
 

 

THE REPUBLIC OF TURKEY 

BAHÇEŞEHİR UNIVERSITY 

 

 

 

 

 

 

PERFORMANCE EVALUATIONS OF CLOUD 

COMPUTING PLATFORMS 

 

Master Thesis 

 

 

 

GÜLTEKİN ATAŞ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

                                                             İSTANBUL, 2013 



 

 

THE REPUBLIC OF TURKEY 

BAHÇEŞEHİR UNIVERSITY 

 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES 

COMPUTER ENGINEERING 

 

 

 

PERFORMANCE EVALUATIONS OF CLOUD 

COMPUTING PLATFORMS 
 

 

Master Thesis 

 

 

 

 

GÜLTEKİN ATAŞ 

 

 

 

 
 

 

Supervisor: ASST. PROF. DR. VEHBİ ÇAĞRI GÜNGÖR 

 

 

 

 

 

 

 

İSTANBUL, 2013



 

 

THE REPUBLIC OF TURKEY 

BAHCESEHIR UNIVERSITY 

 

           THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

           COMPUTER ENGINEERING 

 

Name of the thesis: Performance evaluations of cloud computing platforms 

Name/Last Name of the Student: Gültekin ATAŞ 

Date of the Defense of Thesis: June 13, 2013 

 

The thesis has been approved by the Graduate School of Natural and Applied 

Sciences. 

 

        

Assoc. Prof. Dr. Tunç BOZBURA 

                                                                                        Graduate School Director 

               

                                                                           ---------------------------------- 

 

 

I certify that this thesis meets all the requirements as a thesis for the degree of 

Master of Science.   

     

 

 

      Assist. Prof. Dr. Tarkan AYDIN 

                         Program Coordinator 

               

                                                                           ---------------------------------- 

 

This is to certify that we have read this thesis and we find it fully adequate in 

scope, quality and content, as a thesis for the degree of Master of Science. 

 

                

 

Examining Comittee Members        Signature_______ 

 

Thesis Supervisor      

Assist. Prof. Dr. Vehbi Çağrı GÜNGÖR  ---------------------------------- 

    

Member       

Assist. Prof. Dr. Mehmet Alper TUNGA  ---------------------------------- 

 

Member       

Assist. Prof. Dr. Tevfik AYTEKİN    ----------------------------------  



 

iii 

 

ABSTRACT 

 

 

PERFORMANCE EVALUATIONS OF CLOUD COMPUTING PLATFORMS 

 

 

Gültekin Ataş 

 

Computer Engineering 

 

Thesis Supervisor: Asst. Prof. Dr. Vehbi Çağrı Güngör 

 

 

June 2013, 75 pages 

 

 

There are many different types of cloud computing offers in the information 

technologies market. This study deals with the performance evaluations of three public 

“platform as a service” solutions offered by different companies. Cloud Foundry, 

Heroku, and OpenShift are the selected platforms for comparison. The market 

researches show that the cloud computing services will be one of the most demanded 

services that companies will look for in near future. Thus, companies will want to know 

which solution is good at which function. Similar to the other solutions, there is no 

silver bullet in cloud computing. Hence, the comparison must be based on the common 

things and those things should be the most used or needed resources. Therefore, 

computing power, database operations, and the main memory bandwidth are tested and 

compared in this study. 

 

The test results show that each platform performs differently in each of the area tested. 

A provider may be the best in one of the functions or sub functions of the performance 

criteria; however, it may be worse or the worst in another. This thesis proposes the most 

critical functions and sub functions for a PaaS solution. It also proposes a suitable set of 

benchmarking algorithms and suggests the best provider based on the test results by 

using two different decision making methods, and by taking the needs of the customer 

into account. Since the evaluation is based on the performance, the fees are not 

compared and not considered as a criterion. Similarly, other factors, like user 

friendliness, supported add-ons and services are nice to have; nevertheless, they are not 

the basic and common drivers of company needs in general. 

 

The performance results of the three platforms are compared to each other by using 

Analytic Hierarchy Process (AHP) and Logic Scoring of Preference (LSP). Four 

different scenarios are presented and the evaluation results and rankings of AHP and 

LSP are provided for each. 

Keywords:  Cloud Computing, Platform as a Service, Performance Evaluation, 

Analytic Hierarchy Process, Logic Scoring of Preference 

  



 

iv 

 

ÖZET 

 

 

BULUT BİLİŞİM PLATFORMLARININ PERFORMANS 

DEĞERLENDİRMESİ 

 

 

Gültekin Ataş 

 

Bilgisayar Mühendisliği 

 

Tez Danışmanı: Yrd. Doç. Dr. Vehbi Çağrı Güngör 

 

 

Haziran 2013,  75 sayfa 

 

 

Bilgi teknolojileri piyasasında çok çeşitli bulut bilişim çözümleri sunulmaktadır. Bu 

çalışma, üç farklı firmanın sunduğu genel kullanıma açık üç farklı “Hizmet olarak 

Platform” çözümünün performans değerlendirmesi üzerinedir. Bu performans 

değerlendirmesi için seçilen platformlar, Cloud Foundry, Heroku ve OpenShift 

platformlarıdır. Piyasa araştırmaları göstermektedir ki, bulut bilişim hizmetleri çok 

yakın bir gelecekte, firmaların en çok talep edeceği bilişim hizmetlerinden birisi 

olacaktır. Bu sebeple bu hizmeti almak isteyen müşteriler, hangi çözümün hangi konuda 

daha iyi olduğunu bilmek isteyeceklerdir. Diğer çözümlerde olduğu gibi, bulut 

bilişimde de her konuda en iyi olan bir çözüm bulunmamaktadır. Bu sebeple 

karşılaştırma, bazı ortak işlevler üzerinde yapılmalı ve bu ortak işlevler de en çok 

ihtiyaç duyulan ya da kullanılan işlevler olmalıdır. Bundan dolayı bu çalışmada, işlem 

gücü, veri tabanı işlemleri ve ana hafıza bant genişliği işlevleri test edilmiş ve 

birbirleriyle kıyaslanmıştır. 

 

Test sonuçları göstermiştir ki her platform, test edilen her işlevde aynı performansı 

gösterememektedir. Bir platform, ana işlevlerden veya alt işlevlerden birinde en iyi 

olabilirken başka bir işlevde en iyi olamamakta hatta en kötü performansı 

gösterebilmektedir. Bu tez çalışması, “Hizmet olarak Platform” çözümleri çerçevesinde 

belirli işlevleri ve bunların alt işlevlerini en kritik özellikler olarak sunmaktadır. Ek 

olarak bu özelliklerin ölçülebilmesi için uygun kıyaslama algoritmalarından oluşan bir 

set ile birlikte, farklı ihtiyaçları da göz önünde tutabilen iki farklı karar verme metodu 

kullanmak suretiyle en iyi platformu önermektedir. Bu çalışmadaki temel değerlendirme 

performans odaklı olduğu için firmaların hizmet ücretleri değerlendirmeye dahil 

edilmemiştir. Benzer şekilde, kullanıcı dostu olup olmadığı, sahip olduğu eklenti veya 

desteklediği servisler de, genel anlamda bu servislerden faydalanacak firmaların temel 

ve ortak ihtiyaçları olmasından ziyade, “olsa iyi olur” özellikler olarak görülmüş ve 

değerlendirmeye dahil edilmemiştir. 

 

Üç servis için de performans sonuçları, Analitik Hiyerarşi Süreci (AHP) ve Tercihlerin 

Mantıksal Puanlaması (LSP) metotları kullanılarak karşılaştırılmıştır. Dört farklı 



 

v 

 

senaryo önerilmiş ve her biri için AHP ve LSP ile elde edilen sonuç ve sıralamalar 

sunulmuştur. 

 

Anahtar Kelimeler: Bulut Bilişim, Hizmet Olarak Platform, Performans 

Değerlendirme, Analitik Hiyerarşi Süreci, Tercihlerin Mantıksal Puanlaması.  



 

vi 

 

TABLE OF CONTENTS 

 

 

LIST OF TABLES ................................................................................................... viii 

LIST OF FIGURES ................................................................................................... ix 

LIST OF ABBREVIATIONS ..................................................................................... x 

LIST OF SYMBOLS ................................................................................................ xii 

1. INTRODUCTION ............................................................................................... 1 

1.1 TYPES OF CLOUD COMPUTING ............................................................ 2 

1.2 PAAS ............................................................................................................. 3 

1.3 SELECTED PAAS PLATFORMS .............................................................. 4 

1.3.1 Heroku ................................................................................................... 5 

1.3.2 OpenShift ............................................................................................... 6 

1.3.3 Cloud Foundry ....................................................................................... 7 

1.4 MOTIVATION AND GOALS ..................................................................... 7 

1.5 CONSTRAINTS ......................................................................................... 11 

1.6 THESIS ORGANIZATION ....................................................................... 12 

2. LITERATURE REVIEW .................................................................................. 14 

2.1 BACKGROUND ......................................................................................... 14 

2.2 DEFINITION AND CHARACTERISTICS OF CLOUD COMPUTING 17 

2.3 RELATED WORK ..................................................................................... 19 

3. DATA AND METHODOLOGY ....................................................................... 25 

3.1 DATA COLLECTION ............................................................................... 25 

3.2 THE PROPOSED FRAMEWORK FOR FUNCTIONS ........................... 25 

3.3 BENCHMARKING .................................................................................... 27 

3.4 EVALUATION METHODOLOGIES ....................................................... 29 

3.4.1 Analytic Hierarchy Process ................................................................. 29 

3.4.2 Logic Scoring of Preferences ............................................................... 35 

3.5 TEST DATA ............................................................................................... 40 

3.5.1 Whetstone Computing Power Test Results ........................................ 40 

3.5.2 Database Operations Test Results ...................................................... 44 

3.5.3 STREAM Memory Bandwidth Test Results ...................................... 50 

4. RESULTS .......................................................................................................... 53 



 

vii 

 

4.1 EVALUATION OF THE RESULTS WITH AHP .................................... 53 

4.2 EVALUATION OF THE RESULTS WITH LSP ..................................... 57 

5. DISCUSSION AND CONCLUSION ................................................................ 62 

5.1 DISCUSSION ............................................................................................. 62 

5.2 CONCLUSION ........................................................................................... 66 

REFERENCES ......................................................................................................... 69 

 

  



 

viii 

 

LIST OF TABLES 

 

 

Table 3.1: Average system bandwidth in MB/sec…………………………………….. 32 

Table 3.2: Scales for elementary preference scores………………………………….... 36 

Table 3.3 Logical functions and parameters for aggregation functions……………….. 39 

Table 3.4: Whetstone test results……………………………………………………… 41 

Table 3.5: Database operations test results……………………………………………. 45 

Table 3.6: STREAM test results………………………………………………………. 51 

Table 4.1: The weights and RSRVs for general enterprise application scenario…….... 54 

Table 4.2: The weights and RSRVs for scientific/graphical applications scenario….... 55 

Table 4.3: The weights and RSRVs for database intensive application scenario…....... 56 

Table 4.4: The weights and RSRVs for equally weighted functions scenario……….... 57 

Table 4.5: LSP results for general enterprise application scenario……………………. 58 

Table 4.6: LSP results for scientific or graphical processing application scenario…… 59 

Table 4.7: LSP results for database intensive application scenario…………………… 60 

Table 4.8: LSP results for equally weighted functions scenario………………………. 61 

  



 

ix 

 

LIST OF FIGURES 

 

 

Figure 2.1: The Internet’s confederation approach……………………………………. 15 

Figure 3.1: AHP model of the PaaS provider decision making problem……………… 30 

Figure 3.2: System’s LSP aggregation scheme………………………..………………. 37 

Figure 3.3: Whetstone results for float point operations and MWIPS………………… 42 

Figure 3.4: Whetstone time results for float point operations and MWIPS…………… 42 

Figure 3.5: Whetstone MOPS results for other operations……………………………. 43 

Figure 3.6: Whetstone time results for other results…………………………………... 43 

Figure 3.7: Average connection creation times for single record query………………. 46 

Figure 3.8: Average statement creation times for single record query………………... 46 

Figure 3.9: Average operation execution times for single record query………………. 47 

Figure 3.10: Average total operation time for single record query……………………. 47 

Figure 3.11: Average connection creation times for 100 records at once…………….. 48 

Figure 3.12: Average statement creation times for 100 records at once query………... 48 

Figure 3.13: Average operation execution times for 100 records at once……..……… 49 

Figure 3.14: Average total operation time for 100 records at once query…………….. 49 

Figure 3.15: STREAM bandwidth test results for 128 MB…………………………… 51 

Figure 3.16: STREAM bandwidth test results for 1 MB……………………………... 52 

Figure 3.17: STREAM bandwidth test results for 100 MB…………………………… 52 

 

  



 

x 

 

LIST OF ABBREVIATIONS 
 
 
AHP :  Analytic Hierarchy Process 

CPU :  Central Processing Unit 

CSMIC :  Cloud Services Measurement Initiative Consortium 

DB :  Database 

EC2 :  Elastic Compute Cloud 

ECU :  Elastic Compute Cloud Computing Unit 

GCD :  Generalized Conjunction / Disjunction 

GHz :  Gigahertz 

HTTP  :  Hypertext Transfer Protocol 

IaaS :  Infrastructure as a Service 

IT :  Information Technologies 

I/O :  Input output 

JSP :  Java Server Pages 

KB :  Kilo Bytes 

KPI  :  Key Performance Indicators 

LSP :  Logic Scoring of Preference 

MB :  Mega Bytes 

MCDM :  Multiple Criteria Decision Making 

MFLOPS :  Millions of Floating Point Instructions per Second 

MOPS :  Millions of Operations per Second 

ms :  millisecond 

MWIPS :  Millions of Whetstone Instructions per Second 

PaaS :  Platform as a Service 

QC :  Quasi Conjunction 



 

xi 

 

QD :  Quasi Disconjunction 

RSRM :  Relative Service Ranking Matrix  

RSRV :  Relative Service Ranking Vector 

SaaS :  Software as a Service 

SLA :  Service Level Agreement 

TPC-W :  Transaction Processing Performance Council Web Benchmark 

VM :  Virtual Machine 

XaaS :  Anything as a Service 

  



 

xii 

 

LIST OF SYMBOLS 
 
 
Disjunction degree :  d 

Elementary criterion function :  Gi 

Elementary preference :  Ei 

Global preference :  E 

Input preferences of the aggregation block :  ei 

Microsecond :  µs 

Output preference :  e0 

Performance variable :  Xi  

System's total aggregation logic function :  L 

Weighted power :  r 

Weights :  Wi 

 



 

 

1. INTRODUCTION 

 

 

Cloud computing has been one of the most popular concept of the last decade in 

information technologies. Although the original concept goes back to 1960s, widely 

used real world applications and commercial usage has begun in last decade. 

 

Cloud computing services are offered in various models and service categories, 

although the general idea is to provide the infrastructure and/or the services to the 

customers over the internet. Another important aspect is that the customer must be able 

to manage it through an online interface without a need of a technical operator on the 

provider company side. Therefore, the customers can hire necessary resources from the 

providers and pay fees for the services they used based on the contract type selected. It 

can be thought as the computing services as a utility. As in the public electricity utility 

case, the cost of having and maintaining an electric generator to supply the home 

devices is very high and not feasible or viable for most of the public consumers in 

economic and operational sense. Instead, the customer makes an agreement with the 

electricity provider based on the power and the usage. 

 

As a specific type of cloud computing, the Platform as a Service (PaaS) is offered as the 

software and the hardware infrastructure by the providers. As it is the case in the 

Infrastructure as a Service (IaaS), the virtual servers and other infrastructure 

components are also provided in PaaS, even though they cannot be controlled by the 

customer. Additionally, the operating systems, application servers, development 

frameworks, necessary libraries and the deployment infrastructure are also offered to 

the consumers by the PaaS service providers. The PaaS concept is to give the all 

necessary hardware and software environment necessary to develop and deploy the 

software for the consumers. 

 

Since the cloud computing is thought as the future’s information technologies (IT) 

solution, companies need tools and methods on how to choose the best and the right 

solution for themselves. The aim of this thesis is to propose functions and sub functions 



 

2 

 

for general computing needs of consumers in PaaS and then propose the best provider 

for the consumers according to the needs specified by them using adjustable weights. 

For the comparison and ranking of the providers, Analytic Hierarchy Process (AHP) 

and Logic Scoring of Preference (LSP) methods are used. To show the ranking and 

score changes according to the needs, 4 different scenarios are provided. AHP and LSP 

are applied to all four scenarios for the mentioned three providers. 

 

1.1 TYPES OF CLOUD COMPUTING 

 

There is a wide range of cloud computing services. Therefore, several categorizations 

have been done in the IT sector. The most used and referred classifications are based on 

the deployment model and the service model. The categorization based on the 

deployment model is as follows: 

i Public Cloud: The cloud is open for general public use. Management of the 

cloud is done by the provider company. 

ii Private Cloud: The cloud is private in terms of its use by single organization 

with its customers. It may be owned by the consumer or by the provider 

company. Management is generally done by the company which consumes the 

cloud services. 

iii Community Cloud: The cloud is open for specific consumers of organizations 

like government, universities, and developers. It stands between public and 

private cloud in terms of ownership and beneficiary. Management can be 

distributed among the organizations. 

iv Hybrid Cloud: It is a combination of two or more cloud deployment types 

described above. Management of the cloud is divided between the provider 

company (public side) and the customer company (private side). 

Another categorization is done based on the offered service type. There are many of 

types in this category. Hence, sometimes this categorization is called anything as a 

service (XaaS) in general. The offered services in this categorization correspond to the 

main elements of a general IT system. A typical IT system consists of physical 

infrastructure, operating systems or server systems working on the infrastructure, and 



 

3 

 

the business applications working on top of them. Therefore, each of these layers 

corresponds to the following types of cloud computing below: 

i Infrastructure as a service (IaaS): Virtual resources which correspond to 

hardware basics are given to the consumers. Virtual machines, storage facilities, 

firewall, network resources and some basic network software like protocols and 

others. 

ii Platform as a service (PaaS): The infrastructure in IaaS is in place already. The 

consumer gets running operating system, application servers, deployment 

systems, source code versioning systems, as well as database storage, 

programming frameworks and libraries. 

iii Software as a service (SaaS): The physical infrastructure, running operating 

systems, necessary databases, and frameworks are in place already. Consumers 

have also applications already built and running on this structure. They benefit 

the applications provided to users without programming and maintaining them. 

 

1.2  PAAS 

 

Platform as a service (PaaS) is a cloud service type which provides users the computing 

platform, necessary frameworks, libraries and servers. Therefore, the consumers do not 

need to spend time on any job related to install, manage and configure the application 

and/or database servers, deployment processes, source code control system, storage 

system and underlying network resources. Providers handle all these administrative and 

operational burdens. Some providers also offer development, debugging, and testing 

infrastructure on the cloud platform additionally. 

 

Consumers have control over the configuration and resources of the application 

although they have no control over the infrastructure as opposed to the IaaS. Hence, the 

infrastructure is by default given like in IaaS in order to run everything needed over 

that; however, consumers have no control over the virtual machine resources, network 

resources, configuration of infrastructure, servers, operating systems running on them. 



 

4 

 

They can increase the number of worker processes or number of instances of their 

application and add or remove additional services for their applications. 

 

The security of resources is the responsibility of the providers; nevertheless, consumers 

should take precautions in order to ensure the programming security. Therefore, 

consumers must follow the security design rules and test it in development life cycle as 

they should do in regular development projects. 

 

1.3  SELECTED PAAS PLATFORMS 

 

There are a lot of PaaS options in cloud computing sector. To name some; Amazon 

Elastic Compute Cloud (Amazon EC2),  OpenShift by RedHat, Heroku, Windows 

Azure, Cloud Foundry, Google App Engine, Force.com, and Mendix. Amazon and 

Azure are the most studied platforms among these. 

 

The main service of PaaS solutions is providing the frameworks and libraries to 

developers, to develop and deploy their programs as stated earlier. The database service 

is an essential part of almost all programs. Therefore, every PaaS solution either 

includes their database services or uses a third party database service for their 

customers’ application. Most of the PaaS providers give at least MySQL or Postgre 

database services. Besides, some of them provide database backup utilities and more 

add-ons to ease the data management. 

 

The main reason for choosing Heroku, OpenShift and Cloud Foundry in this thesis is 

that they are the PaaS solutions offered by well-known world-wide companies in IT 

sector. Since they are big players of the IT sector and still investing to the cloud 

computing, they will probably be among the most popular platforms in future. 

 

 

 



 

5 

 

1.3.1 Heroku 

 

Heroku has been founded in 2007. The founders were Orion Henry, Adam Wiggins, and 

James Lindenbaum.
1
 Their goal was to create a PaaS which is easy to use and deploy 

software. They build it on a multi-tenant architecture. Therefore, they would not 

struggle with the administration of virtual machines and the administration of the 

platform stacks, and their installations would be easier. On December 2010, it is 

acquired by Salesfoce.com. 

 

Applications are hosted under their root domains like Heroku.com or herokuapp.com 

like the other providers. They are run inside of a dyno which is a name given for the 

basic container unit in Heroku platform. Each dyno is isolated from each other. It has 

512 MB memory resource. Hence, to use more memory or to process more requests or 

to provide redundancy, the number of dynos can be increased. They are hosted in an 

execution environment which is named as dyno manifold. It is distributed, scalable, and 

fault tolerant. Therefore, it is the duty of this environment to restart the dynos when a 

new version of the application is deployed to the cloud, or when configuration changes 

or when the application crashes. Also, when hardware issues occur, it moves the dynos 

to other physical servers. The most popular languages or frameworks those supported 

by Heroku are Ruby, Python, Java, Spring, Play, Django, Rails, Scala, Clojure, and 

Node.js. It is mainly based on Ruby and it not an open-source as the other two 

platforms. 

 

Git
2
 is used for revision control and source code management which is initially 

designed and developed by Linus Torvalds. Plug-ins like eGit can be added to Eclipse 

to automate all deployment processes. If eGit is used with Eclipse IDE, after making the 

changes to the application, committing the files for change and then pushing them to the 

                                                             
1  Salesforce.com signs definitive agreement to acquire Heroku. 2010. 

http://news.heroku.com/news_releases/salesforcecom-signs-definitive-agreement-to-acquire-heroku 

[accessed 13 January 2013] 

 
2  Getting Started - A short history of Git. 2013. http://git-scm.com/book/en/Getting-Started-A-Short-

History-of-Git [accessed 13 January 2013]. 

 

http://news.heroku.com/news_releases/salesforcecom-signs-definitive-agreement-to-acquire-heroku
http://git-scm.com/book/en/Getting-Started-A-Short-History-of-Git
http://git-scm.com/book/en/Getting-Started-A-Short-History-of-Git


 

6 

 

upstream is enough to release it to the cloud. The application will be deployed and 

restarted automatically. 

 

Database services are offered as add-ons in Heroku. Heroku Postgres was selected as 

the database-as-a-service add-on for the tests. Several visual software clients can be 

used to connect database. PgAdmin III client was used to connect and manage the test 

database on Heroku in this thesis work. There are many other database services they 

offer, like Cloudant Data Layer as a Service, Redis Cloud Beta, MongoHQ, ClearDB 

MySQL, Amazon RDS, etc. There are many types of add-ons offered; for example, 

SendGrid e-mailing, Cloudinary image management, openredis hosting add-ons and so 

on. 

 

1.3.2 OpenShift 

 

OpenShift is the PaaS solution owned by RedHat. They also offer OpenShift Enterprise 

which can be installed on company’s premises as private, public or hybrid cloud. 

OpenShift platform is an open-sourced platform. OpenShift is first released as a free 

service on May 2011. They are the first PaaS which supports Java 6 EE.
3
 

 

Git is used for revision control and source code management like in Heroku. The most 

known languages or frameworks supported by OpenShift are Java, PHP, Ruby, Node.js, 

Python, and Perl. 

 

The services and application frameworks are offered as cartridges. Consumers can add 

or remove cartridges easily with small configuration settings. The basic unit of an 

application in runtime is named as gear. A gear is the name for the resource container 

for cartridges and application’s resources like Central Processing Unit (CPU) power, 

memory and like. 

 

                                                             
3 Issac Roth, 2011. Announcing OpenShift: The Platform-as-a-Service for developers who love open 
source and CDI.  http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-solution-

called-cloud-foundry.html [accessed 13 January 2013] 

 

http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-solution-called-cloud-foundry.html
http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-solution-called-cloud-foundry.html


 

7 

 

The database services offered by OpenShift are MongoDB NoSQL, MySQL, and 

PostgreSQL. Management of the database can be handled via the web interfaces (after 

adding cartridges like RockMongo or phpMyAdmin to the application) or via the client 

software after enabling tunneling which requires some additional complicated 

installation and configuration. 

 

1.3.3 Cloud Foundry 

 

Cloud Foundry is the PaaS solution of VMware, Inc. Cloud Foundry is also an open-

source cloud platform like OpenShift. It is still offered as beta. Micro Cloud Foundry is 

another version of their PaaS software which can be run on desktop computers or 

notebooks and it is the first PaaS in this sense. Cloud Foundry’s announcement to 

public is done on April 2011.
4
  

 

The languages and frameworks supported by Cloud Foundry are Java, Spring for Java, 

Grails, Node.js, Ruby for Rails and Sinatra, Python, PHP, Scala. The database systems 

they offer are MySQL, MongoDB, Redis, vFabric PostgreSQL. Besides, they offer 

RabbitMQ as messaging service for applications. There is no support for managing 

database via database management client software yet. Users must use console 

commands to manage and view database contents or use coding in their applications. 

 

1.4  MOTIVATION AND GOALS 

 

There are many companies offering PaaS service today and the number goes up every 

year due to the demand and trends shown in market researches. According to an article 

of Olga Kharif (2012) on Bloomberg.com, Market Research Media Ltd states that the 

                                                             
4  Surksum, K. v., 2011. VMware announces its PaaS solution called Cloud Foundry. 
http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-solution-called-cloud-

foundry.html. [accessed 13 January 2013]. 

 



 

8 

 

cloud computing market is expected to grow 30 percent every year and in 2020, it will 

have a share of $270 billion.
5
 

 

Louis Columbus (2012) from Forbes gives numbers of Gartner report. He says that 

PaaS market was $900M in 2011 and estimated to reach $2.9B in 2016 which means an 

average of $360M growth each year.
6
 

 

Vivek Kundra (2010, pp. 6-7), the U.S. Chief Information Officer, declares the official 

“Cloud First” policy. He says that since the cloud is economical, flexible and fast, they 

decided to take the advantage of cloud. He tells about the case of Car Allowance and 

Rebate System of Federal Government. 250,000 transactions were expected although 

the demand went much beyond the estimations and hence they lived several system 

outages. Therefore, he states that if they implement a cloud solution, they will easily 

respond to such unexpected fluctuations. Also he says that the flexibility of cloud will 

give them the ability of adding or removing the hardware and software without much 

effort. Then, he declares their plan of moving to the cloud. They will require their chief 

information officers to determine three services in their agencies to migrate to the cloud 

and prepare their project plan. Their schedule for migrating to cloud should be 18 

months at most. 

 

The forecasts and trends are different in numbers; however, it is clear that high rates of 

growth and demand are expected in near future. Hence, as it is the case for other types 

of cloud services, the PaaS solution will also become an indispensable option for 

business of every size. They will have to decide to select the best and the most suitable 

PaaS for their needs. Nevertheless, it is also very clear for the researchers of the area 

that there is no PaaS company that is the best at everything. This is because the different 

needs of the companies those looking for the PaaS services. Therefore, the problem or 

                                                             
5  Kharif, O., 2012. Kleiner Perkins considering new fund for cloud-computing services startups. 

Bloomberg, http://www.bloomberg.com/news/2012-02-10/kleiner-perkins-considering-new-fund-for-

cloud-computing-services-startups.html 

 
6  Columbus, L., 2012. Cloud computing and enterprise software forecast update. Forbes.com, 
http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-computing-and-enterprise-software-

forecast-update-2012/ 

 

http://www.bloomberg.com/news/2012-02-10/kleiner-perkins-considering-new-fund-for-cloud-computing-services-startups.html
http://www.bloomberg.com/news/2012-02-10/kleiner-perkins-considering-new-fund-for-cloud-computing-services-startups.html
http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-computing-and-enterprise-software-forecast-update-2012/
http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-computing-and-enterprise-software-forecast-update-2012/


 

9 

 

the need is to have a system that helps to evaluate the provided solutions and helps to 

decide between them. Since the needs are different for each customer and even for each 

project, the system must break down the functionalities and the performance items and 

then measure them separately. Finally it must suggest the best solution according to the 

priorities set by the customer. 

 

The studies about cloud computing are mostly concentrated on IaaS and SaaS. PaaS is 

not researched in detail as other two cloud types. Key performance items for cloud 

computing are studied in several works. CPU power and memory bandwidth are 

important key performance items for PaaS and IaaS; however, they are not studied in 

decomposed functions or areas. The approach that is observed in the researches is that 

the CPU power is tested roughly with benchmarks based on floating point calculations. 

In some of them, response times are tested by using some scientific applications. These 

applications may be good for IaaS; although, they are not suitable for PaaS service. It is 

not easy to use and configure them and they are not good candidates for widely 

adoption in cloud performance researches. Besides, database services are not included 

in PaaS studies. They are studied separately in the cloud field, mostly as Database as a 

Service. Since they are not a part of IaaS they are not studied in those studies also. 

Therefore, it is obvious that an appropriate and comprehensive set of performance items 

for PaaS is needed. Also suitable benchmarks to measure these performance items must 

be provided. Several researches have used evaluation methods to compare the 

performance of cloud offers. However, more studies must employ statistical comparison 

and ranking methods to get better understanding for reasonable comparison of 

alternatives. 

 

To address these needs, a framework of necessary PaaS features is proposed. It consists 

of 19 different functions which are decompositions of 3 main functions. In order to 

provide a common base for performance evaluation of PaaS solutions, the basic and 

inevitable functions of applications are selected. These are the computing power, 

database operations and the memory bandwidth, which are the 3 main functions 

mentioned above. Every main function is decomposed into sub functions for consumers 

to project their needs more precisely. For example, computing power is subdivided to 8 



 

10 

 

sub performance items, like floating-point operations, conditional structures, integer 

arithmetic, and mathematical functions. This will help companies to adjust the weights 

according to these sub functions and reflect their application’s structure more 

accurately. Therefore, the model will be more close to the real world application needs. 

This decomposition has ended up in 19 sub functions. This framework of functions 

constitutes a good basis for testing and comparison of the PaaS solutions. 

 

Cloud Foundry, Heroku, and OpenShift are the selected commercial PaaS platforms for 

this study. They have been tested in line with the specified functions. Since there are 

many performance items in the proposed framework, a statistical method is needed to 

evaluate the results correctly. The platforms have been compared by two different 

evaluation methods to select the best. These methods are AHP and LSP. Two different 

methods are used to reinforce the decision making. The evaluation of each method is 

performed under four different scenarios. They represent different types of application 

which have different computing resource needs. They also help to develop the 

understanding of the performance items’ effect on the results and ranking scores. 

Consequently, the main contributions of this thesis can be summarized as follows: 

 

i A framework of necessary PaaS features is proposed which consists of 3 

main functions and 19 sub functions. It contains the most essential features 

of PaaS solutions and therefore, it provides a strong basis for performance 

evaluations of PaaS platforms. 

ii A suitable benchmark set is provided in parallel to the feature framework. 

They are necessary to get the performance items’ test results. Whetstone 

algorithm, STREAM algorithm, and a specific set of basic queries are the 

parts of the suggested benchmarking set. 

iii To make the decision making more reliable, two different comparison and 

ranking methods are applied to the results. The test results are combined 

under four different scenarios and then, AHP and LSP methods are applied 

to these test result sets. The scenarios are employed to simulate the different 

resource needs of applications. To the best of knowledge of this thesis’ 



 

11 

 

writer, the LSP technique is first applied to the selection of PaaS platform 

problem in this work. 

iv Stability of the platforms according to the test results are also discussed and 

compared to each other. 

 

1.5  CONSTRAINTS 

 

Most of the other functionalities or the add-ons offered by the PaaS providers change 

and may not be provided by all of them in general. Also the programming language 

support differs in each provider. Hence, Java is selected as the common language which 

is supported not only by these providers but by most of the PaaS providers. 

 

Another constraint is the database service offered. Most of them provide MySQL or 

PostgreSQL service in common; however, the implementations are of course different. 

Therefore, the database service which is the most encouraged by the provider is selected 

for each of them while considering it to be a widely used database solution. For 

example the PostgreSQL implementation of Heroku is named as Heroku Postgres. They 

also offer MySQL service as ClearDB MySQL. Since PostgreSQL is the most 

encouraged database service by Heroku and it is a widely used and supported database 

system, Heroku Postgre is selected for Heroku applications. For OpenShift, the most 

encouraged database solution was MongoDB NoSQL database; however, since it is not 

offered widely by other PaaS providers, the second database solution has been chosen 

which is MySQL 5.1. Following the same principle, the most encouraged database 

service of the Cloud Foundry was MySQL 5.1. Since it is a widely used database, it is 

selected for the applications in Cloud Foundry. 

 

Heroku is tested with the basic free evaluation subscription. Heroku names the 

processing unit as dyno. It is an isolated container having computing resources in its 

own virtualized environment. Basic subscription has one dyno. It has 512 MB memory 

and 1x CPU share. The CPU’s computing power is not declared to the subscribers or 

public. There are some claims that it is approximately one micro Amazon EC2 which is 

at maximum 2 ECUs of Amazon (1 ECU is equivalent to 2007 Xeon processor having 



 

12 

 

1.0 – 1.2 GHz CPU). Here, ECU is the measurement unit defined by Amazon and it is 

short for EC2 (Elastic Compute Cloud) Computing Unit. Nevertheless, Heroku does not 

confirm it. 

 

OpenShift is also tested with the basic free evaluation subscription. OpenShift has 

named its computing unit as gear. Their basic and free subscription is named small gear 

and a small gear has 512 MB memory, 1 GB of disk size, 250 threads per small gear. 

They also do not declare the CPU equivalent processing power. 

 

Cloud Foundry is tested with the basic free developer subscription. Cloud Foundry does 

not give any detail about the computing resources it uses, since it is still in beta and did 

not constitute a resource versus cost plan. 

 

The absence of exact and full detail of the resource given to the consumer is a limitation 

on the comparison researches. Even though they mostly declare the memory resource 

amount, they do not specify CPU power to compare directly with other platform offers. 

Also they do not declare any performance figures or metrics about their database 

service performance. Therefore, they cannot be verified with the performance tests and 

that makes the benchmark algorithms as the only way to compare the performance 

figures. 

 

1.6  THESIS ORGANIZATION 

 

In this thesis, three public PaaS platforms are tested and compared by using two 

different evaluation and ranking methods. A detailed feature framework is proposed and 

benchmarking algorithms for these features are provided. The thesis is organized as 

follows: 

 

In section 2, literature research is presented. A background for the cloud computing 

works, cloud definitions and characteristics are provided here. The studies on 

performance and comparison of cloud computing alternatives are also discussed in this 

section. 



 

13 

 

 

In section 3, information about the benchmarking algorithms and evaluation methods 

are presented. Test data is presented in tabular and chart forms. The feature framework 

is also presented in this section. 

 

In section 4, the evaluation results of the test results are provided. Evaluation methods 

are applied to test results by using four different scenarios those simulate different 

resource needs of different types of applications. 

 

In last section, the discussion about the results is provided. The best platform of the 

three is offered here and other research findings are presented. The thesis work ends 

with the conclusion sub section.  



 

14 

 

2. LITERATURE REVIEW 

 

 

2.1  BACKGROUND 

 

Although the cloud computing has become popular in last decade, the concept is older 

than the expected, going back to early 1960s. In one of his speech held at MIT in 1961, 

John McCarthy had foresaw that if the computer technology of 1960s continues to be 

the mainstream in future, then it is highly probable that it can be offered as a public 

utility just like the public telephone service. He claims that if that happens, then such an 

organization of computing will change the industry significantly (Garfinkel and 

Abelson 1999). 

 

Douglas F. Parkhill (1966) has given several characteristics of cloud computing, similar 

to the ones provided today. He also was one of the persons who foresaw that the 

computer industry will evolve such that it becomes a public utility servicing in future. 

 

J.C.R. Licklider (1968), who is very famous in computer history, also described a future 

which is very much like the internet and cloud computing as we know today. He had 

admitted that the idea of interconnected computers around the world is not a new idea 

even in 1960s. He had discussed about a multi-access system and the load that the user 

put onto such system for the service he requires. He had given even a brief cost details 

of such a system for an ordinary user and compares it with its alternatives. 

 

There are ongoing discussions about who used the cloud and the cloud computing terms 

first. The general consensus is that the cloud term is first used by the telecommunication 

companies. The cloud symbol has been used in network charts to simplify and 

encapsulate the complex network structures in a single figure for a couple of decades. 

Many say that the cloud term is started to be used at the beginning of 1990’s in 

telecommunication and ATM networks. 

 



 

15 

 

There is a claim that the cloud term is first used publicly in a figure of the research of 

Gillett and Kapor (1996) from Harvard University. They used a cloud figure and named 

it as “‘Cloud’ of intermediate networks” to depict the networks taking place between 

the destination and the target networks. The figure is shown below in Figure 2.1, where 

R means the router or gateway between the end points of the networks. 

 

Figure 2.1: The Internet’s confederation approach 

 

 

Source: Sharon Eisner Gillett and Mitchell Kapor, (1996) The 

Self-governing Internet: Coordination by Design, 

Harvard University 

 

One of the first usages of the term in academia belongs to Ramnath Chellappa (1997). 

He claims that the cloud computing is a new paradigm in computing field. He also 

states that its limits will be determined not by the technical advancements but by the 

economic reasons. 

 

Another well-known and recent usage of the cloud computing term publicly came from 

an important figure of the IT sector, Eric Schmidt (2006).
7
 The CEO of the Google had 

used the term with an emphasis on its business side. He also emphasized the close 

relation of advertising and the cloud computing. He said that the relationship forms a 

new business model in which consumer can choose the platform, client and database 

                                                             
7  Schmidt, E., Conversation with Eric Schmidt hosted by Danny Sullivan, Search Engine Strategies 

Conference [online], August 9, 2006, http://www.google.com/press/podium/ses2006.html [accessed 20 

January 2013] 

http://www.google.com/press/podium/ses2006.html


 

16 

 

solutions. He also had stated that the advertising is pushing advancements in cloud 

computing. 

 

“Utility computing” and “hosted computing” terms also have been used and are still 

being used for cloud computing. They emphasize the business model of the computing 

services; however, they highly imply and also rely on the cloud infrastructure. Armbrust 

et al. (2009, p. 1) distinguish the Public Cloud, which is the cloud computing open for 

public to consume in pay-as-you-go economic model, and the Utility Computing, which 

is the name for the consumed service itself. They used the cloud computing term for any 

services which may be an application, system software or hardware that provided over 

the Internet. 

 

Cloud computing has evolved from the advancements made in grid computing or 

distributed computing. They are not substitutes for cloud computing term today; 

however, they were used in a similar meaning in 1990s. Foster et al. (2008) state that 

the grid computing was the substitute term for the cloud computing in 1990s. It meant 

to describe the computing service on demand. They also state that even both grid and 

cloud computing terms are used to express different concepts today; both of them try to 

switch the paradigm from proprietary computing systems into a system hosted, 

maintained, and provisioned by third parties to the consumer companies. To do that, 

they both try to decrease the cost, improve the flexibility and they must be more reliable 

to meet policies and the standards of the consumers. 

 

Distributed computing is a special type of parallel computing. They are connected 

nodes of computer networks over private or public connections. They are still being 

used in scientific and academic world. They are task-oriented and have minimum 

interaction so that a batch of jobs is submitted and results are obtained and combined to 

form the final output. The computers are located at different sites which are remarkably 

away from each other and loosely coupled. In fact, this is one of the architectures which 

are employed by the cloud computing in the background. 

 



 

17 

 

Therefore, the terms described above have been used interchangeably in time but 

oriented according to different objectives. Wang et al. (2010, pp. 141-142) emphasize 

the differences of cloud computing from other types of computing, like Global 

computing, Grid computing, and Internet Computing. They state that the cloud 

computing term implies a system which is managed through user-centric interfaces, 

lightweight local client software; also it provides on-demand service and offers 

guaranteed QoS. The system is autonomous (automatically configured, coordinated, and 

composed), scalable and flexible as well. 

 

The first example of widely used commercial cloud computing service came from 

Salesforce.com in 1999. They were providing applications over web pages.
8
 Amazon 

Web Service in 2002 followed as the next important example in commercial cloud 

computing history. With the emergence of Amazon Web Service, consumers could 

search and display Amazon.com products in their applications. In 2006, Amazon 

launched S3, their storage service. By using S3 service, consumers can create data 

objects as big as 5 GB. There was no limit on the number of data objects. Its 

commercial goal is to provide customers, a simple, fast and inexpensive storage over 

the web. Google Docs has followed the trend in 2006. It has offered both web-based 

office applications and storage which is an example of Software as a Service (SaaS). 

 

Microsoft released its public cloud service of Windows Azure in 2008, which was 

commercially available on 2012. Azure provides both SaaS and IaaS which means that 

the customer can develop and deploy their applications on the Azure and also they can 

manage their computing infrastructure according to their needs. Then, many companies 

entered the cloud sector offering diverse services in the last decade. 

 

2.2  DEFINITION AND CHARACTERISTICS OF CLOUD COMPUTING 

 

There are many definitions of the cloud computing term. Therefore, for brevity, only a 

few of them will be mentioned here. Mell and Grance (2011, p. 2) define it as a 
                                                             
8  A complete history of cloud computing, 2013. http://www.salesforce.com/uk/socialsuccess/cloud-

computing/the-complete-history-of-cloud-computing.jsp [accessed 13 January 2013] 

 

http://www.salesforce.com/uk/socialsuccess/cloud-computing/the-complete-history-of-cloud-computing.jsp
http://www.salesforce.com/uk/socialsuccess/cloud-computing/the-complete-history-of-cloud-computing.jsp


 

18 

 

computing model which allows consumers to get resources with minimum provider 

interaction and minimum administrative effort. As they state, it must be provisioned 

online, configurable, provided on-demand, flexible and scalable enough to meet the new 

requirements when the customer increase or decrease the resources used. Also it must 

be measurable for customers to get reports on the services they pay. These services span 

a wide range, like network, server, storage, application, and other services. 

 

Armbrust et al. (2009, p. 4), explains the cloud computing term as the services that can 

be in the form of applications or the hardware or the systems software offered through 

the internet which are hosted on the datacenters of the providers. 

 

Carr (2008, p. 1) describes the cloud computing as a service model that the consumers 

can run the software, and store their data over the web. He also characterized it such 

that the applications and the storage are hosted in the datacenters of the provider 

companies. 

 

Gong et al. (2010, pp. 276-278) suggested similar common characteristics of cloud 

computing. As they listed, it must be service oriented, loosely coupled, and highly 

tolerable. The business model is also important which gave rise to the cloud sector. 

They stated that it should be TCP/IP based which is the main protocol for internet 

infrastructure. Another important characteristic which they listed is virtualization. 

Virtualization is one of the key enabling technologies of the cloud computing as we 

know it today. 

 

Geva Perry (2008), CMO at GigaSpace Technologies, lists the main characteristics of 

the cloud computing as self-healing (failover), Service Level Agreement (SLA) driven, 

multi-tenancy (running on the same infrastructure with other services without 

endangering the privacy), service-oriented, virtualized (separated from the hardware 

infrastructure), linearly scalable, and data processing.
9
 

 

                                                             
9  Perry, G., 2008. How cloud & utility computing are different. http://gigaom.com/2008/02/28/how-

cloud-utility-computing-are-different/ [accessed 13 January 2013] 

 

http://gigaom.com/2008/02/28/how-cloud-utility-computing-are-different/
http://gigaom.com/2008/02/28/how-cloud-utility-computing-are-different/


 

19 

 

2.3  RELATED WORK 

 

PaaS is relatively a new type of cloud computing service. Therefore, there is not much 

research on the evaluations of PaaS offers. Any company will expect a good computing 

power and memory performance from the PaaS service they pay. These expectations are 

valid also in IaaS services. Hence, researches about the IaaS also will be discussed in 

this section. Some of the researches focus only on the properties of the selected cloud 

product. They did not perform any test or present performance comparison. Some other 

studies have performed tests; however, they have not presented a detailed framework 

for evaluation. The most of them have not applied a statistical method for evaluation. 

 

Cloud Services Measurement Initiative Consortium (CSMIC) determined the Service 

Measurement Index (SMI), which is a series of Key Performance Indicators (KPI) 

related to business.
10

 These are general categories like agility, accountability, assurance, 

financial, security, performance, privacy, and usability. As they explained they are 

business-relevant indicators; therefore, the performance metrics are accuracy, 

functionality, suitability, interoperability, and service response time. All of them are 

related to SLA, functions requested and functions serviced to customers. Thus, there is 

no metrics like the megabytes per second (MB/sec) for memory bandwidth or the 

Millions of Floating Point Instructions per Second (MFLOPS) for processing power. 

However, these metrics are being used for a long time in performance evaluations of a 

wide variety of computers from personal computers to the supercomputer grids. Hence, 

there are more fine grained metrics for each of these sub topics not officially listed in 

that work. 

 

There are some works which compare cloud services according to their feature lists. In 

the work of Peng et al. (2009, pp. 23-27), 4 cloud platforms (AbiCloud, Eucalyptus, 

Nimbus, and OpenNebula) have been listed and their main properties are discussed. 

They have compared these platforms according to their properties, like deployment 

type, scalability, virtualization support, operating system support, compatibility, and so 

                                                             
10 Cloud Services Measurement Initiative Consortium, Service measurement index, version 1.0, 2011, 

http://www.cloudcommons.com/documents/10508/186d5f13-f40e-47ad-b9a6-4f246cf7e34f. 

 

http://www.cloudcommons.com/documents/10508/186d5f13-f40e-47ad-b9a6-4f246cf7e34f


 

20 

 

on in a table. Sempolinski and Thain (2010) also studied Eucalyptus, OpenNebula, and 

Nimbus cloud platforms. They have also followed a similar structure; first they describe 

the general structure of the cloud architecture and then listed the properties of the 

mentioned platforms, like disk image options, storage, virtualization technology, 

customizability, security, network structure, etc. They discussed the main blocks of the 

platforms and their components. The comparison is done basically on the property list 

and the general structure. No performance test or performance comparison is presented. 

 

Voras et al. (2011) stated that they have devised approximately 100 criteria. They listed 

the main categories as storage, virtualization, network, management, security and 

vendor support.  They pointed out that the criteria create a baseline comparison for IaaS 

solutions. They just listed these sub criteria in their work. They also briefly mentioned 

about several cloud platform, like Abiquo, Eucalyptus, mOSAIC, Nimbus, 

OpenNebula, etc. They said that the evaluation project is ongoing; nevertheless, they 

did not give any detail about how they proceed or what kind of methodology they are 

applying. They explained that assigning weights to the areas of special interest will 

enable high-level decision making. There is no clue about this also; however, it sounds 

like the AHP methodology which is also employed in this thesis work. The work did not 

mention about any test or performance evaluation. 

 

Another type of property comparison has been done in the work of Wind (2011). 

Abicloud, Eucalyptus, OpenNebula and Nimbus are selected as the cloud platforms. 

The platforms are compared in a tabular form according to 13 features, like architecture, 

programming language, deployment model, virtualization technology, data or VM 

memory infrastructure, area of application, user interface, operation system license, 

fault tolerance, interoperability, security, VM management client and compatibility with 

public cloud providers. Recommendations have been given for each platform for 

different business needs based on this table. However, neither the performance is 

detailed in technical functions nor any tests have been performed. 

 

Armbrust et al. (2009, pp. 16-17) have discussed the obstacles and the opportunities of 

the cloud computing in their work. They discuss about the Amazon, Microsoft Azure 



 

21 

 

and Google AppEngine, as each one of them being an example of different service type 

of cloud computing. Since their work is focused on the advantages and disadvantages of 

the cloud computing, they have not performed a comparative performance evaluation. 

They reported STREAM benchmark tests on 75 virtual machines (VM) of Amazon 

EC2. They have measured an average value of 1355 MB per second for memory 

bandwidth. The performance test had been done almost 5 years ago; therefore, the 

numbers are improved today. In this thesis work, it changes between 3,000 to 20,000 

MB/sec for the studied platforms. Besides, they did not report test results or any 

comparison for other providers. They studied the feasibility and the cost of cloud 

solutions in their work. They discussed the regular costs of IT department like power, 

cooling, physical plant cost, and operational costs and compared it to the cost of cloud 

services.  

 

Binnig et al. (2009, pp. 3-4) discussed the Transaction Processing Performance Council 

Web benchmark (TPC-W), which is an online bookstore consists of several web 

interactions. They supported the idea that a cloud benchmark should be web based and 

define interactions like TPC-W benchmark. However, they criticized it about the lack of 

adequate metrics for scalability, pay-per-use, and fault tolerance. The writer of this 

thesis agrees with the idea of web based solutions, since it is very suitable for evaluating 

the performance of different PaaS solutions without installing more complex 

applications like installing applications to back-end servers and using Java beans or 

services. It is the main motivation for using Java codes of Whetstone and Stream 

benchmark that can be triggered by requesting Java Server Pages (JSP) via Hypertext 

Transfer Protocol (HTTP) in this thesis. The real life workload simulation of the TPC-

W benchmark is appreciable; however, it has a very strict architecture which cannot 

measure the CPU, memory and database operations separately and cannot show which 

resource limits the overall performance in detail. Therefore, the applied method in this 

thesis is able to address the different types of performance evaluation needs, since the 

testing of each resource is decoupled from others. Also sub properties (like conditional 

jump performance in CPU performance or memory bandwidth performance in small 

data) of each resource can be evaluated and may be opted for another. This is a very 



 

22 

 

flexible approach which can be used when deciding to choose the platform for different 

types of applications. 

Iosup et al. (2011) have investigated Amazon EC2, GoGrid, ElasticHosts, and Mosso as 

IaaS providers. They have mainly tested the raw infrastructure properties, like resource 

allocation such that virtual machine allocation, booting and releasing time. They have 

submitted bags-of-tasks to simulate high volumes of tasks in Many-Task Scientific 

Computing. They have used LM bench suite to test the floating point operations. They 

also have used some parts of HPCC and STREAM suites to compare the results of 

clusters in evaluation of the performance of CPU and random access to memory. In this 

thesis, computing power has been broken down in several functionalities and test results 

are given separately for each of them. Computing performance has been tested not just 

for floating point operations but also for different programming structures, like if-then-

else loops, procedure calls, assignments, fixed point operations, floating point 

operations, trigonometric functions, exponential and other logarithmic operations. To 

divide computing power abilities into such decomposed functions and evaluating them 

by assigning different values according to the needs, gives highly modular and flexible 

comparison results of different platforms. 

 

Salah et al. (2011, pp. 347-349), studied and compared the performance of Amazon 

EC2, ElasticHosts, and BlueLock as IaaS solutions in their works. They have tested 

CPU, RAM and disk input output (I/O) performance of the three cloud solution. They 

have used Simplex for CPU benchmarking, STREAM for memory benchmarking and 

the FIO for disk I/O benchmarking. They have reported that the best memory result is 

obtained from BlueLock with a score of 7,460 MB per second. In this thesis the best 

performance observed is over 20,000 MB/sec which is over 2 times of that value. 

BlueLock also has the best score for the Simplex CPU performance in their work. 

Amazon EC2 has been reported the best disk I/O performance result. They have 

compared IaaS solutions in three main categories; nevertheless, they have not provided 

a comparison model to decide the best solution overall. Also they have not broken down 

the performance categories into specific areas as this thesis work does. 

 



 

23 

 

Tudoran et al. (2012, pp 4-6), evaluated and compared Microsoft Azure platform as a 

public cloud with Nimbus installed on Grid5000 as a private cloud. They have used A-

Brain as a real-life application for evaluation of computation power performance. It is 

an application for genetic and neuro-imaging. They also reported that they have used 

synthetic benchmarks to evaluate data transfers and network efficiency. Besides, they 

transfer files for downloading and uploading I/O performance. As they state, their work 

considers all basic needs of scientific applications (computation power, storage and data 

transfers). That is primarily where this thesis differs from their work. Their goal was to 

evaluate the cloud platforms according to the needs of scientific applications. However, 

this thesis studies the performance of PaaS applications which may be but not 

necessarily scientific applications. Another difference is that they reported the CPU and 

memory as computation power in a combined form and in terms of time for the 

application execution. In this thesis, computing power and memory performance have 

been distinguished from each other to be able to evaluate platforms in more detail. 

Although they criticize that the Linpack benchmark results do not always reflect the 

performance of application, their CPU and memory tests times are not very explanatory 

and comparable for other works. Also since they have intended to evaluate IaaS 

properties, they did not test database functions. They carried out a detailed test although 

they did not use a method to compare them. 

 

Costa and Cruz (2012) has studied the Azure platform. They compared the performance 

of a web site instance running on Azure with the performance of another instance 

running on a local server and with a third instance running on a commercial web 

hosting company. They have used the web site of a vocational school as the test case or 

scenario. This case reminds the TPC-W benchmark used in the work of Binnig et al 

(2009). However here, it is a more specific and limited application than TPC-W and 

there is no detail about the functionalities and the performance requirements of the web 

site. Therefore, they did not offer a comparable result or methodology for other PaaS 

platforms. 

 

Garg et al. (2013), provides a set of KPIs to compare the cloud services. They used the 

CSMIC’s framework and developed in several aspects. They suggested a user weighted 



 

24 

 

model for qualitative and quantitative features. They also employed the AHP for 

numerical indicators to get relative scoring. Same methodology has been used in other 

works like the work of Tran et al. (2009) about ranking the web services. The 

performance comparison of this thesis also employs AHP and its weight-based 

evaluation. For alternative services, a set of comparison metrics is proposed which are 

cost, agility, performance, accountability, assurance, and security. Nevertheless, 

performance metrics are not studied in decomposed fashion. Response time is the only 

performance metric used for the tests. This work is more concentrated on the other 

functional features rather than the performance. 

 

Yu and Molina (2007) applied a modified version of LSP method for evaluation and 

selection process of web services. They used it to dynamically select the web service 

based on the XML configuration file supplied as the input to their application. They 

have given an online payment service scenario. A fictitious company has the choice of 

selecting one of the 4 different payment services in that scenario. According to the 

device that customer used to connect to the e-commerce site, the credit card type 

entered, and the country of user, their application uses LSP method to match or rank the 

best service and the web site uses that service. Yu and Reiff-Marganiec (2008) also 

studied dynamically selection of web service employing LSP in their software. They 

combined the Ordered Weighted Averaging operators with LSP technique. 

 

Although all these works constitute valuable foundations in cloud computing, a 

comprehensive and detailed performance function set for PaaS alternatives is not 

addressed. Also corresponding set of benchmark is needed for that set. Another missing 

issue is that the database performance is not studied together with CPU and memory. 

Also very few of them applied the statistical methods to compare and evaluate the 

results. 

  



 

25 

 

3. DATA AND METHODOLOGY 

 

 

3.1  DATA COLLECTION 

 

The data have been collected by testing the performance in different days and at 

different times of the day. In each test, all three platforms tested at the same time 

intervals. The only difference in the codes for any of the PaaS functions tested was the 

connection string and the connection driver in establishing database connections. Same 

code is implemented for all three providers; therefore, the writer of this thesis believes 

that an objective measurement of performance is realized. 

 

The 19 sub functions, grouped in 3 main categories, are tested for each of the PaaS 

providers. The first main category is the computing power measured with Whetstone 

algorithm. The second category is the database operation times measured with basic 

read, update, insert, and delete operations for single and multiple records. Object 

relational mapping tools are not used to eliminate additional performance burden. The 

third one is the memory bandwidth measured with STREAM algorithm. All functions’ 

code is deployed as JSP applications. 

 

3.2  THE PROPOSED FRAMEWORK FOR FUNCTIONS 

 

The proposed performance criteria framework to test the alternatives and select the best 

solution has 3 main functions and 19 sub functions as mentioned before. The proposed 

structure of these functions is as follows: 

i CPU Performance 

a Floating point with array elements 

b Floating point with array as parameter 

c Conditional jumps (if then else) 

d Integer arithmetic (fixed point) 

e Trigonometric functions (sin, cos etc.) 



 

26 

 

f Procedural calls with floating point 

g Array reference assignments 

h Mathematical functions (exponential, square root, logarithm operations 

etc.) 

ii Database Performance 

a Single Record  

1 Read 

2 Update 

3 Insert 

4 Delete 

b Multiple Records 

1 Read 

2 Update 

3 Insert 

4 Delete 

iii Memory Performance 

a Small size 

b Medium Size 

c Large Size 

The metrics used for these functions are as follows: 

i MFLOPS: It is the abbreviation for Millions of Floating Point Instructions 

per Second. It is the number of floating point operations performed by the 

CPU in one second. Most of the CPU benchmark only measures this floating 

point calculation performance. This metric is used for Whetstone benchmark 

results of floating point with array elements, floating point array as 

parameter, and array reference assignment category results. 

ii MOPS: It is the abbreviation for Millions of Operations per Second. It is 

used for non floating point operations. In general, only floating point 

operations are measured and this type of operations is not measured. For 

example in this work, it is used to measure conditional jumps, fixed point 



 

27 

 

(integer) operations, trigonometric calculations, procedural calls, and 

mathematical operations like square root, or exponential calculations.  

iii Response time: For each function of CPU performance, the Whetstone 

algorithm uses a routine to complete or a problem to solve when it calculates 

the MFLOPS/MOPS metrics mentioned above. The response time is the 

time to complete this routine or problem. This metric is used to show test 

results in charts; however, since it is closely related to the MFLOPS/MOPS 

metrics, this is not used in AHP and LSP evaluation methods discussed in 

following sections. The MFLOPS/MOPS are preferred since the problem of 

the algorithm may not be interested or adopted in general. 

iv Average total operation time for single record (millisecond): For each basic 

database operations, like read, update, insert, delete, it consist the time 

passed for connection creation, statement creation, and operation execution. 

For this metric, the queries used have affected only one single record. 

v Average total operation time for 100 records at once (millisecond): Similar 

to the previous metric, this one also consists the time passed for connection 

creation, statement creation, and operation execution. However, for this 

metric, any of the queries used have affected 100 records. 

vi Memory bandwidth (MB/sec): It measures the data transfer to and from 

memory. 3 different sizes of file are used to measure the memory 

performance under different conditions. These file or memory object sizes 

are 128 KB, 1 MB, and 100 MB. 

 

3.3  BENCHMARKING 

 

There are several benchmarking concepts in the IT sector for decades. For computing 

power performance benchmarking, the Whetstone benchmarking algorithm have been 

used which is adopted by the IT sector leaders for several decades. The Java code 

adopted from Roy Longbottom’s web page.
11

 Some changes had been implemented in 

these tests to use it in JSP. This benchmark is a synthetic benchmark which tries to 

                                                             
11 Longbottom, R., Roy Longbottom's PC benchmark collection, http://www.roylongbottom.org.uk  

 

http://www.roylongbottom.org.uk/


 

28 

 

solve several different types of mathematical functions. Whetstone benchmarking 

checks the performance of 8 different computing structures which are also listed in 

previous section: Floating point with array elements, floating point with arrays as 

parameters, conditional jumps, fixed point operations, trigonometric functions, floating 

point operations with procedure calls, assignment operations, and other mathematical 

functions. 

 

For database operation performance benchmarking, the basic select, update, delete and 

insert queries are coded by the writer of this thesis. For each of these query types, two 

different test sets had been performed. In the first query type, each query’s target was a 

single record, and the query had been repeated 100 times in a loop to increase the 

number of tests. In each loop; the connection, statement and result set are released and 

created again. In the second type, each query’s target was 100 records, and the 

connection, statement and result set are released and created for each of these queries 

also. These queries are repeated 20 times in a loop. It is not looped 100 times in order to 

prevent the time out. The basic commands used are DriverManager.getConnection(), 

connection.createStatement(), and statement.executeQuery() of java.sql package. The 

test database has single table with 5 columns containing varchar and integer type fields. 

It is an example table holding fictitious employee data. Each record in the table has 

approximately 150 bytes. 

 

For main memory performance benchmarking, STREAM benchmark algorithm is used. 

STREAM benchmark is created by John McCalphin. He claims that the algorithm 

measures the sustainable real world bandwidth as real users faced, not the theoretical 

peak values. It is a widely known and applied algorithm in memory bandwidth 

performance tests. The Java code of the STREAM algorithm is taken from the Virginia 

University web sites.
12

 The code has been modified in order to work with JSP. 

STREAM is a synthetic benchmark which means that it creates synthetic workloads not 

real world workloads. The benchmark measures the bandwidth performance by four 

long vector or matrix operations. “Copy” operation copies or assigns a vector to another 

with the equal operator. “Scale” operation multiplies a vector element with a scalar 

                                                             
12 McCalphin, J., The Stream benchmark Java code, 

http://www.cs.virginia.edu/stream/FTP/Contrib/Java/STREAM.java  

http://www.cs.virginia.edu/stream/FTP/Contrib/Java/STREAM.java


 

29 

 

value and assigns the result to another vector. “Add” operation adds two vectors and 

assigns the result to another vector. Lastly, “Triad” operation multiplies a vector with a 

scalar value, then, adds another vector to this result and then assigns the overall result to 

another vector. The memory bandwidth tests are performed under 3 sub categories: 

Small, medium and large data size. For small size, 128 KB of data is tested. 1 MB and 

100 MB of data are used to test the performance of medium and large size respectively. 

 

3.4  EVALUATION METHODOLOGIES 

 

3.4.1 Analytic Hierarchy Process 

 

There are 3 main performance functions and 19 sub functions to be evaluated according 

to the needs of the customer in this thesis’s proposal. Therefore, the problem of 

deciding which platform performs better is known as Multiple Criteria Decision Making 

(MCDM). There are many mechanisms for ranking performance indicators of such 

problems. The first of the two methods employed in this thesis is the AHP mechanism 

to solve this MCDM problem. It is first proposed by Saaty (1980). The reason to select 

this method is that it has been widely used in many different research areas as well as 

computer sciences. It also suits the problem of this thesis work, since there should not 

be any dependency between the criteria, which is the subject of Analytic Network 

Process. AHP assigns weights to the items being compared; hence, every performance 

item can be fine tuned to match the needs. 

 

AHP model first splits the problem into parts structured hierarchically as its name 

implies. These components are goal, criteria, and alternatives. The AHP hierarchy 

model of the problem of this thesis is shown in Figure 3.1. In this thesis the goal is 

obviously to select the best PaaS provider. The main criteria are CPU, database (DB) 

and memory performances. Their sub criteria are also shown in the figure. The provider 

alternatives are shown at the bottom of the figure.  

 

 



 

30 

 

Figure 3.1: AHP model of the PaaS provider decision making problem 

 

 

 

AHP method uses pair wise comparison and eigenvector method to calculate the 

relative ranking. The functions and sub functions criteria are accompanied with weights 

and therefore it becomes flexible. AHP will be employed along with Relative Service 

Ranking Vectors (RSRV) for performance evaluation. This method is derived from the 

work of Garg et al. (2013, pp. 1018-1020). 

 

Firstly, relative values are calculated for sub function of test results. For CPU and 

memory bandwidth categories, higher is better; thus, for each provider, the test result of 

the provider is divided by other providers result respectively. However, for database 

tests, the time for each operation is measured; therefore, the lower is better. For that 

reason, the division is reversed, i.e., the other providers’ test values are divided by the 

provider’s test results. 

 

Let P(p1,…,pn) be the set of PaaS providers, where n is the number of providers. Let 

X(x1,…,xk) be the set of performance items’ test values, where k is the number of 

performance items, e.g. like computing power, memory, or their sub functions such that 

floating point performance, or copying big sized file for memory. Let W(w1,…wk) be the 

set of the weights determined by the user. The value of performance item’s test result of 

a provider relative to another one will be: 



 

31 

 

        

                

                

    
                

  (3.1) 

 

Let Vk
i
 be the Eigen vector for the i'th square of the Relative Service Ranking Matrix 

(RSRM) matrix for the k’th performance item. RSRM matrix is squared successively. 

The RSRV matrix is obtained when the difference of two successive Eigen vectors, i.e. 

Vk
i
 and Vk

i-1
, is negligible (Equation 3.2a and 3.2.b). This process repeated for each 

performance item in a node. Then, all of the RSRVs of items in a node are combined as 

columns of the RSRM vector of that node (Equation 3.2c). After that, the RSRV of that 

node is calculated as multiplying the RSRM of the node by the weight vector for the 

items in that node, i.e. Wk. Weight vector is shown in Equation 3.2d and the resulting 

RSRV of the node is shown in Equation 3.2e. This procedure of calculating RSRV of 

items, then constituting the RSRM of the node and then calculating the RSRV of the 

node is repeated until the overall RSRV of the system is found. 

 

        
    

    
       (3.2a) 

        

  

  

 
  

  (3.2b) 

           

          

          

    
          

  (3.2c) 

        

  

  

 
  

  (3.2d) 

                           (3.2e) 

 

Calculation process is explained with the memory bandwidth example with the weights 

shown in Table 4.1 of the next section. This scenario represents a general enterprise 



 

32 

 

application. In such applications, main concern is CPU, then database operations come 

and the memory bandwidth is not required to exceed 1 MB in general. The memory 

bandwidth of the 3 platforms is shown below in Table 3.1 in concise form. The Copy, 

Scale, Add, and Triad test results of Table 3.6 are averaged here. 

 

 Table 3.1: Average system bandwidth in MB/sec 

 

  Platforms 

Test Size Heroku OpenShift Cloud Foundry 

128 KB 19,369.39 4,263.70 22,406.34 

1 MB 16,531.87 4,462.98 16,270.09 

100 MB 7,562.35 3,730.08 5,810.96 

 

The calculation of the RSRV is as follows. In the first step, the RSRM is calculated as 

relative values of each provider according to others. The first row of the matrix shown 

in Equation 3.3a below depicts the relative test value of Heroku for 128 KB memory 

bandwidth. Heroku’s 128 KB test result is first divided to itself in the first column of 

the first row, to get the relative value of it with respect to itself. Then, in the second 

column of the first row, the value of Heroku’s test result is divided by the OpenShift’s 

test result to find Heroku’s relative value with respect to OpenShift. Then, in the third 

column of the first row, to find the relative value of the Heroku with respect to Cloud 

Foundry, Heroku’s test result is divided by the Cloud Foundry’s test result. The relative 

values end up in Equation 3.3b: 

 

                     
                                      
                                   
                                      

   (3.3a) 

                     
               

               
               

   (3.3b) 

 

Then, Eigen vector of this vector is calculated repeatedly, until the difference of 

consecutive Eigen vectors becomes too small to ignore. The Eigen vector of this matrix 

is shown in Equation 3.4. This is the RSRV for the 128 KB memory bandwidth: 



 

33 

 

                                            (3.4) 

 

Same procedure is repeated for 1 MB and 100 MB test results. Combining the RSRV of 

128 KB, 1 MB, and 100 MB in each column, gives the RSRM of memory bandwidth in 

Equation 3.5: 

 

             
                     
                     
                     

   (3.5) 

 

Then the overall memory bandwidth RSRV is obtained by multiplying the RSRM and 

the weights of 128 KB, 1 MB, and 100 MB as shown in Equation 3.6a and 3.6b: 

 

             
                     
                     
                     

   
    
    
    

   (3.6a) 

                                   (3.6b) 

 

For CPU, the MFLOPS/MOPS values are selected as the measurement values. Same 

procedure is repeated for sub functions of CPU to get the Eigen vectors of each sub 

function, and then the RSRM for the CPU is obtained by combining the RSRVs. Then, 

the RSRM of the CPU is multiplied with the weight vector of sub functions, and the 

RSRV of CPU is found as in Equation 3.7: 

 

                               (3.7) 

 

Lastly, for database operations, the total execution time is found by adding connection 

creation time, statement creation time and operation execution time. An average is 

found for each provider and for each database function (read, update, insert, delete). 

The same procedure repeated twice for database operations due to a second sub level 



 

34 

 

classification. Database operations are first divided as single record operations and 100 

records operations, and then both are divided again for read, update, insert, and delete 

operations.  That means, first 2 RSRMs are calculated, and then 2 RSRVs obtained 

from these RSRMs and weights (one for single operations and the other for 100 records 

operations). The RSRVs are combined to get RSRM for the overall database operations. 

Finally the RSRV is obtained from this last RSRM and the weights.  The RSRV is 

shown in Equation 3.8a and Equation 3.8b: 

 

                             
                     

    
    
    

  (3.8a) 

                              (3.8b) 

 

Finally, since the RSRV’s of each main function is calculated, the RSRM of the overall 

performance can be found by combining them. After RSRM is found, the RSRM and 

the main function weight vector must be multiplied to find the RSRV as shown in 

Equation 3.9a, 3.9b, and 3.9c: 

 

             
                     
                     
                     

   (3.9a) 

              
                     
                     
                     

   
    
    
    

  (3.9b) 

                                   (3.9c) 

 

Final RSRV scores are adjusted as the higher is the better in this work. Therefore, this 

last RSRV shows that if the customer’s needs are parallel to the weights given in the 

Table 4.1, then, the Cloud Foundry has the first rank with a score of 0.45649, followed 

by the Heroku with a score of 0.29036 and OpenShift has the third rank with a score of 

0.25315. 

 



 

35 

 

3.4.2 Logic Scoring of Preferences 

 

LSP method was first introduced by Dujmovic (1996) in his work of selection of 

hardware. It is a generalized and extended version of different scoring methods. It has 

its roots in continuous preference logic. First, each performance variable is decomposed 

until they cannot be decomposed any more or each item can be measured and evaluated 

by itself. For this thesis work, these performance variables and their decomposition 

structure are given in the proposed framework which is presented in sub section 3.2.  

 

Then, for each performance variable, Xi (i = 1,…n), an acceptable range of value is 

defined, i.e. Xmin, Xmax and the values between them. The elementary preference, Ei, 

indicates the ratio of the satisfaction of the variable according to the needs. Therefore, 

the value of performance variable Xi should be converted to the Ei to be ordered for 

each system being compared. This mapping function is called elementary criterion 

function Gi. It is preferred to be as a piecewise linear function for simplicity. Thus, 

elementary preference is calculated as in Equation 3.10: 

 

    

           

                     

              

  (3.10) 

 

Therefore, the elementary preference value will be 0 <= Ei <= 100%. The maximum 

and minimum points are also referred as cut-off points. The elementary criterion 

function can be selected as a preference scale as shown in Equation 3.11: 

 

        
       

          
 (3.11) 

 

The preference scale for the performance items are show in Table 3.2 below. These 

values are subjective to the requirements of the company and/or project. For CPU and 

memory, the higher is better and for database the lower is better. 



 

36 

 

Table 3.2: Scales for elementary preference scores 

 

Test Item 

Minimum 

Accepted Value 

Maximum Accepted 

Value 

CPU (MFLOPS/MOPS) MFLOPS/MOPS MFLOPS/MOPS 

Floating point with array elements 100 1,500 

Floating point with array as parameter 100 1,500 

Conditional jumps (if then else) 100 1,500 

Integer arithmetic (fixed point) 500 2,500 

Trigonometric functions (sin, cos etc.) 10 60 

Procedural calls 100 1,000 

Array reference assignments 200 1,000 

Standard mathematical functions (exp, sqrt 

etc.) 10 60 

DB (µs) µs µs 

Single Record Read 40,000 2,000 

Single Record Update 40,000 2,000 

Single Record Insert 40,000 2,000 

Single Record Delete 40,000 2,000 

100 Records Read 80,000 5,000 

100 Records Update 80,000 5,000 

100 Records Insert 80,000 5,000 

100 Records Delete 80,000 5,000 

Memory (MB/sec) MB/sec MB/sec 

Small size (128 KB) 2,000 30,000 

Medium Size (1 MB) 2,000 25,000 

Large Size (100 MB) 2,000 10,000 

 

Therefore, the elementary preference values are calculated by using the test values, 

Equation 3.11 and the scales listed in Table 3.2. By using these n elementary 

preferences for n performance variables, the global preference, E, is calculated using a 

stepwise aggregation technique. This will be a function of all preferences as shown in 

Equation 3.12: 

 

             (3.12) 

 



 

37 

 

The aggregation function is employed for each sub performance item. Then, another 

aggregation function is employed to calculate the preference of the categories. The 

aggregation continues until the preference of the top node is obtained. Hence, the 

function L represents the aggregation of all aggregations. The overall aggregation 

scheme of the system is shown in Figure 3.2. 

 

Figure 3.2: System’s LSP aggregation scheme 

 

 

 

The function indicated as L can be modeled as weighted power mean of these 

preference values. The power is chosen appropriately to reflect the relations of inputs. 

Assuming that e1,…,ek are input preferences of the aggregation block and W1,…,Wk are 

weights which depicts the relative significance of these inputs, the output preference, e0, 

will be: 

 



 

38 

 

         
          

  
 

  (3.13) 

                           

 

Here the power r is a real number. It must be chosen accordingly such that it indicates 

the logical structure of the aggregation function. It is a function of d, disjunction degree. 

Here,   depicts the average location of e0, which is between the maximum and 

minimum of the given interval. d should be between 0 and 1. When it is equal to 0, the 

preference score results in minimum value, i.e.         . When d equals to 1, the 

preference score results in maximum value, i.e.          . Therefore, the relation 

between r and d can be shown as follows:        . 

 

Here   is a complex function of   and for special values of d, the weighting power r can 

reflect the different relations of the performance items. When r is -∞, the weighted 

power mean becomes a pure conjunction. The function is also known as the minimum 

function. When it is -1, it becomes harmonic mean. When it is equal to zero, that means 

the geometric mean. The value of 1 makes the relation a square mean. At the opposite 

side of the spectrum, the +∞ makes the function the pure disjunction. It becomes a 

maximum function. Hence, the preference aggregation function will be: 

 

         
    

         
    

 

 

    
 (3.14) 

 

The Equation 3.14 is known as the generalized conjunction / disjunction (GCD) and 

called as andor also. Usually the d is not calculated, it is already calculated for special 

cases of the logical function. The names of these special cases, their symbols and the 

values of r are given in Table 3.3. For example when d is between 0 and 0.5, it is called 

as quasi-conjunction. It reflects a logical model when “simultaneity” for the inputs is 

required. When the system cannot meet the input requirements at the same time, the 

score is decreased. For d between 0 and 0.25, the simultaneity becomes more important 

and for d bigger than 0.25 and close to 0.5, the simultaneity requirement is relaxed. 

 



 

39 

 

When d is between 0.5 and 1, the logic of andor is known as quasi-disjunction. It is 

used to model the cases when the “replaceability” of inputs is required and it decreases 

the score of systems which cannot satisfy any of the input criteria. When d is between 

0.75 and 1, the inputs can compensate or replace each other’s score more, and when d is 

between 0.5 and 0.75, it becomes hard for the inputs to replace or compensate each 

other. 

 

Table 3.3: Logical functions and parameters for aggregation functions 

 

Operation Symbol d r2 r3 r4 r5 

DISJUNCTION D 1.0000 +infinity +infinity +infinity +infinity 

STRONG QD (+) D++ 0.9375 20.6300 24.3000 27.1100 30.0900 

STRONG QD D+ 0.8750 9.5210 11.0950 12.2700 13.2350 

STRONG QD (-) D+- 0.8125 5.8020 6.6750 7.3160 7.8190 

MEDIUM QD DA 0.7500 3.9290 4.4500 4.8250 5.1110 

WEAK QD (+) D-+ 0.6875 2.7920 3.1010 3.3180 3.4790 

WEAK QD D- 0.6250 2.0180 2.1870 2.3020 2.3840 

SQUARE MEAN SQU 0.6232 2.0000       

WEAK QD (-) D-- 0.5625 1.4490 1.5190 1.5650 1.5960 

ARITHMETIC 

MEAN A 0.5000 1.0000 1.0000 1.0000 1.0000 

WEAK QC (-) C-- 0.4375 0.6190 0.5730 0.5460 0.5260 

WEAK QC C- 0.3750 0.2610 0.1920 0.1530 0.1290 

GEOMETRIC 

MEAN GEO 0.3333 0.0000       

WEAK QC (+) C-+ 0.3125 -0.1480 -0.2080 -0.2350 -0.2510 

MEDIUM QC CA 0.2500 -0.7200 -0.7320 -0.7210 -0.7070 

HARMONIC 

MEAN HAR 0.2274 -1.0000       

STRONG QC (-) C+- 0.1875 -1.6550 -1.5500 -1.4550 -1.3800 

STRONG QC C+ 0.1250 -3.5100 -3.1140 -2.8230 -2.6060 

STRONG QC (+) C++ 0.0625 -9.0600 -7.6390 -6.6890 -6.0130 

CONJUNCTION C 0.0000 -infinity -infinity -infinity -infinity 
Source: Jozo J. Dujmovic, (1996) A Method for Evaluation and Selection of Complex Hardware and 

Software Systems. The 22nd International Conference for the Resource Management and 

Performance Evaluation of Enterprise Computing Systems 

 

For the aggregation function of CPU parameters, the medium QC (CA) operation is 

selected from the Table 3.3. For the aggregation sub functions of database, (they are 

read, update, insert, and delete functions and named as “DB Single Record Aggregation 



 

40 

 

Function” and “DB 100 Records Aggregation Function” in Figure 3.2), strong QC- 

(C+-) is selected. For the aggregation function of database overall (which are single 

record and 100 records nodes and their aggregation function is named as “DB 

Aggregation Function” in Figure 3.2), and memory functions, the weak QC + (C-+) 

operation is selected. Finally, for the aggregation function of overall system logic, the 

strong QC (C+) operation is selected. 

 

3.5  TEST DATA 

 

3.5.1 Whetstone Computing Power Test Results 

 

The test results are shown in tabular format below. They are also represented with 

charts following the tables of each test group to be easily compared. In Table 3.4, 

Whetstone test results are shown. The standard deviation is also shown in addition to 

average of each metric. Result column of the table shows the result of the function 

solved. Every test on the table is repeated for 355 times. Charts of this table are shown 

in charts by grouping similar metrics together in each one. 

 

Following the Table 3.4, Figure 3.3 shows the MFLOPS results for N1 floating point 

operations with array elements, N2 floating operations with arrays as parameters, N6 

floating point operations with procedure calls and Millions of Whetstone Instructions 

per Second (MWIPS). The notation of N1, N2, and so on, are the numbers given to the 

sub functions to refer them in concise form. 

 

In Figure 3.4, Whetstone time results for N1 floating point operations with array 

elements, N2 floating operations with arrays as parameters, N6 floating point operations 

with procedure calls and MWIPS are shown in milliseconds. 

 

Figure 3.5 shows the Whetstone MOPS results for N3 if then else operations, N4 fixed 

point (integer) operations, N5 Sin, Cos, and other trigonometric operations, N7 

assignment operations, and N8 exponent, square root, and logarithmic operations. 



 

41 

 

Figure 3.6 shows the Whetstone time results for N3 if then else operations, N4 fixed 

point (integer) operations, N5 Sin, Cos, and other trigonometric operations, N7 

assignment operations, and N8 exponent, square root, and logarithmic operations in 

milliseconds. 

 

Table 3.4: Whetstone test results 

 

      Average Standard Deviation 

Platform Test 

Test 

Repeated Result MFLOPS MOPS ms Result MFLOPS MOPS ms 

Heroku 

N1 floating pt 355 -1.124750128 840.19   0.0237 0.000000056 116.16   0.0065 

N2 floating pt 355 -1.131330481 824.58   0.1714 0.000000056 115.70   0.0923 

N3 if then else 355 1.000000000   820.55 0.1363 0.000000000   113.42 0.0953 

N4 fixed point 355 12.000000000   1,718.42 0.1890 0.000000000   206.63 0.0565 

N5 sin,cos etc. 355 0.499110132   47.49 1.7973 0.000000000   6.00 0.3898 

N6 floating pt 355 0.999999821 496.63   1.1775 0.000000000 127.95   0.4310 

N7 

assignments 355 3.000000000   622.61 0.3193 0.000000000   111.83 0.1848 

N8 exp,sqrt 

etc. 355 0.827011271   32.79 1.1676 0.014227144   3.78 0.3059 

MWIPS 355   2,063.97   4.9821   289.43   1.0421 

Open 

Shift 

N1 floating pt 355 -1.124750137 392.86   0.0511 0.000000000 62.29   0.0159 

N2 floating pt 355 -1.131330490 378.88   0.3679 0.000000000 54.76   0.1045 

N3 if then else 355 1.000000000   421.21 0.2587 0.000000000   61.90 0.1358 

N4 fixed pt 355 12.000000000   1,057.20 0.3100 0.000000000   153.29 0.0995 

N5 sin,cos etc. 355 0.499110132   29.97 2.8956 0.000000002   4.60 0.9263 

N6 floating pt 355 0.999999821 207.20   2.6876 0.000000000 30.26   0.6159 

N7 

assignments 355 3.000000000   417.46 0.4568 0.000000000   57.70 0.1112 

N8 exp,sqrt 

etc. 355 0.850606839   18.98 2.0184 0.046517637   2.73 0.4251 

MWIPS 355   1,129.74   9.0461   143.53   1.5995 

Cloud 

Foundry 

N1 floating pt 355 -1.124750099 1,034.17   0.0186 0.000000120 2.79   0.0001 

N2 floating pt 355 -1.131330452 1,007.99   0.1334 0.000000120 13.21   0.0018 

N3 if then else 355 1.000000000   967.17 0.1070 0.000000000   6.08 0.0007 

N4 fixed pt 355 12.000000000   2,095.55 0.1503 0.000000000   11.85 0.0009 

N5 sin,cos etc. 355 0.499110132   53.74 1.5483 0.000000000   0.29 0.0085 

N6 floating pt 355 0.999999821 727.18   0.7427 0.000000000 25.11   0.0282 

N7 

assignments 355 3.000000000   773.83 0.2397 0.000000000   41.71 0.0164 

N8 exp,sqrt 

etc. 355 0.931638988   37.35 0.9959 0.019946517   0.09 0.0024 

MWIPS 355   2,540.96   3.9359   25.78   0.0410 

 



 

42 

 

Figure 3.3: Whetstone results for float point operations and MWIPS 

 

 

 

 

 

Figure 3.4: Whetstone time results for float point operations and MWIPS 

 

 

 

 

 

 

0 

500 

1,000 

1,500 

2,000 

2,500 

3,000 

N1 Floating 

Point 

N2 Floating 

Point 

N6 Floating 

Point 

MWIPS 

MFLOPS 

OpenShift CloudFoundry Heroku 

0.00 

2.00 

4.00 

6.00 

8.00 

10.00 

N1 Floating 

Point 

N2 Floating 

Point 

N6 Floating 

Point 

MWIPS 

ms 

OpenShift CloudFoundry Heroku 



 

43 

 

Figure 3.5: Whetstone MOPS results for other operations 

 

 

 

 

 

Figure 3.6: Whetstone time results for other results 

 

 

 

 

 

 

0 

500 

1,000 

1,500 

2,000 

2,500 

N3 If Then 

Else 

N4 Fixed 

Point 

N5 Sin, Cos, 

etc 

N7 

Assignments 

N8 Exp, 

Sqrt, etc 

MOPS 

OpenShift CloudFoundry Heroku 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

N3 If Then 

Else 

N4 Fixed 

Point 

N5 Sin, Cos, 

etc 

N7 

Assignments 

N8 Exp, 

Sqrt, etc 

ms 

OpenShift CloudFoundry Heroku 



 

44 

 

3.5.2 Database Operations Test Results 

 

The test results performed with both single records and multiple records (100 records at 

a time) are shown in tabular form. Single record tests are done by querying one single 

record and repeated for 100 in a loop as explained before. “100 at once query” means 

that 100 records are affected in each query. The connection, statement, and result set 

objects are created before each query and they are destructed after the query executed. 

Therefore, these sub operations are also measured for each operation and query. In 

Table 3.5, average and standard deviation times for connection creation, statement 

creation and operation execution are shown separately for each test. High standard 

deviations show that there are big fluctuations in observed times. 

 

In Figure 3.7, average connection creation times for single record query are shown in 

microseconds. In Figure 3.8, average statement creation times for single record query 

are shown in microseconds also. In Figure 3.9, average operation execution times for 

single record query are similarly shown in microseconds. Figure 3.10 shows the average 

total operation times for single record query. This total operation times are the sum of 

connection creation, statement creation, and operation execution times. Figure 3.11 

shows the average connection creation times for queries affecting 100 records at once in 

microseconds. Figure 3.12 shows, similarly, the average statement creation times for 

queries affecting 100 records at once in microseconds. Figure 3.13 shows the average 

operation execution times for queries affecting 100 records at once in microseconds 

also. Figure 3.14 shows the total times, i.e. the sum of connection creation, statement 

creation, and operation execution, for queries affecting 100 records at once. 

  



 

45 

 

Table 3.5: Database operations test results 

 

        Average Time (Microsecond) Standard Deviation (Microsecond) 

Platform DB Operation 

Record Count in 

Operation 

Test 

Repeated Connection Created 

Statement 

Created Operation Executed Connection Created 

Statement 

Created Operation Executed 

Heroku Delete Single Record 1,400 24,948.61 122.10 8,433.11 15,085.73 1,307.90 5,010.36 

OpenShift Delete Single Record 1,400 6,219.03 46.03 430.13 8,927.24 241.50 752.96 

CloudFoundry Delete Single Record 1,400 5,978.04 35.58 448.10 5,507.60 13.58 806.46 

Heroku Insert Single Record 1,400 25,387.23 73.79 6,073.55 13,736.26 368.26 7,355.59 

OpenShift Insert Single Record 1,400 5,946.09 38.32 495.79 4,041.85 126.85 1,754.28 

CloudFoundry Insert Single Record 1,400 6,754.51 36.55 449.43 10,229.84 12.68 858.16 

Heroku Read Single Record 1,400 30,390.79 105.72 7,596.52 19,869.24 648.60 6,489.29 

OpenShift Read Single Record 1,400 5,845.10 54.02 432.43 3,834.69 392.55 951.58 

CloudFoundry Read Single Record 1,400 6,395.39 37.44 597.05 6,286.20 11.49 984.97 

Heroku Update Single Record 1,400 25,806.83 108.63 8,954.19 13,504.15 941.34 5,612.99 

OpenShift Update Single Record 1,400 6,220.27 61.26 440.41 3,979.35 494.55 632.64 

CloudFoundry Update Single Record 1,400 5,962.65 36.32 486.44 5,960.93 10.18 939.77 

Heroku Delete 100 Records At Once 1,100 28,427.27 100.82 29,301.15 23,114.61 711.29 15,096.09 

OpenShift Delete 100 Records At Once 1,100 6,262.37 22.07 4,955.99 6,244.27 8.78 8,644.18 

CloudFoundry Delete 100 Records At Once 1,100 5,712.32 31.60 1,358.60 5,759.31 10.67 841.03 

Heroku Insert 100 Records At Once 1,100 28,468.88 71.10 15,429.79 18,490.14 345.00 10,066.26 

OpenShift Insert 100 Records At Once 1,100 6,696.49 23.93 5,309.92 3,961.37 20.70 4,990.49 

CloudFoundry Insert 100 Records At Once 1,100 6,789.07 34.97 1,908.98 6,546.65 41.53 1,351.57 

Heroku Read 100 Records At Once 1,100 27,060.20 147.26 26,147.27 18,023.69 2,679.14 17,420.71 

OpenShift Read 100 Records At Once 1,100 6,261.68 27.07 2,174.31 4,472.67 19.83 1,466.23 

CloudFoundry Read 100 Records At Once 1,100 5,832.00 33.08 4,959.43 6,024.79 9.73 11,679.82 

Heroku Update 100 Records At Once 1,100 28,633.21 73.98 30,433.18 20,856.70 357.24 19,210.89 

OpenShift Update 100 Records At Once 1,100 5,861.03 36.03 1,599.54 7,097.35 355.76 1,557.89 

CloudFoundry Update 100 Records At Once 1,100 5,360.29 32.56 800.52 4,949.69 9.38 712.30 



 

46 

 

Figure 3.7: Average connection creation times for single record query 

 

 

 

 

 

Figure 3.8: Average statement creation times for single record query 

 

 

 

 

 

 

0.00 

5,000.00 

10,000.00 

15,000.00 

20,000.00 

25,000.00 

30,000.00 

35,000.00 

Read Update Insert Delete 

µs 

OpenShift 

CloudFoundry 

Heroku 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

120.00 

140.00 

Read Update Insert Delete 

µs 

OpenShift 

CloudFoundry 

Heroku 



 

47 

 

Figure 3.9: Average operation execution times for single record query 

 

 

 

 

 

Figure 3.10: Average total operation time for single record query 

 

 

 

 

 

 

0.00 

1,000.00 

2,000.00 

3,000.00 

4,000.00 

5,000.00 

6,000.00 

7,000.00 

8,000.00 

9,000.00 

Read Update Insert Delete 

µs 

OpenShift 

CloudFoundry 

Heroku 

0.00 

5,000.00 

10,000.00 

15,000.00 

20,000.00 

25,000.00 

30,000.00 

35,000.00 

40,000.00 

Read Update Insert Delete 

µs 

OpenShift 

CloudFoundry 

Heroku 



 

48 

 

Figure 3.11: Average connection creation times for 100 records at once 

 

 

 

 

 

Figure 3.12: Average statement creation times for 100 records at once query 

 

 

 

 

 

 

0.00 

5,000.00 

10,000.00 

15,000.00 

20,000.00 

25,000.00 

30,000.00 

Read Update Insert Delete 

µs 

OpenShift 

CloudFoundry 

Heroku 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

120.00 

140.00 

160.00 

Read Update Insert Delete 

µs 

OpenShift 

CloudFoundry 

Heroku 



 

49 

 

Figure 3.13: Average operation execution times for 100 records at once 

 

 

 

 

 

Figure 3.14: Average total operation time for 100 records at once query 

 

 

 

 

 

0.00 

5,000.00 

10,000.00 

15,000.00 

20,000.00 

25,000.00 

30,000.00 

35,000.00 

Read Update Insert Delete 

µs 

OpenShift 

CloudFoundry 

Heroku 

0.00 

10,000.00 

20,000.00 

30,000.00 

40,000.00 

50,000.00 

60,000.00 

Read Update Insert Delete 

µs 

OpenShift 

CloudFoundry 

Heroku 



 

50 

 

3.5.3 STREAM Memory Bandwidth Test Results 

 

The memory tests are performed with 128 KB, 1 MB, and 100 MB workloads by 

accordingly adjusting the N (the size of the array). The memory workload is calculated 

in Stream algorithm as in Equation 3.15 where “Bytes per word” is 8 for Java language: 

 

Total Memory Required = ((3.0 * Bytes per Word) * (N / 1048576.0)) (3.15) 

 

In Table 3.6, Stream algorithm test results are shown. 128 KB and 1 MB tests have been 

performed 1,000 times by looping each test 20 times. However, 100 MB tests have not 

been performed by looping since the time out threshold is exceeded when looping for 

such a big workload. Therefore, tests for 100 MB workload have been performed 300 

times which is less than the previous two workloads. In all cases, the more bandwidth is 

better. In this benchmark algorithm, the bandwidth is measured for 4 different types of 

operations, i.e. copy, scale, add, triad. 

 

Figure 3.15 shows the comparison of bandwidth test results for 128 KB workload for 

the three platforms. Figure 3.16 shows comparison of memory bandwidth test results for 

1 MB workload and Figure 3.17 shows the bandwidth test results for 100 MB workload 

for the three PaaS platforms. 

 

 

 

 

 

 

 

 

 

 

 



 

51 

 

Table 3.6: STREAM test results 

 

      Average Standard Deviation 

      Total system bandwidth MB/sec Total system bandwidth MB/sec 

Platform 

Test 

Size 

Test 

Repeated Copy Scale Add Triad Copy Scale Add Triad 

Heroku 128 KB 1,000 20,990.60 16,175.54 21,970.42 18,341.01 2,236.92 1,343.29 2,226.69 2,350.84 

OpenShift 128 KB 1,000 3,989.52 3,987.63 4,747.72 4,329.92 55.63 54.03 66.58 65.44 

CloudFoundry 128 KB 1,000 25,012.67 19,317.68 25,265.38 20,029.62 1,863.45 1,415.00 2,100.91 1,581.45 

Heroku 1 MB 1,000 17,128.36 14,667.87 17,797.68 16,533.56 1,211.51 1,023.71 1,263.84 1,147.33 

OpenShift 1 MB 1,000 4,202.86 4,223.52 4,938.96 4,486.57 55.69 51.29 63.64 63.95 

CloudFoundry 1 MB 1,000 17,869.00 14,166.80 17,566.93 15,477.63 1,245.73 936.00 1,155.43 1,017.84 

Heroku 100 MB 300 7,600.76 7,204.52 7,889.11 7,555.00 1,375.79 1,451.93 1,723.26 1,704.77 

OpenShift 100 MB 300 3,388.11 3,666.76 4,069.52 3,795.94 281.40 265.18 329.65 291.01 

CloudFoundry 100 MB 300 6,567.68 5,178.13 6,122.11 5,375.93 364.26 272.55 337.07 320.50 

 

 

 

Figure 3.15: STREAM bandwidth test results for 128 MB 

 

 

 

 

 

 

 

0.00 

5,000.00 

10,000.00 

15,000.00 

20,000.00 

25,000.00 

30,000.00 

Copy Scale Add Triad 

MB/sec 

CloudFoundry OpenShift Heroku 



 

52 

 

Figure 3.16: STREAM bandwidth test results for 1 MB 

 

 

 

 

 

Figure 3.17: STREAM bandwidth test results for 100 MB 

 

 

  

0.00 

2,000.00 

4,000.00 

6,000.00 

8,000.00 

10,000.00 

12,000.00 

14,000.00 

16,000.00 

18,000.00 

Copy Scale Add Triad 

MB/sec 

OpenShift CloudFoundry Heroku 

0.00 

1,000.00 

2,000.00 

3,000.00 

4,000.00 

5,000.00 

6,000.00 

7,000.00 

8,000.00 

Copy Scale Add Triad 

MB/sec 

OpenShift CloudFoundry Heroku 



 

53 

 

4. RESULTS 

 

 

4.1  EVALUATION OF THE RESULTS WITH AHP 

 

To decide which platform is better based on the intuition is very hard if not impossible. 

It gets overwhelming to re-evaluate the candidates if the importance of the functions is 

changed for the consumer. Therefore, there is a need for statistical methods to evaluate 

the performance test results.  

 

The AHP calculation results for an enterprise application scenario are given in Table 

4.1. This scenario is created by assigning weights to functions considering the needs of 

an average enterprise application. Since the enterprise applications also vary according 

to their architecture and area of business, it is not valid for every application. However, 

examples of such applications are frequently seen in banking and insurance sector. Also 

many CRM and ERP applications or B2B and B2C web applications approximately 

need such functional resource requirements and weights. The resulting scores of this 

scenario are 0.45649 for Cloud Foundry, 0.29036 for Heroku, 0.25315 for OpenShift. 

 

The score values of AHP can be between 0 and 1 and they represent the worst and the 

best scores that can be achieved, respectively. Since the performance values are 

calculated as relative, for a platform to get the 0 score, it should perform almost 100 

times worse than the both of the others. Similarly to get the score of 1, it should almost 

perform 100 better than the other two alternatives. 

 

In the second scenario, the CPU and the memory bandwidth are the most needed 

resources. In this scenario, database operations are just for recording the results, which 

means that there is not much need for them and when needed, the database records are 

executed as bulk operations. Such applications can be thought as the ones that require 

high computing power and high utilization of memory bandwidth, like scientific 

applications, model simulation applications, or graphical processing applications. The 

resulting scores are 0.41691 for Cloud Foundry, 0.38377 for Heroku, and 0.19932 for 



 

54 

 

OpenShift. The weights and the RSRVs of this second type scenario are illustrated in 

Table 4.2. 

 

Table 4.1: The weights and RSRVs for general enterprise application scenario 

 

          Relative Service Ranking Vector 

Functions 

User Weights 

for Functions Sub Functions 

User 

Weights for 

Sub 

Functions 

User 

Weights for 

Sub of Sub 

Functions Heroku 

Open 

Shift 

Cloud 

Foundry 

CPU 0.50 FP array 0.10 N/A 0.37058 0.17328 0.45614 

    FP parameter 0.10 N/A 0.37287 0.17133 0.45580 

    Conditional jumps 0.22 N/A 0.37147 0.19068 0.43785 

    Int. arith. 0.20 N/A 0.35277 0.21703 0.43019 

    Trigon. func. 0.05 N/A 0.36195 0.22844 0.40960 

    Proced. calls 0.22 N/A 0.34705 0.14479 0.50816 

    Array ref. assign. 0.10 N/A 0.34324 0.23015 0.42661 

    Std. math. func. 0.01 N/A 0.36790 0.21297 0.41913 

    Overall     0.35907 0.18824 0.45269 

DB 0.30 Single Rec. - Read   0.40 0.08042 0.48382 0.43576 

    

Single Rec. – 

Update   0.20 0.08647 0.44858 0.46494 

    Single Rec. - Insert   0.30 0.09783 0.47608 0.42609 

    

Single Rec. - 

Delete   0.10 0.08937 0.44723 0.46339 

    Single Rec. Overall 0.80   0.08775 0.47079 0.44146 

    100 Rec. - Read   0.40 0.08174 0.51534 0.40292 

    100 Rec. - Update   0.20 0.05424 0.42787 0.51790 

    100 Rec. - Insert   0.30 0.10320 0.37719 0.51961 

    100 Rec. - Delete   0.10 0.06999 0.36010 0.56990 

    100 Rec. Overall 0.20   0.08150 0.44088 0.47762 

    Overall     0.08650 0.46481 0.44869 

Memory 0.20 128 KB 0.84 N/A 0.42071 0.09261 0.48668 

    1 MB 0.15 N/A 0.44363 0.11976 0.43661 

    100 MB 0.01 N/A 0.44215 0.21809 0.33975 

    Overall     0.42437 0.09794 0.47770 

Overall         0.29036 0.25315 0.45649 

 

 

 

 



 

55 

 

Table 4.2: The weights and RSRVs for scientific/graphical applications scenario 

 

          Relative Service Ranking Vectors 

Functions 

User Weights 

for Functions Sub Functions 

User 

Weights for 

Sub 

Functions 

User 

Weights for 

Sub of Sub 

Functions Heroku 

Open 

Shift 

Cloud 

Foundry 

CPU 0.50 FP array 0.10 N/A 0.37058 0.17328 0.45614 

    FP parameter 0.10 N/A 0.37287 0.17133 0.45580 

    Conditional jumps 0.20 N/A 0.37147 0.19068 0.43785 

    Int. arith. 0.10 N/A 0.35277 0.21703 0.43019 

    Trigon. func. 0.20 N/A 0.36195 0.22844 0.40960 

    Proced. calls 0.15 N/A 0.34705 0.14479 0.50816 

    Array ref. assign. 0.05 N/A 0.34324 0.23015 0.42661 

    Std. math. func. 0.10 N/A 0.36790 0.21297 0.41913 

    Overall     0.36232 0.19451 0.44317 

DB 0.05 Single Rec. - Read   0.20 0.08042 0.48382 0.43576 

    

Single Rec. - 

Update   0.30 0.08647 0.44858 0.46494 

    Single Rec. - Insert   0.40 0.09783 0.47608 0.42609 

    

Single Rec. - 

Delete   0.10 0.08937 0.44723 0.46339 

    Single Rec. Overall 0.80   0.09010 0.46649 0.44341 

    100 Rec. - Read   0.20 0.08174 0.51534 0.40292 

    100 Rec. - Update   0.30 0.05424 0.42787 0.51790 

    100 Rec. - Insert   0.40 0.10320 0.37719 0.51961 

    100 Rec. - Delete   0.10 0.06999 0.36010 0.56990 

    100 Rec. Overall 0.20   0.08090 0.41832 0.50079 

    Overall     0.08826 0.45686 0.45488 

Memory 0.45 128 KB 0.10 N/A 0.42071 0.09261 0.48668 

    1 MB 0.30 N/A 0.44363 0.11976 0.43661 

    100 MB 0.60 N/A 0.44215 0.21809 0.33975 

    Overall     0.44045 0.17604 0.38350 

Overall         0.38377 0.19932 0.41691 

 

The third scenario simulates another application type in which database performance is 

the most important, and then comes the memory and CPU. The distribution of weights 

in sub functionalities is also subjective to the requirements of application. These 

weights are given just for demonstration purpose. The resulting scores are 0.45065 for 

Cloud Foundry, 0.30342 for OpenShift, and 0.24594 for Heroku. The weights and the 

RSRVs are shown in Table 4.3 below for this scenario: 



 

56 

 

 

Table 4.3: The weights and RSRVs for database intensive application scenario 

 

          Relative Service Ranking Vector 

Functions 

User Weights 

for Functions Sub Functions 

User 

Weights for 

Sub 

Functions 

User 

Weights for 

Sub of Sub 

Functions Heroku 

Open 

Shift 

Cloud 

Foundry 

CPU 0.20 FP array 0.10 N/A 0.37058 0.17328 0.45614 

    FP parameter 0.10 N/A 0.37287 0.17133 0.45580 

    Conditional jumps 0.30 N/A 0.37147 0.19068 0.43785 

    Int. arith. 0.10 N/A 0.35277 0.21703 0.43019 

    Trigon. func. 0.05 N/A 0.36195 0.22844 0.40960 

    Proced. calls 0.20 N/A 0.34705 0.14479 0.50816 

    Array ref. assign. 0.10 N/A 0.34324 0.23015 0.42661 

    Std. math. func. 0.05 N/A 0.36790 0.21297 0.41913 

    Overall     0.36129 0.18741 0.45130 

DB 0.50 Single Rec. - Read   0.25 0.08042 0.48382 0.43576 

    

Single Rec. - 

Update   0.30 0.08647 0.44858 0.46494 

    Single Rec. - Insert   0.40 0.09783 0.47608 0.42609 

    

Single Rec. - 

Delete   0.05 0.08937 0.44723 0.46339 

    Single Rec. Overall 0.50   0.08965 0.46832 0.44203 

    100 Rec. - Read   0.25 0.08174 0.51534 0.40292 

    100 Rec. - Update   0.30 0.05424 0.42787 0.51790 

    100 Rec. - Insert   0.40 0.10320 0.37719 0.51961 

    100 Rec. - Delete   0.05 0.06999 0.36010 0.56990 

    100 Rec. Overall 0.50   0.08149 0.42608 0.49244 

    Overall     0.08557 0.44720 0.46723 

Memory 0.30 128 KB 0.30 N/A 0.42071 0.09261 0.48668 

    1 MB 0.40 N/A 0.44363 0.11976 0.43661 

    100 MB 0.30 N/A 0.44215 0.21809 0.33975 

    Overall     0.43631 0.14112 0.42257 

Overall         0.24594 0.30342 0.45065 

 

The last scenario is absolutely imaginary. Every sub functions, and main functions are 

equally weighted. This scenario is just to show the performance comparison of 

platforms in which every function evaluated has equal impact on the overall ranking. 

Again, the Cloud Foundry is the first, Heroku is the second and OpenShift is the third 



 

57 

 

with the scores of 0.44652, 0.29376, and 0.25972 respectively. The weights and the 

RSRVs are shown in Table 4.4 below for this imaginary equally weighted scenario: 

Table 4.4: The weights and RSRVs for equally weighted functions scenario 

 

          Relative Service Ranking Vector 

Functions 

User Weights 

for Functions Sub Functions 

User 

Weights for 

Sub 

Functions 

User 

Weights for 

Sub of Sub 

Functions Heroku 

Open 

Shift 

Cloud 

Foundry 

CPU 0.34 FP array 0.125 N/A 0.37058 0.17328 0.45614 

    FP parameter 0.125 N/A 0.37287 0.17133 0.45580 

    Conditional jumps 0.125 N/A 0.37147 0.19068 0.43785 

    Int. arith. 0.125 N/A 0.35277 0.21703 0.43019 

    Trigon. func. 0.125 N/A 0.36195 0.22844 0.40960 

    Proced. calls 0.125 N/A 0.34705 0.14479 0.50816 

    Array ref. assign. 0.125 N/A 0.34324 0.23015 0.42661 

    Std. math. func. 0.125 N/A 0.36790 0.21297 0.41913 

    Overall     0.36098 0.19608 0.44294 

DB 0.33 Single Rec. - Read   0.25 0.08042 0.48382 0.43576 

    

Single Rec. – 

Update   0.25 0.08647 0.44858 0.46494 

    Single Rec. - Insert   0.25 0.09783 0.47608 0.42609 

    

Single Rec. - 

Delete   0.25 0.08937 0.44723 0.46339 

    Single Rec. Overall 0.50   0.08852 0.46393 0.44755 

    100 Rec. - Read   0.25 0.08174 0.51534 0.40292 

    100 Rec. - Update   0.25 0.05424 0.42787 0.51790 

    100 Rec. - Insert   0.25 0.10320 0.37719 0.51961 

    100 Rec. - Delete   0.25 0.06999 0.36010 0.56990 

    100 Rec. Overall 0.50   0.07729 0.42013 0.50258 

    Overall     0.08291 0.44203 0.47506 

Memory 0.33 128 KB 0.34 N/A 0.42071 0.09261 0.48668 

    1 MB 0.33 N/A 0.44363 0.11976 0.43661 

    100 MB 0.33 N/A 0.44215 0.21809 0.33975 

    Overall     0.43535 0.14298 0.42167 

Overall         0.29376 0.25972 0.44652 

 

4.2  EVALUATION OF THE RESULTS WITH LSP 

 

Table 4.5 shows the preference scores for the enterprise application scenario. The 

weights used here are the same with the weights used in AHP for the same scenario. 



 

58 

 

Here, Cloud Foundry is the best, OpenShift is ranked as the second platform, and 

Heroku is the third. 

Table 4.5: LSP results for general enterprise application scenario 

 

          Preference Scores   

Functions 

User Weights 

for Functions Sub Functions 

User 

Weights for 

Sub 

Functions 

  

Heroku 

Open Cloud 

  Shift Foundry 

CPU 0.50 FP array 0.10   0.52871 0.20918 0.66726 

    FP parameter 0.10   0.51756 0.19920 0.64856 

    Conditional jumps 0.22   0.51468 0.22943 0.61941 

    Int. arith. 0.20   0.60921 0.27860 0.79778 

    Trigon. func. 0.05   0.74973 0.39942 0.87477 

    Proced. calls 0.22   0.44069 0.11911 0.69686 

    Array ref. assign. 0.10   0.52826 0.27183 0.71728 

    Std. math. func. 0.01   0.45573 0.17958 0.54704 

    Overall     0.52343 0.20161 0.69527 

    Single Rec. - Read   0.4 0.05018 0.88601 0.86763 

    

Single Rec. – 

Update   0.2 0.13501 0.87574 0.88196 

    Single Rec. - Insert   0.3 0.22277 0.88210 0.86209 

    

Single Rec. - 

Delete   0.1 0.17095 0.87644 0.88259 

DB 0.30 Single Rec. Overall 0.80   0.05379 0.70037 0.69113 

    100 Rec. - Read   0.40 0.35527 0.95383 0.92234 

    100 Rec. - Update   0.20 0.27813 0.96671 0.98409 

    100 Rec. - Insert   0.30 0.48040 0.90626 0.95023 

    100 Rec. - Delete   0.10 0.29561 0.91679 0.97197 

    100 Rec. Overall 0.20   0.27188 0.74831 0.74708 

    Overall     0.07221 0.70967 0.70193 

Memory 0.20 128 KB 0.84   0.62034 0.08085 0.72880 

    1 MB 0.15   0.63182 0.10709 0.62044 

    100 MB 0.01   0.69529 0.21626 0.47637 

    Overall     0.62275 0.08505 0.70813 

Overall         0.10615 0.13551 0.69976 

 

For LSP, the score can be in the range of 0 to 1. If the test results satisfy or exceed the 

maximum required value, then, its preference score is 100 percent or 1. If its value is 

equal or lower than the minimum, then, its score will be 0. The scores of LSP will be 

higher than AHP because AHP starts to calculate with relative values. Therefore, to get 



 

59 

 

the score 1 in AHP, the performance should be almost 100 times better than the others. 

Table 4.6 shows the preference scores for the scientific or graphical application 

scenario. Again, the weights are the same for this scenario with those used in AHP 

technique in Table 4.2. Cloud Foundry is the best, Heroku is ranked as the second, and 

OpenShift is the third. 

 

Table 4.6: LSP results for scientific or graphical processing application scenario 

 

          Preference Scores   

Functions 

User Weights 

for Functions Sub Functions 

User 

Weights for 

Sub 

Functions 

  

Heroku 

Open Cloud 

  Shift Foundry 

CPU 0.50 FP array 0.10   0.52871 0.20918 0.66726 

    FP parameter 0.10   0.51756 0.19920 0.64856 

    Conditional jumps 0.20   0.51468 0.22943 0.61941 

    Int. arith. 0.10   0.60921 0.27860 0.79778 

    Trigon. func. 0.20   0.74973 0.39942 0.87477 

    Proced. calls 0.15   0.44069 0.11911 0.69686 

    Array ref. assign. 0.05   0.52826 0.27183 0.71728 

    Std. math. func. 0.10   0.45573 0.17958 0.54704 

    Overall     0.54109 0.21668 0.69241 

    Single Rec. - Read   0.2 0.05018 0.88601 0.86763 

    

Single Rec. - 

Update   0.3 0.13501 0.87574 0.88196 

    Single Rec. - Insert   0.4 0.22277 0.88210 0.86209 

    

Single Rec. - 

Delete   0.1 0.17095 0.87644 0.88259 

DB 0.05 Single Rec. Overall 0.20   0.05379 0.70037 0.69113 

    100 Rec. - Read   0.20 0.35527 0.95383 0.92234 

    100 Rec. - Update   0.30 0.27813 0.96671 0.98409 

    100 Rec. - Insert   0.40 0.48040 0.90626 0.95023 

    100 Rec. - Delete   0.10 0.29561 0.91679 0.97197 

    100 Rec. Overall 0.80   0.27188 0.74831 0.74708 

    Overall     0.19033 0.73843 0.73549 

Memory 0.45 128 KB 0.10   0.62034 0.08085 0.72880 

    1 MB 0.30   0.63182 0.10709 0.62044 

    100 MB 0.60   0.69529 0.21626 0.47637 

    Overall     0.66783 0.15697 0.53711 

Overall         0.43119 0.18174 0.60354 

 



 

60 

 

Table 4.7 shows the preference scores for the database intensive application scenario. 

These weights are also parallel to those used with AHP technique shown in Table 4.3. 

Cloud Foundry is the best, Heroku is ranked as the second, and OpenShift is the third. 

 

Table 4.7: LSP results for database intensive application scenario 

 

          Preference Scores   

Functions 

User Weights 

for Functions Sub Functions 

User 

Weights for 

Sub 

Functions 

  

Heroku 

Open Cloud 

  Shift Foundry 

CPU 0.20 FP array 0.10   0.52871 0.20918 0.66726 

    FP parameter 0.10   0.51756 0.19920 0.64856 

    Conditional jumps 0.30   0.51468 0.22943 0.61941 

    Int. arith. 0.10   0.60921 0.27860 0.79778 

    Trigon. func. 0.05   0.74973 0.39942 0.87477 

    Proced. calls 0.20   0.44069 0.11911 0.69686 

    Array ref. assign. 0.10   0.52826 0.27183 0.71728 

    Std. math. func. 0.05   0.45573 0.17958 0.54704 

    Overall     0.51419 0.19940 0.67280 

    Single Rec - Read   0.25 0.05018 0.88601 0.86763 

    

Single Rec - 

Update   0.30 0.13501 0.87574 0.88196 

    Single Rec - Insert   0.40 0.22277 0.88210 0.86209 

    Single Rec - Delete   0.05 0.17095 0.87644 0.88259 

DB 0.50 Single Rec. Overall 0.50   0.09843 0.88086 0.87036 

    100 Rec. - Read   0.25 0.35527 0.95383 0.92234 

    100 Rec. - Update   0.30 0.27813 0.96671 0.98409 

    100 Rec. - Insert   0.40 0.48040 0.90626 0.95023 

    100 Rec. - Delete   0.05 0.29561 0.91679 0.97197 

    100 Rec. Overall 0.50   0.35489 0.93585 0.95380 

    Overall     0.18131 0.90788 0.91098 

Memory 0.30 128 KB 0.30   0.62034 0.08085 0.72880 

    1 MB 0.40   0.63182 0.10709 0.62044 

    100 MB 0.30   0.69529 0.21626 0.47637 

    Overall     0.64655 0.12015 0.60028 

Overall         0.22458 0.16954 0.71637 

 



 

61 

 

Table 4.8 shows the preference scores for the imaginary equally weighted functions 

scenario. Weights are parallel to the application of AHP technique shown in Table 4.4. 

Cloud Foundry is the best, OpenShift is ranked as the second, and Heroku is the third. 

 

Table 4.8: LSP results for equally weighted functions scenario 

 

          Preference Scores   

Functions 

User Weights 

for Functions Sub Functions 

User 

Weights for 

Sub 

Functions 

  

Heroku 

Open Cloud 

  Shift Foundry 

CPU 0.34 FP array 0.125   0.52871 0.20918 0.66726 

    FP parameter 0.125   0.51756 0.19920 0.64856 

    Conditional jumps 0.125   0.51468 0.22943 0.61941 

    Int. arith. 0.125   0.60921 0.27860 0.79778 

    Trigon. func. 0.125   0.74973 0.39942 0.87477 

    Proced. calls 0.125   0.44069 0.11911 0.69686 

    Array ref. assign. 0.125   0.52826 0.27183 0.71728 

    Std. math. func. 0.125   0.45573 0.17958 0.54704 

    Overall     0.53163 0.21465 0.68510 

    Single Rec. - Read   0.25 0.05018 0.88601 0.86763 

    

Single Rec. – 

Update   0.25 0.13501 0.87574 0.88196 

    Single Rec. - Insert   0.25 0.22277 0.88210 0.86209 

    

Single Rec. - 

Delete   0.25 0.17095 0.87644 0.88259 

DB 0.33 Single Rec. Overall 0.50   0.05379 0.70037 0.69113 

    100 Rec. - Read   0.25 0.35527 0.95383 0.92234 

    100 Rec. - Update   0.25 0.27813 0.96671 0.98409 

    100 Rec. - Insert   0.25 0.48040 0.90626 0.95023 

    100 Rec. - Delete   0.25 0.29561 0.91679 0.97197 

    100 Rec. Overall 0.50   0.27188 0.74831 0.74708 

    Overall     0.11522 0.72388 0.71848 

Memory 0.33 128 KB 0.34   0.62034 0.08085 0.72880 

    1 MB 0.33   0.63182 0.10709 0.62044 

    100 MB 0.33   0.69529 0.21626 0.47637 

    Overall     0.64792 0.12120 0.59925 

Overall         0.16378 0.16418 0.65962 

 

 



 

62 

 

5. DISCUSSION AND CONCLUSION 

 

 

5.1  DISCUSSION 

 

As shown in the experiment results section, Cloud Foundry performed as the best in all 

categories of Whetstone benchmark, both in MFLOPS of mathematical operations and 

times to complete the solution. Cloud Foundry performs better than the two other PaaS 

platforms. MFLOPS results for floating point operations of Cloud Foundry are better 

than its nearest competitor Heroku by 23 percent, 22 percent, and 46 percent in N1, N2, 

N6 floating point operations respectively. Heroku is better than OpenShift by 114 

percent, 118 percent, and 140 percent in N1, N2, and N6 floating point operations 

respectively. Cloud Foundry is also better than Heroku in MOPS by 18 percent, 22 

percent, 13 percent, 24 percent, and 14 percent in N3, N4, N5, N7, and N8 operation 

categories respectively. Heroku is again better than OpenShift in MOPS by 95 percent, 

63 percent, 58 percent, 49 percent, and 73 percent in N3, N4, N5, N7, and N8 operation 

categories respectively. 

 

The case is almost the same in timings of Whetstone test results. Cloud Foundry 

performs 14 percent to 37 percent better than Heroku in timing. Heroku performs 30 

percent to 56 percent better than OpenShift. 

 

Therefore, Cloud Foundry is the best in computing power with at least 13 percent 

difference according to its competitors. OpenShift is the worst in these results with high 

percentage difference according to other two platforms. 

 

In database operations, the situation is not the same. Cloud Foundry and OpenShift 

perform almost at the same levels. Nevertheless, Heroku performs far worse than the 

other two platforms. The difference of Cloud Foundry and OpenShift is almost zero on 

the average in connection, statement and operation execution time. However, Heroku is 

worse 344 percent, 183 percent, and 1124 percent than other two platforms in 



 

63 

 

connection creation, statement creation, and operation execution respectively. Heroku’s 

big percentage difference in database tests is very obvious. 

 

In memory bandwidth tests, the situation is changed again. Cloud Foundry and Heroku 

performs almost same in 1 MB workload, whereas Cloud Foundry is better in 128 KB, 

and Heroku is better on 100 MB workloads. In 128 KB workload Cloud Foundry is 

better than Heroku by 16 percent in average. However, in 1 MB workload Heroku is 

better than Cloud Foundry by 2 percent. In 100 MB workload Heroku is better than 

Cloud Foundry by 30 percent in average. OpenShift is the worst in these tests. The 

nearest competitor is better than OpenShift by 56 percent to 426 percent. 

 

The results are interesting. In almost each category, the ranking differs. In database 

operations, Cloud Foundry is the best; however, OpenShift is very close to it, and 

Heroku is the worst with a big difference. In computing power, Cloud Foundry is the 

best, Heroku is ranked as the second, and OpenShift is the worst of three. In memory 

bandwidth, Heroku is the best; however, Cloud Foundry is very close to it, and 

OpenShift is the worst of three. The best platform seems to be the Cloud Foundry 

according to these results even though it is not the best in memory bandwidth. Heroku 

may be the choice after Cloud Foundry, if there is not much work with database 

operations but computing power is important. OpenShift may be the choice after Cloud 

Foundry, if there is not much need for computing power but there is need for database 

operations. 

 

The suggestions in the previous paragraph were based on intuition. Therefore, it is not 

easy to see that which provider will perform better if the importance of the functions is 

changed for the consumer. Hence, there is a need for statistical methods to evaluate the 

performance test results. That is why, AHP and LSP are used to select and rank the 

alternatives. However, selection and ranking highly depend on which function is more 

important than the others, according to the needs. That is the reason for presenting 

different scenarios having different weights for each resource and sub function. 

 



 

64 

 

The first scenario simulates the needs of an average enterprise application. Even though 

such enterprise applications differ in structure for different business sectors, it can be 

accepted roughly. AHP and LSP give different ranking for this scenario. AHP ranks the 

providers as Cloud Foundry 0.45649, Heroku 0.29036, and OpenShift 0.25315 whereas 

LSP ranks the providers as Cloud Foundry 0.69976, OpenShift 0.13551, and Heroku 

0.10615. LSP gives a better score for Cloud Foundry according to AHP relative to the 

other providers. This is due to the relative calculation logic of AHP and the maximum 

and minimum acceptable value ranges used in LSP. 

 

In the second scenario, the most interested resources are CPU and the memory 

bandwidth. DB operations come after them or sometimes have very little importance in 

this scenario. AHP ranks the providers as Cloud Foundry 0.41691, Heroku 0.38377, and 

OpenShift 0.19932 whereas LSP ranks the providers as Cloud Foundry 0.60354, 

Heroku 0.43119, and OpenShift 0.18174. Both method ranks the platforms in same 

order; however, LSP again gives better score than the AHP for Cloud Foundry. LSP and 

AHP’s scores are close to each other for other two providers. 

 

The third scenario simulates the application type that performs database intensive 

operations. Here the most important resource need is for database. The second 

important thing is memory and then CPU is the third important resource. AHP ranks the 

providers as Cloud Foundry 0.45065, OpenShift 0.30342, and Heroku 0.24594 whereas 

LSP ranks the providers as Cloud Foundry 0.71637, Heroku 0.22458, and OpenShift 

0.16954. Platforms are ranked in different order; however, Cloud Foundry is again the 

best for both methods and LSP gives better score than the AHP for it. Then it ranks 

Heroku as the second and OpenShift as the third with lower scores. 

 

The last scenario is absolutely imaginary as mentioned before. Every item in each 

category is weighted equally. This represents a fair comparison on every function. AHP 

ranks the providers as Cloud Foundry 0.44652, Heroku 0.29376, and OpenShift 0.25972 

whereas LSP ranks the providers as Cloud Foundry 0.65962, OpenShift 0.16418, and 

Heroku 0.16378. Here, LSP gives almost the same score for OpenShift and Heroku; 



 

65 

 

however, AHP gives almost 3.3 percent difference between them, ranking Heroku better 

than the OpenShift. 

 

Both methods point out that the Cloud Foundry is the best platform among the three 

platforms. This is expected because Cloud Foundry is ranked as the first or the second 

in almost each category, and in the cases that it is the second; there is a small difference 

with the first platform. On the other side, the other two platforms perform as the worst 

in some categories and in some of those categories they have big differences with the 

closest one. 

 

From the viewpoint of stability, the best platform is again different in each main 

category. Cloud Foundry is the most stable platform and it has very little deviation in 

CPU test results. The deviation is between 0.2 and 5.4 percent with an average of 1.5 

percent. Heroku’s deviation is between 11.5 to 25.8 percent with an average of 15 

percent. OpenShift’s deviation is between 12.7 and 15.9 percent with an average of 14.5 

percent. 

 

In database operations, all of the platforms have high deviations. The minimum 

deviations belong to Heroku. Heroku’s deviation is between 57.5 to 71.5 percent with 

an average of 66.7 percent. Then OpenShift comes. Its deviation is between 70.4 to 

148.2 percent with an average of 99.4 percent. The worst is Cloud Foundry. Its 

deviation is between 90.9 to 163.7 percent with an average of 112.6 percent. 

 

In memory performance, the deviations are again low. The most stable platform is 

OpenShift. Its deviation is between 1.3 to 7.8 percent with an average of 3.5 percent. 

Then Cloud Foundry comes. Its deviation is between 5.6 to 7.8 percent with an average 

of 6.7 percent. The worst is Heroku. Its deviation is between 7.0 to 20.7 percent with an 

average of 12.7 percent. 

 

Since Cloud Foundry is still in beta edition, the enterprise pricing is not available yet. 

Heroku charges $0.05 per hour for each dyno after the first free one. OpenShift charges 

$0.04 per small gear after the first three ones. Therefore, for the cases which have small 



 

66 

 

difference in scoring, OpenShift may be preferred since it has a lower price. However, 

since the price difference is not high, the cost may not be an important factor between 

Heroku and OpenShift. Even for 7/24 hour utilization, the cost difference of $0.01 will 

be $87.60 in total for one year. Nevertheless, if there is high need for resources and high 

number of dynos or gears is required, then this difference will rapidly increase. Of 

course pricing is highly variable and subject to change according to the market 

competition.  

 

The summary of the evaluations of the performance tests is as follows: 

i The best performer is Cloud Foundry. The second platform changes 

according to the weights of resource needed. LSP scores OpenShift as the 

second platform in two of the scenarios and it scores Heroku as the second 

platform in the other two scenarios. AHP ranks Heroku as the second for 

three of the scenarios and as the third in one of the scenarios. 

ii The stability in database operations is an important issue for all of the 

platforms. They need to be improved significantly. The consumers will 

demand more stable operation times for database operations since it is 

almost inevitable for a large percent of the applications. The platforms have 

acceptable levels of stability in CPU and memory bandwidth. 

 

5.2  CONCLUSION 

 

The cloud computing is a relatively new topic. There have been a number of researches 

made in this area and many new researches are going on. The most of the studies are 

about IaaS solutions. Therefore, there is still much work to be done in PaaS and other 

types of cloud computing. Even though there are some researches about proposing 

constituted performance item categorization and using appropriate method to evaluate 

the platforms, this area still needs improvement. 

 

To address these needs, a detailed and fine grained function categorization is proposed 

in this work. For evaluating and proposing the best platform, AHP and LSP methods are 



 

67 

 

used. These methods and test results are employed with four different scenarios to 

understand the behavior of methods better. 

 

AHP is widely used as an evaluation method in different research areas. Its relative 

calculations and matrix based structure normalizes and refines the performance values 

of alternatives. LSP is another method used in many different disciplines as AHP. It 

normalizes the performance values via weighted powers. Both contain user weights to 

evaluate the effect of the performance items on the result in different scenarios. 

However, LSP’s structure seems to be more reliable according to the writer of this 

thesis, since it employs weighted powers and those powers can be selected according to 

the relation between items. In AHP, if an alternative has lower values in an important 

category with respect to other alternatives but have much higher values in another 

category, it can score better than the other alternatives. This means that the better side 

of the platform will compensate the bad sides. This issue is decreased with the use of 

weights. However, it may still lead a wrong decision in some cases where a function 

that is not as important as the other one can compensate the performance of another 

important function. Therefore, in this work LSP is applied to the results in addition to 

AHP method. 

 

In summary, this performance study shows that Cloud Foundry is the best platform 

among the three PaaS platforms according to the test results. The reason is that it is the 

best in many of the functions, and in functions that it is not the best; it has small 

difference with its alternative. The platform which ranked as the second, changes 

according to the evaluation method and the resources needed. AHP ranks Heroku as the 

second and OpenShift as the third for all the scenarios except the database intensive 

scenario. That is because of the very bad database results of Heroku. LSP ranks Heroku 

as the second for scientific application scenario and database intensive application 

scenario, whereas it ranks OpenShift as the second for enterprise application and equal 

weight application scenarios. 

 

In stability side of the performance, the winner changes in each category. Cloud 

Foundry is the most stable platform in CPU performance. Then Heroku comes and 



 

68 

 

OpenShift is the worst. In database operations, the best one is Heroku. OpenShift is 

ranked as the second performer and the worst is Cloud Foundry. However, all of the 

three platforms need stability improvements in database operation times. When it comes 

to memory stability, the deviations are again low as in CPU. The best platform is 

OpenShift. Cloud Foundry is ranked as the second and Heroku is the third. 

 

Overall, this thesis provides a comprehensive set of performance items. Database 

operations are also added to the performance items which are inevitable functions for 

PaaS solutions. Appropriate benchmarks for this set of features are also provided. Three 

public PaaS platforms have been tested in these performance functions which are Cloud 

Foundry, Heroku, and OpenShift. Test results are evaluated with four different 

scenarios to give an insight for the alternatives under different resource needs. Two 

different comparison methods, namely AHP and LSP, are applied to the results to 

reinforce the decision between the alternatives. According to the best knowledge of the 

writer of this thesis work, the LSP method is not applied to the selection of PaaS 

platform problem in previous studies before. AHP and LSP results show that the Cloud 

Foundry is the best PaaS alternative among the three platforms inspected. 

 

The writer of this thesis believes that this thesis provides valuable information about 

comparison of performance of PaaS platforms. Of course, the PaaS is continuously 

improving and new features can be added to the function framework provided here. 

However, the ones provided will not change very much in near future. Also, the applied 

evaluation methods will be useful for future works. Another topic for future work is to 

inspect the performance of platforms in parallel computing. Such a study will show the 

dynamics of high computing resource utilization in PaaS platforms and how they 

perform under high volume of processing requirements. 

  



 

69 

 

REFERENCES 

 

 

Books 

 

Garfinkel, S. L., and Abelson, H., 1999. Architects of the information society: Thirty-

five years of the laboratory for computer science at MIT. Cambridge, 

Massachusetts, U.S.A: MIT Press  

Parkhill, D. F., 1966. The challenge of the computer utility. U.S.A: Addison-Wesley 

Publishing Company 

Saaty, T.L., 1980. The analytic hierarchy process. New York, U.S.A: McGraw-Hill. 

  



 

70 

 

Periodicals 

 

Garg, S. K., Versteeg, S., and Buyya, R., 2013. A framework for ranking of cloud 

computing services. Future Generation Computer Systems. 29 (4), pp. 1012-1023. 

Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R., Fahringer, T., and Epema, D. H. 

J., 2011. Performance analysis of cloud computing services for many-tasks 

scientific computing. IEEE Transactions on Parallel and Distributed Systems. 22 

(6), pp. 931 - 945. 

Tran, V. X., Tsuji, H., and Masuda, R., 2009. A new QoS ontology and its QoS-based 

ranking algorithm for web services. Simulation Modelling Practice and Theory. 

17 (8), pp. 1378–1398. 

Wang, L., Laszewski, G. V., Kunze, M., and Tao. J., 2010. Cloud computing: A 

perspective study. New Generation Computing. 28 (2), pp. 137-146. 

 

 

  



 

71 

 

Other Sources 

 

A complete history of cloud computing [online], 2013. 

http://www.salesforce.com/uk/socialsuccess/cloud-computing/the-complete-

history-of-cloud-computing.jsp [accessed 13 January 2013] 

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., 

Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M., 2009. Above the clouds: A 

Berkeley view of cloud computing. Electrical Engineering and Computer 

Sciences Technical Report. University of California, Berkeley.  

Binnig, C., Kossmann, D., Kraska, T., and Loesing, S., 2009. How is the weather 

tomorrow? Towards a benchmark for the cloud. 2nd International Workshop on 

Testing Database Systems, DBTest, 29 June 2009, New York, USA 

Carr, N., 2008. Cloud computing. Encyclopedia Britannica, [online] 

http://www.britannica.com/EBchecked/topic/1483678/cloud-computing [accessed 

20 January 2013] 

Chellappa, R., 1997. Intermediaries in cloud-computing: A new computing paradigm. 

INFORMS meeting, 26-29 October 1997, Dallas, U.S.A. 

Cloud Services Measurement Initiative Consortium (CSMIC), Service measurement 

index, 2011. Carnegie Mellon University Silicon Valley, California, USA, 

[online] http://www.cloudcommons.com/documents/10508/186d5f13-f40e-47ad-

b9a6-4f246cf7e34f. [accessed 27 January 2013]. 

Columbus, L., 2012. Cloud computing and enterprise software forecast update. 

Forbes.com, [online]. 8 November 2012, 

http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-computing-and-

enterprise-software-forecast-update-2012/ [accessed 20 January 2013]. 

 

 

http://www.salesforce.com/uk/socialsuccess/cloud-computing/the-complete-history-of-cloud-computing.jsp
http://www.salesforce.com/uk/socialsuccess/cloud-computing/the-complete-history-of-cloud-computing.jsp
http://www.britannica.com/EBchecked/topic/1483678/cloud-computing
http://www.cloudcommons.com/documents/10508/186d5f13-f40e-47ad-b9a6-4f246cf7e34f
http://www.cloudcommons.com/documents/10508/186d5f13-f40e-47ad-b9a6-4f246cf7e34f
http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-computing-and-enterprise-software-forecast-update-2012/
http://www.forbes.com/sites/louiscolumbus/2012/11/08/cloud-computing-and-enterprise-software-forecast-update-2012/


 

72 

 

Costa, P. J. P. d., and Cruz, A. M. R. d., 2012. Migration to Windows Azure - Analysis 

and comparison. 4th Conference of Enterprise Information Systems – aligning 

technology, organizations and people (CENTERIS 2012). Procedia Technology 5 

(2012), pp. 93-102.  

Dujmovic, J. J., 1996. A method for evaluation and selection of complex hardware and 

software systems. The 22nd International Conference for the Resource 

Management and Performance Evaluation of Enterprise Computing Systems, 10-

13 December 1996, San Diego, USA, CMG 96 Proceedings 1, pp. 368-378.  

Foster, I., Zhao, Y., Raicu, I., and Lu, S., 2008. Cloud computing and grid computing 

360-degree compared. Grid Computing Environments Workshop, 12-16 

November 2008, GCE'08, Texas, U.S.A, pp. 1-10. 

Getting Started - A short history of Git, 2013. [online] http://git-

scm.com/book/en/Getting-Started-A-Short-History-of-Git [accessed 13 January 

2013]. 

Gillet, S. E., and Kapor, M., 1996. The self-governing internet: Coordination by design 

[online], University of Massachusetts Institute of Technology, 

http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html [accessed 20 January 

2013] 

Gong, C., Liu, J., Zhang. Q., Chen, H., and Gong, Z., 2010. The characteristics of cloud 

computing. 39th International Conference on Parallel Processing Workshops. 13-

16 September 2010, San Diego, California, U.S.A, pp. 275-279. 

Kharif, O., 2012. Kleiner Perkins considering new fund for cloud-computing services 

startups. Bloomberg, [online], 10 February 2012, 

http://www.bloomberg.com/news/2012-02-10/kleiner-perkins-considering-new-

fund-for-cloud-computing-services-startups.html [accessed 20 January 2013]. 

Kundra, V., December 9, 2010. 25 point implementation plan to reform federal 

information technology management [online], The White House, Washington, 

http://www.dhs.gov/sites/default/files/publications/digital-strategy/25-point-

implementation-plan-to-reform-federal-it.pdf. [accessed 18 March 2013]. 

http://git-scm.com/book/en/Getting-Started-A-Short-History-of-Git
http://git-scm.com/book/en/Getting-Started-A-Short-History-of-Git
http://ccs.mit.edu/papers/CCSWP197/CCSWP197.html
http://www.bloomberg.com/news/2012-02-10/kleiner-perkins-considering-new-fund-for-cloud-computing-services-startups.html
http://www.bloomberg.com/news/2012-02-10/kleiner-perkins-considering-new-fund-for-cloud-computing-services-startups.html
http://www.dhs.gov/sites/default/files/publications/digital-strategy/25-point-implementation-plan-to-reform-federal-it.pdf
http://www.dhs.gov/sites/default/files/publications/digital-strategy/25-point-implementation-plan-to-reform-federal-it.pdf


 

73 

 

Licklider, J. C. R., and Taylor, R. W., 1968. The computer as a communication device, 

[online]. Systems Research Center. 

http://sloan.stanford.edu/mousesite/Secondary/Licklider.pdf. [accessed 26 May 

2013]. 

Longbottom, R., Roy Longbottom's PC benchmark collection, [online], 

http://www.roylongbottom.org.uk  [accessed 13 January 2013] 

McCalphin, J., The Stream benchmark java code, [online], 

http://www.cs.virginia.edu/stream/FTP/Contrib/Java/STREAM.java [accessed 13 

January 2013]. 

Mell, P., and Grance, T., 2011. The NIST definition of cloud computing, 

Recommendations of the National Institute of Standards and Technology, 

[online]. National Institute of Standards and Technology, U.S. Department of 

Commerce, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. 

[accessed 20 January 2013]. 

Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W., and Li, Q., 2009. Comparison of 

several cloud computing platforms. 2nd International Symposium on Information 

Science and Engineering, 26-28 December 2009, Shanghai, Hong Kong, pp. 23-

27. 

Perry, G., 2008. How cloud & utility computing are different, [online]. 

http://gigaom.com/2008/02/28/how-cloud-utility-computing-are-different/ 

[accessed 13 January 2013] 

Roth, I., 2011. Announcing OpenShift: The platform-as-a-service for developers who 

love open source and CDI, [online]. 

http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-

solution-called-cloud-foundry.html [accessed 13 January 2013] 

Salah, K., Al-Saba, M., Akhdhor, M., Shaaban, O., and Buhari, M.I., 2011. 

Performance evaluation of popular cloud IaaS providers. 6th International 

Conference on Internet Technology and Secured Transactions, 11-14 December 

2011, Abu Dhabi, United Arab Emirates, pp. 345-349. 

http://sloan.stanford.edu/mousesite/Secondary/Licklider.pdf
http://www.roylongbottom.org.uk/
http://www.cs.virginia.edu/stream/FTP/Contrib/Java/STREAM.java
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://gigaom.com/2008/02/28/how-cloud-utility-computing-are-different/
http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-solution-called-cloud-foundry.html
http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-solution-called-cloud-foundry.html


 

74 

 

Salesforce.com signs definitive agreement to acquire Heroku, [online], 2010. 

http://news.heroku.com/news_releases/salesforcecom-signs-definitive-agreement-

to-acquire-heroku [accessed 13 January 2013] 

Schmidt, E., Conversation with Eric Schmidt hosted by Danny Sullivan, Search Engine 

Strategies Conference, [online], 9 August 2006, 

http://www.google.com/press/podium/ses2006.html [accessed 20 January 2013] 

Sempolinski, P., and Thain, D., 2010. A comparison and critique of Eucalyptus, 

OpenNebula and Nimbus. 2nd IEEE International Conference on Cloud 

Computing Technology and Science. 30 November 2010 - 3 December 2010, 

Indianapolis, U.S.A., pp. 417-426. 

Surksum, K. v., 2011. VMware announces its PaaS solution called Cloud Foundry, 

[online]. http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-

paas-solution-called-cloud-foundry.html. [accessed 13 January 2013]. 

Tudoran, R., Costan, A., Antoniu, G., and Bougé, L., 2012. A performance evaluation 

of Azure and Nimbus clouds for scientific applications. 2nd International 

Workshop on Cloud Computing Platforms - CloudCP '12. New York, USA, pp. 1-

6. 

Voras, I., Mihaljevic, B., and Orlic, M., 2011. Criteria for evaluation of open source 

cloud computing solutions. 33rd International Conference on Information 

Technology Interfaces, 27-30 June 2011, Dubrovnik, Croatia, pp. 137-142. 

Wind, S., 2011. Open source cloud computing management platforms: Introduction, 

comparison, and recommendations for implementation. 2011 IEEE Conference on 

Open Systems (ICOS2011), 25-28 September 2011, Langkawi, Malaysia, pp. 175-

179. 

Yu, H. Q., and Molina H., 2007. A modified logic scoring preference method for 

dynamic web services evaluation and selection. The 2nd European Young 

Researchers Workshop on Service Oriented Computing, 11-12 June 2007, 

University of Leicester, United Kingdom.  

http://news.heroku.com/news_releases/salesforcecom-signs-definitive-agreement-to-acquire-heroku
http://news.heroku.com/news_releases/salesforcecom-signs-definitive-agreement-to-acquire-heroku
http://www.google.com/press/podium/ses2006.html
http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-solution-called-cloud-foundry.html
http://cloudcomputing.info/en/news/2011/04/vmware-announces-its-paas-solution-called-cloud-foundry.html


 

75 

 

Yu, H. Q., and Reiff-Marganiec, S., 2008. A method for automated web service 

selection, IEEE Congress on Services 2008, 6-11 July 2008, Hawaii, U.S.A. 

 


