Supports learning: The use of DSS in an organization results in two type of

learning. First managers themselves learn new concepts. Secondly, there is better factual

understanding of business as well as the decision making environment.

h. Enhanced organizational control: Due to the use of DSS business transaction data

is easily available for monitoring the performance of employees and ad hoc querying. It

thus leads to enhanced understanding of business operations for the management.

Although DSS has numerous advantages for organizations and the people involved in

decision making, but should be used cautiously due to some associated disadvantages.

As for instance some DSS development efforts can lead to power struggles. People fight

over the authority of accessing data, thus spoiling the organizational environment.

Sometimes managers may have some personal motives and may advocate the

development of a particular DSS. This might harm other people and the organization as

a whole. It should thus be very well and cautiously used in benefit of an organization.

2.7 DSS STRUCTURE

A typical DSS consists of three major parts: staging area, data warehouse and analytical

part as shown in Figure 2.2

Figure 2.2 : DSS Structure (Loshin, 2003)

12

Staging area: Staging area is the first interface of the DSS. It serves as the collector and

deliverer of the data to the data warehouse. It provides the interface to communicate

with all the data sources and facilitates efficient and reliable ETL (Extraction,

Transformation, Load) processing

Data Warehouse: The data warehouse is “the heart” of the whole system. Its role is to

provide secure, long-term and accessible storage for granular data needed for analytical

purposes. There is a strong dispute between the authors about the form in which the data

should be stored in the data warehouse. One school of thought (e.g. Kimball)

recommends storing the data directly in the multidimensional form within the data

warehouse. The second school of thought (e.g. Inmon) believes that this approach is

very shortsighted and does not provide a long-term, universal and efficient solution for

an enterprise. They claim the data is mutilated and thus not versatile. They advise to use

traditional relational approach and then add the third purpose-oriented analytical level to

which the data is supplied from the data warehouse. In this paper, the latter solution will

be preferred.

Analytical part: The third level is the end-user interface and it is the place where most

of the DSS calculations and aggregations are performed. Typical unit is a datamart.

Datamart: Datamart serves the needs of departments or it is build around certain

subject, such as production, sales, etc. The data has a higher level of summarization and

it is aggregated based on its purpose. The number of datamarts depends on the

company’s needs and its size. The reason to have more than one datamart are different

needs of different parts of the company. Every datamart gathers and aggregates

information by different criteria and it would not be possible to facilitate all of this

using only one datamart or the data warehouse solely. Although it may seem that there

is unnecessary redundancy, it is a trade-off for a single consistent data foundation. The

benefit is that the ETL is done only once and that all the analytical units work with the

same data.

13

OLAP cube: On-Line Analytical Processing uses the data arranged in multidimensional

structures to speed up the calculations and perform aggregations faster.

Operational Data Store (ODS): ODS is similar to a datamart with a slight difference,

that the purpose of ODS is to gather profile information and serve as a high speed

access unit to provide this information in an OLTP manner.

14

3. WAREHOUSE MODEL FOR THE DECISION SUPPORT

SYSTEM

3.1 DATA WAREHOUSE

Data Warehouse (DW) is a pool of data that is produced to support decision-making is

also a repository of current and historical data of potential interest to managers of the

organization. The data are usually structured to be available in a form ready for the

activities of analytical processing (ie, online analytical processing [OLAP], data mining,

querying, reporting and other support applications the decision). A data warehouse is a

subject oriented, integrated, time-varying, the non-volatile data collection to support

management decision making. (Inmon, 2005)

A data warehouse is a collection of subject-oriented, integrated, non-volatile, and time-

variant data to support management’s decisions.

Data warehouses are not optimized for transaction processing, which is the domain of

OLTP systems. Data warehouses usually consolidate historical and analytic data derived

from multiple sources. Data warehouses separate analysis workload from transaction

workload and enable an organization to consolidate data from several sources.

A data warehouse usually stores many months or years of data to support historical

analysis. The data in a data warehouse is typically loaded through an extraction,

transformation, and loading (ETL) process from one or more data sources such as

OLTP applications, mainframe applications, or external data providers. (Oracle, 2007)

Organizations, private and public, continuously collect data, information, and

knowledge at an increasingly accelerated rate and store them in computerized systems.

Maintaining and using these data and information become extremely complex,

especially as scalability issues arise. In addition, the number of users needing to access

the information continues to increase as a result of improved reliability and availability

of network access, especially the Internet. Working with multiple databases, either

15

integrated in a data warehouse or not, has become an extremely difficult task requiring

considerable expertise, but it can provide immense benefits far exceeding its cost.

(Inmon, 2005)

Data are imported from various external and internal resources anda re cleansed and

organized in a manner consistent with the organization’s needs. After the data are

populated in the data warehouse, data marts can be loaded for a specific area or

department. Alternatively, data marts can be created first, as needed, and then integrated

into an EDW. Often, data marts are not developed, but data are simply loaded onto PC

sor left in their original state for direct manipulation using BI tools. The data warehouse

components is seen in Figure 3.1.

Figure 3.1 : Data warehouse components (Turban, 2007)

These are the major components of the data warehousing process:

Data Sources: Data are sourced from multiple independent operational systems and

possibly from external data providers. Data may also come from OLTP (OnLine

Transaction Processing) or ERP system. Web data in the form of Web logs may also

feed a data warehouse.

16

Data extraction: Data are extracted using custom-written or commercial software

called ETL.

Data loading: Data are loaded into a staging area, where they are transformed and

cleansed. The data are then ready to load into the data warehouse.

Comprehensive database: Essentially, this is the EDW to support all decision analysis

by providing relevant summarized and detailed information originating from many

different sources.

Metadata: Metadata are maintained so that they can be assessed by IT poersonnel and

users. Metadata include software programs about data and rules for organizing data

summaries that are easy to index and search, especially with Web tools.

Middleware tools: Middleware tools enable access to the data warehouse. Power users

such as analysts may write their own SQL queries. Others may employ a managed

query environment to access data. There are many front-end applications that business

users can use to interact with data stored in the data repositories, including data mining,

OLAP, reporting tools, and data visualization tools.

Data mart: Data mart is the access layer of the data warehouse (DW) environment that

is used to get data out to the users. The DM is a subset of the DW, usually oriented to a

specific business line or team.

3.2 FEATURES OF DATA WAREHOUSE

Subject-oriented: In operational database, data is stored by individual applications. In

the data sets for an order processing application, the data is kept for that particular

application. These data sets provide the data for all the functions for entering orders,

checking stock, verifying customer’s credit, and assigning the order for shipment. But

17

these data sets contain only the data that is needed for those functions relating to this

particular application.

In striking contrast, in the data warehouse, data is stored by subjects, not by

applications. Business subjects differ from enterprise to enterprise. These are the

subjects critical for the enterprise. For a manufacturing company, sales, shipments, and

inventory are critical business subjects. For a retail store, sales at the check-out counter

are critical subject. (Ponniah, 2010).

Integrated: For proper decision making, it’s needed to pull together all the relevant

data from the various applications. The data in the data warehouse comes from several

operational systems.Source data are in different databases, files, and data segments.

These are disparate applications, so the operational platforms and operating systems

could be different. The file layouts, character code representations, and field naming

conventions all could be different.

Before the data from various disparate sources can be usefully stored in a data

warehouse, the inconsistencies must be removed. The various data elements must be

standardized and make sure of the meanings of data names in each source application.

Before moving the data into the data warehouse, we have to go through a process of

transformation, consolidation, and integration of the source data.

Time-variant: For an operational system, the stored data contains the current values. In

an accounts receivable system, the balance is the current outstanding balance in the

customer’s account. In an order entry system, the status of an order is the current status

of the order. In a consumer loans application, the balance amount owed by the customer

is the current amount. There’s also some past transactions in operational systems, but,

essentially, operational systems reflect current information because these systems

support day-to-day current operations. (Ponniah, 2010).

On the other hand, the data in the data warehouse is meant for analysis and decision

making. If a user is looking at the buying pattern of a specific customer, the user needs

18

data not only about the current purchase, but on the past purchases as well. (Ponniah,

2010).

A data warehouse, because of the very nature of its purpose, has to contain historical

data, not just current values. Data is stored as snapshots over past and current periods.

Every data structure in the data warehouse contains the time element. There are

historical snapshots of the operational data in the data warehouse. This aspect of the

data warehouse is quite significant for both the design and the implementation phases.

Nonvolatile: Data extracted from the various operational systems and pertinent data

obtained from outside sources are transformed, integrated, and stored in the data

warehouse. The data in the data warehouse is not intended to run the day-to-day

business. When you want to process the next order received from a customer, you do

not look into the data warehouse to find the current stock status. The operational order

entry application is meant for that purpose. In the data warehouse, you keep the

extracted stock status data as snapshots over time. You do not update the data

warehouse every time you process a single order.

Data from the operational systems are moved into the data warehouse at specific

intervals. Depending on the requirements of the business, these data movements take

place twice a day, once a day, once a week, or once in two weeks. In fact, in a typical

data warehouse, data movements to different data sets may take place at different

frequencies. The changes to the attributes of the products may be moved once a week.

Any revisions to geographical setup may be moved once a month. The units of sales

may be moved once a day. You plan and schedule the data movements or data loads

based on the requirements of your users.

Data Granularity: In an operational system, data is usually kept at the lowest level of

detail. In a point-of-sale system for a grocery store, the units of sale are captured and

stored at the level of units of a product per transaction at the check-out counter. In an

order entry system, the quantity ordered is captured and stored at the level of units of a

product per order received from the customer. Whenever you need summary data, you

19

add up the individual transactions. If you are looking for units of a product ordered this

month, you read all the orders entered for the entire month for that product and add up.

You do not usually keep summary data in an operational system.

When a user queries the data warehouse for analysis, he or she usually starts by looking

at summary data. The user may start with total sale units of a product in an entire

region. Then the user may want to look at the breakdown by states in the region. The

next step may be the examination of sale units by the next level of individual stores.

Frequently, the analysis begins at a high level and moves down to lower levels of detail.

In a data warehouse, therefore, you find it efficient to keep data summarized at different

levels. Depending on the query, you can then go to the particular level of detail and

satisfy the query. Data granularity in a data warehouse refers to the level of detail. The

lower the level of detail, the finer the data granularity. Of course, if you want to keep

data in the lowest level of detail, you have to store a lot of data in the data warehouse.

You will have to decide on the granularity levels based on the data types and the

expected system performance for queries.

3.3 DATA WAREHOUSE ARCHITECTURES

There are several basic architectures for data warehousing. Two-tier and three-tier

architectures are common, but sometimes there is simply one tier. Hoffer divided the

data warehouse into three parts: (Hoffer 2007)

a. The data warehouse itself, which contains the data and associated software.

b. Data acquisition (back-end) software, which extracts data from legacy systems and

external sources, consolidates and summarizes them, and loads them into the data

warehouse.

c. Client (front-end) software, which allows users to access and analyze data from the

warehouse (a DSS/BI/business analytics (BA) engine)

In a three-tier architecture, operational systems contain the data and the software for

data acquisition in one tier (i.e., the server), the data warehouse is another tier, and the

20

third tier includes the DSS/BI/BA engine (i.e., the application server) and the

client.(Figure 3.2). Data from the warehouse are processed twice and deposited in an

additional multidimensional database, organized for easy multidimensional analysis and

presentation, or replicated in data marts. The advantage of the three-tier architecture is

its separation of the funcitons of the data warehouse, which eliminates resource

constraints and makes it possible to easily create data marts.

Figure 3.2 : Three-tier data warehouse architecture (Turban, 2007)

In a two-tier architecture, the DSS engine physically runs on the same hartware platform

as the data warehouse. Therefore, it is more economical than the three-tier structure.

The two-tier architecture can have performance problems for large data warehouses that

work with data-intensive approach, maintaining that one solution is beter than the other,

despite the organization’s circumstances and unique needs. To further complicate these

architectural decisions, many consultansts and software vendors focus on one portion of

the architecture, therefore limiting their capacity and motivation to asist an organization

through the options based on its needs.

Data warehousing and the Internet are two key Technologies that offer important

solutions for managing corporate data. The integration of these two Technologies

produces Web-based data warehousing. On the client side, the user needs an Internet

21

connection and a Web browser through the familiar graphical user interface (GUI). The

Internet/intranet/extranet is the communication medium between clients and servers. On

the server side, a Web server is used to manage the inflow and outflow of information

between client and server. It is backed by both a data warehouse and an application

server. Web-based data warehousing offers several compelling advantages, including

ease of access, platform independence, an lower cost.

Web architectures for data warehousing are similar in structure to other data

warehousing architectures, requiring a design choice for housing the Web data

warehouse with the transaction server or as a separate server(s). Page-loading speed is

an important consideration in designing Web-based applications; therefore, server

capacity must be planned carefully.

3.4 EXTRACTION, TRANSFORMATION AND LOAD (ETL)

At the heart of the technical side of the data warehousing process is extraction,

transformation, and load (ETL). The ETL process ian integral component in any

data-centric Project. IT managers are often faced with challenges because the ETL

process typically consumes 70 percent of the time in a data-centric Project. (Turban,

2007)

The ETL process consists of extraction (i.e., reading data from one or more databases),

transformation (i.e., converting the extracted data from its previous form into the form

in which it needs to be so that it can be placed into a data warehouse or simply another

database), and load (i.e., putting the data into the data warehouse). Transformation

occurs by using rules or lookup tables or by combining the data with other data.

ETL is extremely important for data integration as well as for data warehousing. The

purpose of the ETL process is to load the warehouse with integrated and cleansed data.

The data used in ETL processes can come from any source: a mainframe application, an

ERP application, a CRM tool, a flat file, an Excell spreadsheet, or even a message

queue.

22

The Figure 3.3 shows the ETL process.

Figure 3.3 : ETL process (Turban, 2007)

The process of migrating data to a data warehouse involves the extraction of data from

all relevant sources. Data sources may consist of files extracted from OLTP databases,

spreadsheets, personal databases (e.g., Microsoft Access), or external files. Typically,

all the input files are written to a set of staging tables, which are designed to facilitate

the load process. A data warehouse contains numerous business rules that define such

things as how the data will be used, summarization rules, standardization of encoded

attributes, and calculation rules. Any data quality issues pertaining to the source files

need to be corrected before the data are loaded into the data warehouse. One of the

benefits of a well-designed data warehouse is that these rules can be stored in a

metadata repository and applied to the data warehouse centrally. This differs from an

OLTP approach, which typically has data and business rules scattered throughout the

system. The process of loading data into a data warehouse can be performed either

through data transformation tools that provide a GUI to aid in the development and

maintenance of business rules or through more traditional methods, such as developing

23

programs or utilities to load the data warehouse, using programming languages such as

PL/SQL, C++, or .NET Framework languages.

Global competitive pressures, demand for return on investment (ROI), management and

investor inquiry, and government regulations are forcing business managers to rethink

how they integrate and manage their businesses. A decision maker typically needs

access to multiple sources of data that must be integrated. Before data warehouses, data

marts, and BI software, providing access to data sources was a major, laborious process.

Even with modern Web-based data management tools, recognizing what data to access

and providing them to the decision maker are nontrivial tasks that require database

specialists. As data warehouses grow in size, the issues of integrating data grow as well.

The business analysis needs continue to evolve. Mergers and acquisitions, regulatory

requirements, and the introduction of nes channels can drive changes in BI

requirements. In addition to historical, cleansed, consolidated, and point-in-time data,

business users increasingly demand access to real-time, unstructured, and/ or remote

data. And everything must be integrated with the contents of an existing data warehouse

(Devlin, 2003). Many integration projects involve enterprise-wide systems. Properly

integrating data from various databases and other disparte sources is difficult. But when

it is not done properly, it can lead to disaster in enterprise-wide systems such as CRM,

ERP, and supplyüchain Projects. (Turban, Efraim, 2007)

3.5 DATA WAREHOUSE DATABASE DESIGN

There are two basic models for database design: The relational model and the

multidimensional model. The relational model is widely considered to be the “Inmon”

approach, while the multidimensional model is considered to be the “Kimball” approach

to design for the data warehouse. Both approaches have their advantages and

disadvantages. (Khan, 2003).

24

3.5.1 The Relational Model

The relational approach to database design begins with the organization of data into a

table. Different columns are in each row of the table. Table 3.1 shows a simple table.

column a

column b

column c

column d

column e

column f

Table 3.1 : A simple table

The relational table can have different properties. The columns of data have different

physical characteristics. Different columns can be indexed and can act as identifiers.

Certain columns may be null uupon implementation. The columns are all defined in

terms of a data definition language (DDL) statement.

The relational approach to database design has been around since the 1970s and is well

established through the relational implementation of Technologies such as IBM’s DB2,

Oracle’s Oracle DBMS product, and Teradata’s DBMS product, among others.

Relational technology uses keys and foreign keys to establish relationships between

rows of data. Relational technology carries with it the structured query language (SQL),

which is widely used as an interface language from program to data.

25

Figure 3.4 shows a classical relational database design.

Figure 3.4: Classical relational database design (Inmon, 2005)

Figure 3.5 shows that there are different tables, and the tables are conneced by means of

a series of key-foreign key relationships. The key-foreign key relationship is a basic

relationship where an identical unit of data resides in both tables. (Inmon, 2005)

The data in the relational model exists in a form that is termed the “normalized” level.

Normalization of data implies that the database design has caused the data to be broken

down into a very low level of granularity. Data in a normalized form exists in an insular

mode where data relationships within the table are very disciplined. When normalized,

the data inside a table has a relationship with only other data that resides in the table.

Normalization is said to typically exist at three levels- first normal form, second normal

form, and third normal form.

The value of the relational model for database design for the data warehouse is that

there is discipline in the way the database design has been built, clarity of the meaning,

26

and use of the detailed level of normalized data. In other words, the relational model

produces a design fort he data warehouse that is very flexible. Database based on the

desgin can be looked at first one way, and then another when the design has been based

on the relational model. Data elements can be shaped and reshaped in many different

ways. Flexibility, then, is the great strength of the relational model. Versatility is the

second great strength. Because the detailed data is colected and can be combined, many

different views of the data can be supported when the design fort he data warehouse is

based on the relational model.

3.5.2 The Multidimensional Model

The other database design approach for the building of a data warehouse that is

commonly considered is termed the multidimensional approach. The multidimensional

approach is also sometimes called the star join approach. The multidimensional

approach has been championed by Dr. Ralph Kimball. At te center of the

multidimensional approach to database design there is the star join, as shown in Figure

3.5

Figure 3.5 : Star join design (Inmon, 2005)

In opposition to relational databases, multi-dimensional databases have more than two

dimensions.

27

Many data warahouse queries are multi-dimensional, which use multiple criteria against

multiple columns, because the two-dimensional view of data limits the type of analysis

that can be performed. Two-dimensional views cannot support the requirement to

understand the relationship between multidimensions. In a relational database,

analyzing multiple dimensions would require the setup of a series of tables. These tables

could first be joined and then accessed through complex SQL code in order to analyze

the cost trends over time. (Khan, 2003).

The need for joins, which are not difficult for programmers to implement, forces users

to consider the dta structure. Multi-dimensional analysis over comes this limitation by

accessing data throug more than one dimension or column (criteria). For example, it can

enable analysis of sales by shipment by region over time.

The dimensional model overcomes the limitations of relational daabases, which are

organized in a two-dimensional format. The dimensional model is based on a structure

organized by dimensions, such as cargo transactions or geography, and is represented

by a multi-dimensional array or cube. This model, which overcomes the two dimension

limitation of relational databases, provides an intutive way of organizing and selecting

data for querying and analysis. A multi-dimensional model:

- Is representative of the company’s business model

- Provides a view that is business rather than technical; users can concentrate on the

business instead of the tool

- Enables slicing and dicing, which provides the ability to analyze data using different

scenarios such as sales by shipment, region, and period.

- Permits data to be easily analyzed across any dimension and any level of

aggregation

- Is flexible and permits powerful analytical processing.

28

Multi-dimensional Structure’s Concepts

Dimensions: A dimension represents an attribute such as cargo, region, or time. All

data warehouse have one common dimension-time. A spreadsheet is the simplest

example of a two-dimensional model. The spreadsheet row and column names are the

“dimensions” while the numeric data in it are the “facts”. A time dimension can include

all months, quaarters, years, etc., while a geography dimension can include all countries,

regions, and cities. A dimension acts like an index for identifying values in a multi-

dimensional array. If the number of dimensions used is increased, greater is the level of

detail that can be queried.

If a single member is selected from all dimensions, then a single cell is defined. A three-

dimensional model is represented as a cubic structure in which each dimension forms a

slide of the cube. In a dimensional model, data is organized according to a business

user’s perspective with common dimensions being time, region, cargo services,

distribution or sales, and budget.

Facts: The values in the array in a dimensional model, which change over time, are

called facts. Examples of facts, which are used to measure poerformance, include sales,

units sold, costs, and shipments. Fact tables, which are the focus of dimensional queries,

contain two thpes of fields.

- Fields that store the foreign key which connects each fact to the appropriate value in

each dimension

- Fields that store individual facts suc has proce, quantity, salary, etc.

Characteristics of Fact and Dimension Tables

The following are the defining characteristic of facts and dimensions:

Fact table characteristics:

- Fact table consists of multiple columns and a large number of rows

Is the primary table which contains the numeric data-measurements such as price,

salary, volumes.

- Holds the “real” quantitative data-the data being queried; typically holds atomic and

aggregate data such as the number packs sold with the cargos.

29

- Fact table contains all of the attributes to be measured.

- Fact table row corresponds to a measurement

- Measurement takes place at the intersection of all the dimensions such as month,

product, and region

- Fact represents a business measure; fact attributes contain measureable numeric

values (which are normally additive)

- Numeric measures are restricted to fact tables

- Facts can be operated upon(summed, averaged, aggregated, etc.)

Dimension table characteristics:

- Reflects business dimensions such as product, region, and distribution channel

- Contains a primary key that conects it to the fact table

- Dimensional attributes provide links between the fact table and its associated

dimension tables

- Contains descriptive data reflecting business dimensions; dimensional attributes

provide description of each row in the fact table

- Groups descriptive attributes about the facts; dimension table has many attribute

fields; each field describes individual characteristics of the dimension; for example,

attributes of unit dimension could be description of group, type, etc.

- Are used to guide the selection of rows from the fact table

- Dimensions permit categorization of transactions; example, customer dimension can

be used to analyze procurement by location, frequency, etc.

- Ables are smaller as they have fewer number of rows

- Tables are de-normalied but that does not increase storage significantly as the

dimension tables are very small compared to the fact table

Multi-dimensional Data Warehouse Database Designs

Star Schema

The start schema design, which is commonly used for designing data warehouse

databases, supports analytical processing. It takes its name from the star-like

30

arrangement of entities. The star schema is the design most frequently used to

implement a multi-dimensional model in a relational database. Its structure consistes of

a central fact table with keys to many dimension tables (Figure 3.6)

The following characteristics are associated with a star schema:

- It contains two types of tables: Fact (or major) and Dimension (or minor)

- One dimension represents one table

- Dimension tables are de-normalized

- Dimension tables are linked to the fact table through unique keys (one per

dimension table)

- Every dimension key uniquely identifies a row in the dimension table associated

with it

- A fact table’s specific row is uniquely identified by the dimension keys

- Uses many ERD components such as entities, attributes, cardinality, primary keys,

and relationships connectors.

The star schema design has many advantages. It favors de-normalization for optimizing

speed. Due to de-normalizition of the time dimension, a significant reduction occurs in

the number of tables that need to be joined when time-based queries are executed. A star

schema’s poerformance is good because one large table needs to be joined with a few

small tables, resulting in a fast response time. The star schema reflects how business

users view data, makes metadata navigation easier for both programmers and end-users,

and permits more versatility in the selection of front-end tools.

Snowflake Schema

If a dimension table has subcategories or more than one level of dimension tables, and

more efficient Access is required, a snowflake schema can be used. The snowflake

schema, which is derived from the star schema, adds a hierarchical structure to the

dimension tables (Figure 3.7). It is more normalized and complex.

31

Figure 3.6 : Star Schema

Figure 3.7 : Snowflake Schema

OLAP

Online analytical processing (OLAP), is an analytical technique that combines data

access tools with an analytical database engine. In contrast to the simple rows and

columns structure of relational databases, upon which most data warehouses are built,

OLAP uses a multi-dimensional view of data such as sales by cargo services, quarters,

and cargo types. OLAP, which Works on data aggregations, uses calculations and

32

transformations to perform its analytical tasks. (Khan, 2003). There are two basic types

of OLAP system architectures:

- Multi-dimensional OLAP (MOLAP)

- Relational OLAP (ROLAP)

OLAP Database Server

An OLAP server stores data as well as the relationships between the data. It is

optimized for ad hoc query processing and data maniulation. An OLAP server is

designed to work with multi-dimensional data structures, which can be visualized as

cubes of data (and cubes within cubes), with the following characteristics:

- A cell is a single point in a cube

- Each data item is located, and accessed, based on the intersection of the dimensions

defining it

- Each side of a cube is a dimension that represents an attribute or category such as

units, region, customer type, or time period.

- Each cell contains aggregated data that relates the elements along each dimension

- Using the dimension numbers that define them, data items can be easily located and

accessed

- An intermediate server can be used to store pre-calculations

An OLAP server’s key characteristic is its calculation engine. An OLAP server can

extract data in real-time from relational or other databases and, when required,

manipulate it. However, the more common and preferred method is to physically store

the data on the OLAP server in multi-dimensional format. A database which stores data

in multi-dimensional format is known as a multi-dimensional database (MDDB).

Benefits and Features of OLAP

OLAP technology enables decision makers to Access data quickly, efficiently,

interactively, and in innovative ways without first having to understand the data

structure or technical details. The data, which is presented in dimensions as business

users view it, can be queried and analyzed using different views. Compared to data

33

warehouses based on relational database technology, OLAP systems have an additional

feature-the ability to perform “what if” analysis, a powerfl tool that can simulate the

effect of decisions.

The following are basic benefits of OLAP technology:

- Enable users to identify key trends and factors driving their businesses

- Ability to perform complex calculations and trend analysis

- Ability to manipulate data with many inter-relationships

- Insulate users from SQL language and he relational model

- Improve query performance; massive amonts of data can be analyzed repidly

- Improve scalability

- Support a wide range of tools

- Automate maintenance of İndexes and summaries

- Decrease demand for reports from IT

- Fast deployment

- Application in a wide range of applications such as forecasting, profitability

analysis, customer analysis, budgeting, and marketing analysis

- Increase productivity of individuals and organizations

These are the desired OLAP features and characteristics:

- User perspective: data should be transparent to the users

- Ease of use

- Intuitive data manipulation

- Easy and fast deployment

- Seamless presentation of historical, projected, and derived data

- Reasonable cost

- Cost-effective maintenance

- Ability to perform operations against single or multiple dimensions (aggregate,

summarize, and derive data)

- Powerful calculation capabilities

- Support for statistical and analytical functions

34

- Support more than simple aggregation or roll-ups such as share calculations and

allocations

- Support for large data sets and unlimited dimensions and aggregation levels

- Time intelligence which suppors analysis such as year-to-date and perido-over-

period

- Provide serce and concurrent access to data

- Consistent and fast query performance

- Flexible reporting; consistent reporting performance

- Integration with desktop tools

- Scalability-large data volumes as well as the number of concurrent users

- Permit data to be read while updates are occurring

MOLAP versus ROLAP

In multi-dimensional OLAP (MOLAP), data is stored in special OLAP database server,

after being extracted from various sources, in pre-aggregated cubic format. This data

remains static until an extract from the source system(s) adds more data to it. In contrast

to this approach, relational OLAP (ROLAP), does not use an intermediate server

because it can work directly against the relational database. Consequently, it can

perform analysis on the fly.

MOLAP performs well with 10 or fewer dimensions while ROLAP can scale

considerably higher. ROLAP is not restricted by the number of dimensions, type or

number of users, database size, or complexity of analysis. It can perform ad hoc queries

and aggregate data much faster-even with constantly changing and a much larger

amount of data. Another ROLAP advantage is that it can leverage paralel scalable

relational databases. The disadvantages of ROLAP are that it has limited scalability,

places a heavy load on the server, and is expensive to maintain.

MOLAP, which starts seeing performance degradation at about 30-50 GB of data or 10

dimensions, is more suitable for financial applications where the data can be broken

down and is smaller. ROLAP is more suitable for applications where a huge amount of

data needs to be analyzed, such as marketing and point-of-sale.

35

Hybrid OLAP (HOLAP)

Hybrid OLAP (HOLAP) combines the features of ROLAP and MOLAP. It takes

advantage of the superior processing of MOLAP with the ability of ROLAP to work

with greater data volumes. HOLAP stores data in both a relational database and multi-

dimensional database (MDDB). Either database can be used depending on the type of

processing required-data processing or ad hoc querying. In HOLAP, the aggregations

are stored using a MOLAP strategy while the source data, which is far greater in

volume, is stored using a ROLAP strategy. The result is that the least storage is used

while enabling very fast processing.

The hybrid OLAP system combines the performance and fuctionality of the MDDB

with the ability to access detail data, which provides greater value to some categories of

users. However, HOLAP implementations are typically supported by a single vendor’s

databases and, also, are fairly complex to deploy and maintain. Additionally, they can

be somewhat restrictive in terms of their mobility.

36

4. THE DSS NEED OF THE TRANSPORTATION COMPANY

4.1 TRANPORTATION COMPANY ANALYSIS

Aras Cargo is one of the two biggest transportation companies of Turkey. The company

serves 6 million people, institutions and companies of every month with its 20 district

offices, 27 transfer stations, 754 contact offices, a fleet of 2500 vehicles and an expert

team of 7700 people. Take services to over 1500 residential units in all towns and

villages across the country, Aras Cargo is also expanding its service area every day with

mobile services operating in about 800 population centers.

 The avarage number of freight that the company makes in one day is 220,000. These

shipments consist of 700,000 pieces of cargo. All pieces are nearly 10 cargo operational

transactions. This makes 2.1 billion operational transactions. Through these processes,

financial transactions and sales data have also emerged. With all processes, over 4

billion transaction is created in one year. These all transactions make two tera bytes of

data in one year.

Organization’s giro increased from 65 million dolar to 400 million dolar in 8 year. With

this growth, company needs more management analysis and reports.

4.2 TRANPORTATION COMPANY NEEDS

With the growth of the compant, the need for institutionalization becomes very

important subject. One of the first necessity of the institutionalization for a company is

monitoring and analyzing the business.

These are the needs of the company:

- Organization needs operational giro analysis, shipment analysis, cargo transaction’s

analysis, financial analysis. In all these analysis, it’s needed to see all parameters

37

about transportation activities. But the reports of the operational systems give

statical results with the restricted parameters. Unfortunately existing reports can

return just for small period of time.

- One of the most important subjects for the firm is lack of monitoring and the

analysis the real effects of unit’s operation to the company. The regions and the

branchs are assessed by the giro amount without other parameters which they did in

a period of time.

- In fact, their effect to the firm is also dealing with other parameters, such as the

calculation of the cost for per kilogram of cargo that was carried. Another important

subject about giro reports is the distance parameter. The firm can’t analyze the giro

according to the distance.

- For financial analysis, there’s need for calculation about activity base costing. The

financial department’s data and operational department’s data can’t be used together

because of the size of the data.

- In the sales department, sales managers can’t analyze the sales according to

‘products’ and ‘month period of time’ parameters. In the term of the rasing of the

prices, they can’t see sales parameters in giro amont. Because of that, sales

department can’t decide the rate of price’s rise analytically.

- In the operational department, head quarter can’t calculate the exact performance of

the units with using many parameters. The shipments which are processed in the

hub units, can’t be analyzed with the many parameters effectively because of the

size of the data.

- For making operational decisions about opening a new unit or a hub, there’s need to

have the geographically shipment data. With this data, the route optimization will

also be enable.

- The company needs to estimate the next month’s sales and wants to determine sales

strategies.

38

4.3 PROBLEMS OF THE COMPANY

Company has got reporting server in the automation systems. But users can’t run reports

for more than 6 month’s of data and can’t make trend analysis.

When the queries are run that uses the operational system’s databases for running the

analyzing reports, the operational systems have also effected. The daily processes

slowed down and sometimes the reporting queries blocked the databases activities. It is

understood that the reports which need big size of data, must be run on a separate

database which is different from operational systems’ databases.

For being a solution to all these analysis and reporting requirements, developing a

decision support system that uses a separate database which is designed just for

analysis, is decided.

39

5. WAREHOUSE MODEL FOR THE DECISION SUPPORT

SYSTEM

5.1 CHOOSING AND DESIGNING THE DATA WAREHOUSE MODEL

In the main automation system of the company, there are 1085 tables which are using

different purposes. Some of the tables are used separately from the main database.

From 4 database, different kinds of data will be transformed to data warehouse system.

The operational system, which will be used as a source system of the data warehouse

system, has the data of operational transactions, financial transactions etc. These

transactions are connected between each other. But the financial data and the

operational data is not suitable to use in one multidimensional structure. So it’s

understood that one multidimensional structure can’t be a solution for DSS.

It is seen that there will be need to analyze with using many parameters. The decision

makers will also need to make trend analysis for a long period of time, such as for 1 or 2

years. The relational data warehouse model won’t be the best solution because of the

necessity to the high performance.

When I analyzed the variety of the business report requests and the different kinds of

data of the OLTP system, I decided the Hybrit OLAP model for using in the DSS.

For Hybrit OLAP model, I analyzed the Fact tables and Dimensions tables. I joined the

base tables which are connected with the functional relations and created the fact tables.

An example of Cargo data of OLTP system, the relations are seen in Figure 5.1

40

Figure 5.1 : Cargo data of the OLTP System

With the ETL processes, I joined the tables which are related with each other, and

transformed the Cargo data as Cargo_fact table to the Data Warehouse System. The

SQL for creating the cargo fact table of the Data Warehouse System is seen in Figure

5.2.

41

Figure 5.2 : The SQL code for creating the cargo fact table

I used the lookup tables of the OLPT system as dimensions tables in the data warehouse

systems.

With the cargo data, I also transport the lookup tables deals with cargo table, such as

‘region of the cargo’, ‘the product of the cargo’ and ‘month period of time’ lookups.

With this structure I’ve got the multidimensional structure.

An example of cargo dimensions are seen Figure 5.3.

42

Figure 5.3 : Cargo’s dimensions

5.2 ETL PROCESS DEVELOPMENT

The data warehouse system will export data from 4 different source databases. Three of

them are the automation systems, one of them is ERP system.

For ETL processes, I programmed a transformation system. The data is transferred with

this system from source systems to warehouse system. I used the ETL structure as

shown in Figure 5.4

43

Figure 5.4 : ETL structure

In the ‘Extract Phase’ of the ETL, data is selected. These procedures run on the source

databases. Extracting procedures prepare data and insert it to temp tables in the source

databases. (Appendix A)

Extracting processes are based on catching the new or modified data. Because of source

system’s cargo data aren’t created online in the transportation company, the creating

and updating time information on the rows aren’t suitable to use in ETL processes. To

solve this problem, I added ‘AFTER INSERT’ and ‘AFTER UPDATE’ triggers to the

source system’s tables which will be transferred to the data warehouse system. Triggers

are seen in Figure 5.5.

44

Figure 5.5 : Before insert and before update triggers

When inserting or updating a data on the source system’s tables by operational systems,

these triggers run and insert or update the same date column of the row.

Extracting procedure selects the data from the last time which it worked to the sysdate

of the database with using the time logging table. After extracts the data, procedure add

new time log row to the logging table.

With this methodology, ETL load the data also when creating new row or modifying in

the source system’s database tables. So, data which is created or updated is carried with

the same temp table.

When the extracting procedure completes its processes, ‘Transformation and Loading

Procedure’ begin its processes. Data is transferred and loaded with this procedure

which runs on the data warehouse database. This procedure takes the data from the

source database’s temp table and inserts it to de warehouse temp tables which were

prepared by the ‘Extract Phase’ before. After finishing the transformations of the data

between temp tables, procedure use the data warehouse’s temp table and merge the data

to the warehouse database tables. (Appendix B) With merging method, it’s prevented to

insert the same data to the data warehouse system more than once. If it’s the first time

45

that data is transported to the data warehouse system, it’s inserted. If not, data in the

data warehouse system is updated.

5.3 CHOOSING THE ANALYZING TOOL

For choosing a BI tool, first I analyzed the company’s business intelligence strategy.

Department’s report requests showed that big amount of data would be used for

analyzing. The DSS system would need high ability of a multidimensional structure.

Firm managers would use the DSS for analyzing the data with using every dimension

that the transportation sector has.

I defined other business critical selection criteria as self-service reporting. Self-service

reporting ability is one of the most important subjects of the project. The end user

managers will need to make their own report by theirselves. The IT department will stop

using effort to make reports for other departments. The end users will be able to shape

their reports with using the objects which has previously prepared for creating reports

by the IT staff.

After the decision makers’ needs were analyzed, we invited the vendors for a live

demonstration of their solutions. With the Proof-of-concept (PoC), we tested the

solution and got an idea of the functionality, connectivity, usability and performance

of each BI tool.

46

KEY
REQUIREMENTS
FOR COST
REDUCTION

MICROSTRATEGY
9

ORACLE BI EE Plus
10g R4 IBM COGNOS 8.4 MICROSOFT

M
in

im
iz

in
g

D
es

ig
n

Ef
fo

rt

 YES LIMITED LIMITED NO

Dynamic Report
Personalization

• Flexible, easy to
use column and
object prompts
allow business
users to choose
from all reporting,
analysis, and
business logic
objects to author
their own reports
at run time

No object or column
prompts such as
selection of
attributes, metrics,
and filters for report
creation on‐the‐fly.
This causes an
unnecessary
number of reports
to be created and
maintained for end
users.

• No object or
column prompts
such as selection of
attributes, metrics,
and filters on‐the‐
fly. This causes an
unnecessary
number of reports
to be created and
maintained for end
users.

• Business users
must ask IT to add
or remove report
objects; business
users do not have
the option to select
any object from any
data source at run
time.

Automatic
Multi‐source
Drill Anywhere

Business users can
automatically drill
anywhere to any
data source
without IT hard
coding.

No automatic drill
anywhere; drilling
across hierarchies
requires IT hard
coding the report
destinations.

No automatic drill
anywhere, drilling
across hierarchies
require IT hard
coding to report
destination.

Microsoft end users
cannot
automatically drill
across data to any
data source.

Formatting over
the Web

Easy What‐You‐
See‐Is‐What‐You‐
Get (WYSIWYG)
formatting allows
business users to
format reports at
runtime without IT
support.

End users get
dashboards with
static versions of
reports. Users
cannot change the
format, cannot
pivot, cannot sort
by, cannot edit
reports on‐the‐fly.

Cognos end users
get static reports
only, can’t change
format, can’t pivot,
can’t sort by, can
edit reports on‐the‐
fly.

End Users must wait
for IT to add or
remove subtotals or
formatting such as
background colors.

One Repository
of Reusable
Business Logic

Report developers
can reuse all
existing business
logic across the
entire platform
rather than
spending time
recreating
business logic.

OBIEE Plus legacy of
stand‐alone
products are still not
fully integrated on a
single repository of
reusable business
logic run on
separate
repositories.

Cognos legacy of
stand‐alone
products are still not
fully integrated on a
single repository of
reusable business
logic

IT must recreate
logic for each new
report, increasing
development time
and potential for
multiple versions of
the truth.

Table 5.1 : The comparison of the Design Effort

47

M
in

im
iz

in
g

D
ep

lo
ym

en
t E

ff
or

t

One Report
Design
Automatically
Deploys to Any
Interface

The same report
design is
automatically
optimized for
interacting
through all
interfaces
including Web
browsers, mobile
devices, and
Microsoft Office

Oracle Answers
prompted reports
can be used in
Oracle Interactive
Dashboards but the
same report cannot
be reused on BI
Publisher. Oracle
Interactive
Dashboards are not
supported in Oracle
Delivers.

Cognos provides
several formats from
one report
definition. However,
its Flash support is
significantly limite.

Microsoft BI is
optimized for
IE;developers need
to hard code to
display for other
browsers (Firefox).

Browser
Agnostic Zero‐
footprint Web

Eliminates client
installation costs
and ensures
application is
automatically
updated.

Oracle BI Briefing
Books for offline
dashboard viewing
require the
installation of a
desktop client in the
user’s machine.

Cognos report
designers that use
its Report Studio
have to use
Microsoft Internet
Explorer (IE)

Microsoft requires
user to have
permissions to
download client
plugins for Report
Builder and for
printing reports.

Easy to
Customize and
Upgrade

Upgradable plug‐
ins instantly
customize to
corporate look and
feel without
coding effort.

OBIEE Plus does not
offer a single code
base for application
customization.
OBIEE Plus does not
offer an Eclipse IDE
plug‐in or support
for Flex Builder to
speed up
customization.

Cognos does not
have any Eclipse IDE
plug‐in or support
for Flex Builder to
speed up
customization and
migration tasks.

Customizations
require extensive IT
coding.

Automated
Deployment

Automated life
cycle management
tool synchronizes
objects across
development, test,
and production
environments thus
greatly reducing
manual work
associated with BI
deployments.

OBIEE Plus does not
offer a
comprehensive tool
for automated life
cycle management
and to consolidate
and reconcile
disparate
departmental BI
applications.

Cognos does not
offer a
comprehensive tool
like MicroStrategy
Object Manager for
automated life cycle
management

Microsoft requires IT
staff to complete a
manual publishing
process before end
users can access
cubes or reports.

M
in

im
iz

in
g

A
dm

in
is

tr
at

io
n

Ef
fo

rt

Single Server

A centralized
server
dramatically
reduces
administrative
effort and
complexity.

OBIEE Plus uses a
number of disparate
servers (e.g., Oracle
BI Server, Oracle BI
Presentations
Services server).

Cognos BI uses a
number of disparate
servers (e.g., Cognos
BI, Cognos Virtual
View Manager,
Applix TM1, and
Celequest).

Microsoft requires
an administrator to
install and
separately
administer many
servers.

Single Point of
Administration

Administrators
need only create
users and security
settings once.

OBIEE Plus multiple
legacy technologies
and servers expose
multiple
administration
points, increasing
effort and
complexity of
deployments.

Cognos multiple
platforms and
servers expose
multiple
administration
points, increasing
effort and
complexity of
deployments.

Microsoft requires
many user
metadata, increasing
administrator effort
and increasing
security risks.

Table 5.2 : The comparison of Deployment and Admin Effort

48

As a result of the surveys and POC’s, it’s seen that, the Microstrategy tool is the best

choice for the company. The comparision of tools are seen on Table 5.1 and Table 5.2

5.4 BUILDING ANALYZING OBJECTS OF THE DATA WAREHOUSE

5.4.1 Creating Analytical Reporting Project

With Microstrategy BI tool, first I created a project which name is ABI. (Figure 5.6)

Figure 5.6 : Creating a project with BI tool

A project is where we build and store all schema objects and information you need to create

application objects such as reports in the MicroStrategy environment, which together

provide a flexible reporting environment. (MicroStrategy 2010).

A project:

- Determines the set of data warehouse tables to be used, and therefore the set of data

available to be analyzed.

49

- Contains all schema objects used to interpret the data in those tables. Schema objects

include facts, attributes, hierarchies, and so on. Schema objects are discussed in later

chapters in this guide.

- Contains all reporting objects used to create reports and analyze the data. Reporting

objects include metrics, filters, reports, and so on. Report objects are covered in the

MicroStrategy Basic Reporting Guide and the MicroStrategy Advanced Reporting

Guide.

- Defines the security scheme for the user community that accesses these objects.

Security objects include security filters, security roles, privileges, access control, and so

on.

After creating the project, I connected the project with the warehouse data source. With

this connection, I added the tables and views which were warehouse’s fact and

dimension tables, to the project’s warehouse catalog. (Figure 5.7).

For the first phase of the project, 296 tables (25 fact table and 271 dimension table)

imported to the project.

50

Figure 5.7 : Adding tables to the Warehouse Catalog

5.4.2 Defining Objects of the Project

After adding data warehouse tables to the project, I defined the objects of the analyzing

project. These are Configuration Objects and Schema Objects.

Defining Configuration Objects:

Configuration objects: Objects that provide important information or governing

parameters for connectivity, user privileges, and project administration. These objects

are not used directly for reporting, but are created by a project architect or administrator

to configure and govern the platform. (MicroStrategy 2010).

For the project, database instances, users, groups, security roles are included.

51

For using the DSS system, hierarchical user groups were defined which had headquarter

privilages, region privilages, hub unit privilages and branch privilages. Besides of that

hierarchy, also functional privilages were defined for user groups such as operational

department privilages, sales department privilages, finance department, customer

department privilage. Then I crossed these two kinds of privilage grouping. So, every

different unit’s different department will be able to analyze their own data that they can

use. It’s shown in the Figure 5.8.

Figure 5.8 : Configuration objects of the transportation DSS system

52

Defining Schema Objects

Schema objects: Objects that are created in the application to correspond to database

objects, such as tables, views, and columns. Schema objects include facts, attributes,

metrics and other objects.

Defining Facts

Facts relate numeric data values from the data warehouse to the MicroStrategy reporting

environment tool. Facts are used to create metrics, which are analytical calculations that

are displayed on a report.

A fact has two common characteristics: it is numeric and it is aggregatable. Facts objects

are created with the fact table’s numeric column of the warehouse. (MicroStrategy 2010).

The structure of facts

As shown in the Figure 5.9, facts are made up of the following components:

Figure 5.9 : The structure of facts

53

The fact definition is composed of one or more fact expressions. Every fact must have

at least one expression.

The column alias stores the column name MicroStrategy uses to generate SQL

statements when creating temporary tables related to the fact. Every fact must have a

column alias. MicroStrategy selects a default column alias depending on the type of

fact, unless you create a new column alias.

One of the example fact is ‘Total Cargo Price’. It is defined on the ‘CARGO’ fact table’s

price column. It is shown in Figure 5.10

Figure 5.10 : ‘Total Cargo Price’ Fact

54

Facts of the projects are shown in Figure 5.11.

Figure 5.11 : Facts of the project

Defining Attributes:

Attributes represent the business context in which fact data is relevant. Attributes are

used to define the level at which you want to view the numeric data on a report.

(MicroStrategy 2010).

The business subjects have been grouped. The attributes have been created with this

information. (Figure 5.12)

55

Figure 5.12 : Attributes of the project

After finishing the identifing of attributes in MicroStrategy, I determined the relation

between the attributes. Attribute relationships, which are associations between attributes

that specify how attributes are connected, are essential to the logical data model.

Without relationships, there is no interaction between data, and therefore no logical

structure. The relationships give meaning to the data by providing logical associations

of attributes based on business rules.

Every direct relationship between attributes has two parts—a parent and a child. A child

must always have a parent and a parent can have multiple children. The parent attribute is at

a higher logical level than the child is.

56

In the project, between the ‘Region’ and the ‘Branch’ attributes, I defined the ‘Branch’

attribute as the child attribute of the ‘Region’ attribute. The relation between ‘Region’

and ‘Branch’ attributes can be seen in Figure 5.13

Figure 5.13 : Relation between ‘Region’ and ‘Branch’ attributes

In the data warehouse, attributes are normally identified by a unique ID column in a

lookup table. Attribute relationships, which are associations between attributes that

specify how attributes are connected, are essential to the logical data model. Without

relationships, there is no interaction between data, and therefore no logical structure.

The relationships give meaning to the data by providing logical associations of

attributes based on business rules.

57

Every direct relationship between attributes has two parts—a parent and a child. A child

must always have a parent and a parent can have multiple children. The parent attribute

is at a higher logical level than the child is. (MicroStrategy 2010).

According to the warehouse model of the project, there are fact tables which were built

with connecting of the relational tables. For all fact tables’ unique ID column, I created

an attribute. I used these attributes as a basic connection point. I connected these basic

attributes between each other according to the business rules.

As I modeled the data warehouse as a hybrid structure, these connections are the

relational connections between fact tables.

Relations between ‘waybill’, ‘shipment’ and ‘fatura’ (represents Invoice data) attributes

are shown in the Figure 5.14.

Figure 5.14 : Relations between ‘waybill’, ‘shipment’ and ‘fatura’ attribute

58

In the Figure 5.15, these relationships are seen between the attributes:

- ‘Waybill’ attribute (represents cargo data) may have one or more Shipment and one

shipment can have only one cargo data. In this relation, ‘Shipment’ attribute’s the

child of the ‘Waybill’ attribute.

- ‘Fatura’ attribute (represents invoice data) may have one or more Waybill and one

waybill can have only one Fatura data. In this relation, ‘Waybill’ attribute’s the

child of the ‘Fatura’ attribute.

After I connected the fact table’s attributes to each other, then I connected these fact

table’s attributes to the dimension/lookup table’s column’s attributes separately with

creating parent-child relationship between the attributes.

In the data warehouse as a hybrid structure, these connections are the star shema

connections.

Waybill attribute’s relations with attributes are shown in the Figure 5.15.

59

Figure 5.15 : ‘Waybill’ attribute relations between lookup tables.

In the Figure 5.15, it’s seen that; all lookup tables’s attributes which are connected to

‘Waybill’ attribute, may have more than one ‘waybill’ data but ‘waybill’ attribute may

have only one data of the lookup table’s attributes. This shows, ‘Waybill’ attribute is the

child attributes of all lookup table’s which are connected to it.

In a example of regional sales in the Istanbul region, Istanbul region represents the

attribute or context of the sales unit data. It’s shown in the Figure 5.16.

60

Figure 5.16 : Defining the region attribute

The region attribute’s relationship with the branch attribute which is connected to the

waybill attribute (that represents the cargo data) is shown in the Figure 5.17. (The

region attribute is named as ‘Cikis Bolgesi, branch attribute is named as ‘Cikis Subesi’.)

61

Figure 5.17 : Region, branch and cargo attributes

In the Figure 5.17, these relationships are seen between the attributes:

- Waybill attribute (represents cargo data) has only one branch (‘CikisBirimi’) and

one branch can have more than one cargo data. In this relation, ‘Waybill’

attribute’s the child of the ‘CikisBirimi’ attribute.

- The Branch (‘CikisBirimi’) attribute has got also one-to-many connections to

‘BirimGrupTipi’, ‘CikisBirimiIli’, ‘BirimTipi’, ‘CikisTransferMerkezi’

attributes. ‘CikisBirimi’ attribute is the child attribute of the ‘BirimGrupTipi’,

‘CikisBirimiIli’, ‘BirimTipi’, and ‘CikisTransferMerkezi’ attributes.

As seen in Figure 5.17, there’s a hierarcy between the attributes, ‘waybill’,

‘CikisBirimi’ and ‘CikisBölgesi’.

In the data warehouse as a hybrid structure, these connections are the snowflake shema

connections.

When I defined all relations between the attributes, object’s relations also become the

hybrid model. It’s shown in the Figure 5.18.

62

Figure 5.18 : Attribute’s relations

63

Defining Metrics:

Metrics are objects that represent business measures and key performance indicators.

They are the calculations performed on data stored in your database, the results of

which are displayed on a report. Metrics are similar to formulas in spreadsheet software.

(MicroStrategy 2010).

All metrics require the Mathematical formula which determines the data to be used from

our data source and the calculations to be performed on that data.

An example of the formula of a metric is: Sum (Price)

When more than one attribute is on a report, as is generally the case, a metric is

calculated by default at the level of the lowest-level attribute that is on the report. The

lowest level is usually the attribute that reflects the least-inclusive business concept.

Metrics are defined on the fact objects.

As an example, for using summary of the total price of the cargos in the report, I created

a metric object which name is ‘Gonderi Toplam Tutarı’. Figure 5.19 shows the ‘Gonderi

Toplam Tutarı’ metric.

64

Figure 5.19 : ‘Gonderi Toplam Tutarı’ metric

5.4.3 Creating OLAP Cubes

Intelligent Cubes are multi-dimensional cubes (sets of data) that allow us to use OLAP

Services features on reports, as well as share sets of data among multiple reports.

(MicroStrategy 9 2010).

With Intelligent Cubes, a specific set of data is returned from the data warehouse.

Users can create reports that display and analyze a subset of the set of data defined in an

Intelligent Cube as shown Figure 5.20.

65

Figure 5.20 : Intelligent cube usage

Reports that connect to an Intelligent Cube can perform reporting and analysis

manipulations within the Intelligent Cube without hitting the data warehouse. These

manipulations are executed much faster than running a new query against a data warehouse.

Before defining the Intelligent Cube, these questions must be answered first:

- What subset of business queries does the Intelligent Cube need to provide data

for? Intelligent Cubes allows to create sets of data that can support multiple

reports that answer variations to similar business queries.

- Are there any reports that currently access the data warehouse that could benefit

from accessing an Intelligent Cube instead?

For creating intelligent cubes in the project, first all departments prepared 210 report

request forms. With these forms, I defined all users’ needs. I grouped their requests into

the functional sentences. With this information, cube contents occurred as cargo cube,

sales cube, shipment cube, cargo transaction cube etc.

Before creating cubes, the attribute objects and metric objects were prepared. According

to the need of data which will be used in the cube and also according to the server’s

capability, cube filters have been defined.

With using the Microstrategy tool, I choosed the objects and defined the cubes.

66

The Cargo Cube is shown in Figure 5.21.

Figure 5.21 : Cargo Cube

When I selected the attributes and metrics and run the cube, DSS tool creates a SQL

query and run it.

67

Figure 5.22 shows the Cargo Cube SQL.

Figure 5.22 : Cargo Cube SQL

When the cube is created, DSS server keeps the data on the memory until the cube is

run again. Until that time, the data of the cube can be used in reports for analyzing

which is called from memory. With this technique, users make their analyze very fast.

68

5.4.4 Creating Reports

Reports display the business data, and are the focus of decision support system. We

perform data analysis on reports to gather business insight. The results displayed in any

DSS report are often a starting point for further investigation. (MicroStrategy 9 2010).

In reports, I used attributes and metric objects to show the data. I prepared some reports

with using directly data warehouse’s objects, some of them was prepared with using

cube objects.

The Figure 5.23 shows the design of an example report which runs the giro data of the

branches. In the report design, used attributes, metrics and filters can be seen.

Figure 5.23: Design of the ‘Branch’s giro report’

69

When the report is started, the SQL is run by the DSS server which is seen in Figure

5.24.

Figure 5.24 : ‘Branch’s giro report’s SQL

Reporting on an Intelligent Cube provides quick access to data, as the data has been pre-

aggregated. This returns results much faster than querying the data warehouse.

Reporting on Intelligent Cubes also allows you to use all of the OLAP Services features,

70

including derived elements, which allow you to group attribute elements in a report on

the fly, to provide a new view of report data for analysis and formatting.

5.4.5 Creating Dashboards

A dashboard is a kind of document, commonly one page long and usually viewed

online. Dashboards contain interactive features that allow analysts to control how they

view data. Each user can interact with the dashboard to display only the data they are

interested in (using panels and selectors) or only specific attribute elements or metrics

(using a selector). (MicroStrategy 9 2010).

Dashboards are often used to assess performance, to provide a quick status check, or to

monitor contributions to overall goals of the business. Dashboards summarize key

business indicators by presenting them in visually intuitive, easy-to-read, interactive

documents.

An example of a dashboard which created for the giro analysis using distances

information is seen on Figure 5.25

71

Figure 5.25 : Giro analysis dashboard

72

5.5 VERIFYING DATA CONSISTENCY

One of the most important subject of developing a system that uses data is the verifying

it’s data consistency. The data of the DSS system’s reports is compared with the source

OLTP system’s reports.

It’s seen that the data in the DSS is consistent with the OLTP system. There’s no data

loss or data derivation in the ETL processes and the analyzing layer. It’s seen in Table

5.3.

Report Name OLTP System DSS

Total giro of August, 2011 70563185 70563185

Total cargo count of August, 2011 9033379 9033379

Total cargo piece count of August,
2011 11638905 11638905

Table 5.3 : Comparison of the data between DSS and OLTP System

5.6 BENEFITS OF THE NEW SYSTEM

I analyzed the new queries’ development time in the DSS and the performance of the

running queries. I measured the time of the processes in DSS and also in the OLTP

System. I verified a big performance of the DSS system according to the OLTP system.

Besides the performance, it’s also seen that there are many capabilities, they can be

done in the DSS system which can’t be provided by the OLTP system.

73

5.6.1 Verification of the Developing Time

When I compared the developing time of a report between the OLTP system and the

DSS system, it’s seen that there’s a dramatic differences between them.

In the OLTP system, one report can be built in 4-5 hours by a developer, on the avarage.

For building a report in OLTP, these steps are performed:

- First, SQL string is created in a procedure packet on the database server.

- In the report builder, report is designed.

When designing a report in the OLTP system, all columns are described with

referencing to the dealing database table’s columns. Sometimes, a column definition

is not enough for using as a report column. In the report, there may also be need to

create some functions or some consolidation of more than one table columns. Every

time, these definitions are created for building a new report.

- The new report which has been designed in the report builder is deployed and

replaced in the report server.

- The new report’s menu option is created in the automation system which is

Windows application modeled.

- The automation system is built and published to the client’s machines.

- User privileges are described in the automation system’s security management tool.

After these steps, users can see the new report’s menu option in the automation system’s

menu.

For building the same report with the DSS system, a builder can build a report in a few

minutes. These are the steps of creating report in DSS:

- The report builder drags and drops the attributes and the filters of the DSS which

are needed, to the new blank report. (Most of the attributes were created at the

beginning when the data warehouse DSS system was modeled. For using a new

reports, they are just dragged and dropped to the new report).

With this process, the SQL string and report conditions are created automatically

by the DSS system.

- The new report is saved and user pfivileges are described in the DSS system.

74

Users can see and use the new report in the DSS system.

The comparision of developing a report between DSS and OLTP System can be seen in

Table 5.4.

 OLTP System DSS

Creating SQL string 60 minutes ‐

Designing report 180 minutes 10 minutes

Deploying report 20 minutes ‐

Creating menu option and building
windows application structured
automation system 30 minutes ‐

Describing user privileges 10 minutes 10 minutes

Total development time 300 minutes 20 minutes

Table 5.4 : Development time on DSS and OLTP

5.6.2 Verification of the Query Performance

I measured the queries and reports’ running time in both OLTP System and DSS

System. The results showed that DSS system provides great performance according to

the OLTP System. The values are seen in Table 5.5

75

Executed Jobs OLTP System

DSS uses

Datawarehouse

Database

DSS uses

OLAP Cubes

Monthly Delivery Performance

Report Run 3 days 1 hour 8 seconds

Monthly Agency Progress Payment

Calculations 3,5 days 1 hour 20 min. 10 seconds

Monthly Giro Report Run 5 hours 10 minutes 4 seconds

Table 5.5 : Running queries’ period

5.6.3 DSS’s Extra Capabilities and Advantages

Many requirements of the transportation company’s departments that the OLTP system

couln’t have been the answer, can be done in the warehouse DSS.

With the DSS, managers can analyze one of the most important subject of the company

which is the units’ effect to the giro with realizing the ‘distance’ and ‘giro/volume’

parameters, which can’t be done in the OLTP system. It is seen in Figure 5.26.

76

Figure 5.26 : Unit’s giro effects with the ‘distance’ and ‘giro/volume’ parameters

Decision makers of the company can also take trend analysis reports for year’s period of

time.

77

Operation Department runs shipment analysis can cargo transaction analysis.

Financial department can take customer balance reports for whole firm’s customer just

in minutes.

Sales department can analyze the sales according to the distance, cargo type, discount

rate of the customer’s contract, sectors etc. With these analyses, they can decide the rate

of the price’s rise analytically. Sales managers also design different kinds of campaigns

in different terms of the year with the ability of analyzing giro of the firm.

For special customers, user accesses are defined. Customers have begun to analyze their

own shipment data with using OLAP cubes of the project in their firms with using Web

interface.

With the DSS system, departments of the company have begun to analyze their

business.

78

CONCLUSION

In the changing and developing transportation sector, organizations needs to make

decision very agile and fast about the complex situations. The necessity of using big

amount of data for making decisions, they need dynamic and analytical structured

analysis systems. According to their operational systems and their data, the model and

the technology of the DSS solution must be the answer for performenced analysis with

many parameters. Using the short time’s period data isn’t enough for decision makers in

the transportation sector anymore. Trend analysis are needed which must have

multidimensional structure.

In this thesis, a transportation company was analyzed and the needs of the company

were determined. The company’s problems were also listed.

For being an answer to the transportation company’s decision maker’s problem, it’s

decided that the most suitable model is the Hybrid OLAP data warehouse model.

After modeling the warehouse structure, the analyzing tool is selected. With the

analyzing tool, business intelligence layer is structured.

With verifying the warehouse structured DSS, the company succeded to make it’s

analysis very efficiently and agile. Decision makers of the firm can analyze the data

they need.

Finance department is planning to develop ‘the activity based costing’ analyzsis.

Operation department will begin to work on route optimization for the company next

year. Operation department will also use the DSS’ geographical data for defining new

units’ and hubs’ destinations.

Sales department has begun to develop the functional spects about a CRM project which

will use the DSS analysis.

79

REFERENCES

Books:

Englewood Cliffs, N.J., (1997) Prentice-Hall. ISBN 0-130-86215-0

Hoffer, Jeffrey A. (2007) Modern Systems Analysis and Design, 5th edition, Prentice
Hall

Inmon, William H. (2005) Building the Data Warehouse , Fourth Edition, Wiley
Publishing ISBN: 978-0-7645-9944-6

Inmon, William H. (2002) Building the Data Warehouse , John Wiley & Sons
Publishers.

Keen, Scott-Morton (1978). Decision Support System.

Khan, Arshad (2003). Data Warehousing 101 Concepts and Implementation, IUniverse,
ISBN: 0-595-29069-8

Loshin, D. (2003). Business Intelligence: The Savvy Manager's Guide. Morgan
Kaufmann Publishers.

Microsoft MSDN (2005), Online Transaction Processing vs. Decision Support

MicroStrategy 9. (2010). Project Design Guide, Version: 9.0.2. Document Number:
09330902

Ponniah, Paulraj. (2010). Data Warehouseing Fundamentals-Second Edition, A
Comprehensive Guide for IT Professionals. ISBN: 0-471-22162-7

Power, Daniel J. (2002). Decision Support Systems: Concepts and Resources for
Managers. ISBN 1-56720-497-X (alk.paper)

Power, Daniel J. (November 2, 2009). Decision Support Basics. Business Expert Press.
ISBN: 1-60649-082-6

Sprague Ralph H. ,Carlson Eric D. (1982). Building effective decision support systems.
Prentice-Hall

Tupper, Charless D. (2009). Data Architecture From Zen to Reality. Elsevier Inc. ISBN:
978-0-12-385126-0

Turban, Efraim, Sharda, Ramesh, Delen Dursun (2007) Decision support and BI
Systems ISBN: 978-0-13-610729-3

V. Poe, P. Klauer, S. Brobst, (1998). Building A Data warehouse for Decision Support,
Prentice Hall, Upper Saddle River

80

Other Publications

Oracle® (2007) Database 2 Day + Data Warehousing Guide 11g Release 2 (11.2)
http://download.oracle.com/docs/cd/E11882_01/server.112/e10578/tdpdw_intro.htm

Power, Daniel J. (2004). Decision Support Systems: Frequently Asked Questions
http://dssresources.com/history/dsshistoryv28.html

Why Are Operational Systems Not Suitable For DSS (2008)
http://www.datawarehousesolution.net

81

APPENDICES

82

APPENDIX A

PL/SQL Source code of ETL–Extracting Phase Procedure of Cargo Fact

CREATE OR REPLACE PROCEDURE PROC_wh_cargo
IS
/***

 NAME: PROC_wh_cargo
 REVISIONS:
 Ver Date Author Description
 --------- ---------- --------------- ---------------------------

 1.0 29.07.2011 Mert SUN 1. Created this procedure.

 Object Name: PROC_wh_cargo
 Date and Time: 29.07.2011
 Username: (set in TOAD Options, Procedure Editor)

Description: Extracting CARGO_FACT table

**
**/

P_DATE date;
p_transfer_date date;
p_last_transfer_date date;
p_whtransferid RAW (16);

p_countchk integer:=0;
p_operationdateid VARCHAR2 (50);
ms_prc INTEGER;
l_rowcount integer :=0;

BEGIN

-- execute immediate 'alter session ENABLE PARALLEL DML';

 select sys_guid() into p_whtransferid from dual;
 commit;

 select

 max(whtransfer_date)-1/(60*60*24)
 into p_last_transfer_date from whtransfer w
 where w.LOVWHTRANSFERTYPEID=1 and W.LOVWHTRANSFERSTATUSID=2;

 commit;

 p_transfer_date:=sysdate;

83

 insert into whtransfer(whtransferid, whtransfer_date,
lovwhtransferstatusid, lovwhtransfertypeid, transfer_complete_date,
row_count)
 select p_whtransferid whtransferid, p_transfer_date
whtransfer_Date, 1 lovwhtransferstatusid, 1 lovwhtransfertypeid, null
TRANSFER_COMPLETE_DATE,l_rowcount from dual;

 commit;

 PROC_SEND_MAIL('mertsun@araskargo.com.tr','warehouse-cargo: ' ||
p_transfer_date,'warehousea cargo data aktarimi basladi');

 execute_immediate('truncate table cargo_fact_tmp');

 insert into cargo_fact_tmp
 (

 cargono, operation_date, sourceunitid, serial_number,
 shipment_code, senderaccountid, receiveraccountid,
 waybillid, shipmentid, cargoid, campaignconditionid,
 accountcontractversionid, yi_yd, piece_count, total_volume,
 bireysel_kurumsal, lovpayortypeid, lovpacktypeid,
 primaryserviceid, total_price, total_invoice_price,
 operationdateid, satelliteid, lovshipmenttypeid,
 planned_delivery_date, actual_planned_delivery_date,
 planned_arrival_date, first_piece_arrival_date,
 last_piece_arrival_date, lovunitdistancetypeid,
 duration, mobile, manifestunitid, description,
 lovshipmentstatusid, integration_code,
 contents_description, delivery_date, senderaccountname,
 senderaccountaddressname, receiveraccountname,
 receiveraccountaddressname, deliveryunitid,
lovdeliverytypeid,
 responsibleunitid, shipment_date, shipmentdeliveredid,
 lovdeliveryfailurereasonid, parentdeliveryunitid,
 parentsourceunitid, cancel_date, canceledby, canceled,
 audit_create_date, auditcreateunitid, audit_modify_date,
 audit_deleted, invoiceid, cancelunitid, lovwaybilltypeid,
 cancel_description, auditcreatedby, auditmodifiedby,
 auditmodifyunitid, senderaccountaddressversionid,
 invoiceunitid, collectionunitid, invoiceaddressversionid,
 worldwide, lovdocumentprintstatusid, diffinvoiceid,
 payoraccountcustomerid, returned, puantumbonus,
 puantumcancel, puantumcanceled, puantumcardno,
 puantumcardowner, puantumweb, due_date, payoraccountname,
 invoiceaddressid, acccontractid, receiveraddressversionid,
 refcode, trading_waybill_number, trading_goods,
 responsibility_document, receiveemployeeid,
measureemployeeid,
 contact_name, lovidentitytypeid, contact_identity_office,
 contact_identity_number, paymentaccountcontractversid,
 pricelistid, cargocollectid, lovcargostatusid, party_code,
 lovpartnerid, cargonoticeid, trading_date, for_worldwide,
 wwcargo_value, planneddeliverydateid,
actualplanneddeliverydateid,
 plannedarrivaldateid, firstpiecearrivaldateid,
 lastpiecearrivaldateid, deliverydateid, shipmentdateid,

84

 canceldateid, auditcreatedateid, auditmodifydateid,
 duedateid, tradingdateid, audit_modify_date2
)

 select
 null cargono
 , trunc(waybill_Date) OPERATION_DATE
 , w.auditcreateunitid SOURCEUNITID
 , W.DOCUMENT_SERIAL||W.DOCUMENT_NUMBER SERIAL_NUMBER
 , S.SHIPMENT_CODE SHIPMENT_CODE
 , S.SENDERACCOUNTID
 , S.RECEIVERACCOUNTID
 , W.WAYBILLID
 , S.SHIPMENTID
 , W.CARGOID
 , W.CAMPAIGNCONDITIONID
 , W.ACCOUNTCONTRACTVERSIONID
 , decode(nvl(W.WORLDWIDE,0),0,'YURTICI','YURTDISI') YI_YD
 , S.PIECE_COUNT PIECE_COUNT
 , S.TOTAL_VOLUME TOTAL_VOLUME
 , CASE WHEN
W.PAYORACCOUNTCUSTOMERID=HEXTORAW('E56224C0C544734DACA94AC36E23D313')
THEN 'BIREYSEL' ELSE 'KURUMSAL' END BIREYSEL_KURUMSAL
 , C.LOVPAYORTYPEID
 , S.LOVPACKTYPEID
 , W.SERVICEID PRIMARYSERVICEID
 , WP.PRICE TOTAL_PRICE
 , WP.INVOICE_PRICE TOTAL_INVOICE_PRICE
 ,
TO_CHAR(TO_dATE(waybill_Date,'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO_dATE(wa
ybill_Date,'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(waybill_Date,'DD.MM.RR
RR'),'DD') OPERATIONDATEID
 , S.SATELLITEID
 , S.LOVSHIPMENTTYPEID
 , trunc(S.PLANNED_DELIVERY_DATE) PLANNED_DELIVERY_DATE

 , trunc(S.ACTUAL_PLANNED_DELIVERY_DATE)
ACTUAL_PLANNED_DELIVERY_DATE
 , trunc(S.PLANNED_ARRIVAL_DATE) PLANNED_ARRIVAL_DATE
 , trunc(S.FIRST_PIECE_ARRIVAL_DATE) FIRST_PIECE_ARRIVAL_DATE
 , trunc(S.LAST_PIECE_ARRIVAL_DATE) LAST_PIECE_ARRIVAL_DATE
 , S.LOVUNITDISTANCETYPEID, S.DURATION, S.MOBILE,
S.MANIFESTUNITID
 , S.DESCRIPTION, S.LOVSHIPMENTSTATUSID, S.INTEGRATION_CODE
 , S.CONTENTS_DESCRIPTION, trunc(S.DELIVER_DATE)
DELIVERY_DATE
 , S.SENDERACCOUNTNAME, S.SENDERACCOUNTADDRESSNAME
 , S.RECEIVERACCOUNTNAME, S.RECEIVERACCOUNTADDRESSNAME,
S.DELIVERYUNITID

 , S.LOVDELIVERYTYPEID, S.RESPONSIBLEUNITID
 , trunc(S.SHIPMENT_DATE) SHIPMENT_DATE, S.SHIPMENTDELIVEREDID
 , S.LOVDELIVERYFAILUREREASONID, S.PARENTDELIVERYUNITID
 , S.PARENTSOURCEUNITID, trunc(W.CANCEL_DATE) CANCEL_DATE
 , W.CANCELEDBY, W.CANCELED, W.AUDIT_CREATE_DATE AUDIT_CREATE_DATE
 , W.AUDITCREATEUNITID AUDITCREATEUNITID
 , W.AUDIT_MODIFY_DATE AUDIT_MODIFY_DATE, '0' AUDIT_DELETED
 , W.INVOICEID, W.CANCELUNITID, W.LOVWAYBILLTYPEID,
W.CANCEL_DESCRIPTION
 , W.AUDITCREATEDBY, W.AUDITMODIFIEDBY, W.AUDITMODIFYUNITID
 , W.SENDERACCOUNTADDRESSVERSIONID, W.INVOICEUNITID,
W.COLLECTIONUNITID

85

 , W.INVOICEADDRESSVERSIONID, W.WORLDWIDE,
W.LOVDOCUMENTPRINTSTATUSID
 , W.DIFFINVOICEID, W.PAYORACCOUNTCUSTOMERID, W.RETURNED,
W.PUANTUMBONUS
 , W.PUANTUMCANCEL, W.PUANTUMCANCELED, W.PUANTUMCARDNO
 , W.PUANTUMCARDOWNER, W.PUANTUMWEB, trunc(W.DUE_DATE) DUE_DATE
 , W.PAYORACCOUNTNAME, W.INVOICEADDRESSID, W.ACCCONTRACTID
 , W.RECEIVERADDRESSVERSIONID , W.REFCODE, W.TRADING_WAYBILL_NUMBER
 , C.TRADING_GOODS, C.RESPONSIBILITY_DOCUMENT, C.RECEIVEEMPLOYEEID
 , C.MEASUREEMPLOYEEID, C.CONTACT_NAME, C.LOVIDENTITYTYPEID
 , C.CONTACT_IDENTITY_OFFICE, C.CONTACT_IDENTITY_NUMBER
 , C.PAYMENTACCOUNTCONTRACTVERSID
 , C.PRICELISTID, C.CARGOCOLLECTID, C.LOVCARGOSTATUSID,
C.PARTY_CODE
 , C.LOVPARTNERID, C.CARGONOTICEID
 , trunc(C.TRADING_DATE) TRADING_DATE, C.FOR_WORLDWIDE,
C.WWCARGO_VALUE
 ,
TO_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'RRRR')||
TO_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'MM')||TO
_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'DD')
PLANNEDDELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'R
RRR')||TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.MM.RR
RR'),'MM')||TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.
MM.RRRR'),'DD') ACTUALPLANNEDDELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR')||T
O_CHAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'MM')||TO_C
HAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'DD')
PLANNEDARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR'
)||TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'MM
')||TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'D
D') FIRSTPIECEARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR')
||TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'MM')
||TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'DD')
LASTPIECEARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.DELIVER_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(T
O_dATE(trunc(S.DELIVER_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trun
c(S.DELIVER_DATE),'DD.MM.RRRR'),'DD') DELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(
TO_dATE(trunc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(tr
unc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'DD') SHIPMENTDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.CANCEL_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO
_dATE(trunc(W.CANCEL_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trunc(
W.CANCEL_DATE),'DD.MM.RRRR'),'DD') CANCELDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'RRRR')||TO_C
HAR(TO_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO
_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'DD')
AUDITCREATEDATEID

86

 ,
TO_CHAR(TO_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'RRRR')||TO_C
HAR(TO_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO
_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'DD')
AUDITMODIFYDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.DUE_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO_dA
TE(trunc(W.DUE_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trunc(W.DUE_
DATE),'DD.MM.RRRR'),'DD') DUEDATEID
 ,
TO_CHAR(TO_dATE(trunc(C.TRADING_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(T
O_dATE(trunc(C.TRADING_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trun
c(C.TRADING_DATE),'DD.MM.RRRR'),'DD') TRADINGDATEID
 , w.AUDIT_MODIFY_DATE2 AUDIT_MODIFY_DATE2
 from
 waybill w
 inner join waybillprice wp on w.waybillid=WP.WAYBILLID
 inner join shipment s on s.shipmentid=w.shipmentid
 inner join cargo c on c.cargoid=w.cargoid
 inner join UNIT U on U.UNITID=W.AUDITCREATEUNITID
 where W.AUDIT_MODIFY_DATE2>=p_last_transfer_date
 AND W.AUDIT_MODIFY_DATE2<p_transfer_date
 and W.AUDIT_DELETED='0'
 and WP.AUDIT_DELETED='0'
 and S.AUDIT_DELETED='0'
 ;
 l_rowcount :=l_rowcount+sql%rowcount;
 commit;

--changedamountwaybill
 insert into cargo_fact_tmp
 (

 cargono, operation_date, sourceunitid, serial_number,
 shipment_code, senderaccountid, receiveraccountid,
 waybillid, shipmentid, cargoid, campaignconditionid,
 accountcontractversionid, yi_yd, piece_count, total_volume,
 bireysel_kurumsal, lovpayortypeid, lovpacktypeid,
 primaryserviceid, total_price, total_invoice_price,
 operationdateid, satelliteid, lovshipmenttypeid,
 planned_delivery_date, actual_planned_delivery_date,
 planned_arrival_date, first_piece_arrival_date,
 last_piece_arrival_date, lovunitdistancetypeid,
 duration, mobile, manifestunitid, description,
 lovshipmentstatusid, integration_code,
 contents_description, delivery_date, senderaccountname,
 senderaccountaddressname, receiveraccountname,
 receiveraccountaddressname, deliveryunitid,
lovdeliverytypeid,
 responsibleunitid, shipment_date, shipmentdeliveredid,
 lovdeliveryfailurereasonid, parentdeliveryunitid,
 parentsourceunitid, cancel_date, canceledby, canceled,
 audit_create_date, auditcreateunitid, audit_modify_date,
 audit_deleted, invoiceid, cancelunitid, lovwaybilltypeid,
 cancel_description, auditcreatedby, auditmodifiedby,
 auditmodifyunitid, senderaccountaddressversionid,
 invoiceunitid, collectionunitid, invoiceaddressversionid,
 worldwide, lovdocumentprintstatusid, diffinvoiceid,

87

 payoraccountcustomerid, returned, puantumbonus,
 puantumcancel, puantumcanceled, puantumcardno,
 puantumcardowner, puantumweb, due_date, payoraccountname,
 invoiceaddressid, acccontractid, receiveraddressversionid,
 refcode, trading_waybill_number, trading_goods,
 responsibility_document, receiveemployeeid,
measureemployeeid,
 contact_name, lovidentitytypeid, contact_identity_office,
 contact_identity_number, paymentaccountcontractversid,
 pricelistid, cargocollectid, lovcargostatusid, party_code,
 lovpartnerid, cargonoticeid, trading_date, for_worldwide,
 wwcargo_value, planneddeliverydateid,
actualplanneddeliverydateid,
 plannedarrivaldateid, firstpiecearrivaldateid,
 lastpiecearrivaldateid, deliverydateid, shipmentdateid,
 canceldateid, auditcreatedateid, auditmodifydateid,
 duedateid, tradingdateid, audit_modify_date2
)

 select
 null cargono
 , trunc(waybill_Date) OPERATION_DATE
 , w.auditcreateunitid SOURCEUNITID
 , W.DOCUMENT_SERIAL||W.DOCUMENT_NUMBER SERIAL_NUMBER
 , S.SHIPMENT_CODE SHIPMENT_CODE
 , S.SENDERACCOUNTID
 , S.RECEIVERACCOUNTID
 , W.WAYBILLID
 , S.SHIPMENTID
 , W.CARGOID
 , W.CAMPAIGNCONDITIONID
 , W.ACCOUNTCONTRACTVERSIONID
 , decode(nvl(W.WORLDWIDE,0),0,'YURTICI','YURTDISI') YI_YD
 , S.PIECE_COUNT PIECE_COUNT
 , S.TOTAL_VOLUME TOTAL_VOLUME
 , CASE WHEN
W.PAYORACCOUNTCUSTOMERID=HEXTORAW('E56224C0C544734DACA94AC36E23D313')
THEN 'BIREYSEL' ELSE 'KURUMSAL' END BIREYSEL_KURUMSAL
 , C.LOVPAYORTYPEID
 , S.LOVPACKTYPEID
 , W.SERVICEID PRIMARYSERVICEID
 , WP.PRICE TOTAL_PRICE
 , WP.INVOICE_PRICE TOTAL_INVOICE_PRICE
 ,
TO_CHAR(TO_dATE(waybill_Date,'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO_dATE(wa
ybill_Date,'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(waybill_Date,'DD.MM.RR
RR'),'DD') OPERATIONDATEID
 , S.SATELLITEID
 , S.LOVSHIPMENTTYPEID
 , trunc(S.PLANNED_DELIVERY_DATE) PLANNED_DELIVERY_DATE
 , trunc(S.ACTUAL_PLANNED_DELIVERY_DATE)
ACTUAL_PLANNED_DELIVERY_DATE
 , trunc(S.PLANNED_ARRIVAL_DATE) PLANNED_ARRIVAL_DATE
 , trunc(S.FIRST_PIECE_ARRIVAL_DATE) FIRST_PIECE_ARRIVAL_DATE
 , trunc(S.LAST_PIECE_ARRIVAL_DATE) LAST_PIECE_ARRIVAL_DATE
 , S.LOVUNITDISTANCETYPEID, S.DURATION, S.MOBILE, S.MANIFESTUNITID
 , S.DESCRIPTION, S.LOVSHIPMENTSTATUSID, S.INTEGRATION_CODE
 , S.CONTENTS_DESCRIPTION, trunc(S.DELIVER_DATE) DELIVERY_DATE
 , S.SENDERACCOUNTNAME, S.SENDERACCOUNTADDRESSNAME

88

 , S.RECEIVERACCOUNTNAME, S.RECEIVERACCOUNTADDRESSNAME,
S.DELIVERYUNITID
 , S.LOVDELIVERYTYPEID, S.RESPONSIBLEUNITID
 , trunc(S.SHIPMENT_DATE) SHIPMENT_DATE, S.SHIPMENTDELIVEREDID
 , S.LOVDELIVERYFAILUREREASONID, S.PARENTDELIVERYUNITID
 , S.PARENTSOURCEUNITID, trunc(W.CANCEL_DATE) CANCEL_DATE
 , W.CANCELEDBY, W.CANCELED, W.AUDIT_CREATE_DATE AUDIT_CREATE_DATE
 , W.AUDITCREATEUNITID AUDITCREATEUNITID
 , W.AUDIT_MODIFY_DATE AUDIT_MODIFY_DATE, '0' AUDIT_DELETED
 , W.INVOICEID, W.CANCELUNITID, W.LOVWAYBILLTYPEID,
W.CANCEL_DESCRIPTION
 , W.AUDITCREATEDBY, W.AUDITMODIFIEDBY, W.AUDITMODIFYUNITID
 , W.SENDERACCOUNTADDRESSVERSIONID, W.INVOICEUNITID,
W.COLLECTIONUNITID
 , W.INVOICEADDRESSVERSIONID, W.WORLDWIDE,
W.LOVDOCUMENTPRINTSTATUSID
 , W.DIFFINVOICEID, W.PAYORACCOUNTCUSTOMERID, W.RETURNED,
W.PUANTUMBONUS
 , W.PUANTUMCANCEL, W.PUANTUMCANCELED, W.PUANTUMCARDNO
 , W.PUANTUMCARDOWNER, W.PUANTUMWEB, trunc(W.DUE_DATE) DUE_DATE
 , W.PAYORACCOUNTNAME, W.INVOICEADDRESSID, W.ACCCONTRACTID
 , W.RECEIVERADDRESSVERSIONID , W.REFCODE, W.TRADING_WAYBILL_NUMBER
 , C.TRADING_GOODS, C.RESPONSIBILITY_DOCUMENT, C.RECEIVEEMPLOYEEID
 , C.MEASUREEMPLOYEEID, C.CONTACT_NAME, C.LOVIDENTITYTYPEID
 , C.CONTACT_IDENTITY_OFFICE, C.CONTACT_IDENTITY_NUMBER
 , C.PAYMENTACCOUNTCONTRACTVERSID
 , C.PRICELISTID, C.CARGOCOLLECTID, C.LOVCARGOSTATUSID,
C.PARTY_CODE
 , C.LOVPARTNERID, C.CARGONOTICEID
 , trunc(C.TRADING_DATE) TRADING_DATE, C.FOR_WORLDWIDE,
C.WWCARGO_VALUE
 ,
TO_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'RRRR')||
TO_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'MM')||TO
_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'DD')
PLANNEDDELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'R
RRR')||TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.MM.RR
RR'),'MM')||TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.
MM.RRRR'),'DD') ACTUALPLANNEDDELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR')||T
O_CHAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'MM')||TO_C
HAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'DD')
PLANNEDARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR'
)||TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'MM
')||TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'D
D') FIRSTPIECEARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR')
||TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'MM')
||TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'DD')
LASTPIECEARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.DELIVER_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(T

89

O_dATE(trunc(S.DELIVER_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trun
c(S.DELIVER_DATE),'DD.MM.RRRR'),'DD') DELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(
TO_dATE(trunc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(tr
unc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'DD') SHIPMENTDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.CANCEL_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO
_dATE(trunc(W.CANCEL_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trunc(
W.CANCEL_DATE),'DD.MM.RRRR'),'DD') CANCELDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'RRRR')||TO_C
HAR(TO_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO
_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'DD')
AUDITCREATEDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'RRRR')||TO_C
HAR(TO_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO
_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'DD')
AUDITMODIFYDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.DUE_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO_dA
TE(trunc(W.DUE_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trunc(W.DUE_
DATE),'DD.MM.RRRR'),'DD') DUEDATEID
 ,
TO_CHAR(TO_dATE(trunc(C.TRADING_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(T
O_dATE(trunc(C.TRADING_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trun
c(C.TRADING_DATE),'DD.MM.RRRR'),'DD') TRADINGDATEID
 , cat.AUDIT_MODIFY_DATE2 AUDIT_MODIFY_DATE2
 from
 waybill w
 inner join waybillprice wp on w.waybillid=WP.WAYBILLID
 inner join shipment s on s.shipmentid=w.shipmentid
 inner join cargo c on c.cargoid=w.cargoid
 inner join UNIT U on U.UNITID=W.AUDITCREATEUNITID
 inner join customeraccounttransfer cat on
CAT.WAYBILLID=W.WAYBILLID
 where CAT.AUDIT_MODIFY_DATE2 >= p_last_transfer_date
 AND CAT.AUDIT_MODIFY_DATE2<p_transfer_date
 and CAT.AUDIT_DELETED='0'
 and W.AUDIT_DELETED='0'
 and WP.AUDIT_DELETED='0'
 and S.AUDIT_DELETED='0'
 ;
 l_rowcount :=l_rowcount+sql%rowcount;
 commit;

--waybillunitchanced
 insert into cargo_fact_tmp
 (

 cargono, operation_date, sourceunitid, serial_number,
 shipment_code, senderaccountid, receiveraccountid,
 waybillid, shipmentid, cargoid, campaignconditionid,
 accountcontractversionid, yi_yd, piece_count, total_volume,
 bireysel_kurumsal, lovpayortypeid, lovpacktypeid,
 primaryserviceid, total_price, total_invoice_price,
 operationdateid, satelliteid, lovshipmenttypeid,
 planned_delivery_date, actual_planned_delivery_date,
 planned_arrival_date, first_piece_arrival_date,

90

 last_piece_arrival_date, lovunitdistancetypeid,
 duration, mobile, manifestunitid, description,
 lovshipmentstatusid, integration_code,
 contents_description, delivery_date, senderaccountname,
 senderaccountaddressname, receiveraccountname,
 receiveraccountaddressname, deliveryunitid,
lovdeliverytypeid,
 responsibleunitid, shipment_date, shipmentdeliveredid,
 lovdeliveryfailurereasonid, parentdeliveryunitid,
 parentsourceunitid, cancel_date, canceledby, canceled,
 audit_create_date, auditcreateunitid, audit_modify_date,
 audit_deleted, invoiceid, cancelunitid, lovwaybilltypeid,
 cancel_description, auditcreatedby, auditmodifiedby,
 auditmodifyunitid, senderaccountaddressversionid,
 invoiceunitid, collectionunitid, invoiceaddressversionid,
 worldwide, lovdocumentprintstatusid, diffinvoiceid,
 payoraccountcustomerid, returned, puantumbonus,
 puantumcancel, puantumcanceled, puantumcardno,
 puantumcardowner, puantumweb, due_date, payoraccountname,
 invoiceaddressid, acccontractid, receiveraddressversionid,
 refcode, trading_waybill_number, trading_goods,
 responsibility_document, receiveemployeeid,
measureemployeeid,
 contact_name, lovidentitytypeid, contact_identity_office,
 contact_identity_number, paymentaccountcontractversid,
 pricelistid, cargocollectid, lovcargostatusid, party_code,
 lovpartnerid, cargonoticeid, trading_date, for_worldwide,
 wwcargo_value, planneddeliverydateid,
actualplanneddeliverydateid,
 plannedarrivaldateid, firstpiecearrivaldateid,
 lastpiecearrivaldateid, deliverydateid, shipmentdateid,
 canceldateid, auditcreatedateid, auditmodifydateid,
 duedateid, tradingdateid, audit_modify_date2
)

 select
 null cargono
 , trunc(waybill_Date) OPERATION_DATE
 , w.auditcreateunitid SOURCEUNITID
 , W.DOCUMENT_SERIAL||W.DOCUMENT_NUMBER SERIAL_NUMBER
 , S.SHIPMENT_CODE SHIPMENT_CODE
 , S.SENDERACCOUNTID
 , S.RECEIVERACCOUNTID
 , W.WAYBILLID
 , S.SHIPMENTID
 , W.CARGOID
 , W.CAMPAIGNCONDITIONID
 , W.ACCOUNTCONTRACTVERSIONID
 , decode(nvl(W.WORLDWIDE,0),0,'YURTICI','YURTDISI') YI_YD
 , S.PIECE_COUNT PIECE_COUNT
 , S.TOTAL_VOLUME TOTAL_VOLUME
 , CASE WHEN
W.PAYORACCOUNTCUSTOMERID=HEXTORAW('E56224C0C544734DACA94AC36E23D313')
THEN 'BIREYSEL' ELSE 'KURUMSAL' END BIREYSEL_KURUMSAL
 , C.LOVPAYORTYPEID
 , S.LOVPACKTYPEID
 , W.SERVICEID PRIMARYSERVICEID
 , WP.PRICE TOTAL_PRICE
 , WP.INVOICE_PRICE TOTAL_INVOICE_PRICE

91

 ,
TO_CHAR(TO_dATE(waybill_Date,'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO_dATE(wa
ybill_Date,'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(waybill_Date,'DD.MM.RR
RR'),'DD') OPERATIONDATEID
 , S.SATELLITEID
 , S.LOVSHIPMENTTYPEID
 , trunc(S.PLANNED_DELIVERY_DATE) PLANNED_DELIVERY_DATE
 , trunc(S.ACTUAL_PLANNED_DELIVERY_DATE)
ACTUAL_PLANNED_DELIVERY_DATE
 , trunc(S.PLANNED_ARRIVAL_DATE) PLANNED_ARRIVAL_DATE
 , trunc(S.FIRST_PIECE_ARRIVAL_DATE) FIRST_PIECE_ARRIVAL_DATE
 , trunc(S.LAST_PIECE_ARRIVAL_DATE) LAST_PIECE_ARRIVAL_DATE
 , S.LOVUNITDISTANCETYPEID, S.DURATION, S.MOBILE, S.MANIFESTUNITID
 , S.DESCRIPTION, S.LOVSHIPMENTSTATUSID, S.INTEGRATION_CODE
 , S.CONTENTS_DESCRIPTION, trunc(S.DELIVER_DATE) DELIVERY_DATE
 , S.SENDERACCOUNTNAME, S.SENDERACCOUNTADDRESSNAME
 , S.RECEIVERACCOUNTNAME, S.RECEIVERACCOUNTADDRESSNAME,
S.DELIVERYUNITID
 , S.LOVDELIVERYTYPEID, S.RESPONSIBLEUNITID
 , trunc(S.SHIPMENT_DATE) SHIPMENT_DATE, S.SHIPMENTDELIVEREDID
 , S.LOVDELIVERYFAILUREREASONID, S.PARENTDELIVERYUNITID
 , S.PARENTSOURCEUNITID, trunc(W.CANCEL_DATE) CANCEL_DATE
 , W.CANCELEDBY, W.CANCELED, W.AUDIT_CREATE_DATE AUDIT_CREATE_DATE
 , W.AUDITCREATEUNITID AUDITCREATEUNITID
 , W.AUDIT_MODIFY_DATE AUDIT_MODIFY_DATE, '0' AUDIT_DELETED
 , W.INVOICEID, W.CANCELUNITID, W.LOVWAYBILLTYPEID,
W.CANCEL_DESCRIPTION
 , W.AUDITCREATEDBY, W.AUDITMODIFIEDBY, W.AUDITMODIFYUNITID
 , W.SENDERACCOUNTADDRESSVERSIONID, W.INVOICEUNITID,
W.COLLECTIONUNITID
 , W.INVOICEADDRESSVERSIONID, W.WORLDWIDE,
W.LOVDOCUMENTPRINTSTATUSID
 , W.DIFFINVOICEID, W.PAYORACCOUNTCUSTOMERID, W.RETURNED,
W.PUANTUMBONUS
 , W.PUANTUMCANCEL, W.PUANTUMCANCELED, W.PUANTUMCARDNO
 , W.PUANTUMCARDOWNER, W.PUANTUMWEB, trunc(W.DUE_DATE) DUE_DATE
 , W.PAYORACCOUNTNAME, W.INVOICEADDRESSID, W.ACCCONTRACTID
 , W.RECEIVERADDRESSVERSIONID , W.REFCODE, W.TRADING_WAYBILL_NUMBER
 , C.TRADING_GOODS, C.RESPONSIBILITY_DOCUMENT, C.RECEIVEEMPLOYEEID
 , C.MEASUREEMPLOYEEID, C.CONTACT_NAME, C.LOVIDENTITYTYPEID
 , C.CONTACT_IDENTITY_OFFICE, C.CONTACT_IDENTITY_NUMBER
 , C.PAYMENTACCOUNTCONTRACTVERSID
 , C.PRICELISTID, C.CARGOCOLLECTID, C.LOVCARGOSTATUSID,
C.PARTY_CODE
 , C.LOVPARTNERID, C.CARGONOTICEID
 , trunc(C.TRADING_DATE) TRADING_DATE, C.FOR_WORLDWIDE,
C.WWCARGO_VALUE
 ,
TO_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'RRRR')||
TO_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'MM')||TO
_CHAR(TO_dATE(trunc(S.PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'DD')
PLANNEDDELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.MM.RRRR'),'R
RRR')||TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.MM.RR
RR'),'MM')||TO_CHAR(TO_dATE(trunc(S.ACTUAL_PLANNED_DELIVERY_DATE),'DD.
MM.RRRR'),'DD') ACTUALPLANNEDDELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR')||T

92

O_CHAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'MM')||TO_C
HAR(TO_dATE(trunc(S.PLANNED_ARRIVAL_DATE),'DD.MM.RRRR'),'DD')
PLANNEDARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR'
)||TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'MM
')||TO_CHAR(TO_dATE(trunc(S.FIRST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'D
D') FIRSTPIECEARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'RRRR')
||TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'MM')
||TO_CHAR(TO_dATE(trunc(S.LAST_PIECE_ARRIVAL_DATE),'DD.MM.RRRR'),'DD')
LASTPIECEARRIVALDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.DELIVER_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(T
O_dATE(trunc(S.DELIVER_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trun
c(S.DELIVER_DATE),'DD.MM.RRRR'),'DD') DELIVERYDATEID
 ,
TO_CHAR(TO_dATE(trunc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(
TO_dATE(trunc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(tr
unc(S.SHIPMENT_DATE),'DD.MM.RRRR'),'DD') SHIPMENTDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.CANCEL_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO
_dATE(trunc(W.CANCEL_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trunc(
W.CANCEL_DATE),'DD.MM.RRRR'),'DD') CANCELDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'RRRR')||TO_C
HAR(TO_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO
_dATE(trunc(W.AUDIT_CREATE_DATE),'DD.MM.RRRR'),'DD')
AUDITCREATEDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'RRRR')||TO_C
HAR(TO_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO
_dATE(trunc(W.AUDIT_MODIFY_DATE),'DD.MM.RRRR'),'DD')
AUDITMODIFYDATEID
 ,
TO_CHAR(TO_dATE(trunc(W.DUE_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(TO_dA
TE(trunc(W.DUE_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trunc(W.DUE_
DATE),'DD.MM.RRRR'),'DD') DUEDATEID
 ,
TO_CHAR(TO_dATE(trunc(C.TRADING_DATE),'DD.MM.RRRR'),'RRRR')||TO_CHAR(T
O_dATE(trunc(C.TRADING_DATE),'DD.MM.RRRR'),'MM')||TO_CHAR(TO_dATE(trun
c(C.TRADING_DATE),'DD.MM.RRRR'),'DD') TRADINGDATEID
 , WCR.AUDIT_MODIFY_DATE2 AUDIT_MODIFY_DATE2
 from
 waybill w
 inner join waybillprice wp on w.waybillid=WP.WAYBILLID
 inner join shipment s on s.shipmentid=w.shipmentid
 inner join cargo c on c.cargoid=w.cargoid
 inner join UNIT U on U.UNITID=W.AUDITCREATEUNITID
 inner join waybillchangerevenueunit wcr on
wcr.WAYBILLID=W.WAYBILLID
 where WCR.AUDIT_MODIFY_DATE2 >= p_last_transfer_date
 AND WCR.AUDIT_MODIFY_DATE2<p_transfer_date
 and wcr.audit_Deleted='0'
 and WCR.AUDIT_DELETED='0'
 and W.AUDIT_DELETED='0'
 and WP.AUDIT_DELETED='0'
 and S.AUDIT_DELETED='0'

93

 ;
 l_rowcount :=l_rowcount+sql%rowcount;

 update whtransfer
 set row_count = l_rowcount
 where whtransferid=p_whtransferid;

 commit;

 PROC_SEND_MAIL('mertsun@araskargo.com.tr','warehouse-cargo: ' ||
p_transfer_date,'Tempe cargo data aktarimi tamamlandı');

 declare
 l_whtransferid varchar2(32);
 l_table_name varchar2(100):='CARGO_FACT';
 BEGIN
 l_whtransferid :=to_char(p_whtransferid);
 delete from t_transfer@warehouse where table_name=l_table_name;
 insert into t_transfer@warehouse(table_name,whtransferid)
values(l_table_name, l_whtransferid);
 commit;

 ms_prc := DBMS_HS_PASSTHROUGH.EXECUTE_IMMEDIATE@warehouse
 ('exec msdb.dbo.sp_start_job ''JB_TRANS_CARGO_FACT''');
 commit;
 END;

 update whtransfer
 set lovwhtransferstatusid=2,TRANSFER_COMPLETE_DATE=sysdate
 where whtransferid=p_whtransferid;
 commit;

 PROC_SEND_MAIL('mertsun@araskargo.com.tr','warehouse-cargo: ' ||
p_transfer_date,'warehousea '|| p_transfer_date || ' tarihine kadar
tutari degisen cargo datasi aktarildi');

END PROC_wh_cargo;

/

94

APPENDIX B

Transact/SQL Source code of ETL–Loading Phase Procedure of Cargo Fact

USE [ARASWH]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

-- ===
-- Author: Mert SUN
-- Create date: 25.06.2011
-- Description: Importing CARGO_FACT table
-- ===

CREATE PROCEDURE [dbo].[PROC_TRANS_CARGO_FACT]
AS
BEGIN

SET NOCOUNT ON

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

declare @l_whtransferid nvarchar(32)
declare @l_table_name nvarchar(32) ='CARGO_FACT'
SELECT @l_whtransferid = whtransferid
FROM t_transfer
WHERE table_name = @l_table_name

--truncate sql tmp
/*TRUNCATE ET VE vs*/
truncate table [ARASWH].[dbo].[CARGO_FACT_TMP];

INSERT INTO [ARASWH].[dbo].[CARGO_FACT_TMP]

 (CARGONO, OPERATION_DATE, SOURCEUNITID,
SERIAL_NUMBER,SHIPMENT_CODE

 ,SENDERACCOUNTIDRECEIVERACCOUNTID, WAYBILLIDSHIPMENTID,
CARGOID
 ,CAMPAIGNCONDITIONID, ACCOUNTCONTRACTVERSIONID, YI_YD
 ,PIECE_COUNT, TOTAL_VOLUME,BIREYSEL_KURUMSAL,
PRIMARYSERVICEID
 ,TOTAL_PRICE ,TOTAL_INVOICE_PRICE, OPERATIONDATEID,
SATELLITEID
 ,PLANNED_DELIVERY_DATE, ACTUAL_PLANNED_DELIVERY_DATE
 ,PLANNED_ARRIVAL_DATE, FIRST_PIECE_ARRIVAL_DATE

95

,LAST_PIECE_ARRIVAL_DATE,DURATION,MOBILE,MANIFESTUNITID,DESCRIPTION
 ,INTEGRATION_CODE, CONTENTS_DESCRIPTION, DELIVERY_DATE
 ,SENDERACCOUNTNAME, SENDERACCOUNTADDRESSNAME,
RECEIVERACCOUNTNAME
 ,RECEIVERACCOUNTADDRESSNAME, INVOICEID, CANCELUNITID
 ,LOVWAYBILLTYPEID, CANCEL_DESCRIPTION, AUDITCREATEDBY
 ,AUDITMODIFIEDBYAUDITMODIFYUNITID,
SENDERACCOUNTADDRESSVERSIONID
 ,INVOICEUNITID, COLLECTIONUNITID, INVOICEADDRESSVERSIONID
 ,WORLDWIDE, LOVDOCUMENTPRINTSTATUSID, DIFFINVOICEID
 ,PAYORACCOUNTCUSTOMERID, RETURNED, PUANTUMBONUS,
PUANTUMCANCEL
 ,PUANTUMCANCELED, PUANTUMCARDNO, PUANTUMCARDOWNER,
PUANTUMWEB
 ,DUE_DATE, PAYORACCOUNTNAME, INVOICEADDRESSID
 ,ACCCONTRACTID, RECEIVERADDRESSVERSIONID, REFCODE
 ,TRADING_WAYBILL_NUMBER ,TRADING_GOODS
,RESPONSIBILITY_DOCUMENT
 ,RECEIVEEMPLOYEEID, MEASUREEMPLOYEEID, CONTACT_NAME
 ,LOVIDENTITYTYPEID,CONTACT_IDENTITY_OFFICE,
CONTACT_IDENTITY_NUMBER
 ,PAYMENTACCOUNTCONTRACTVERSID, PRICELISTID, CARGOCOLLECTID
 ,LOVCARGOSTATUSID, PARTY_CODE, LOVPARTNERID, CARGONOTICEID
 ,TRADING_DATE, FOR_WORLDWIDE, WWCARGO_VALUE, DELIVERYUNITID
 ,RESPONSIBLEUNITID, SHIPMENT_DATE, SHIPMENTDELIVEREDID
 ,PARENTDELIVERYUNITID, PARENTSOURCEUNITID, PRINTERBARCODEID
 ,LOVPAYORTYPEID, LOVPACKTYPEID, LOVSHIPMENTTYPEID
 ,LOVUNITDISTANCETYPEID, LOVSHIPMENTSTATUSID,
LOVDELIVERYTYPEID
 ,LOVDELIVERYFAILUREREASONID, CANCEL_DATE, CANCELEDBY,
CANCELED
 ,AUDIT_CREATE_DATE, AUDITCREATEUNITID, AUDIT_MODIFY_DATE
 ,AUDIT_DELETED, PLANNEDDELIVERYDATEID,
ACTUALPLANNEDDELIVERYDATEID
 ,PLANNEDARRIVALDATEID, FIRSTPIECEARRIVALDATEID
 ,LASTPIECEARRIVALDATEID, DELIVERYDATEID, SHIPMENTDATEID
 ,CANCELDATEID, AUDITCREATEDATEID, AUDITMODIFYDATEID,
DUEDATEID
 ,TRADINGDATEID, CARGO_CODE, SENDERACCOUNTNO,
RECEIVERACCOUNTNO
 ,SENDERACCOUNTADDRESSVERSIONNO, INVOICEADDRESSVERSIONNO
 ,INVOICEADDRESSNO, RECEIVERADDRESSVERSIONNO
 ,WH_TRANSFER_DATE, AUDIT_MODIFY_DATE2)
SELECT

CARGONO, OPERATION_DATE, SOURCEUNITID,
SERIAL_NUMBER,SHIPMENT_CODE

 ,SENDERACCOUNTIDRECEIVERACCOUNTID, WAYBILLIDSHIPMENTID,
CARGOID
 ,CAMPAIGNCONDITIONID, ACCOUNTCONTRACTVERSIONID, YI_YD
 ,PIECE_COUNT, TOTAL_VOLUME,BIREYSEL_KURUMSAL,
PRIMARYSERVICEID
 ,TOTAL_PRICE ,TOTAL_INVOICE_PRICE, OPERATIONDATEID,
SATELLITEID
 ,PLANNED_DELIVERY_DATE, ACTUAL_PLANNED_DELIVERY_DATE
 ,PLANNED_ARRIVAL_DATE, FIRST_PIECE_ARRIVAL_DATE

,LAST_PIECE_ARRIVAL_DATE,DURATION,MOBILE,MANIFESTUNITID,DESCRIPTION
 ,INTEGRATION_CODE, CONTENTS_DESCRIPTION, DELIVERY_DATE

96

 ,SENDERACCOUNTNAME, SENDERACCOUNTADDRESSNAME,
RECEIVERACCOUNTNAME
 ,RECEIVERACCOUNTADDRESSNAME, INVOICEID, CANCELUNITID
 ,LOVWAYBILLTYPEID, CANCEL_DESCRIPTION, AUDITCREATEDBY
 ,AUDITMODIFIEDBYAUDITMODIFYUNITID,
SENDERACCOUNTADDRESSVERSIONID
 ,INVOICEUNITID, COLLECTIONUNITID, INVOICEADDRESSVERSIONID
 ,WORLDWIDE, LOVDOCUMENTPRINTSTATUSID, DIFFINVOICEID
 ,PAYORACCOUNTCUSTOMERID, RETURNED, PUANTUMBONUS,
PUANTUMCANCEL
 ,PUANTUMCANCELED, PUANTUMCARDNO, PUANTUMCARDOWNER,
PUANTUMWEB
 ,DUE_DATE, PAYORACCOUNTNAME, INVOICEADDRESSID
 ,ACCCONTRACTID, RECEIVERADDRESSVERSIONID, REFCODE
 ,TRADING_WAYBILL_NUMBER ,TRADING_GOODS
,RESPONSIBILITY_DOCUMENT
 ,RECEIVEEMPLOYEEID, MEASUREEMPLOYEEID, CONTACT_NAME
 ,LOVIDENTITYTYPEID,CONTACT_IDENTITY_OFFICE,
CONTACT_IDENTITY_NUMBER
 ,PAYMENTACCOUNTCONTRACTVERSID, PRICELISTID, CARGOCOLLECTID
 ,LOVCARGOSTATUSID, PARTY_CODE, LOVPARTNERID, CARGONOTICEID
 ,TRADING_DATE, FOR_WORLDWIDE, WWCARGO_VALUE, DELIVERYUNITID
 ,RESPONSIBLEUNITID, SHIPMENT_DATE, SHIPMENTDELIVEREDID
 ,PARENTDELIVERYUNITID, PARENTSOURCEUNITID, PRINTERBARCODEID
 ,LOVPAYORTYPEID, LOVPACKTYPEID, LOVSHIPMENTTYPEID
 ,LOVUNITDISTANCETYPEID, LOVSHIPMENTSTATUSID,
LOVDELIVERYTYPEID
 ,LOVDELIVERYFAILUREREASONID, CANCEL_DATE, CANCELEDBY,
CANCELED
 ,AUDIT_CREATE_DATE, AUDITCREATEUNITID, AUDIT_MODIFY_DATE
 ,AUDIT_DELETED, PLANNEDDELIVERYDATEID,
ACTUALPLANNEDDELIVERYDATEID
 ,PLANNEDARRIVALDATEID, FIRSTPIECEARRIVALDATEID
 ,LASTPIECEARRIVALDATEID, DELIVERYDATEID, SHIPMENTDATEID
 ,CANCELDATEID, AUDITCREATEDATEID, AUDITMODIFYDATEID,
DUEDATEID
 ,TRADINGDATEID, CARGO_CODE, SENDERACCOUNTNO,
RECEIVERACCOUNTNO
 ,SENDERACCOUNTADDRESSVERSIONNO, INVOICEADDRESSVERSIONNO
 ,INVOICEADDRESSNO, RECEIVERADDRESSVERSIONNO
 ,WH_TRANSFER_DATE, AUDIT_MODIFY_DATE2
 FROM
 openquery(ESASLIVE, '

select
*
from (select
ROW_NUMBER() over (partition by WAYBILLID order by
audit_modify_date2 desc) rn,
CARGONO,
CASE WHEN to_char(OPERATION_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE OPERATION_DATE END
OPERATION_DATE,
SOURCEUNITID,
SERIAL_NUMBER,
SHIPMENT_CODE,
CAST (SENDERACCOUNTID AS VARCHAR2(32)) SENDERACCOUNTID,
CAST (RECEIVERACCOUNTID AS VARCHAR2(32)) RECEIVERACCOUNTID,
CAST (WAYBILLID AS VARCHAR2(32)) WAYBILLID,
CAST (SHIPMENTID AS VARCHAR2(32)) SHIPMENTID,

97

CAST (CARGOID AS VARCHAR2(32)) CARGOID,
CAST (CAMPAIGNCONDITIONID AS VARCHAR2(32)) CAMPAIGNCONDITIONID,
CAST (ACCOUNTCONTRACTVERSIONID AS VARCHAR2(32))
ACCOUNTCONTRACTVERSIONID,
YI_YD,
PIECE_COUNT,
TOTAL_VOLUME,
BIREYSEL_KURUMSAL,
CAST (PRIMARYSERVICEID AS VARCHAR2(32)) PRIMARYSERVICEID,
TOTAL_PRICE,
TOTAL_INVOICE_PRICE,
OPERATIONDATEID,
CAST (SATELLITEID AS VARCHAR2(32)) SATELLITEID,
CASE WHEN to_char(PLANNED_DELIVERY_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE PLANNED_DELIVERY_DATE END
PLANNED_DELIVERY_DATE,
CASE WHEN to_char(ACTUAL_PLANNED_DELIVERY_DATE, ''YYYY'')<1000
then to_date(''1901'',''YYYY'') ELSE
ACTUAL_PLANNED_DELIVERY_DATE END ACTUAL_PLANNED_DELIVERY_DATE,
CASE WHEN to_char(PLANNED_ARRIVAL_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE PLANNED_ARRIVAL_DATE END
PLANNED_ARRIVAL_DATE,
CASE WHEN to_char(FIRST_PIECE_ARRIVAL_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE FIRST_PIECE_ARRIVAL_DATE END
FIRST_PIECE_ARRIVAL_DATE,
CASE WHEN to_char(LAST_PIECE_ARRIVAL_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE LAST_PIECE_ARRIVAL_DATE END
LAST_PIECE_ARRIVAL_DATE,
DURATION,
MOBILE,
MANIFESTUNITID,
DESCRIPTION,
INTEGRATION_CODE,
CONTENTS_DESCRIPTION,
CASE WHEN to_char(DELIVERY_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE DELIVERY_DATE END
DELIVERY_DATE,
SENDERACCOUNTNAME,
SENDERACCOUNTADDRESSNAME,
RECEIVERACCOUNTNAME,
RECEIVERACCOUNTADDRESSNAME,
CAST (INVOICEID AS VARCHAR2(32)) INVOICEID,
CANCELUNITID,
LOVWAYBILLTYPEID,
CANCEL_DESCRIPTION,
AUDITCREATEDBY,
AUDITMODIFIEDBY,
AUDITMODIFYUNITID,
CAST (SENDERACCOUNTADDRESSVERSIONID AS VARCHAR2(32))
SENDERACCOUNTADDRESSVERSIONID,
INVOICEUNITID,
COLLECTIONUNITID,
CAST (INVOICEADDRESSVERSIONID AS VARCHAR2(32))
INVOICEADDRESSVERSIONID,
WORLDWIDE,
LOVDOCUMENTPRINTSTATUSID,
CAST (DIFFINVOICEID AS VARCHAR2(32)) DIFFINVOICEID,
CAST (PAYORACCOUNTCUSTOMERID AS VARCHAR2(32))
PAYORACCOUNTCUSTOMERID,

98

RETURNED,
PUANTUMBONUS,
PUANTUMCANCEL,
PUANTUMCANCELED,
PUANTUMCARDNO,
PUANTUMCARDOWNER,
PUANTUMWEB,
CASE WHEN to_char(DUE_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE DUE_DATE END DUE_DATE,
PAYORACCOUNTNAME,
CAST (INVOICEADDRESSID AS VARCHAR2(32)) INVOICEADDRESSID,
CAST (ACCCONTRACTID AS VARCHAR2(32)) ACCCONTRACTID,
CAST (RECEIVERADDRESSVERSIONID AS VARCHAR2(32))
RECEIVERADDRESSVERSIONID,
REFCODE,
TRADING_WAYBILL_NUMBER,
TRADING_GOODS,
RESPONSIBILITY_DOCUMENT,
RECEIVEEMPLOYEEID,
MEASUREEMPLOYEEID,
CONTACT_NAME,
LOVIDENTITYTYPEID,
CONTACT_IDENTITY_OFFICE,
CONTACT_IDENTITY_NUMBER,
CAST (PAYMENTACCOUNTCONTRACTVERSID AS VARCHAR2(32))
PAYMENTACCOUNTCONTRACTVERSID,
CAST (PRICELISTID AS VARCHAR2(32)) PRICELISTID,
CAST (CARGOCOLLECTID AS VARCHAR2(32)) CARGOCOLLECTID,
LOVCARGOSTATUSID,
PARTY_CODE,
LOVPARTNERID,
CAST (CARGONOTICEID AS VARCHAR2(32)) CARGONOTICEID,
CASE WHEN to_char(TRADING_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE TRADING_DATE END TRADING_DATE,
FOR_WORLDWIDE,
WWCARGO_VALUE,
DELIVERYUNITID,
RESPONSIBLEUNITID,
CASE WHEN to_char(SHIPMENT_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE SHIPMENT_DATE END
SHIPMENT_DATE,
CAST (SHIPMENTDELIVEREDID AS VARCHAR2(32)) SHIPMENTDELIVEREDID,
PARENTDELIVERYUNITID,
PARENTSOURCEUNITID,
CAST (PRINTERBARCODEID AS VARCHAR2(32)) PRINTERBARCODEID,
LOVPAYORTYPEID,
LOVPACKTYPEID,
LOVSHIPMENTTYPEID,
LOVUNITDISTANCETYPEID,
LOVSHIPMENTSTATUSID,
LOVDELIVERYTYPEID,
LOVDELIVERYFAILUREREASONID,
CASE WHEN to_char(CANCEL_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE CANCEL_DATE END CANCEL_DATE,
CANCELEDBY,
CANCELED,
CASE WHEN to_char(AUDIT_CREATE_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE AUDIT_CREATE_DATE END
AUDIT_CREATE_DATE,

99

AUDITCREATEUNITID,
CASE WHEN to_char(AUDIT_MODIFY_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE AUDIT_MODIFY_DATE END
AUDIT_MODIFY_DATE,
AUDIT_DELETED,
PLANNEDDELIVERYDATEID,
ACTUALPLANNEDDELIVERYDATEID,
PLANNEDARRIVALDATEID,
FIRSTPIECEARRIVALDATEID,
LASTPIECEARRIVALDATEID,
DELIVERYDATEID,
SHIPMENTDATEID,
CANCELDATEID,
AUDITCREATEDATEID,
AUDITMODIFYDATEID,
DUEDATEID,
TRADINGDATEID,
CARGO_CODE,
SENDERACCOUNTNO,
RECEIVERACCOUNTNO,
SENDERACCOUNTADDRESSVERSIONNO,
INVOICEADDRESSVERSIONNO,
INVOICEADDRESSNO,
RECEIVERADDRESSVERSIONNO,
CASE WHEN to_char(WH_TRANSFER_DATE, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE WH_TRANSFER_DATE END
WH_TRANSFER_DATE,
CASE WHEN to_char(AUDIT_MODIFY_DATE2, ''YYYY'')<1000 then
to_date(''1901'',''YYYY'') ELSE AUDIT_MODIFY_DATE2 END
AUDIT_MODIFY_DATE2 from CARGO_FACT_TMP)
where rn=1
');

MERGE [ARASWH].[dbo].[CARGO_FACT] as stm USING (SELECT
OPERATION_DATE, SOURCEUNITID, SERIAL_NUMBER,SHIPMENT_CODE

 ,SENDERACCOUNTIDRECEIVERACCOUNTID, WAYBILLIDSHIPMENTID,
CARGOID
 ,CAMPAIGNCONDITIONID, ACCOUNTCONTRACTVERSIONID, YI_YD
 ,PIECE_COUNT, TOTAL_VOLUME,BIREYSEL_KURUMSAL,
PRIMARYSERVICEID
 ,TOTAL_PRICE ,TOTAL_INVOICE_PRICE, OPERATIONDATEID,
SATELLITEID
 ,PLANNED_DELIVERY_DATE, ACTUAL_PLANNED_DELIVERY_DATE
 ,PLANNED_ARRIVAL_DATE, FIRST_PIECE_ARRIVAL_DATE

,LAST_PIECE_ARRIVAL_DATE,DURATION,MOBILE,MANIFESTUNITID,DESCRIPTION
 ,INTEGRATION_CODE, CONTENTS_DESCRIPTION, DELIVERY_DATE
 ,SENDERACCOUNTNAME, SENDERACCOUNTADDRESSNAME,
RECEIVERACCOUNTNAME
 ,RECEIVERACCOUNTADDRESSNAME, INVOICEID, CANCELUNITID
 ,LOVWAYBILLTYPEID, CANCEL_DESCRIPTION, AUDITCREATEDBY
 ,AUDITMODIFIEDBYAUDITMODIFYUNITID,
SENDERACCOUNTADDRESSVERSIONID
 ,INVOICEUNITID, COLLECTIONUNITID, INVOICEADDRESSVERSIONID
 ,WORLDWIDE, LOVDOCUMENTPRINTSTATUSID, DIFFINVOICEID
 ,PAYORACCOUNTCUSTOMERID, RETURNED, PUANTUMBONUS,
PUANTUMCANCEL
 ,PUANTUMCANCELED, PUANTUMCARDNO, PUANTUMCARDOWNER,
PUANTUMWEB

100

 ,DUE_DATE, PAYORACCOUNTNAME, INVOICEADDRESSID
 ,ACCCONTRACTID, RECEIVERADDRESSVERSIONID, REFCODE
 ,TRADING_WAYBILL_NUMBER ,TRADING_GOODS
,RESPONSIBILITY_DOCUMENT
 ,RECEIVEEMPLOYEEID, MEASUREEMPLOYEEID, CONTACT_NAME
 ,LOVIDENTITYTYPEID,CONTACT_IDENTITY_OFFICE,
CONTACT_IDENTITY_NUMBER
 ,PAYMENTACCOUNTCONTRACTVERSID, PRICELISTID, CARGOCOLLECTID
 ,LOVCARGOSTATUSID, PARTY_CODE, LOVPARTNERID, CARGONOTICEID
 ,TRADING_DATE, FOR_WORLDWIDE, WWCARGO_VALUE, DELIVERYUNITID
 ,RESPONSIBLEUNITID, SHIPMENT_DATE, SHIPMENTDELIVEREDID
 ,PARENTDELIVERYUNITID, PARENTSOURCEUNITID, PRINTERBARCODEID
 ,LOVPAYORTYPEID, LOVPACKTYPEID, LOVSHIPMENTTYPEID
 ,LOVUNITDISTANCETYPEID, LOVSHIPMENTSTATUSID,
LOVDELIVERYTYPEID
 ,LOVDELIVERYFAILUREREASONID, CANCEL_DATE, CANCELEDBY,
CANCELED
 ,AUDIT_CREATE_DATE, AUDITCREATEUNITID, AUDIT_MODIFY_DATE
 ,AUDIT_DELETED, PLANNEDDELIVERYDATEID,
ACTUALPLANNEDDELIVERYDATEID
 ,PLANNEDARRIVALDATEID, FIRSTPIECEARRIVALDATEID
 ,LASTPIECEARRIVALDATEID, DELIVERYDATEID, SHIPMENTDATEID
 ,CANCELDATEID, AUDITCREATEDATEID, AUDITMODIFYDATEID,
DUEDATEID
 ,TRADINGDATEID, CARGO_CODE, SENDERACCOUNTNO,
RECEIVERACCOUNTNO
 ,SENDERACCOUNTADDRESSVERSIONNO, INVOICEADDRESSVERSIONNO
 ,INVOICEADDRESSNO, RECEIVERADDRESSVERSIONNO
 ,WH_TRANSFER_DATE, AUDIT_MODIFY_DATE2

FROM dbo.CARGO_FACT_TMP
) as sd ON stm.WAYBILLID= sd.WAYBILLID
 WHEN matched then UPDATE SET
stm.OPERATION_DATE = sd.OPERATION_DATE,
stm.SOURCEUNITID = sd.SOURCEUNITID,
stm.SERIAL_NUMBER = sd.SERIAL_NUMBER,
stm.SHIPMENT_CODE = sd.SHIPMENT_CODE,
stm.SENDERACCOUNTID = sd.SENDERACCOUNTID,
stm.RECEIVERACCOUNTID = sd.RECEIVERACCOUNTID,
stm.SHIPMENTID = sd.SHIPMENTID,
stm.CARGOID = sd.CARGOID,
stm.CAMPAIGNCONDITIONID = sd.CAMPAIGNCONDITIONID,
stm.ACCOUNTCONTRACTVERSIONID = sd.ACCOUNTCONTRACTVERSIONID,
stm.YI_YD = sd.YI_YD,
stm.PIECE_COUNT = sd.PIECE_COUNT,
stm.TOTAL_VOLUME = sd.TOTAL_VOLUME,
stm.BIREYSEL_KURUMSAL = sd.BIREYSEL_KURUMSAL,
stm.PRIMARYSERVICEID = sd.PRIMARYSERVICEID,
stm.TOTAL_PRICE = sd.TOTAL_PRICE,
stm.TOTAL_INVOICE_PRICE = sd.TOTAL_INVOICE_PRICE,
stm.OPERATIONDATEID = sd.OPERATIONDATEID,
stm.SATELLITEID = sd.SATELLITEID,
stm.PLANNED_DELIVERY_DATE = sd.PLANNED_DELIVERY_DATE,
stm.ACTUAL_PLANNED_DELIVERY_DATE =
sd.ACTUAL_PLANNED_DELIVERY_DATE,
stm.PLANNED_ARRIVAL_DATE = sd.PLANNED_ARRIVAL_DATE,
stm.FIRST_PIECE_ARRIVAL_DATE = sd.FIRST_PIECE_ARRIVAL_DATE,
stm.LAST_PIECE_ARRIVAL_DATE = sd.LAST_PIECE_ARRIVAL_DATE,
stm.DURATION = sd.DURATION,
stm.MOBILE = sd.MOBILE,

101

stm.MANIFESTUNITID = sd.MANIFESTUNITID,
stm.DESCRIPTION = sd.DESCRIPTION,
stm.INTEGRATION_CODE = sd.INTEGRATION_CODE,
stm.CONTENTS_DESCRIPTION = sd.CONTENTS_DESCRIPTION,
stm.DELIVERY_DATE = sd.DELIVERY_DATE,
stm.SENDERACCOUNTNAME = sd.SENDERACCOUNTNAME,
stm.SENDERACCOUNTADDRESSNAME = sd.SENDERACCOUNTADDRESSNAME,
stm.RECEIVERACCOUNTNAME = sd.RECEIVERACCOUNTNAME,
stm.RECEIVERACCOUNTADDRESSNAME = sd.RECEIVERACCOUNTADDRESSNAME,
stm.INVOICEID = sd.INVOICEID,
stm.CANCELUNITID = sd.CANCELUNITID,
stm.LOVWAYBILLTYPEID = sd.LOVWAYBILLTYPEID,
stm.CANCEL_DESCRIPTION = sd.CANCEL_DESCRIPTION,
stm.AUDITCREATEDBY = sd.AUDITCREATEDBY,
stm.AUDITMODIFIEDBY = sd.AUDITMODIFIEDBY,
stm.AUDITMODIFYUNITID = sd.AUDITMODIFYUNITID,
stm.SENDERACCOUNTADDRESSVERSIONID =
sd.SENDERACCOUNTADDRESSVERSIONID,
stm.INVOICEUNITID = sd.INVOICEUNITID,
stm.COLLECTIONUNITID = sd.COLLECTIONUNITID,
stm.INVOICEADDRESSVERSIONID = sd.INVOICEADDRESSVERSIONID,
stm.WORLDWIDE = sd.WORLDWIDE,
stm.LOVDOCUMENTPRINTSTATUSID = sd.LOVDOCUMENTPRINTSTATUSID,
stm.DIFFINVOICEID = sd.DIFFINVOICEID,
stm.PAYORACCOUNTCUSTOMERID = sd.PAYORACCOUNTCUSTOMERID,
stm.RETURNED = sd.RETURNED,
stm.PUANTUMBONUS = sd.PUANTUMBONUS,
stm.PUANTUMCANCEL = sd.PUANTUMCANCEL,
stm.PUANTUMCANCELED = sd.PUANTUMCANCELED,
stm.PUANTUMCARDNO = sd.PUANTUMCARDNO,
stm.PUANTUMCARDOWNER = sd.PUANTUMCARDOWNER,
stm.PUANTUMWEB = sd.PUANTUMWEB,
stm.DUE_DATE = sd.DUE_DATE,
stm.PAYORACCOUNTNAME = sd.PAYORACCOUNTNAME,
stm.INVOICEADDRESSID = sd.INVOICEADDRESSID,
stm.ACCCONTRACTID = sd.ACCCONTRACTID,
stm.RECEIVERADDRESSVERSIONID = sd.RECEIVERADDRESSVERSIONID,
stm.REFCODE = sd.REFCODE,
stm.TRADING_WAYBILL_NUMBER = sd.TRADING_WAYBILL_NUMBER,
stm.TRADING_GOODS = sd.TRADING_GOODS,
stm.RESPONSIBILITY_DOCUMENT = sd.RESPONSIBILITY_DOCUMENT,
stm.RECEIVEEMPLOYEEID = sd.RECEIVEEMPLOYEEID,
stm.MEASUREEMPLOYEEID = sd.MEASUREEMPLOYEEID,
stm.CONTACT_NAME = sd.CONTACT_NAME,
stm.LOVIDENTITYTYPEID = sd.LOVIDENTITYTYPEID,
stm.CONTACT_IDENTITY_OFFICE = sd.CONTACT_IDENTITY_OFFICE,
stm.CONTACT_IDENTITY_NUMBER = sd.CONTACT_IDENTITY_NUMBER,
stm.PAYMENTACCOUNTCONTRACTVERSID =
sd.PAYMENTACCOUNTCONTRACTVERSID,
stm.PRICELISTID = sd.PRICELISTID,
stm.CARGOCOLLECTID = sd.CARGOCOLLECTID,
stm.LOVCARGOSTATUSID = sd.LOVCARGOSTATUSID,
stm.PARTY_CODE = sd.PARTY_CODE,
stm.LOVPARTNERID = sd.LOVPARTNERID,
stm.CARGONOTICEID = sd.CARGONOTICEID,
stm.TRADING_DATE = sd.TRADING_DATE,
stm.FOR_WORLDWIDE = sd.FOR_WORLDWIDE,
stm.WWCARGO_VALUE = sd.WWCARGO_VALUE,
stm.DELIVERYUNITID = sd.DELIVERYUNITID,

102

stm.RESPONSIBLEUNITID = sd.RESPONSIBLEUNITID,
stm.SHIPMENT_DATE = sd.SHIPMENT_DATE,
stm.SHIPMENTDELIVEREDID = sd.SHIPMENTDELIVEREDID,
stm.PARENTDELIVERYUNITID = sd.PARENTDELIVERYUNITID,
stm.PARENTSOURCEUNITID = sd.PARENTSOURCEUNITID,
stm.PRINTERBARCODEID = sd.PRINTERBARCODEID,
stm.LOVPAYORTYPEID = sd.LOVPAYORTYPEID,
stm.LOVPACKTYPEID = sd.LOVPACKTYPEID,
stm.LOVSHIPMENTTYPEID = sd.LOVSHIPMENTTYPEID,
stm.LOVUNITDISTANCETYPEID = sd.LOVUNITDISTANCETYPEID,
stm.LOVSHIPMENTSTATUSID = sd.LOVSHIPMENTSTATUSID,
stm.LOVDELIVERYTYPEID = sd.LOVDELIVERYTYPEID,
stm.LOVDELIVERYFAILUREREASONID = sd.LOVDELIVERYFAILUREREASONID,
stm.CANCEL_DATE = sd.CANCEL_DATE,
stm.CANCELEDBY = sd.CANCELEDBY,
stm.CANCELED = sd.CANCELED,
stm.AUDIT_CREATE_DATE = sd.AUDIT_CREATE_DATE,
stm.AUDITCREATEUNITID = sd.AUDITCREATEUNITID,
stm.AUDIT_MODIFY_DATE = sd.AUDIT_MODIFY_DATE,
stm.AUDIT_DELETED = sd.AUDIT_DELETED,
stm.PLANNEDDELIVERYDATEID = sd.PLANNEDDELIVERYDATEID,
stm.ACTUALPLANNEDDELIVERYDATEID =
sd.ACTUALPLANNEDDELIVERYDATEID,
stm.PLANNEDARRIVALDATEID = sd.PLANNEDARRIVALDATEID,
stm.FIRSTPIECEARRIVALDATEID = sd.FIRSTPIECEARRIVALDATEID,
stm.LASTPIECEARRIVALDATEID = sd.LASTPIECEARRIVALDATEID,
stm.DELIVERYDATEID = sd.DELIVERYDATEID,
stm.SHIPMENTDATEID = sd.SHIPMENTDATEID,
stm.CANCELDATEID = sd.CANCELDATEID,
stm.AUDITCREATEDATEID = sd.AUDITCREATEDATEID,
stm.AUDITMODIFYDATEID = sd.AUDITMODIFYDATEID,
stm.DUEDATEID = sd.DUEDATEID,
stm.TRADINGDATEID = sd.TRADINGDATEID,
stm.CARGO_CODE = sd.CARGO_CODE,
stm.SENDERACCOUNTNO = sd.SENDERACCOUNTNO,
stm.RECEIVERACCOUNTNO = sd.RECEIVERACCOUNTNO,
stm.SENDERACCOUNTADDRESSVERSIONNO =
sd.SENDERACCOUNTADDRESSVERSIONNO,
stm.INVOICEADDRESSVERSIONNO = sd.INVOICEADDRESSVERSIONNO,
stm.INVOICEADDRESSNO = sd.INVOICEADDRESSNO,
stm.RECEIVERADDRESSVERSIONNO = sd.RECEIVERADDRESSVERSIONNO,
stm.WH_TRANSFER_DATE = sd.WH_TRANSFER_DATE,
stm.AUDIT_MODIFY_DATE2 = sd.AUDIT_MODIFY_DATE2
 WHEN NOT MATCHED THEN INSERT (

(OPERATION_DATE, SOURCEUNITID, SERIAL_NUMBER,SHIPMENT_CODE
 ,SENDERACCOUNTIDRECEIVERACCOUNTID, WAYBILLIDSHIPMENTID,
CARGOID
 ,CAMPAIGNCONDITIONID, ACCOUNTCONTRACTVERSIONID, YI_YD
 ,PIECE_COUNT, TOTAL_VOLUME,BIREYSEL_KURUMSAL,
PRIMARYSERVICEID
 ,TOTAL_PRICE ,TOTAL_INVOICE_PRICE, OPERATIONDATEID,
SATELLITEID
 ,PLANNED_DELIVERY_DATE, ACTUAL_PLANNED_DELIVERY_DATE
 ,PLANNED_ARRIVAL_DATE, FIRST_PIECE_ARRIVAL_DATE

,LAST_PIECE_ARRIVAL_DATE,DURATION,MOBILE,MANIFESTUNITID,DESCRIPTION
 ,INTEGRATION_CODE, CONTENTS_DESCRIPTION, DELIVERY_DATE
 ,SENDERACCOUNTNAME,
SENDERACCOUNTADDRESSNAME,RECEIVERACCOUNTNAME

103

 ,RECEIVERACCOUNTADDRESSNAME, INVOICEID, CANCELUNITID
 ,LOVWAYBILLTYPEID, CANCEL_DESCRIPTION, AUDITCREATEDBY
 ,AUDITMODIFIEDBYAUDITMODIFYUNITID,
SENDERACCOUNTADDRESSVERSIONID
 ,INVOICEUNITID, COLLECTIONUNITID, INVOICEADDRESSVERSIONID
 ,WORLDWIDE, LOVDOCUMENTPRINTSTATUSID, DIFFINVOICEID
 ,PAYORACCOUNTCUSTOMERID, RETURNED, PUANTUMBONUS,
PUANTUMCANCEL
 ,PUANTUMCANCELED, PUANTUMCARDNO, PUANTUMCARDOWNER,
PUANTUMWEB
 ,DUE_DATE, PAYORACCOUNTNAME, INVOICEADDRESSID
 ,ACCCONTRACTID, RECEIVERADDRESSVERSIONID, REFCODE
 ,TRADING_WAYBILL_NUMBER ,TRADING_GOODS
,RESPONSIBILITY_DOCUMENT
 ,RECEIVEEMPLOYEEID, MEASUREEMPLOYEEID, CONTACT_NAME

,LOVIDENTITYTYPEID,CONTACT_IDENTITY_OFFICE
,CONTACT_IDENTITY_NUMBER

 ,PAYMENTACCOUNTCONTRACTVERSID, PRICELISTID, CARGOCOLLECTID
 ,LOVCARGOSTATUSID, PARTY_CODE, LOVPARTNERID, CARGONOTICEID
 ,TRADING_DATE, FOR_WORLDWIDE, WWCARGO_VALUE, DELIVERYUNITID
 ,RESPONSIBLEUNITID, SHIPMENT_DATE, SHIPMENTDELIVEREDID
 ,PARENTDELIVERYUNITID, PARENTSOURCEUNITID, PRINTERBARCODEID
 ,LOVPAYORTYPEID, LOVPACKTYPEID, LOVSHIPMENTTYPEID
 ,LOVUNITDISTANCETYPEID, LOVSHIPMENTSTATUSID,
LOVDELIVERYTYPEID
 ,LOVDELIVERYFAILUREREASONID, CANCEL_DATE, CANCELEDBY,
CANCELED
 ,AUDIT_CREATE_DATE, AUDITCREATEUNITID, AUDIT_MODIFY_DATE

,AUDIT_DELETED,PLANNEDDELIVERYDATEID,ACTUALPLANNEDDELIVERYDATEID
 ,PLANNEDARRIVALDATEID, FIRSTPIECEARRIVALDATEID
 ,LASTPIECEARRIVALDATEID, DELIVERYDATEID, SHIPMENTDATEID
 ,CANCELDATEID, AUDITCREATEDATEID, AUDITMODIFYDATEID,
DUEDATEID
 ,TRADINGDATEID, CARGO_CODE, SENDERACCOUNTNO,
RECEIVERACCOUNTNO
 ,SENDERACCOUNTADDRESSVERSIONNO, INVOICEADDRESSVERSIONNO
 ,INVOICEADDRESSNO, RECEIVERADDRESSVERSIONNO
 ,WH_TRANSFER_DATE, AUDIT_MODIFY_DATE2)

VALUES (
sd.OPERATION_DATE,
sd.SOURCEUNITID,
sd.SERIAL_NUMBER,
sd.SHIPMENT_CODE,
sd.SENDERACCOUNTID,
sd.RECEIVERACCOUNTID,
sd.WAYBILLID,
sd.SHIPMENTID,
sd.CARGOID,
sd.CAMPAIGNCONDITIONID,
sd.ACCOUNTCONTRACTVERSIONID,
sd.YI_YD,
sd.PIECE_COUNT,
sd.TOTAL_VOLUME,
sd.BIREYSEL_KURUMSAL,
sd.PRIMARYSERVICEID,
sd.TOTAL_PRICE,
sd.TOTAL_INVOICE_PRICE,
sd.OPERATIONDATEID,

104

sd.SATELLITEID,
sd.PLANNED_DELIVERY_DATE,
sd.ACTUAL_PLANNED_DELIVERY_DATE,
sd.PLANNED_ARRIVAL_DATE,
sd.FIRST_PIECE_ARRIVAL_DATE,
sd.LAST_PIECE_ARRIVAL_DATE,
sd.DURATION,
sd.MOBILE,
sd.MANIFESTUNITID,
sd.DESCRIPTION,
sd.INTEGRATION_CODE,
sd.CONTENTS_DESCRIPTION,
sd.DELIVERY_DATE,
sd.SENDERACCOUNTNAME,
sd.SENDERACCOUNTADDRESSNAME,
sd.RECEIVERACCOUNTNAME,
sd.RECEIVERACCOUNTADDRESSNAME,
sd.INVOICEID,
sd.CANCELUNITID,
sd.LOVWAYBILLTYPEID,
sd.CANCEL_DESCRIPTION,
sd.AUDITCREATEDBY,
sd.AUDITMODIFIEDBY,
sd.AUDITMODIFYUNITID,
sd.SENDERACCOUNTADDRESSVERSIONID,
sd.INVOICEUNITID,
sd.COLLECTIONUNITID,
sd.INVOICEADDRESSVERSIONID,
sd.WORLDWIDE,
sd.LOVDOCUMENTPRINTSTATUSID,
sd.DIFFINVOICEID,
sd.PAYORACCOUNTCUSTOMERID,
sd.RETURNED,
sd.PUANTUMBONUS,
sd.PUANTUMCANCEL,
sd.PUANTUMCANCELED,
sd.PUANTUMCARDNO,
sd.PUANTUMCARDOWNER,
sd.PUANTUMWEB,
sd.DUE_DATE,
sd.PAYORACCOUNTNAME,
sd.INVOICEADDRESSID,
sd.ACCCONTRACTID,
sd.RECEIVERADDRESSVERSIONID,
sd.REFCODE,
sd.TRADING_WAYBILL_NUMBER,
sd.TRADING_GOODS,
sd.RESPONSIBILITY_DOCUMENT,
sd.RECEIVEEMPLOYEEID,
sd.MEASUREEMPLOYEEID,
sd.CONTACT_NAME,
sd.LOVIDENTITYTYPEID,
sd.CONTACT_IDENTITY_OFFICE,
sd.CONTACT_IDENTITY_NUMBER,
sd.PAYMENTACCOUNTCONTRACTVERSID,
sd.PRICELISTID,
sd.CARGOCOLLECTID,
sd.LOVCARGOSTATUSID,
sd.PARTY_CODE,

105

sd.LOVPARTNERID,
sd.CARGONOTICEID,
sd.TRADING_DATE,
sd.FOR_WORLDWIDE,
sd.WWCARGO_VALUE,
sd.DELIVERYUNITID,
sd.RESPONSIBLEUNITID,
sd.SHIPMENT_DATE,
sd.SHIPMENTDELIVEREDID,
sd.PARENTDELIVERYUNITID,
sd.PARENTSOURCEUNITID,
sd.PRINTERBARCODEID,
sd.LOVPAYORTYPEID,
sd.LOVPACKTYPEID,
sd.LOVSHIPMENTTYPEID,
sd.LOVUNITDISTANCETYPEID,
sd.LOVSHIPMENTSTATUSID,
sd.LOVDELIVERYTYPEID,
sd.LOVDELIVERYFAILUREREASONID,
sd.CANCEL_DATE,
sd.CANCELEDBY,
sd.CANCELED,
sd.AUDIT_CREATE_DATE,
sd.AUDITCREATEUNITID,
sd.AUDIT_MODIFY_DATE,
sd.AUDIT_DELETED,
sd.PLANNEDDELIVERYDATEID,
sd.ACTUALPLANNEDDELIVERYDATEID,
sd.PLANNEDARRIVALDATEID,
sd.FIRSTPIECEARRIVALDATEID,
sd.LASTPIECEARRIVALDATEID,
sd.DELIVERYDATEID,
sd.SHIPMENTDATEID,
sd.CANCELDATEID,
sd.AUDITCREATEDATEID,
sd.AUDITMODIFYDATEID,
sd.DUEDATEID,
sd.TRADINGDATEID,
sd.CARGO_CODE,
sd.SENDERACCOUNTNO,
sd.RECEIVERACCOUNTNO,
sd.SENDERACCOUNTADDRESSVERSIONNO,
sd.INVOICEADDRESSVERSIONNO,
sd.INVOICEADDRESSNO,
sd.RECEIVERADDRESSVERSIONNO,
sd.WH_TRANSFER_DATE,
sd.AUDIT_MODIFY_DATE2
)option (merge join);

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
exec ('UPDATE OPENQUERY (ESASLIVE, ''select * from whtransfer where
whtransferid='''''+@l_whtransferid+''''''') set
lovwhtransferstatusid=2,TRANSFER_COMPLETE_DATE=getdate()');

END

GO

106

APPENDIX C

Transact/SQL Source code of OLAP Cargo Cube

set transaction isolation level read uncommitted;

select a11.LOVWAYBILLTYPEID LOVWAYBILLTYPEID,
 a11.DELIVERYUNITID DELIVERYUNITID,
 a11.SHIPMENTDATEID SHIPMENTDATEID,
 a11.SOURCEUNITID SOURCEUNITID,
 a11.WORLDWIDE WORLDWIDE,
 a11.SATELLITEID SATELLITEID,
 a11.OPERATIONDATEID OPERATIONDATEID,
 a11.PLANNEDARRIVALDATEID PLANNEDARRIVALDATEID,
 a11.PLANNEDDELIVERYDATEID PLANNEDDELIVERYDATEID,
 a11.AUDITCREATEDATEID AUDITCREATEDATEID,
 a11.LOVUNITDISTANCETYPEID LOVUNITDISTANCETYPEID,
 a11.LOVPACKTYPEID LOVPACKTYPEID,
 a11.LOVSHIPMENTSTATUSID LOVSHIPMENTSTATUSID,
 a11.campaign_f campaign_f,
 a11.ACTUALPLANNEDDELIVERYDATEID ACTUALPLANNEDDELIVERYDATEID,
 a11.LOVSHIPMENTTYPEID LOVSHIPMENTTYPEID,
 a11.SERIAL_NUMBER SERIAL_NUMBER,
 a11.BIREYSEL_KURUMSAL BIREYSEL_KURUMSAL,
 a11.contract_f contract_f,
 a11.LOVMAINPACKTYPEID LOVPACKTYPEID0,
 a11.campaignconditionid campaignconditionid,
 a11.PRIMARYSERVICEID SERVICEID,
 sum((Case when a11.TOTAL_INVOICE_PRICE = 0 then 0 else
a11.TOTAL_INVOICE_PRICE end)) WJXBFS1,
 sum(a11.TOTAL_VOLUME) WJXBFS2,
 sum(a11.PIECE_COUNT) WJXBFS3,
 count(a11.WAYBILLID) WJXBFS4
into #ZZMD00
from dbo.CARGO a11
 join OPERATIONDATE a12
 on (a11.OPERATIONDATEID = a12.OPERATIONDATEID)
where (a12.OPERATION_DATE >= '2011-07-01'
 and a12.OPERATION_DATE < '2011-08-22')
group by a11.LOVWAYBILLTYPEID,
 a11.DELIVERYUNITID,
 a11.SHIPMENTDATEID,
 a11.SOURCEUNITID,
 a11.WORLDWIDE,
 a11.SATELLITEID,
 a11.OPERATIONDATEID,
 a11.PLANNEDARRIVALDATEID,
 a11.PLANNEDDELIVERYDATEID,
 a11.AUDITCREATEDATEID,
 a11.LOVUNITDISTANCETYPEID,
 a11.LOVPACKTYPEID,
 a11.LOVSHIPMENTSTATUSID,

107

 a11.campaign_f,
 a11.ACTUALPLANNEDDELIVERYDATEID,
 a11.LOVSHIPMENTTYPEID,
 a11.SERIAL_NUMBER,
 a11.BIREYSEL_KURUMSAL,
 a11.contract_f,
 a11.LOVMAINPACKTYPEID,
 a11.campaignconditionid,
 a11.PRIMARYSERVICEID

select distinct pa13.WORLDWIDE WORLDWIDE,
 a122.NAME NAME,
 pa13.SERIAL_NUMBER SERIAL_NUMBER,
 pa13.SHIPMENTDATEID SHIPMENTDATEID,
 a123.shipmentdate shipmentdate,
 pa13.LOVSHIPMENTTYPEID LOVSHIPMENTTYPEID,
 a112.NAME NAME0,
 pa13.LOVSHIPMENTSTATUSID LOVSHIPMENTSTATUSID,
 a115.NAME NAME1,
 pa13.LOVWAYBILLTYPEID LOVWAYBILLTYPEID,
 a124.NAME NAME2,
 pa13.LOVPACKTYPEID LOVPACKTYPEID,
 a116.NAME NAME3,
 a16.PARENTUNITID PARENTSOURCEUNITID,
 SUBSTRING(a126.NAME, 1, (LEN(a126.NAME) - 6)) CustCol_6,
 pa13.SOURCEUNITID SOURCEUNITID,
 a16.NAME NAME5,
 pa13.LOVUNITDISTANCETYPEID LOVUNITDISTANCETYPEID,
 a117.NAME NAME6,
 pa13.contract_f contract_f,
 a111.NAME NAME7,
 pa13.campaign_f campaign_f,
 a114.NAME NAME8,
 pa13.SERVICEID SERVICEID,
 a18.NAME NAME9,
 pa13.ACTUALPLANNEDDELIVERYDATEID ACTUALPLANNEDDELIVERYDATEID,
 a113.actualplanneddeliverydate actualplanneddeliverydate,
 pa13.AUDITCREATEDATEID AUDITCREATEDATEID,
 a118.auditcreatedate auditcreatedate,
 pa13.PLANNEDDELIVERYDATEID PLANNEDDELIVERYDATEID,
 a119.planneddeliverydate planneddeliverydate,
 pa13.PLANNEDARRIVALDATEID PLANNEDARRIVALDATEID,
 a120.plannedarrivaldate plannedarrivaldate,
 pa13.OPERATIONDATEID OPERATIONDATEID,
 a14.OPERATION_DATE OPERATION_DATE,
 pa13.LOVPACKTYPEID0 LOVPACKTYPEID0,
 a110.NAME NAME10,
 a14.DAYOFWEEKID DAYOFWEEKID,
 a15.NAME NAME11,
 a15.WEEKDAY WEEKDAY,
 a15.WEEKDAY WEEKDAY0,
 pa13.BIREYSEL_KURUMSAL BIREYSEL_KURUMSAL,
 pa13.campaignconditionid campaignconditionid,
 a19.campaign_name campaign_name,
 pa13.DELIVERYUNITID DELIVERYUNITID,
 a17.NAME NAME12,
 a16.SENDERHUBUNITID SENDERHUBUNITID,
 a127.NAME NAME13,

108

 pa13.SATELLITEID SATELLITEID,
 a121.NAME NAME14,
 a16.hintcityid hintcityid,
 a125.CITY CITY,
 a17.hintcityid hintcityid0,
 a128.CITY CITY0,
 pa13.WJXBFS1 WJXBFS1,
 pa13.WJXBFS2 WJXBFS2,
 pa13.WJXBFS3 WJXBFS3,
 pa13.WJXBFS4 WJXBFS4
from #ZZMD00 pa13
 join OPERATIONDATE a14
 on (pa13.OPERATIONDATEID = a14.OPERATIONDATEID)
 join DAYOFWEEK a15
 on (a14.DAYOFWEEKID = a15.DAYOFWEEKID)
 join V_SOURCEUNIT a16
 on (pa13.SOURCEUNITID = a16.SOURCEUNITID)
 join dbo.v_firstdeliveryunit a17
 on (pa13.DELIVERYUNITID = a17.DELIVERYUNITID)
 join V_PRIMARYSERVICES a18
 on (pa13.SERVICEID = a18.PRIMARYSERVICEID)
 join V_CAMPAIGNCONDITION a19
 on (pa13.campaignconditionid = a19.campaignconditionid)
 join dbo.LOVMAINPACKTYPE a110
 on (pa13.LOVPACKTYPEID0 = a110.LOVMAINPACKTYPEID)
 join V_CONTRACT_F a111
 on (pa13.contract_f = a111.contract_f)
 join LOVSHIPMENTTYPE a112
 on (pa13.LOVSHIPMENTTYPEID = a112.LOVSHIPMENTTYPEID)
 join V_ACTUALPLANNEDDELIVERYDATE a113
 on (pa13.ACTUALPLANNEDDELIVERYDATEID =
a113.ACTUALPLANNEDDELIVERYDATEID)
 join V_CAMPAIGN_F a114
 on (pa13.campaign_f = a114.campaign_f)
 join LOVSHIPMENTSTATUS a115
 on (pa13.LOVSHIPMENTSTATUSID = a115.LOVSHIPMENTSTATUSID)
 join LOVPACKTYPE a116
 on (pa13.LOVPACKTYPEID = a116.LOVPACKTYPEID)
 join LOVUNITDISTANCETYPE a117
 on (pa13.LOVUNITDISTANCETYPEID = a117.LOVUNITDISTANCETYPEID)
 join V_AUDITCREATEDATE a118
 on (pa13.AUDITCREATEDATEID = a118.AUDITCREATEDATEID)
 join V_PLANNEDDELIVERYDATE a119
 on (pa13.PLANNEDDELIVERYDATEID = a119.PLANNEDDELIVERYDATEID)
 join V_PLANNEDARRIVALDATE a120
 on (pa13.PLANNEDARRIVALDATEID = a120.PLANNEDARRIVALDATEID)
 join dbo.V_SATELLITE a121
 on (pa13.SATELLITEID = a121.SATELLITEID)
 join V_WORLDWIDE a122
 on (pa13.WORLDWIDE = a122.WORLDWIDE)
 join V_SHIPMENTDATE a123
 on (pa13.SHIPMENTDATEID = a123.SHIPMENTDATEID)
 join LOVWAYBILLTYPE a124
 on (pa13.LOVWAYBILLTYPEID = a124.LOVWAYBILLTYPEID)
 join dbo.v_sourceunitcity a125
 on (a16.hintcityid = a125.hintcityid)
 join V_PARENTSOURCEUNIT a126
 on (a16.PARENTUNITID = a126.SOURCEUNITID and

109

 a16.lovorganizationid = a126.lovorganizationid)
 join dbo.V_SENDERHUBUNIT a127
 on (a16.SENDERHUBUNITID = a127.SENDERHUBID)
 join dbo.v_firstdeliveryunitcity a128
 on (a17.hintcityid = a128.hintcityid)

drop table #ZZMD00

110

 CURRICULUM VITAE

Name Surname : Mert Sun

Address : Barbaros Bulvarı, Ressam Hamdi Bey Sok. No:1, Müge Apt.

D:14, Beşiktaş-İSTANBUL

Birth Place and Date: İzmir, 22.10.1972

Foreign Language : English

Education : Bahçeşehir University, 2011

 M.S. Computer Engineering

 İstanbul Teknik University, 1999

 Metalurgy and Material Engineering

 İzmir Anatolian Commercial High School, 1990

Work Experience : Aras Kargo Taşımacılık A.Ş. (2008 -)

 Software Manager Deputy

Aras Kargo Taşımacılık A.Ş. (2002 – 2008)

 Senior Software Engineer

