T.C. BAHÇEŞEHİR ÜNİVERSİTESİ

DETERMINING THE RELATIVE EFFICIENCY OF THE STOCK MARKETS BY CLASSICAL AND FUZZY DATA ENVELOPMENT ANALYSIS

M.S. Thesis

Hakan BALKAN

İstanbul, 2011

T.C. BAHÇEŞEHİR ÜNİVERSİTESİ The Graduate School of Natural and Applied Sciences Industrial Engineering

DETERMINING THE RELATIVE EFFICIENCY OF THE STOCK MARKETS BY CLASSICAL AND FUZZY DATA ENVELOPMENT ANALYSIS

M.S. Thesis

Hakan BALKAN

Supervisor: Assoc. Prof. Dr. F. Tunç BOZBURA Co-Supervisor: Asst. Prof. Dr. Ahmet BEŞKESE

İstanbul, 2011

T.C BAHÇEŞEHİR UNIVERSITY The Graduate School of Natural and Applied Sciences Industrial Engineering

Title of the Master's Thesis	: Determining The Relative Efficiency of The Stock Markets by Classical and Fuzzy Data Envelopment
	Analysis
Name/Last Name of the Student	: Hakan Balkan
Date of Thesis Defense	: June, 20, 2011

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

Assoc. Prof. F. Tunç BOZBURA Acting Director

This is to certify that we have read this thesis and that we find it fully adequate in scope, quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members: Assoc. Prof. Dr. F. Tunç BOZBURA (Supervisor) : Prof. Dr. Selim ZAİM : Assoc. Prof. Dr. Erkan BAYRAKTAR :

ABSTRACT

DETERMINING THE RELATIVE EFFICIENCY OF THE STOCK MARKETS BY CLASSICAL AND FUZZY DATA ENVELOPMENT ANALYSIS

Balkan, Hakan

Industrial Engineering Supervisor: Assoc. Prof. F. Tunç BOZBURA

June 2011, 164 pages

In this study the efficiency of the stock markets of 45 countries is examined with a country-based approach by using classical and fuzzy Data Envelopment Analysis (DEA) methods. In the study, beside evaluation of the results of classical and fuzzy Data Envelopment Analysis, there is a detailed literature survey about the relationship between the stock markets and economic growth, the determinants of the stock market development and methodology.

The input variables in DEA models are Gross Domestic Product (GDP), GDP per capita, institutional environment, business environment, financial stability, banking financial services and non-banking financial services. The outputs variables are market capitalization value in billion USD, value traded in billion USD and turnover ratio.

Classical DEA models were solved for years 2007, 2008 and 2009. In classical DEA application in addition to overall efficiency (CCR), pure technical efficiency (BCC) and scale efficiency scores; target values and reference tables for these years were presented. The change in efficiency over years was measured by using Malmquist Total Productivity Index.

In fuzzy DEA application, the efficiency scores for three α -cut levels (0.25, 0.50, and 0.75) obtained by using Wang et al. (2005) approach were given and then countries were ranked by using Minimax Regret Approach. Finally comparison of efficiency scores obtained by classical and fuzzy DEA were presented.

Keywords: Stock Market, Data Envelopment Analysis, Fuzzy, Efficiency

ÖZET

HİSSE SENEDİ PİYASALARININ ETKİNLİĞİNİN KLASİK VE BULANIK VERİ ZARFLAMA ANALİZİ İLE BELİRLENMESİ

Balkan, Hakan

Endüstri Mühendisliği Tez Danışmanı: Doç. Dr. F. Tunç BOZBURA

Haziran 2011, 164 sayfa

Bu çalışmada 45 ülkenin hisse senedi piyasalarının etkinliği ülke bazlı bir yaklaşımla ve klasik ve bulanık Veri Zarflama Analizi (VZA) yöntemleri kullanılarak incelenmeye çalışılmıştır. Çalışmada, klasik ve bulanık Veri Zarflama Analizi sonuçlarının değerlendirilmesi yanında hisse senedi piyasaları ve ekonomik büyüme, hisse senedi piyasalarının gelişmişliğini etkileyen faktörler ve metodoloji hakkında detaylı bir literatür araştırması bulunmaktadır.

VZA modellerinde girdi değişkenleri Gayri Safi Yurtiçi Hasıla, kişi başı Gayri Safi Yurtiçi Hasıla, kurumsal çevre, iş çevresi, finansal istikrar, bankacılık hizmetleri ve bankacılık dışı finansal hizmetlerdir. Çıktı değişkenleri ise milyar USD cinsinden piyasa kapitalizasyonu, milyar USD cinsinden işlem hacmi ve devir oranıdır.

Klasik VZA modelleri 2007, 2008 ve 2009 yılları için çözülmüştür. Klasik VZA uygulamasında toplam etkinlik (CCR), saf teknik etkinlik (BCC) ve ölçek etkinliği değerlerine ek olarak ilgili yıllar için hedef değerler ve referans tabloları sunulmuştur. Etkinliğin yıllar içindeki değişimi Malmquist Toplam Prodüktivite Endeksi ile ölçülmüştür.

Bulanık VZA uygulamasında Wang ve diğ. (2005) yaklaşımı kullanılarak üç α-kesim düzeyi (0.25, 0.50, and 0.75) için elde edilen etkinlik değerleri verilmiştir ve sonrasında ülkeler Minimax Pişmanlık Yaklaşımı kullanılarak sıralanmıştır. Son olarak klasik ve bulanık VZA yöntemleri ile elde edilen etkinlik değerlerinin karşılaştırması sunulmuştur.

Anahtar Kelimeler: Hisse Senedi Piyasası, Veri Zarflama Analizi, Bulanık, Etkinlik

TABLE OF CONTENTS

LIST OF TABLES	VI
LIST OF FIGURES	VIII
ABBREVIATIONS	IX
1. INTRODUCTION	1
2. LITERATURE SURVEY	5
2.1 THE STOCK MARKETS AND ECONOMIC GROWTH	5
2.1.1 Financial Development and Economic Growth in General	5
2.1.2 The Stock Market Development and Economic Growth	7
2.1.3 The Stock Market Development and Economic Growth in Tu	rkey 14
2.2 THE DETERMINANTS OF THE STOCK MARKET DEVELOPM	MENT 15
2.2.1 The Determinants of The Stock Market Development	15
2.2.2 Empirical Studies	
2.3 EFFICIENCY AND DATA ENVELOPMENT ANALYSIS	
2.3.1 Efficiency and Related Concepts	
2.3.2 Types of Efficiency	
2.3.2.1 Technical Efficiency	
2.3.2.2 Scale Efficiency	
2.3.2.3 Overall Efficiency	
2.3.3 Measurement of Efficiency	
2.3.4 The Definition and Development of DEA	
2.3.5 Stages in DEA Implementation	
2.3.5.1 Determination of DMUs	
2.3.5.2 Determination of inputs and outputs	
2.3.5.3 Determination of the model and solving the model	
2.3.5.4 Evaluation of results	
2.3.6 Strengths of Data Envelopment Analysis	
2.3.7 Weaknesses of Data Envelopment Analysis	
2.3.8 Basic DEA Models	
2.3.8.1 Input oriented CCR model	
2.3.8.2 Output oriented CCR model	
2.3.8.3 Input oriented BCC model	
2.3.8.4 Output oriented BCC model	
2.3.9 Malmquist Total Factor Productivity Index	
2.3.10 Fuzzy Data Envelopment Analysis	
2.3.10.1 Fuzzy DEA Approaches	
2.3.10.2 Wang, Greatbanks and Yang (2005) Approach 2.3.10.3 Ranking Interval Efficiencies: The Minimax Regret App	
3. APPLICATION AND RESULTS	48
3.1 THE AIM AND THE METHODOLOGY	
3.2 DETERMINATION OF THE DECISION MAKING UNITS	49

3.3 DETERMINATION OF INPUTS AND OUTPUTS	
3.3.1 Determination of Inputs	
3.3.2 Determination of Outputs	
3.4 MODELS	
3.5 APPLICATION AND RESULTS OF CLASSICAL DEA	
3.5.1 Results and Evaluation of 2007	
3.5.2 Results and Evaluation of 2008	62
3.5.3 Results and Evaluation of 2009	70
3.6 EVALUATION OF EFFICIENCY IN TIME BY TFP INDEX	78
3.7 APPLICATION AND RESULTS OF FUZZY DEA	86
3.8 RANKING DMUs AND COMPARING WITH DEA	91
4. CONCLUSION AND FURTHER RESEARCH	97
REFERENCES	
APPENDICES	
CURRICULUM VITAE	

LIST OF TABLES

Table 2.1: Classification FDEA approaches and related studies
Table 3.1: Countries included in the study 50
Table 3.2: The pillars and sub pillars used in Financial Development Report51
Table 3.3: Input and output values for 2007
Table 3.4: Some descriptive statistics of input and output values
Table 3.5: Correlations of variables for 2007 56
Table 3.6: DEA efficiency scores for 2007 57
Table 3.7: Some statistics derived from Table 3.6
Table 3.8: Target values for outputs in 2007
Table 3.9: Reference table for 2007
Table 3.10: Input and output values for 2008 63
Table 3.11: Some descriptive statistics of variables for 2008
Table 3.12: Correlations of variables for 2008 65
Table 3.13: Efficiency scores for 2008 66
Table 3.14: Some statistics derived from Table 3.13
Table 3.15: Target values for outputs in 2008
Table 3.16: Reference table for 2008
Table 3.17: Some descriptive statistics of variables
Table 3.18: Input and output values for 2009 71
Table 3.19: Correlations of variables for 2009
Table 3.20: Efficiency scores in 200974
Table 3.21: Some statistics derived from Table 3.20
Table 3.22: Target values for outputs in 2009
Table 3.23: Reference table for 2009
Table 3.24: 2007, 2008 and 2009 overall efficiency scores
Table 3.25: Number of efficient and inefficient countries for three years
Table 3.26: Change in Efficiency (CE), change in technical efficiency (CTE) and
TFP Index83
Table 3.27: Lower and upper bound efficiencies for three α levels
Table 3.28: MRA calculation to determine the first country 92

Table 3.29: MRA calculation to determine the second country		
Table 3.30: Comparison of efficiency scores of two special countries	94	
Table 3.31: Ranking in classical DEA and fuzzy DEA	95	

LIST OF FIGURES

ABBREVIATIONS

Banker Chames Cooper		BCC
Chames Cooper Rhodes		CCR
Change in Efficiency		CE
Change in Technical Efficiency		CTE
Constant Returns to Scale		CRS
Data Envelopment Analysis		DEA
Decision Making Unit		DMU
Decreasing Returns to Scale		DRS
Fuzzy Data Envelopment Analysis		FDEA
Gross Domestic Product		GDP
Increasing Returns to Scale		IRS
Istanbul Stock Exchange		ISE
Linear Programming		LP
Minimax Regret Approach		MRA
Organisation for Economic Co-operation and Development		OECD
Total Factor Productivity		TFP
United States Dollar	:	USD

1. INTRODUCTION

Financial market is a broad term describing any marketplace where buyers and sellers participate in the trade of assets such as equities, bonds, currencies and derivatives. Financial markets are typically defined by having transparent pricing, basic regulations on trading, costs and fees and market forces determining the prices of securities that trade. Financial markets are divided into two: money markets and capital markets. Money markets fund short-term supply and demand whereas capital markets fund medium or long-term supply and demand. While the most important actors in the money markets are banks, this is stock exchanges in capital markets. The most important and common tools traded on stock markets are shares are and bonds.

When it is considered that value traded in 2009 in the world was about 80 trillion USD while total GDP of the world in 2009 was about 56 trillion USD, the importance of the stock markets can be understood easily. Every country in the world aims to get bigger shares in these markets.

Some reasons why a stock market is an important financial institution and produces huge amount of trading volume can be stated as follows (Rousseau and Wachtel, 2000, p.1936-1937):

- A stock market provides investors and entrepreneurs with a potential exit mechanism especially for venture capital investments.

- Foreign direct investment and portfolio investments enter into especially emerging market and transition economies through stock markets.

- The provision of liquidity through organized exchanges encourages both international and domestic investors to transfer their surpluses from short-term assets to the long-term capital market, where the funds can provide access to permanent capital for firms to finance large, indivisible projects that enjoy substantive scale economies

- Since stock market provides important information, shareholders can benefit from this, managers become more careful about their decisions and benchmarking will be easier between companies.

There are a lot of studies which support the view that stock market positively contribute to economic growth and other benefits of stock markets. However, there are some negative approaches or reservations about stock markets. For instance Singh (1997) claims that the actual operation of the pricing and takeover mechanism even in well functioning stock markets lead to short termism and lower rates of long term investment particularly in firm specific human capital and because of this short termism managers are rewarded for their success in financial engineering instead of for creating new wealth through organic growth. Additionally, Singh (1971) argues that the takeover mechanism focuses on the basis of size rather than performance so a large inefficient firm gets a higher chance of survival than a small relatively efficient firm. Bhide (1994) argues that selling shares easily in very liquid markets weaken commitment and incentive to exert corporate control of investors (Yartey, 2008, p.5).

As seen, positive aspects of stock markets emphasized in the literature. The subject of this study is to examine the efficiency of stock markets with a country-based approach by using classical and fuzzy Data Envelopment Analysis methods.

For this study, efficiency can be defined as the degree of realization of the stock market objectives defined for a country as a result of the activities realized for reaching these goals. The methods for measuring efficiency can be classified under three headings: the ratio analysis, parametric methods and non-parametric methods. In this study Data Envelopment Analysis (DEA) which is one of the non-parametric methods is used as a method for evaluating stock market efficiencies of countries.

Data Envelopment Analysis is a relatively new, linear programming based, data oriented approach which is directed to frontiers rather than central tendencies for evaluating the performance or efficiencies of a set of peer entities called Decision Making Units (DMUs) which convert multiple inputs into multiple outputs (Cooper, 2004, p.1-3).

DEA is decided as a proper method to examine stock market efficiencies of countries because it does not need to have specific functional forms of relations between inputs and outputs, a large number of inputs and outputs can be considered at the same time in DEA and the weights of inputs and outputs are determined by the model. DEA is used in different areas to evaluate efficiency such as banking, health and education. However, during the literature survey, any internationally cited article is found which examines the efficiency of stock markets by using DEA method.

Two important stages in DEA models are to determine DMUs and inputs and outputs. In this study, 45 countries of which 25 are developed countries and 20 are developing countries taken as DMUs. The 45 countries represent 90 percent of whole world in terms of market capitalization value and 95 percent of the whole world in terms of trading volume. For inputs variables Gross Domestic Product (GDP), GDP per capita and the first five pillars of Financial Development Report of World Bank is used. The first five pillars are namely; institutional environment, business environment, financial stability, banking financial services and non-banking financial services. As outputs variables three market-related variables are used. These variables are, market capitalization value in billion USD which is the sum of product of stock price by stock number; value traded in billion USD which is the value of buying or selling through year and turnover ratio as percent, which division of the value traded to average (current year and the year before current year) market capitalization.

Classical DEA is employed in the study for three years: 2007, 2008 and 2009. The change in efficiency over years is measured by using Malmquist Total Productivity Index which measures total factor productivity change over time using distance functions.

Most of the data regarding inputs and outputs can be evaluated imprecise or vague especially the data take place in Financial Development Report. In Financial Development Report all pillars and sub pillars are weighted with a conservative approach and have equal weights. In order to include imprecise data into the model Fuzzy Data Envelopment Analysis (FDEA) is employed in the study as a type of classical DEA and the results of two methods are compared. The efficiency scores in FDEA are found and ranked by Wang, Greatbanks and Yang (2005) approach.

This research has three sections following introduction:

In the second section there is a detailed literature survey about the relationship between the stock markets and economic growth and the determinants of the stock market development giving both theoretical and empirical dimensions. Also in the same section a detailed information about efficiency, Data Envelopment Analysis, Data Envelopment Analysis models, Malmquist Total Productivity Index and Fuzzy Data Envelopment Analysis.

The third section is the application section and includes stages of application, efficiency scores obtained by using classical DEA for years 2007, 2008 and 2009, target values and reference tables for these years, results of Malmquist Total Productivity Index, efficiency scores obtained by using fuzzy DEA, ranks of countries in terms of loss of efficiency by using Minimax Regret Approach and finally comparison of efficiency scores obtained by classical and fuzzy DEA.

In the last section the results reached in the study is summarized and some recommendations are presented for the further research and decision makers.

2. LITERATURE SURVEY

2.1 THE STOCK MARKETS AND ECONOMIC GROWTH

2.1.1 Financial Development and Economic Growth in General

There are a lot of academic researches on financial development and economic growth in the literature. Some of those researches include both banking sector and stock markets in their analyses. Some of them on the other hand, include either banking sector or stock markets in their works. In recent years, it is observed that the number of academic studies on relationship between development of stock markets and economic growth has increased.

There are five explanations for the causal relationship between financial development and reel sector backed economic growth (Blum 2002, p.6). These explanations will be mentioned below.

(a) No causal relationship: Any of the scholars on development economics, including Nobel Prize winners, do not see finance as a focus of research on development economics (Meir and Seers 1984). In addition, according to the neo-classics, who focus on external technological developments and growth in population, savings is not a determining element of long term economic growth. They also claim that financial intermediaries have not an effect on the increase in long term economic growth (Levine 1997, p. 688).

(b) Demand-following relationship: According to the Robinson (1952), financial development follows the development in the reel sector. As a result, demand for the financial services is formed. Lucas (1998) on the other hand, claims that the role of the development of financial sector on the economic growth is exaggerated unnecessarily (Deb and Mukherjee 2008, p. 143).

(c) Supply-leading relationship: Development of financial services provides development of reel sector. Gurley and Shaw (1955), Goldsmtih (1969), Mckinnon (1973), Levine and Zarvos (1998) have made researches that supports this argument.

(d) Financial development affects economic development negatively: In the post-Keynesian approach financial liberalization causes risky investment implementations, weak financial structures, and low reel sector growth rates. It also introduces opportunities for inefficient direct rent seeking facilities and it completely distorts growth (Grabel 1995, pp.127–130). New Keynesian theory (Stiglitz and Weiss, 1981), on the other hand, claims that market equilibrium can be neither a law nor a necessary assumption for competitive analysis in the financial markets (Auerbach and Siddiki 2004, p. 243).

(e) Reciprocal causality between financial development and economic growth: Financial markets develop as a result of economic growth. As a result, it contributes to the real economic growth with its feedback effect. Therefore, there can be mentioned a two sided relationship between development and economic growth rather than a one sided causal relationship. Patrick (1966) claims that real sector is an important element of development of financial sector in the economies of underdeveloped countries, whereas in developed countries finance fits more and more to do Demand-following approach (Blum 2002, p. 7). Lewis (1955), Greenwood and Jovanovic (1990), Berthelemy and Varoudakis (1996), Greenwood and Smith (1997) have made studies that supports this argument.

Scholars that support supply-leading approach emphasize that functions that were provided during the economic growth process and financial liberalization have positive effects on economic growth. On the other hand, scholars that support demand-following approach claims that financial system can be developed as a result of economic growth.

Studies that support supply-leading approach constitute the majority in the Literature. Pioneer studies that deal with financial development and economic growth with supplyleading approach are Schumpeter (1912), Gurley and Shaw (1955), and Goldsmith (1969).

Joseph Schumpeter (1912) claims that services like mobilization of savings, evaluation of projects, management of risk, monitoring of managers, and facilitation of operations, which are provided by financial intermediaries, forms foundation for technological innovation and economic growth (King and Levine 1993, p. 717).

One of the most comprehensive studies that analyses the channels by which financial development effects economic growth was made by Pagano (1993). Pagano examines both the direction of causal relationship between financial development and economic growth and the way that financial development affect economic growth (whether increasing investment efficiency or investment rate). Pagano (1993) claims financial intermediaries can affect economic growth by effecting social marginal efficiency of capital, transfer rate of savings to investments, and private saving rate (Pagano 1993, pp. 614–615).

According to the Pagano (1993), during the process of transformation of savings to investments, the effect of financial development on economic growth will increase even more in case of a reduction on transaction costs, commissions and fees that banks and the stock markets demand (p.615). Financial intermediaries, increase economic growth through increasing productivity of capital by way of promoting investment of more risky but more productive investment projects by their ability on information gathering and risk sharing (p.615). Development of capital markets may affect the saving rate which can affect economic growth. Risk sharing, household loans and interest rate affect rate of saving. As a result of risk sharing that is provided by financial intermediaries, decrease in saving rates has a negative impact upon economic growth (p. 617). Liquidity constraints increase saving rates in case consumption is made by current sources. The increase in the total saving rates transforms to a more rapid growth. In contrast, increase in credits on consumption or mortgages causes a decrease both in savings and the growth (pp. 617-618). Financial pressure and imperfect competition markets cause the interest rates that paid to people whose marginal propensity to consume is high to be lower than the normal interest rates that is expected. In this case, there will be a depreciation of marginal product of capital (pp. 618–619).

2.1.2 The Stock Market Development and Economic Growth

It is widely accepted that financial development is closely related with economic growth. Especially for developing countries, there are a lot of studies on the relation between stock market development and economic growth.

Throughout the last twenty years, majority of the academic studies claim a positive relation between stock market development and economic growth. [Levine (1991,1997), Atje and Jovanovic (1993), Devereux and Smith (1994), Obstfeld (1994), Demirgüç-Kunt and Levine (1995), Bencivenga et al. (1996), Levine and Zervos (1993, 1995, 1998), Singh (1997), Rousseau and Wachtel (2000), Khan and Senhadji (2000), Arestis et al (2001), Van Nieuwerburgh (1998, 2005), Beck and Levine (2003), Rousseau and Sylla (2003), Beck and Levine (2004)]. In the following paragraphs of this section it will be tried to explain significant academic studies on the relation between stock market development and economic growth.

Atje and Jovanovic (1993) used the ratio of value traded to GDP for stock market in their cross-section analysis in which they used ordinary least squares. They also used real growth per capita as the indicator for economic growth. In their study, they examined 40 countries over the period 1980-1988. Their results indicate that there is a strong relationship between economic growth and the stock market development (Atje and Jovanovic 1993, pp. 632–640).

Levine and Zervos (1998) examined 47 countries for the period between 1976 and 1993. They used the ratio of market capitalization to GDP as the indicator of the stock market development. They also used turnover ratio (trading volume to average market value) as the liquidity indicator. They examined increase in economic growth (real GDP accumulation, efficiency (economic growth-0.3xcapital per capita), capital accumulation), and saving rates (private savings in terms of GDP in percentage) by the indicators related to stock market. In addition, they used variables related to integration of international financial markets and volatility in stock markets. As a result, they found a significant relation between liquidity indicators in stock markets and economic growth, capital accumulation, and increase in efficiency. However, they could not find a direct relationship between variables mentioned above and market value and volatility. Another finding of their study is banking sector and stock markets are not substitutes but complementary (Levine and Zervos 1998, pp. 537–558).

Due to the problems on econometrics methods in the study of Levine and Zervos (1998), Beck and Levine (2004) made another attempt to examine the same subject by

using panel data sets and generalized moments method developed for dynamic panels with similar indicators over the period 1976-1998 for 40 countries.

Beck and Levine (2004) did not use value traded because according to them value traded does not accurately measure market liquidity and if markets are on the rise value traded forecasts economic growth higher as a result of rising stock prices. They also eliminate market capitalization because of the fact that the relationship between market capitalization and economic growth is not significant. Instead they used turnover ratio as an indicator of stock market development. As the indicator of economic growth, they used real GDP per capita. In conclusion they found that the hypothesis that there is no relationship between financial development and economic growth is null. Both banking sector and stock markets have a positive impact upon economic growth. In addition, they put forward stock markets provides different services than banks and stock markets support economic growth independent from banking sector (Beck and Levine 2004, pp. 427–440).

Arestis et al. (2001) used quarterly data of 5 countries in their advanced time series techniques. They used the ratio of market capitalization to GDP as a stock market development indicator. They also used real GDP as an economic growth indicator. According to the analysis results, stock market development has a positive impact upon economic growth but the significance of banking sector is less than the stock markets (Arestis et al 2001, pp. 24–37).

Kulatrane (2001) examined the effect of financial deepening on the long run economic growth for a period of 38 years (1954-1992) in South Africa. He used value traded as an indicator of stock market development level and real GDP per capita as an indicator of economic growth. He also included interest rate, investment rate, and human capital as other indicators in his study. He developed two models by using VECM Structure. In MODEL I, he searched that whether financial system effects real GDP per capita directly or indirectly through investment rate or not. In MODEL II on the other hand, he made the same analysis by considering possible feedback effects. Model results indicate that financial deepening strengthens economic growth in South Africa but this occurs indirectly by saving rates. In addition, in MODEL II he also concluded that stock

markets have a more significant effect on real GDP per capita (Kulatrane 2001, pp. 3–25).

Rousseau and Wachtel (2000) used both cross-section and generalized moments dynamic panel data methods for 47 countries over the period of 15 years between 1980 and 1995. In cross-section model, they used the ratio of market capialization to GDP and value traded as the indicators of stock market development. In panel data model on the other hand they used market capitalization and value traded. As for the economic growth indicator they used real GDP. According to the cross-section model results, stock market development has a positive impact on economic growth in accordance with supply-leading approach. Results of panel data method indicate that both market capitalization and value traded effects economic growth positively nevertheless effect of value traded is greater and more permanent. In conclusion, market liquidity has very significant effect on economic growth (Rousseau and Wachtel 2000, pp.1938–1956).

Rajan and Zingales (1998) examined 41 countries for the period 1980-1990 whether industrial sectors that are relatively more in need of external finance develop disproportionately faster in countries with more-developed financial markets. They used the ratio of annual average real growth rate to the value added in industry and, net investments as indicators of growth rate of industries. They also used the ratio of stock market capitalization to the GDP and current accounting standards as financial development indicators. The results of their studies show that financial development, in firms that are intensely in need of external finance, reduce cost of external finance and have a positive impact upon economic growth and also it plays a significant role in emergence of new firms (Rajan and Zingales 1998, pp. 559–586).

Beck et al. (2008) studied growth rates of different industries by considering financial development levels of countries. They examined 36 industries from production sectors of 44 countries. For development they used private sector credit data as an indicator. The results indicate that the industries which are formed heavily by small firms, develops disproportionately in the countries that have developed financial systems. Small firms in financially developed countries have greater share in the total value added produced in the whole economy in comparison to the small firms of a financially less developed country. Therefore financial development causes a disproportionate

development of small firms and also it increases value added that firms produced. According to the authors, this study is a complimentary to those of Guiso, Sapienza and Zingales (2004); Cetorelli and Strahan (2006); Kumar, Rajan and Zingales (2001). Additionally, Beck et al (2008) used stock market turnover ratio and value traded as an indicator of financial development in their alternative model. In this model, it is shown that small firms progress more rapidly in the countries with developed financial systems.

Yeniel (2009) examined the effects of banking sector and stock market development on economic growth in the 29 countries that are whether EU member or candidates, over the period 1993-2007. In their study they used static and dynamic panel data analyses, panel co-integration analysis, and causality analyses. According to the static regression results, in developing countries, development of banking sector is more significant on economic growth than the developed countries whereas in developed countries development of stock markets is more influential on economic growth. According to the results of the dynamic regression model development of stock markets is more significant in both developing and developed countries. In addition, it was pointed out that these relations are also valid in the long run (Yeniel, 2009).

In the literature, there are also researches on single countries rather than a group of countries on the relationship between stock markets and economic growth.

Nowbutsin and Odit (2009) examined the effects of stock market development on economic growth in both short and long run for Mauritius over the period of 1989-2006. They used the ratio of market capitalization to GDP and value traded to GDP as stock market development indicator. They also used secondary enrollment ratio and the ratio of foreign direct investments to GDP as indicators of economic growth. They concluded that development of stock markets have a positive effect on the economic growth both in the long run and short run (Nowbutsin and Odit 2009, pp. 77-88).

Van Nieuwerburg et al (2006) examined the effects of financial development on economic growth in Belgium for 4 different periods (1830-2002) based on their distinctive characteristics. They used co-integration and Granger causality tests. They mainly used data based on banking sector along with data on market capitalization as an

indicator for stock markets. They claimed that financial development and financing that are based on stock markets are significant determinants on economic growth.

The reasons for contribution of stock markets on economic growth, along with the increase of liquidity in trade in the post 1873 era, are removal of regulative barriers to companies with limited liability and removal of barriers to trading of shares of companies that are listed in the stock exchanges. Additionally, stock market development is a better forecaster of economic growth than bank-based development (Van Nieuwerburg et al 2006, pp. 13-38).

Hossain and Kamal (2010), examined the existence of a causal relationship and cointegration between stock markets and economic growth in Bangladesh for a period of 1976-2008. In the study, they used the ratio of market capitalization to GDP as an indicator of stock market development. They also used real GDP per capita and real GDP growth rate as indicators of economic growth. As a result, they claimed that stock market development and economic growth have the similar stochastic trend thus they have mutual dependence. Direction of the causality is from stock market development to the economic growth. As for the Bangladesh economy, they found out that stock market development affects economic growth significantly (Hossain and Kamal 2010, pp. 87-95).

Ake and Ognaligu (2010) examined the relationship between stock markets and economic growth in Cameroon over the period 2006-2010. They used Granger based Sims causality test in their study. Researchers used real GDP per capita as indicator of the economic growth. They also used the ratio of market capitalization to GDP, the ratio of value traded to GDP, and turnover ratio as indicators of stock market development. According to the results, contrary to the all other results in the literature, stock markets in Cameroon do not affect the economic growth (Ake and Ognaligu 2010, pp. 82-88).

Deb and Mukherjee (2008) examined the relationship between stock market development and economic growth by using unit root and long run Granger non-causality tests in India over the period 1996-2007. They used growth in the real GDP per capita as indicator of economic growth. They also used the ratio of market capitalization to the real GDP and the ratio of total value traded to real GDP as the

12

indicators of development level of stock markets in the country. They concluded, in accordance with supply-leading approach, that there is a causal relationship from stock market to economic growth in case real value traded and volatility are taken into account. In addition, they found out that there is a reciprocal relationship between economic growth and real market capitalization (Deb and Mukherjee 2008, pp. 142-149).

Dritsaki and Dritsaki-Bargiota (2005), examined the causal relationships between stock markets, banking sector, and economic growth in Greece for the period of 1988-2002. They used market capitalization as the indicator of stock market development. They also used money supply as the banking indicator and the industrial production as the indicator of economic growth. According to the results, there is a reciprocal relationship between banking sector and economic growth. The way of the relation is from economic growth to stock markets as indicated in the demand-following approach. Furthermore, they could not find a causal relationship between banking sector and stock markets (Dritsaki and Dritsaki-Bargiota 2005, pp. 113-127).

Athanasios and Antonios (2010) used Vector Error Correction model and co-integration tests in their research to find out causal relationship between stock markets, credit markets, and economic growth both in the long run and in the short run. They used growth rate of real GDP as the indicator of economic growth; stock market general index as the stock market indicator; and the percentage of credits given to domestic private sector by banking sector to GDP as the credit markets indicator. In conclusion, they found out a one-side causal relation from economic growth towards stock markets in harmony with demand-following approach (Athanasios and Antonios 2010, p. 33-42).

Müslümov and Aras (2002), examined the relationship between economic growth and stock markets for 22 OECD countries including Turkey over the period 1982-2000. They used panel data method and Granger causality tests. Müslümov and Aras used real GDP per capita as the indicator of economic growth; and they also used the ratio of market capitalization to GDP and the ratio of value traded to GDP as the indicators of stock market development. In some countries such as Turkey, Austria, Denmark, Germany, Italy, Luxembourg, Mexico, and Norway, they could not find any causal

relationship between stock markets and economic growth. In other countries such as Canada, Finland, Spain, and Sweden, they found out a one-sided causal relationship (as in the supply-leading approach) materialized by market capitalization. According to the research results, direction of causal relationship between stock market development and economic growth does not change both in the short run and in the long run (Müslümov and Aras 2002, pp. 90-100).

2.1.3 The Stock Market Development and Economic Growth in Turkey

Ağır (2003), examines the effects of variables which are related to the banking and stock markets on economic growth using econometrics methods such as the unit root test, cointegration analysis and the three-month data for the period 1987-2002. He concludes that for examined period, ISE has a positive contribution to economic growth and the relationship between banking and the ISE is weak.

Yücel (2009), examines the effect of capital market development on economic growth in Turkey using the monthly data for the period of 1997-2007 and principal component analysis, unit root tests and cointegration tests methods. In the study as indicators of sophistication of capital market; international integration (stock index investments to ISE index), trading volume of Istanbul Stock Exchange to GDP, the total traded value of ISE to ISE index and ISE index, as an indicator of economic growth the real GDP per capita are taken. As a result, it is concluded that there is a long-term positive relationship between the development of capital markets and economic growth.

Gokdeniz, Erdogan and Kalyüncü (2003), using quarterly data for the period 1989-2002 and the Least Squares method find that the stock market in Turkey does not support economic growth, private bonds do not have explanatory power on growth, the increase in the rate of the total commercial bank assets does not support economic growth. Additionally they find money explains growth and inflation has a negative effect on growth.

Karagöz and Armutlu (2007), examined the relationship between stock market development and economic in Turkey using quarterly data for GDP and SE-100 for the period 1988-2006. In their research which is using Granger causality test, they finds

economic growth is the reason of the development in stock market, whereas the stock market development does not have an impact on economic growth.

Kar and Pentecost (2000), examined the relationship between Turkey's banking sector development and economic growth and the direction of causality for the period 1963-1995 using cointegration and Granger causality tests. In the study, money to income ratio, bank deposit liabilities to income ratio, private sector credits to income ratio, ratio of the domestic private sector credits in loans and domestic loans to income has been taken as development indicators of the banking sector and GDP has been taken as theindicator of economic growth. As a result a causal relationship has been identified between financial development and economic growth in the long term. However, there is not a absolute decision about the direction of causality, considering the results obtained in the studied period, it is concluded that in line with demand-following approach there is a causal relationship from economic growth to financial development in Turkey.

2.2 THE DETERMINANTS OF THE STOCK MARKET DEVELOPMENT

2.2.1 The Determinants of The Stock Market Development

When the studies that are investigating the determinants affecting the development of the stock markets are examined, the author of this thesis can state that they can be classified in two main subtitles: (1) Macroeconomic Factors (2) Institutional / Structural Factors.

Macroeconomic factors are income level, growth rate, investment rate, savings rate, inflation, foreign investment, macroeconomic stability, currency stability and similar factors.

Structural / Institutional factors can be divided into three in their own.

(a) Legal Structure and Institutions: These factors related to the legal structure and the applications such that property rights, shareholder protection, legal origin (French, English, German and so on), strengths of legal rights, accounting standards, disclosure

policies, sanctions and regulations, transparency, the efficiency of the courts, contract enforcement and similar factors.

(b) Financial and Economical Structure: These factors are liberalization, trade openness, the dominant character of the financial system (banking based or market based), banking and insurance sectors, cost of doing business, human capital, remittances and similar factors.

(c) Administrative Structure and Risk: These factors are corruption, bureaucratic quality, the effective applicability of regulations, accountability, the level of intervention in the economy, willingness to delegate, political rights and political risks.

The results obtained from empirical studies (some of them will be explained in detail in next section) on the factors affecting development of the stock markets can be summarized according to factors as follows:

Macroeconomic Factors: In general, although there are the different opinions about the direction of causality, there is a strong and positive relationship between macroeconomic factors such as income level, growth rate, investment rate, savings rate, foreign investment, macroeconomic stability and the stock market development (Yartey 2008; Naceur et al. 2007; Garcia and Liu 1999; Wassal and Kamal 2005).

Legal Structure and Institutions: Generally, the countries has developed stock markets when they have advances in the level of protection of property rights, the level of shareholder protection, accounting standards, disclosure policies and sanctions, the effectiveness of the courts, and similar factors is more advanced countries with more developed stock market. The listed factors above are associated with both the level of development of the countries and legal origin of the countries. Common (English) law countries are more suitable for development of the specified factors and thus the stock markets rather than Civil (Roman) law countries (Buchanan and English 2007; La Porta et al. 1998; Demirgüç-Kunt and Levine 1999).

Financial and Economical Structure: There is a positive relationship stock markets and banking and non-banking financial sectors although according to the different stages of development the nature and direction may vary, also they are complementary and not competing with each other (Yartey 2008; Naceur et al. 2007; Demirgüç-Kunt and Levine 1995; Garcia and Liu 1999). When the countries are categorized as marketbased and bank-based, it is seen that the stock markets are more developed in more developed and common-law origin countries and the banking sector is more developed in civil-law origin countries. (Ergüngör 2004; Demirgüç-Kunt and Levine 1999). In addition, financial openness and liberalization in general positively affect the development of stocks markets (Levine and Zervos 1998; Wassal and Kamal 2005; Chinn and Ito 2006).

Administrative Structure and Risk: Although there are different findings about the degree of influence, the factors related to the administrative structure and risk such as the level of corruption, bureaucratic quality, the effective applicability of regulations, accountability, the level of intervention in the economy, political rights and political risks usually have a strong influence on the stock market development (Lombardo and Pagano 2000; Yartey 2008; Billmeier and Massa 2008).

2.2.2 Empirical Studies

In this part, empirical studies related to the determinants of the stock market development will be explained in detail.

Yartey (2008) examined the macroeconomic and institutional determinants of stock market development in emerging economies using a panel dataset of 42 countries for the period 1990 to 2004. The dependent variable in study the level of Stock Market Development measured by the value of listed shares divided by GDP, the explanatory variables and their measures used in the study are as follows:

- Income Level: Log GDP per capita in US dollars
- Banking Sector Development: The value of domestic credit provided by the banking system to the private sector relative to GDP
- Savings and Investment: Gross domestic savings as percentage of GDP and gross domestic investments as a percentage of GDP
- Stock Market Liquidity: The value traded as a percentage of GDP.
- Macroeconomic Stability: Real interest rate and current inflation

- Private Capital Flows: Foreign direct investment as a percentage of GDP and net private capital flows as a percentage of GDP.

- Institutional Quality: A composite index of four components from the International Country Risk Guide used as a measure of institutional quality: law and order, bureaucratic quality, democratic accountability and corruption.

He found some important results:

- Income level, domestic investment, banking sector development, private capital flows, and stock market liquidity are important determinants of stock market development in emerging markets.

- At early stages of stock market development, the banking sector is a compliment to the stock market in financing investment but as they both develop, banks and the stock market begin to compete with each other.

- Institutional quality is important determinant of stock market development in emerging markets.

- The main factors explaining the development of the stock market in emerging market countries can also valid in South Africa.

Frost, Gordon and Hayes (2006) examined the relationship between stock exchange disclosure systems (rather than actual company disclosures) and market development at 50 of the member stock exchanges of the World Federation of Exchanges during 1997-1998. They computed market development as the mean of five variables standardized before aggregation. (1) stock market capitalization held by minorities deflated by gross domestic product, (2) number of listed domestic companies deflated by country population (3) number of newly listed domestic companies deflated by country population (4) annual number of transactions in equity shares deflated by year-end market capitalization and (5) annual adjusted domestic trading volume deflated by year-end market capitalization. They found that in addition to legal protections and institutions the strength of the disclosure system that is disclosure rules, monitoring, and enforcement is positively associated with market development, after controlling for legal system, legal protection of investors, market size. Thus it can be concluded that the disclosure system is critical for development of the stock markets.

Naceur et al. (2007) examined the main macroeconomic determinants of stock market development and the impact of financial intermediary development on stock market capitalization using a sample of twelve MENA region countries over a varying period. The countries in the study are Bahrain, Egypt, Iran, Jordan, Kuwait, Lebanon, Morocco, Oman, Qatar, Saudi Arabia and Tunisia. They found that saving rate, financial intermediary (measured by credit to private sector), stock market liquidity (measured by the ratio of value traded to GDP) and the stabilization variable (measured by inflation change) are the important determinants of stock market development. Other findings of the study are income and investment are not significantly important for stock market development and banking sectors and stock markets are complements rather than substitutes in the growth process.

Billmeier and Massa (2009) examined the relation between the stock market capitalization and the determinants of stock market capitalization in a panel of 17 emerging markets in the Middle East and Central Asia, including both hydrocarbon-rich countries and economies without sizeable natural resource wealth. They included additional variables to their study: an institutional variable measured by the help of the "Economic Freedom Index" of Heritage Foundation and remittances. They found that both institutions and remittances have a positive and significant impact on market capitalization especially in countries without significant hydrocarbon sectors; whereas in resource-rich countries stock market capitalization is mainly driven by the oil price.

Levine and Zervos (1998) examined whether the indicators of stock market development change following the liberalization of specific capital controls in 16 countries including Turkey. They took the ratio of market capitalization to Gross Domestic Product (GDP), the ratio of total value traded to GDP, the ratio of total value traded to market capitalization (turnover ratio), and the volatility of stock returns as indicators of stock market development. They used the International Capital Asset Pricing Model (ICAPM) and the International Arbitrage Pricing Model (IAPM) to compute monthly measures and then analyzed the time-series behavior of these integration measures before and after policy changes in the liberalization of specific capital controls. They found that stock markets tend to become larger, more liquid, and more volatile following the liberalization of restrictions on international portfolio flows and 10 out of 16 national markets exhibit significant signs of becoming more integrated internationally following the liberalization of investment and repatriation restrictions. They also examined the relationship between the indicators of stock market development and three regulatory indicators; the availability and quality of published information on listed firms, the level of accounting standards and the intensity of investor protection laws. They found that the results do not support the hypothesis that imposing internationally accepted accounting and investor protection rules will promote stock market development.

Wassal and Kamal (2005) investigated the relationship between stock market growth measured by the mean of the logarithm of market capitalization/GDP and trading value/GDP and economic growth, financial liberalization policies, foreign portfolio investment and country risk in 40 emerging economies between the period 1980–2000 over four distinct time periods: 1980–84; 1985–89; 1990–94; and 1995–99. They constructed their stock market development model in light of Calderon-Rossell's model and the previous discussion. They used Two Stages Least Squares combined with Fixed Effect technique.

The explanatory variables used in the study and their measures are as follows: Economic growth: the logarithm of GNP per capita growth rate Additional liquidity: the logarithm of the turnover ratio Financial and economic policies: the number of listed companies, foreign direct investment to relative GDP, exports plus imports relative to GDP Foreign portfolio investment: investment liabilities divided by GDP Country risk: Political, financial and economic components of International Country Risk Guide.

By analyzing the results of the model they found that economic growth, financial liberalization policies, and foreign portfolio investments are the important factors for stock markets' growth compatible with demand-following approach and the political risk variable is not significant for stock market development.

Chinn and Ito (2006) investigated whether financial openness leads to financial (banking and stock markets) development after controlling for the level of legal development using a panel including 108 countries over the period 1980 to 2000. Their findings stated in the article are as follows:

- A higher level of financial openness contributes both directly and in an interactive manner with legal and institutional development to the development of equity markets but only if a country is equipped with a reasonable level of legal and institutional development

- A higher level of bureaucratic quality and law and order, as well as the lower levels of corruption, may enhance the effect of financial opening in fostering the development of equity markets.

- Among emerging market countries, the overall level of finance-related legal/institutional development increases stock market trading volumes and enhances the effect of financial openness. However, the finance related legal/institutional (level of creditor protection, effectiveness of the legal system in enforcing contracts, shareholder protection, the comprehensiveness of company reports) variables do not exhibit as strong an effect as the general legal/institutional variables(level of corruption, law and order, and the quality of the bureaucratic system)

- Liberalization in cross-border goods transactions is a precondition for capital account liberalization, the development in the banking sector is a precondition for equity market development and that the developments in these two types of financial markets have interactive effects.

Demirgüç-Kunt and Levine (1995), in their study examined the relationship between institutions of financial intermediation and stock markets for the period 1986-1993 in 41 countries. The main implication of their study is that the level of stock market development is highly correlated with the development of the banks, nonbanks, and insurance companies, and private pension funds. Other findings of their study are as follows:

- Big markets tend to be less volatile, more liquid and less concentrated in a few stocks

- Internationally integrated markets tend to be less volatile, and institutionally developed markets tend to be large and liquid.

- The three most developed markets are Japan, the United States, and Great Britain

- The most underdeveloped markets are Colombia, Venezuela, Nigeria, and Zimbabwe.

- Korea, Switzerland, and Malaysia have highly-developed stock markets,

- Turkey, Greece, Argentina, and Pakistan have underdeveloped markets.

- Some of emerging countries' markets such as Hong Kong, Singapore, Korea, Malaysia, and Thailand are more developed than some of developed countries' markets such as France, the Netherlands, Australia, Canada, Sweden, and Norway.

Garcia and Liu (1999) examined the macroeconomic determinants (real income, saving rate, financial intermediary development, stock market liquidity and macroeconomic stability) of stock market development in fifteen industrial and developing countries from 1980 to 1995. These countries include seven countries in Latin America, six countries in East Asia, and two industrial countries: the United States and Japan. The dependent variable in the study is market capitalization defined as the total market value of all listed shares divided by GDP. Explanatory variables and their measures are as follows:

Real income: real GDP in U.S. dollars

Income growth rate: Calculated by using real income

Financial intermediary development: Domestic credit to the private sector divided by GDP, the ratio of broad money supply M3 to GDP

Stock market liquidity: The ratio of total value traded to GDP, the ratio of the total value traded divided by market capitalization

Macroeconomic stability: Inflation rate, inflation change, the standard deviation of inflation rate

They found that the real income level, saving rate, financial intermediary development, and stock market liquidity are important determinants of market capitalization, while macroeconomic stability does not prove significant. They also found that stock market development and financial intermediary development are complements instead of substitutes.

La Porta et al. (1998) is one of the pioneers who investigated effect of legal origins on finance. In their study "Law and Finance" they examined legal rules covering protection of corporate shareholders and creditors, the origin of these rules and the quality of their enforcement in 49 countries by classifying them according to origin of their commercial laws. The authors categorize the commercial laws as two broad traditions: common law which is English in origin and civil law which is Roman in origin. There are three major families in civil law with some differences: French, German and Scandinavian. They state in their study that in terms of legal protection and rights of shareholders and creditors common-law countries are the strongest, French-civil-law countries are the strongest and French-civil-law countries are the weakest, common-law countries come before French-civil-law countries. In addition they observe that the shares of largest public companies belong to limited number of investors in countries that fail to protect shareholders' rights.

La Porta et al. (2006) examined securities laws specially laws governing initial public offerings in 49 countries in relation with stock market development. They cite three alternative hypotheses in the literature and test them. The null hypothesis is to leave securities markets unregulated. Other two alternative hypotheses assume that regulation is necessary but differ in what kind of government intervention would be optimal within such a framework. They use 8 variables in their study: disclosure requirements, liability standards, supervisor characteristics, rule-making power, investigative power, orders, criminal sanctions, and public enforcement.

In conclusion, they states that the null hypothesis is invalid, that is, regulations are necessary because financial markets do not prosper when left to market forces alone and regulations facilitate private contracting rather than provide for public regulatory enforcement. They also point out that both extensive disclosure requirements and standards of liability facilitating investor recovery of losses are associated with larger stock markets. Finally, they states that legal origin predicts stock market development for instance, common-law emphasis on private contracting and standardized disclosure and reliance on private dispute resolution using market-friendly standards of liability.

Buchanan and English (2007) investigated how legal foundation influences the return distribution, the growth rate of market capitalization, the ratio of market capitalization to gross domestic product (GDP) and the correlation structure of emerging market indices with developed market indices using a sample of 24 emerging markets over the period 1976-1999. They found that emerging markets from the French-civil law systems earned higher returns, have higher correlations with the world market portfolio, higher average growth rates in market capitalization and lower average market capitalization to GDP than their English common- law countries. Additionally, most emerging markets returns are more highly correlated to the returns of developed markets with an English common law tradition. They suggest in their study that market capitalization to GDP can be a better way to classify markets as emerging for the purposes of financial market research.

Demirgüç-Kunt and Levine (1999) examined cross-section of roughly 150 countries in order to analyze how the size, activity, and efficiency of financial systems differ across different per capita income groups, define different indicators of financial structure and identify different patterns as countries become richer, and investigate legal, regulatory, and policy determinants of financial structure after controlling for per capita GDP. They give the results of their study as follows (pp.4-5):

- Banks, other financial intermediaries, and stock markets all grow and become more active and efficient as countries become richer. As income grows, the financial sector develops.

- In higher income countries, stock markets become more active and efficient than banks. Thus, financial systems tend to be more market based.

- Countries with a common law tradition, strong protection for shareholder rights, good accounting standards, low levels of corruption, and no explicit deposit insurance tend to be more market-based, even after controlling for income.

- Countries with a French civil law tradition, poor accounting standards, heavily restricted banking systems, and high inflation generally tend to have underdeveloped financial systems, even after controlling for income.

Ergüngör (2004) finds interesting results somewhat similar to the results Demirgüç-Kunt and Levine (1999). In common-law countries which courts enforce laws effectively, providing them with more detailed creditor and shareholder protection laws has a greater impact on the development of financial markets compared with civil-law systems, both banking and stock markets tend to be more developed, whereas civil-law countries tend to be bank-oriented. In that stage one can think which structure is more preferable for economic growth. Levine (2002) studies this problem and finds that there is no doubt that overall financial development is related with economic growth but there is no empirical support for either the bank-based or the market-based view.

2.3 EFFICIENCY AND DATA ENVELOPMENT ANALYSIS

2.3.1 Efficiency and Related Concepts

The concepts efficiency, productivity and performance are often used instead of each other and they are related concepts but have different meanings.

Efficiency is the degree of realization of the objectives defined for an organization as a result of the activities realized for reaching these goals (National Productivity Center, Glossary of Productivity).

Performance is a general concept that includes efficiency, productivity, quality, innovation and profitability (Kecek 2010, p. 14). As seen the essential difference between performance and efficiency is that performance considers time and quality.

Productivity is a dimension of performance like efficiency and can be defined most generally as the value obtained by the ratio of goods or services produced to inputs to produce these goods or services (National Productivity Center, Glossary of Productivity). As seen the essential difference between productivity and efficiency is that productivity is usually based on only one input and one output and considers time.

2.3.2 Types of Efficiency

There are three types of efficiency: technical efficiency, scale efficiency and overall efficiency. They will be explained below.

2.3.2.1 Technical Efficiency

Technical efficiency is the ratio of potential output to actual output (Candemir and Deliktaş 2006, p. 16). Technical efficiency can be classified as input oriented technical efficiency and output oriented technical efficiency (Lorcu 2008, pp. 39-40):

a) Input oriented technical efficiency: The success of a production unit in obtaining the current output level with the least possible use of resources.

b) Output oriented technical efficiency: The success of a production unit in producing the greatest possible output level using the proper combination of inputs.

2.3.2.2 Scale Efficiency

There are three states in scale efficiency:

a) Constant Returns to Scale (CRS): If the rate of increase in inputs causes the same rate of increase in outputs that implies constant returns to scale.

b) Decreasing Returns to Scale (DRS): If the rate of increase in inputs causes the less than this rate of increase in outputs that implies decreasing returns to scale.

c) Increasing Returns to Scale (IRS): If the rate of increase in inputs causes the more than this rate of increase in outputs that implies increasing returns to scale.

2.3.2.3 Overall Efficiency

Overall efficiency is multiplication of the scale efficiency and technical efficiency. For a DMU to be efficient it must be both technically efficient and scale efficient. If there is a difference between overall efficiency and scale efficiency this implies that related DMU is not scale efficient (Coeli 2005, p.172).

2.3.3 Measurement of Efficiency

The methods for measuring efficiency can be classified under three headings: the ratio analysis, parametric methods and non-parametric methods.

Ratio analysis is in the form of proportion with single input and single output to each other. Although due to ease of application and understanding it is a frequently used method, especially on systems contains more than one input and output may not be sufficient. To try merging more than one ratio in a single ratio reduce the intelligibility and cause subjective weighting.

Parametric methods use frontier approach in measuring efficiency and assume the presence the production function of the sector and structure of this function has an analytical basis. These methods generally use regression techniques for measuring efficiency and the production function is usually described by relating a single output to many inputs. In parametric methods, there are three approaches: Stochastic Frontier Approach, Distribution Free Approach and Thick Frontier Approach.

Non-parametric methods that emerged as an alternative to parametric methods has been adopted mathematical programming as solution technique. Non-parametric methods have no assumptions about the structure of production function and efficiency frontier is created by the observed units rather than a default situation in these methods. They are suitable for the systems that have a structure consist of a large number of inputs and outputs. Two common methods of non-parametric methods are Free Disposal Hull and Data Envelopment Analysis (DEA).

2.3.4 The Definition and Development of DEA

Data Envelopment Analysis (DEA) is a relatively new, linear programming based, data oriented approach which is directed to frontiers rather than central tendencies for evaluating the performance or efficiencies of a set of peer entities called Decision Making Units (DMUs) which convert multiple inputs into multiple outputs. (Cooper 2004, pp.1-3).

Basic assumption in DEA is that all firms have similar strategic goals and use the same kind of input and generate the same kind of output (Golany and Yu 1997, p. 28). DEA compares a set of homogeneous DMUs relatively and assigns an efficiency score to each DMU by finding the distance of each unit with that of its peers on the best practice (frontier). Those units that lie on the frontier are recognized as efficient, and those that do not, as inefficient. (Emrouznejad and Anouze 2009, p. 5742).

Efficiency measurement is accepted to begin in modern era with the Farrell (1957) who drew upon the work of Debreu (1951) and Koopmans (1951). Farrell (1957) aimed to define a simple measure of firm efficiency which could account for multiple inputs (Coelli 1996, p.4).

Several studies has been conducted after Farrell's study on the measurement of the efficiency and finally in 1978, during doctoral dissertation about the efficiency of a public education program of Edwardo Rhodes under the consultancy of W.W Cooper, Data Envelopment Analysis method has been developed (Cooper 2005).

The first model in DEA developed by Chames, Cooper and Rhodes and it was inputoriented and constant return to scale model (CCR model). Then, Banker, Chames and Cooper, developed the variable returns to scale model (BCC model) in 1984 (Coelli 2005).

Data Envelopment Analysis gained a big popularity in a short time and used by researchers in many studies such that Emrouznejad et al. (2008), have examined the studies regarding Data Envelopment Analysis between the years 1978 - 2006. In mentioned study is determined that there were over 4000 publications only academic journals and books considered and over 7000 publications when unpublished theses, conference presentations as well as other publications are included regarding Data Envelopment Analysis. 4000 publications were conducted by 2500 unique authors and they are over 55000 pages in total. According to Emrouznejad et al. (2008), the most popular areas in DEA studies are banking, education and health. Beside number of publications if it is wondered the methodological developments in DEA see Cook, W.D, and Seiford, L.M, 2009.

2.3.5 Stages in DEA Implementation

There are four stages in a Data Envelopment Analysis implementation generally (Ramanathan 2003, p. 172-177):

- a) Determination of DMUs to be analyzed,
- b) Determination of appropriate inputs and outputs for the model,
- c) Determination of right DEA model for the problem,
- d) Evaluation of results and post-DEA analysis.

2.3.5.1 Determination of DMUs

There are two critical criteria to take in consideration when selecting and determining the Decision Making Units (DMUs): Homogeneity and number of DMUs (Ramanathan, 2003 p. 173).

The DMUs which perform the same tasks with similar objectives, work in the same market conditions, except for differences in density and size of the units have similar inputs and outputs may be considered as a homogeneous (Baysal and Toklu 2001).

There are two generally accepted rules in literature to determine the sufficient number of DMUs:

(a) The number of DMUs should be at least more than twice of the sum of the number of inputs and outputs (Dyson et al. 2001),

(b) The number of DMUs should be at least the maximum of either the product of the numbers of inputs and outputs or three times of the sum of the number of inputs and outputs (Cooper et al. 2001).

2.3.5.2 Determination of inputs and outputs

In the literature there is not a standard approach how to determine inputs and outputs. Usually considering the number of DMUs in terms of homogeneity inputs and outputs are determined as a result of subjective assessments for the specific problem. As required by DEA method inputs and outputs must have positive value. Inputs and outputs can be in different measurement units. In addition, it is a preferred situation that the number of input variables greater than the number of output variables (Tankersley, 1996). In principle to have more accurate efficiency values, to have smaller values for inputs and greater values for outputs is a preferred situation (Cooper et al. 2000).

2.3.5.3 Determination of the model and solving the model

DEA models can basically be categorized as input oriented or output oriented and variable returns to scale or constant returns to scale.

Essentially, the orientation can be selected according to which quantities (inputs or outputs) can be most controlled. Furthermore, in many instances, the choice of orientation has only a limited effect on the efficiency scores obtained (Coelli 2005, p. 180).

The selection either constant returns to scale or variable returns to scale models is determined to consider the effect of the scale on the performance of DMUs and generally depends on the specific application (Ramanathan 2003, p. 175).

In order to solve DEA models, linear programming package programs such as LINDO, GAMS can be used also special software for DEA such as DEA Solver, EMS, DEA Frontier, DEA Excel Solver, Pioneer, DEAP can be used. If preferred DEA models can be solved by using Microsoft Excel Solver Add-in.

2.3.5.4 Evaluation of results

The findings that can be obtained after implementation of DEA can be summarized as follows (Ulucan 2002):

- Efficient Decision Making Units,
- Decision Making Units that are not efficient,
- Amount of excess resources used by inefficient DMUs,
- The level of outputs that should be produced by inefficient DMUs with existing input level,
- Reference sets of inefficient DMUs which consist of efficient DMUs.

To confirm the robustness of the results after application DEA to make a sensitivity analysis can be useful. In this sense, it may need to examine carefully a DMU that has a small number of DMUs which take it as a reference. In addition, if there is data for more than one period change in efficiency can be analyzed by Malmquist Index (Ramanathan 2003, pp. 176-177).

2.3.6 Strengths of Data Envelopment Analysis

The strengths of DEA can be listed as follows (Kecek 2010, p. 80; Lorcu 2008, pp. 157-159):

- DEA does not need to have specific functional forms of relations between inputs and outputs,

- In DEA applications a large number of inputs and outputs can be considered at the same time,

- Inputs and outputs can be expressed in different units, thus there is no need to do conversions,

- The weights of inputs and outputs are determined by the model,
- DEA directed to frontiers rather than central tendencies.

2.3.7 Weaknesses of Data Envelopment Analysis

The weaknesses of DEA can be listed as follows (Özcan 2007, p. 30; Kecek 2010, p. 81):

- In case, an important input or output is left out of research the results may be misleading and biased,

- Compared with the number of inputs and outputs if the number of DMUs is not sufficient the number of effective units would be much more than the real situation,

- DEA provides a static analysis not dynamic,
- DEA is very sensitive to frontiers and measurement errors,

- DEA measures the relative efficiency and does not give information about the absolute efficiency,

- DEA results may not be suitable for statistical hypothesis testing.

2.3.8 Basic DEA Models

In accordance with developer's initials of surnames, constant returns to scale models are named as CCR models; variable returns to scale models are named BCC models. In the following pages, according to the distinction of being input or output-oriented, CCR and BCC models will be described mathematically.

2.3.8.1 Input oriented CCR model

Decision Making Unit (DMU) to refer to any entity that is to be evaluated in terms of its abilities to convert inputs into outputs. In DEA model there are n DMUs to be evaluated that implies that model is solved n times. Each DMU consumes varying amounts of m inputs to produce s different outputs as such DMU_j consumes x_{ij} amount of input i and produces y_{rj} amount of output r (Cooper 2004, p.8).

As u_r is the weight of output r and v_i is the weight of input i, the ratio form of CCR is as follows:

$$\max h_{o}(u,v) = \frac{\sum_{r=1}^{s} u_{r} y_{ro}}{\sum_{i=1}^{m} v_{i} x_{io}}$$
(2.1)

Subject to,

$$\frac{\sum_{r=1}^{s} u_{r} y_{rj}}{\sum_{i=i}^{m} v_{i} x_{ij}} \leq 1 \qquad j=1,2,3,...,n$$
$$u_{r}, v_{i} \geq \varepsilon > 0; \qquad r=1,2,...s; i=1,2,...m$$

Here, ε is a number smaller than any real positive number. It is included in the constraints to ensure weights to be greater than zero. In addition, it is included in dual problems which will be discussed in the next page, to prevent slack variables affect the objective function.

Due to the above solution can generate an infinite number of solutions, using Chames and Cooper (1962)'s transformation the ratio form is transformed to linear programming form equivalent to the ratio form. However, in this form (u, v) becomes (μ , v). Linear programming form of CCR is as follows:

$$\max z = \sum_{r=1}^{s} \mu_r y_{ro}$$
(2.2)

Subject to,

$$\sum_{r=1}^{s} \mu_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} \le 0$$
$$\sum_{i=1}^{m} v_i x_{io} = 1$$
$$\mu_r, v_i \ge \varepsilon > 0$$

Because of solution of linear programming form is time consuming and the difficulty in determining reference set and the redundant inputs and outputs by taking dual of the model a new model is created, this model is called the envelopment model. Dual model is as follows:

$$\min \ \theta - \varepsilon \left(\sum_{i=1}^{m} s_i^- + \sum_{r=1}^{s} s_r^+ \right)$$
(2.3)

Subject to,

$$\sum_{j=1}^{n} x_{ij} \lambda_j + s_i^- = \theta x_{io}$$

$$\sum_{j=1}^{n} y_{rj} \lambda_j - s_r^+ = y_{ro}$$

$$\lambda_j, s_i^-, s_r^+ \ge 0 \quad ; j=1,2,3,...,n ; r=1,2,...s ; i=1,2,...m$$

In dual formulation;

 θ : is shrinkage coefficient, which determines how much a DMU's inputs can be reduced radially,

 λ_i : is the weight of reference,

 s_i^- : is the slack variable for input i of a DMU,

 s_r^+ : is the slack variable for output r of a DMU.

In fact, the dual form is a result of unification of two linear programming equations [(4) and (5)] that need to be solved separately and successively. They are as follows:

$$\begin{aligned} \theta^* &= \min \theta \end{aligned} (2.4) \\ \sum_{j=1}^n x_{ij} \lambda_j + s_i^- &\leq \theta x_{io} \\ \sum_{j=1}^n y_{rj} \lambda_j - s_r^+ &\geq y_{ro} \\ \lambda_j &\geq 0 \qquad ; j = l, 2, 3, \dots, n \; ; \; r = l, 2, \dots s \; ; \; i = l, 2, \dots m \end{aligned} \\ \max \left(\sum_{i=1}^m s_i^- + \sum_{r=1}^s s_r^+ \right) \qquad (2.5) \\ \sum_{j=1}^n x_{ij} \lambda_j + s_i^- &= \theta x_{io} \\ \sum_{j=1}^n y_{rj} \lambda_j - s_r^+ &= y_{ro} \\ \lambda_j, s_i^-, s_r^+ &\geq 0 \; ; j = l, 2, 3, \dots, n \; ; \; r = l, 2, \dots s \; ; \; i = l, 2, \dots m \end{aligned}$$

An inefficient DMU_o ($\theta < 1$) can be efficient by reducing each input as $(1 - \theta)x_{io} + s_i^-$ or by increasing each output as s_r^+ .

For all types of DEA models, in order to obtain 100percent efficiency, following two conditions must be satisfied at the same time;

- (i) $\theta^*=1$
- (ii) All slacks are zero $(s^{-*} = s^{+*} = 0)$

2.3.8.2 Output oriented CCR model

While input oriented CCR model is maximizing output to input ratio, output oriented CCR model aims to minimize input to output ratio.

The ratio form of output oriented CCR model is as follows:

$$\min \sum_{i=1}^{m} v_i x_{io} / \sum_{r=1}^{s} u_r y_{ro}$$
(2.6)

Subject to,

$$\frac{\sum_{i=i}^{m} v_i x_{ij}}{\sum_{r=1}^{s} u_r y_{rj}} \ge 1 \qquad j=1,2,3,...,n$$
$$u_r, v_i \ge \varepsilon > 0; \qquad r=1,2,...s; \ i=1,2,...m$$

The linear programming formulation of the ratio form is as follows:

$$\min q = \sum_{i=1}^{m} v_i x_{io}$$
 (2.7)

subject to,

$$\sum_{i=1}^{m} v_i x_{ij} - \sum_{r=1}^{s} \mu_r y_{rj} \ge 0$$

$$\sum_{r=1}^{s} \mu_r y_{ro} = 1$$

$$\mu_r, v_i \ge \varepsilon > 0 \quad j=1,2,3,...,n; \quad r=1,2,...s \quad ; i=1,2,...m$$

Finally dual form of output oriented CCR model is as follows:

$$\max \phi + \varepsilon \left(\sum_{i=1}^{m} s_i^- + \sum_{r=1}^{s} s_r^+ \right)$$
(2.8)

Subject to,

$$\sum_{j=1}^{n} x_{ij} \lambda_{j} + s_{i}^{-} = x_{io}$$

$$\sum_{j=1}^{n} y_{rj} \lambda_{j} - s_{r}^{+} = \phi y_{ro}$$

$$\lambda_{j}, s_{i}^{-}, s_{r}^{+} \ge 0 \quad ; j=1,2,3,...,n ; r=1,2,...s ; i=1,2,...m$$

An inefficient DMU_o can be efficient by increasing each output as $(\emptyset - 1)y_{ro} + s_r^+$ or by reducing each input as s_i^-

2.3.8.3 Input oriented BCC model

The differences between CCR and BCC models are the convexity constraint $\sum_{j=1}^{n} \lambda_j = 1$ and variable μ_o in BCC model (Yun 2004).

The linear programming form of input oriented BCC is as follows (Banker et al. 2004):

$$\max z = \sum_{r=1}^{s} \mu_{r} y_{ro} - \mu_{o}$$
(2.9)
Subject to,
$$\sum_{r=1}^{s} \mu_{r} y_{rj} - \sum_{i=1}^{m} v_{i} x_{ij} - \mu_{o} \le 0$$
$$\sum_{i=1}^{m} v_{i} x_{io} = 1$$
$$\mu_{r}, v_{i} \ge \varepsilon > 0 \quad ; j=1,2,3,...,n \; ; \; r=1,2,...s \; ; i=1,2,...m; \; \mu_{o} = urs$$

The dual form of input oriented BCC model is as follows:

$$\min \ \theta - \varepsilon \left(\sum_{i=1}^{m} s_i^- + \sum_{r=1}^{s} s_r^+ \right)$$
(2.10)

Subject to,

$$\sum_{j=1}^{n} x_{ij}\lambda_{j} + s_{i}^{-} = \theta x_{io}$$

$$\sum_{j=1}^{n} y_{rj}\lambda_{j} - s_{r}^{+} = y_{ro}$$

$$\sum_{j=1}^{n} \lambda_{j} = 1$$

$$\lambda_{j}, s_{i}^{-}, s_{r}^{+} \ge 0 \quad ; j = 1, 2, 3, ..., n ; r = 1, 2, ...s ; i = 1, 2, ...m$$

An inefficient DMU_o ($\theta < 1$) can be efficient by reducing each input as $(1 - \theta)x_{io} + s_i^-$ or by increasing each output as s_r^+ .

2.3.8.4 Output oriented BCC model

The linear programming form of input oriented BCC model is as follows:

$$\min q = \sum_{i=1}^{m} v_i x_{io} - v_o$$
 (2.11)

Subject to,

$$\sum_{i=1}^{m} v_i x_{ij} - \sum_{r=1}^{s} \mu_r y_{rj} - v_o \ge 0$$

$$\sum_{r=1}^{s} \mu_r y_{ro} = 1$$

$$\mu_r, v_i \ge \varepsilon > 0 \quad ; j=1,2,3,...,n \; ; \; r=1,2,...s \; ; i=1,2,...m$$

The dual form of input oriented BCC model is as follows:

$$\max \phi + \varepsilon \left(\sum_{i=1}^{m} s_i^- + \sum_{r=1}^{s} s_r^+ \right)$$
(2.12)

Subject to,

$$\sum_{j=1}^{n} \mathbf{x}_{ij} \boldsymbol{\lambda}_{j} + \boldsymbol{s}_{i} = \boldsymbol{x}_{io}$$

$$\sum_{j=1}^{n} y_{rj} \lambda_{j} - s_{r}^{+} = \phi y_{ro}$$

$$\sum_{j=1}^{n} \lambda_{j} = 1$$

$$\lambda_{j}, s_{i}^{-}, s_{r}^{+} \ge 0 \quad ; \quad j=1,2,3,...,n \; ; \; r=1,2,...s \; ; \; i=1,2,...m$$

An inefficient DMU_o ($\emptyset < 1$) can be efficient by increasing each output as (\emptyset -1) $y_{ro}^+ s_r^+$ or by reducing each input as s_i^- .

2.3.9 Malmquist Total Factor Productivity Index

Malmquist Total Factor Productivity Index is product of efficiency change by technical change. It measures total factor productivity change over time using distance functions. As Mohammadi and Ranaei (2011) stated, Malmquist Total Factor Productivity Index do not require behavioral assumptions such as cost minimization, profit maximization or price information which makes it useful compared to other indexes.

In fact original Malmquist index has been formulated by Caves et al. (1982). Fare et al. made some modifications on the formulation of Caves et al. (1982). They called Caves et al. (1982) as CCD.

Following Fare et al. (1994) derivation of index will be given below.

 $\mathbf{x}^t \in \mathbf{R}^N_+$ and $\mathbf{y}^t \in \mathbf{R}^M_+$ are, respectively, the input vectors and output vectors. The production technology S^t models the transformation of inputs, $\mathbf{x}^t \in \mathbf{R}^N_+$, into outputs, $\mathbf{y}^t \in \mathbf{R}^M_+$.

Here,

$$\mathbf{S}^{t} = \{ (\mathbf{x}^{t}, \mathbf{y}^{t}) \mid \mathbf{x}^{t} \text{ can produce } \mathbf{y}^{t} \}$$
(2.13)

Fare, Grosskopf, Norris & Zhang (1994) followed Shephard (1970) to define the output distance function at *t* as:

$$\mathsf{D}_0^{t}(\mathsf{x}^t,\mathsf{y}^t) = \inf\{\theta : (\mathsf{x}^t,\mathsf{y}^t/\theta) \in \mathsf{S}^t\} = (\sup\{\theta : (\mathsf{x}^t,\theta \mathsf{y}^t) \in \mathsf{S}^t\})$$
(2.14)

Note that, $D_0^t(x^t, y^t) \le 1$ if and only if $(x^t, y^t) \in S^t$, and $D_0^t(x^t, y^t) = 1$ if and only if (x^t, y^t) is on the boundary of the technology.

To define the Malmquist index, Fare et al. (1994) defined distance functions with respect to two different time periods:

$$D_0^{t}(x^{t+1}, y^{t+1}) = \inf\{\theta : (x^{t+1}, y^{t+1}/\theta) \in S^t\}$$
(2.15)

and

$$D_0^{t+1}(x^t, y^t) = \inf\{\theta : x^t, y^t / \theta\} \in S^{t+1}\}$$
(2.16)

The distance function in (2.15) measures the maximal proportional change in output required to make (x^{t+1}, y^{t+1}) feasible in relation to technology at time *t*. Similarly, the distance function in (2.16) measures the maximal proportional change in output required to make (x^t, y^t) feasible in relation to technology at time t + 1.

Caves et al. (1982) - CCD define the Malmquist productivity index as

$$M_{CCD}^{t} = \frac{D_{o}^{t+1}(x^{t+1}, y^{t+1})}{D_{o}^{t}(x^{t}, y^{t})}$$
(2.17)

and

$$M_{CCD}^{t+1} = \frac{D_o^t(x^{t+1}, y^{t+1})}{D_o^{t+1}(x^{t+1}, y^{t+1})} \frac{D_o^t(x^t, y^t)}{D_o^{t+1}(x^t, y^t)}$$
(2.18)

In (2.17) reference technology is taken as t, in (2.18) it is t+1. Fare et al. (1994) specify the output-based Malmquist productivity change index as the geometric mean of (2.17) an (2.18) so Malmquist TFP productivity index can then be expressed as:

$$M_{o}(x^{t+1}, y^{t+1}, x^{t}, y^{t}) = \left[\frac{D_{o}^{t+1}(x^{t+1}, y^{t+1})}{D_{o}^{t}(x^{t}, y^{t})} \frac{D_{o}^{t}(x^{t+1}, y^{t+1})}{D_{o}^{t+1}(x^{t+1}, y^{t+1})} \frac{D_{o}^{t}(x^{t}, y^{t})}{D_{o}^{t+1}(x^{t}, y^{t})} \right]^{\frac{1}{2}} (2.19)$$

The term outside the brackets shows the change in technical efficiency while the geometric mean of the two ratios inside the brackets measures the shift in technology between the two periods t and t + 1; this could be called technological progress. Thus;

Efficiency change =
$$\frac{D_o^{t+1}(x^{t+1}, y^{t+1})}{D_o^t(x^t, y^t)} = \frac{D_o^{t+1}(x^{t+1}, y^{t+1})}{D_o^t(x^t, y^t)}$$
 (2.20)

Technical change =
$$\frac{D_o^t(x^{t+1}, y^{t+1})}{D_o^{t+1}(x^{t+1}, y^{t+1})} \frac{D_o^t(x^t, y^t)}{D_o^{t+1}(x^t, y^t)}^{\frac{1}{2}}$$
 (2.21)

In each of the formulas above, a value greater than one indicates an improvement and a value smaller than one presents deteriorations in performance over time.

2.3.10 Fuzzy Data Envelopment Analysis

In this subsection first general information about Fuzzy Data Envelopment Analysis approaches will be given then one of these approaches, which is used in this study, Wang, Greatbanks and Yang (2005) LP formulation and efficiency ranking methodology will be explained.

2.3.10.1 Fuzzy DEA Approaches

Kao and Liu (2011) states that although in the real world, some observations are difficult to measure precisely, observations are missing and need to be estimated or the data need to be predicted, classical DEA approach is sensitive to data variations. In these situations crisp values are assumed to represent imprecise data and the notion of fuzziness is used.

There are plenty of models which attempts to use fuzzy notion in Data Envelopment Analysis. They are called as Fuzzy Data Envelopment Analysis (FDEA) Models.

The leading study incorporating fuzziness into the classical DEA models is Sengupta (1992). Sengupta (1992) defines tolerance levels on both the objective function and constraint violations (Hatami-Marbini et al., 2011).

In their article "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making" Hatami-Marbini et al. (2011) classifies FDEA models as five categories.

a) The tolerance approach: In this approach the main idea is to incorporate uncertainty into the DEA models by defining tolerance levels on constraint violations. It is introduced by Sengupta (1992).

b) The α -level based approach: The a-level approach is one of the most used approaches fuzzy DEA model. This approach tries to find the lower and upper bounds of the α -level of the membership functions of the efficiency scores. It is introduced by Girod (1996).

c) The fuzzy ranking approach: This approach tries to find the fuzzy efficiency scores of the DMUs using fuzzy linear programs which require ranking fuzzy sets. It is introduced by Guo and Tanaka (2001).

d) The possibility approach: In this approach fuzzy variable is associated with a possibility distribution in the same manner that a random variable is associated with a probability distribution. Guo et al. (2000) was the first who introduced this approach.

e) Other developments in fuzzy DEA: In this category there are models that do not fall into the first four categories.

Hatami-Marbini et al. (2011) present a table (see Table 2.1) about the related studies in each approach mentiod above.

In their literature survey Hatami-Marbini et al. (2011) also presents a figure of number of related studies using Fuzzy DEA. From Figure 2.1 it can be seen that number of studies related FDEA increasing by the time.

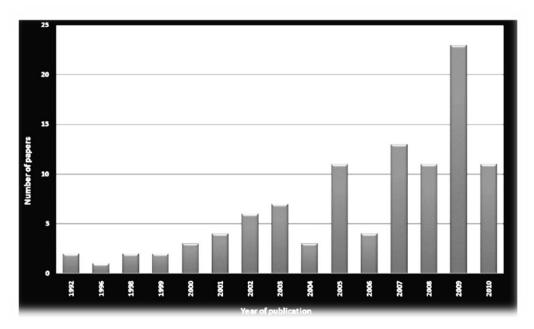


Figure 2.1: Fuzzy DEA studies between 1992-2010 Source: Hatami-Marbini et al., 2011

The tolerance approach	Sengupta (1992a)	Sengupta (1992b)		
The a-level based approach	Azadeh and Alem (2010)	Chiang and Che (2010)		
	Zerafat Angiz et al. (2010a)	Hatami-Marbini et al. (2010a)		
	Hatami-Marbini et al. (in pressd)	Hatami-Marbini and Saati (2009)		
	Saati and Memariani (2009)	Tlig and Rebai (2009)		
	Noura and Saljooghi (2009)	Jahanshahloo et al. (2009a)		
	Wang et al. (2009b)	Hosseinzadeh Lotfi et al. (2009a)		
	Liu and Chuang (2009)	Li and Yang (2008)		
	Karsak (2008)	Azadeh et al. (2008)		
	Ghapanchi et al. (2008)	Liu (2008)		
	Hosseinzadeh Lotfi et al. (2007c)	Saneifard et al. (2007)		
	Allahviranloo et al. (2007)	Azadeh et al. (2007)		
	Kuo and Wang (2007)	Kao and Liu (2007)		
	Liu et al. (2007)	Jahanshahloo et al. (2007b)		
	Zhang et al. (2005)	Saati and Memariani (2005)		
	Wu et al. (2005)	Hsu (2005)		
	Kao and Liu (2005)	Triantis (2003)		
	Kao and Liu (2003)	Saati et al. (2002)		
	Entani et al. (2002)	Guh (2001)		
	Chen (2001)	Kao (2001)		
	Kao and Liu (2000b)	Kao and Liu (2000a)		
	Girod and Triantis (1999)	Meada et al. (1998)		
The fuzzy ranking approach	Triantis and Girod (1998)	Girod (1996)		
	Hatami-Marbini et al. (2010b)	Hatami-Marbini et al. (in pressc)		
	Hatami-Marbini et al. (in presse)	Hatami-Marbini et al. (2009)		
	Jahanshahloo et al. (2009b)	Soleimani-damaneh (2009)		
	Hosseinzadeh Lotfi et al. (2009b)	Bagherzadeh valami (2009)		
	Guo (2009)	Hosseinzadeh Lotfi et al. (2009c)		
	Juan (2009)	Sanei et al. (2009)		
	Zhou et al. (2008)	Guo and Tanaka (2008)		
	Noora and Karami (2008)	Soleimani-Damaneh (2008)		
	Jahanshahloo et al. (2008)	Hosseinzadeh Lotfi and Mansouri (2008)		
	Hosseinzadeh Lotfi et al. (2007b)	Jahanshahloo et al. (2007a)		
	Pal et al. (2007)	Hosseinzadeh Lotfi et al. (2007a)		
	Soleimani-damaneh et al. (2006)	Saati and Memariani (2006)		
	Lee et al. (2005)	Molavi et al. (2005)		
	Jahanshahloo et al. (2004a)	Dia (2004)		
	Lee (2004)	Leon et al. (2003)		
	Lertworasirikul (2002)	Guo and Tanaka (2001)		
The possibility approach	Wen et al. (2010)	Khodabakhshi et al. (2010)		
	Wen and Li (2009)	Jiang and Yang (2007)		
	Wu et al. (2006)	Garcia et al. (2005)		
	Ramezanzadeh et al. (2005)	Lertworasirikul et al. (2003a)		
	Lertworasirikul et al. (2003b)	Lertworasirikul et al. (2003c)		
	Lertworasirikul et al. (2002a)	Lertworasirikul et al. (2002b)		
	Lertworasirikul (2002)	Guo et al. (2000)		
Other developments in fuzzy DEA	Zerafat Angiz et al. (2010b)	Qin and Liu (2010)		
Caler developments in fuzzy DEA	Wang et al. (2009a)	Luban (2009)		
	Qin et al. (2009a)	Qin and Liu (2009)		
	Uemura (2006)	Wang et al. (2005)		
		wang et al. (2005)		
	Hougaard (2005)	Sheth and Triantis (2003)		

Source: Hatami-Marbini et al. (2011)

2.3.10.2 Wang, Greatbanks and Yang (2005) Approach

In the application chapter of this study, Wang, Greatbanks and Yang (2005) approach will be used as fuzzy data envelopment model and ranking methodology. Wang, Greatbanks and Yang (2005)'s interval DEA, called fuzzy DEA in this study, approach will be explained below in detail by summarizing important parts of Wang, Greatbanks and Yang (2005).

In order to measure the upper and lower bounds of the efficiency of DMU_0 , Wang, Greatbanks and Yang (2005) construct the following pair of fractional programming models for DMU_0 for lower and upper bound efficiency respectively:

Fractional Model for Lower Bound Efficiency:

Maximize
$$\theta_{j0}^{L} = \frac{\sum_{r=1}^{s} u_r y_{rj0}^{L}}{\sum_{i=1}^{m} v_i x_{ij0}^{L}}$$
 (2.22)
Subject to
 $\theta_j^{U} = \frac{\sum_{r=1}^{s} u_r y_{rj}^{U}}{\sum_{i=1}^{m} v_i x_{ij}^{L}} \le 1, \quad j=1,2,...,n,$
 $u_r, v_i \ge \varepsilon \quad \forall r, i.$

Fractional Model for Upper Bound Efficiency:

Maximize
$$\theta_{j0}^{U} = \frac{\sum_{r=1}^{s} u_r y_{rj_0}^{U}}{\sum_{i=1}^{m} v_i x_{ij_0}^{L}}$$
 (2.23)
Subject to
 $\theta_j^{U} = \frac{\sum_{r=1}^{s} u_r y_{rj}^{U}}{\sum_{i=1}^{m} v_i x_{ij}^{L}} \le 1, \quad j = 1, 2, ..., n,$
 $u_r, v_i \ge \varepsilon \quad \forall r, i.$

Applying Charnes–Cooper transformation to the above pair of fractional programming models they can be simplified as the following equivalent LP models: LP Model for Lower Bound Efficiency:

Maximize
$$\theta_{j0}^L = \sum_{r=1}^{s} u_r y_{rj0}^L$$
 (2.24)
Subject to
 $\sum_{i=1}^{m} v_i x_{ij0}^U = 1$,
 $\sum_{r=1}^{s} u_r y_{rj}^U - \sum_{i=1}^{m} v_i x_{ij}^L \le 0$, $j = 1, 2, ..., n$
 $u_r, v_i \ge \varepsilon \quad \forall r, i$.

LP Model for Upper Bound Efficiency:

Maximize
$$\theta_{j0}^L = \sum_{r=1}^s u_r y_{rj0}^U$$
 (2.25)
Subject to
 $\sum_{i=1}^m v_i x_{ij0}^L = 1,$
 $\sum_{r=1}^s u_r y_{rj}^U - \sum_{i=1}^m v_i x_{ij}^L \le 0, \quad j = 1, 2, ..., n$
 $u_r, v_i \ge \varepsilon \quad \forall r, i.$

In the models (2.24, 2.25) above θ_{j0}^U has the meaning that for the best possible relative efficiency achieved by DMU₀ when all the DMUs are in the state of best production activity, while θ_{j0}^L has the meaning that for the lower bound of the best possible relative efficiency of DMU₀. Thus they form a possible best relative efficiency interval [θ_{j0}^L , θ_{j0}^U].

In their study authors explain why two different data are used for DMU_0 in the same model by the following arguments (Wang et al. 2005), p.354):

(1) θ_{j0}^L in (2.22) is measured not only relative to the other (n - 1) DMUs, but also relative to the best production activity of DMU₀ itself.

(2) Let DMU'_0 be a virtual DMU that consumes the upper bound inputs of DMU_0 and produces only the lower bound outputs of DMU_0 . Since DMU'_0 represents the worst production activity of DMU_0 , the best relative efficiency of DMU'_0 can therefore be used to characterize the lower bound efficiency of DMU_0 . Accordingly, model (2.22) can be considered as conventional DEA model evaluating DMU'_0 using (n + 1) DMUs,

where DMU_i (*i* = 1, . . . , *n*) consumes the least inputs to produce the most outputs, which leads to the efficiency of DMU'_0 to be less than one automatically. It is no wonder that DMU_0 can be the reference DMU of DMU'_0 .

(3) Production frontier is determined by the best production activities of the *n* DMUs regardless of their worst production activities. If the best production activity of DMU_0 were removed from the model, the production frontier would be changed and would be different from DMU to DMU, which would result in the efficiencies obtained incomparable.

2.3.10.3 Ranking Interval Efficiencies: The Minimax Regret Approach

Since the final efficiency score for each DMU is characterized by an interval, a ranking approach is thus needed for comparing and ranking the efficiencies of DMUs. Wang, Greatbanks and Yang (2005) introduce a simple and practical approach for this aim. They called this approach as the minimax regret approach (MRA). MRA is explained in Wang, Greatbanks and Yang (2005, pp. 362-363) as follows.

Let $A_i = [a_i^L, a_i^U] = m(A_i)$, $w(A_i)$ for (i = 1, 2, ..., n) be the efficiency intervals of n DMUs, where $m(A_i) = \frac{1}{2} (a_i^R + a_i^L)$ and $w(A_i) = \frac{1}{2} (a_i^R - a_i^L)$ are their midpoints and widths respectively. Suppose $A_i = [a_i^L, a_i^U]$ is chosen as the best efficiency interval.

Let $b = max_{j\neq i} \{a_j^U\}$. The maximum loss of efficiency or regret is given by

$$max (r_i) = b - a_i^L = max_{j \neq i} \{a_j^U\} - a_i^L.$$
(2.26)

If $r_i = 0$ there will be no loss of efficiency and no regret. Combining the above two situations, we have

$$max(r_i) = max \left[max_{j \neq i} \left\{ a_j^U \right\} - a_i^L, 0 \right].$$
(2.27)

Thus, the minimax regret criterion will choose the efficiency interval satisfying the following condition as the best efficiency interval:

$$min_{i}\{max(r_{i})\} = min_{i}(max[max_{j\neq i}\{a_{j}^{U}\} - a_{i}^{L}, 0])$$
(2.28)

Wang, Greatbanks and Yang (2005) define the maximum loss of efficiency (also called maximum regret) of each efficiency interval A_i as:

$$R(A_i) = max [max_{j \neq i} \{a_j^U\} - a_i^L, 0]$$

= max[max_{j \neq i} \{m(A_j) + w(A_j)\} - (m(A_i) - w(A_i)), 0].

In that situation the efficiency interval with the smallest maximum loss of efficiency will be the most desirable efficiency interval. In order to be able to generate a ranking for a set of efficiency intervals using the maximum losses of efficiency, the following eliminating steps are applied:

Step 1: Calculate the maximum loss of efficiency of each efficiency interval and choose a most desirable efficiency interval that has the smallest maximum loss of efficiency. Suppose A_{i_1} is selected, where $1 \le i_1 \le n$.

Step 2: Eliminate A_{i_1} from the consideration, recalculate the maximum loss of efficiency of every efficiency interval and determine a most desirable efficiency interval from the remaining (n-1) efficiency intervals. Suppose A_{i_2} is chosen, where $1 \le i_1 \le n$ but $i_2 \ne i_1$.

Step 3: Eliminate A_{i_2} from the further consideration, recalculate the maximum loss of efficiency of each efficiency interval and determine a most desirable efficiency interval A_{i_3} from the remaining (n–2) efficiency intervals.

Step 4: Repeat the above eliminating process until only one efficiency interval A_{i_n} is left. The final ranking is $A_{i_1} > A_{i_2} > \cdots > A_{i_n}$, where the symbol '>' means 'is superior to'.

For properties of MRA in detail see Wang, Greatbanks and Yang (2005, p.363).

3. APPLICATION AND RESULTS

3.1 THE AIM AND THE METHODOLOGY

Due to the positive contribution of the stock markets to the economic growth which is explained detailed in Chapter 2 of this study, almost every country tries develop their stock markets. In the application part of the study it is aimed to give some insights to decision makers about how their stock markets use the potential of their country, how is their stock market efficiency compared to other countries, which countries they can take as reference, what their targets should be in order to be efficient.

In this study, the data which belong to 45 countries are used. 25 of them are developed countries and 20 of them are developing countries according to the World Bank classification in 2009. The 45 countries represent 90percent of whole world in terms of market capitalization value and 95 percent of the whole world in terms of trading volume.

The three-year data for 2007, 2008 and 2009 were used in this study. The data for 2010 could not use because they were not available while this study was preparing.

Classical Data Envelopment Analysis and Fuzzy Data Envelopment Analysis are used as a methodology of analyzing the stock market efficiencies of the selected countries.

There are four stages in the implementation of the Data Envelopment Analysis:

- a) Determination of the Decision Making Units (DMUs) to be analyzed,
- b) Determination of the appropriate inputs and outputs,
- c) Determination of the DEA model to be used,
- d) Evaluation of results and post analysis after application of the DEA.

In the following pages of this study, the first three stages which are common to both methods (DEA and FDEA) will be explained then the fourth stage will be given with detailed analysis for two methods separately.

3.2 DETERMINATION OF THE DECISION MAKING UNITS

There are three important factors to be considered for determination of Decision Making Units (DMUs). (1) The homogeneity of DMUs, (2) The number of DMUs with respect to number of inputs and outputs, (3) The degree of reliability and availability of the data.

It is difficult to perfectly guarantee the homogeneity of 45 countries but assuming all countries are aware of the importance of the stock markets and their contribution to the economical growth thus have similar aims and the factors affecting the stock market development are valid in a global scale for all countries it can be stated that DMUs are homogeneous. To test the homogeneity of the countries they grouped as developed and developing and DEA model were solved separately and together. The results especially in ranking were very close so it is decided to include 45 countries in DEA model at the same time to produce more comparable results for all countries.

There are two generally accepted rules to determine the sufficient number of DMUs: (1) The number of DMUs should be at least more than twice of the sum of the number of inputs and outputs (Dyson et al., 2001), (2) The number of DMUs should be at least the maximum of either the product of the numbers of inputs and outputs or three times of the sum of the number of inputs and outputs (Cooper et al., 2001).

In the study, the number of inputs is 7 and the number of outputs is 3. All inputs and outputs will be explained in the following section. When considered that the number of DMUs is 45, it can be seen that both rules are satisfied.

The data are investigated from the reliability and availability perspective and finally 45 countries are selected for this study. The countries used as DMUs in this study are given in Table 3.1 as classified according to the development stage of the countries.

Developed C	Countries	Developing Countries				
Australia	Korea (South)	Argentina	Mexico			
Austria	Kuwait	Brazil	Nigeria			
Belgium	Netherlands	Chile	Panama			
Canada	Norway	China	Peru			
Czech Rep.	Poland	Colombia	Philippines			
Finland	Saudi Arabia	Egypt	Russian Federation			
France	Singapore	India	South Africa			
Germany	Spain	Indonesia	Thailand			
Hungary	Sweden	Kazakhstan	Turkey			
Ireland	Switzerland	Malaysia	Ukraine			
Israel	United Kingdom					
Italy	United States					
Japan						

Table 3.1: Countries included in the study

3.3 DETERMINATION OF INPUTS AND OUTPUTS

3.3.1 Determination of Inputs

The factors that affect the stock market development which were explained in Chapter 2 can be summarized as two main categories: institutional/structural factors and macroeconomic factors. In this study, the variables which are assumed to represent these categories will be used as inputs in DEA models.

For macroeconomic factors as a representative Gross Domestic Product (GDP) and GDP per capita will be used.

In order to represent institutional/structural factors the first five pillars of Financial Development Report of World Bank will be used. Financial Development Report was first published in 2008. Each report includes evaluation about the last year before publishing. The first five pillars are namely; institutional environment, business environment, financial stability, banking financial services and non-banking financial

services. The sub pillars of these pillars are given in Table 3.2. The highest score for a pillar is 7.

1st pillar: Institutional environment	3rd pillar: Financial stability
Financial sector liberalization	Currency stability
Capital account liberalization	Change in real effective exchange rate (REER)
Commitments to WTO agreement on trade in services	External vulnerability indicator
Domestic financial sector liberalization	Current account balance to GDP
Corporate governance	Dollarization vulnerability indicator
Extent of incentive-based compensation	External debt to GDP (developing economies)
Efficacy of corporate boards	Net international investment position to GDP
Reliance on professional management	Banking system stability
Willingness to delegate	Frequency of banking crises
Strength of auditing and reporting standards	Financial strengths indicator
Ethical behavior of firms	Aggregate measure of real estate bubbles
Protection of minority shareholders' interests	Financial Stress Index
Legal and regulatory issues	Tier 1 capital ratio
Burden of government regulation	Output loss during banking crises
Centralization of economic policymaking	Risk of sovereign debt crisis
Regulation of securities exchanges	Local currency sovereign rating
Property rights	Foreign currency sovereign rating
Intellectual property protection	Aggregate macroprudential indicator
Diversion of public funds	Manageability of public debt
Public trust of politicians	Credit default swap spreads
Corruption perceptions index	4th pillar: Banking financial services
Strength of legal rights index	Size index
Central bank transparency	Deposit money bank assets to GDP
Contract enforcement	Central bank assets to GDP
Effectiveness of law-making bodies	Financial system deposits to GDP
Judicial independence	M2 to GDP
Irregular payments in judicial decisions	Private credit to GDP
Time to enforce a contract	Bank deposits to GDP
Number of procedures to enforce a contract	Money market instruments to GDP
Strength of investor protection index	Efficiency index
Cost of enforcing contracts	Aggregate profitability indicator
nd pillar: Business environment	Bank overhead costs
Human capital	Public ownership of banks
Quality of management schools	Bank operating costs to assets
Quality of math and science education	Non-performing bank loans to total loans
Extent of staff training	Financial information disclosure
Local availability of specialized research and training services	Private credit bureau coverage
Brain drain and ease of hiring foreign labor	Public credit registry coverage
0 0	5th pillar: Non-banking financial services
Tertiary enrollment	
Taxes	IPO activity
Irregular payments in tax collection	IPO market share
Distortive effect of taxes and subsidies on competition	IPO proceeds amount
Marginal tax variation	Share of world IPOs
Time to pay taxes	M&A activity
Infrastructure	M&A market share
Quality of overall infrastructure	M&A transaction value to GDP
Quality of telephone infrastructure	Share of total number of M&A deals
Internet users	Insurance
Broadband Internet subscribers	Life insurance density
Telephone lines	Non-life insurance density
Mobile telephone subscribers	Real growth of direct insurance premiums
Cost of doing business	Life insurance coverage
Cost of starting a business	Non-life insurance coverage
Cost of registering property	Relative value-added of insurance to GDP
Cost of closing a business	Securitization
Time to start a business	Securitization to GDP
Time to register property	Share of total number of securitization deals
Time to close a business	

 Table 3.2: The pillars and sub pillars used in Financial Development Report

Source:	World	Economic	Forum	Financial	Developm	ent Report 2010	
Dour co.		Leonomie	I UI UIII	1 manerai	Developm	che hepoit zoito	

3.3.2 Determination of Outputs

As outputs variables for DEA and FDEA models, three market-related variables are used. These variables are, market capitalization value in billion USD which is the sum of product of stock price by stock number; value traded in billion USD which the value of buying or selling through year, turnover ratio as percent, which division of the value traded to average (current year and the year before current year) market capitalization.

3.4 MODELS

In this study output oriented CCR and BCC models are used as classical DEA models. The score obtained from CCR score is called overall efficiency, the score obtained from BCC model is called pure technical efficiency in this study.

In order to compare and evaluate the efficiency change by the time, Malmquist Total Factor Productivity Index is used.

For Fuzzy DEA model which is using the same input and output variables as classical DEA, CCR-based Wang, Greatbanks and Yang (2005) approach is used. Lower and upper bound efficiency scores in FDEA are calculated for three α levels (0.25, 0.50, 0.75).

The models in classical DEA are solved by Deap Version 2.1, the FDEA model in solved by the help of Microsoft Excel 2007 Solver Add-in.

3.5 APPLICATION AND RESULTS OF CLASSICAL DEA

3.5.1 Results and Evaluation of 2007

The data used in order to solve conventional DEA for year 2007 is shown in Table 3.3. Here the first three columns include the data for output variables and the last seven columns include the data for input variables of 45 countries in alphabetical order. For the sake of understanding the output and input variables some descriptive statistics presented in Table 3.4. Since from the literature survey it is known that the main factor that affects the other determinants of the stock market development is the stage of development of the countries, beginning with Table 3.4 most of the results is given and analyzed according to the stage of development of the countries.

As seen in Table 3.4 the average of value traded in terms of billion USD is 3,359.44 for developed countries, 581.70 for developing countries and 2,124.89 for 45 countries. The average of market capitalization in terms of billion USD is 1,852.72 for developed countries, 708.29 for developing countries and 1,349.64 for 45 countries. Similarly, the average of value turnover ratio is 136.94 for developed countries, 48.51 for developing countries and 97.64 for 45 countries.

When input variables is considered, the average values of 45 countries are 4.81 for institutional environment; 4.64 for business environment; 4.66 for financial stability; 3.91 for banking financial services; 2.80 for non-banking financial services; 1,126.54 billion USD for GDP and finally 23,955 USD for GDP per capita. There is a difference in these values depending on the stage of development as in output variables.

From Table 3.3 it can be calculated that in 2007, about 45 percent of all value traded in the world and 33 percent of world's total market capitalization value belongs to United States. The selected 15 countries that have the highest values in value traded have 94 percent share in value traded and 85 percent share in market capitalization. These 15 countries are United States, United Kingdom, China, Japan, France, Germany, Spain, Italy, Korea, Netherlands, Switzerland, Canada, Australia, India and Sweden. A graphical presentation of two important market indicators of these 15 countries is given in Figure 3.1.

Country	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Argentina	8.25	86.68	9.90	3.35	3.92	2.92	2.85	2.48	260.79	6,604
Australia	1,322.82	1,298.43	110.50	5.94	5.24	5.13	4.12	4.26	856.82	40,660
Austria	121.42	228.71	57.80	6.04	5.29	5.81	4.32	2.12	372.29	44,850
Belgium	255.69	386.36	65.30	5.84	5.00	5.22	4.37	2.25	458.62	43,161
Brazil	584.95	1,370.38	56.20	3.69	4.00	3.60	2.47	2.82	1,365.98	7,185
Canada	1,645.47	2,186.55	84.70	6.06	5.43	5.26	5.15	4.37	1,424.07	43,185
Chile	44.47	212.91	23.00	5.38	4.89	4.47	3.72	1.68	164.32	9,877
China	7,791.70	6,226.31	180.10	3.33	4.07	5.17	4.97	3.30	3,494.06	2,651
Colombia	10.34	101.96	13.10	3.80	3.82	4.27	3.33	1.89	207.36	4,675
Czech Republic	41.93	73.42	68.70	4.14	4.77	4.29	2.92	1.47	174.22	16,858
Egypt	53.08	139.29	45.60	4.07	3.91	3.41	3.40	1.75	130.47	1,630
Finland	543.34	369.17	182.00	6.23	5.76	5.24	3.08	2.15	245.95	46,505
France	3,418.89	2,771.22	131.50	5.83	5.20	5.17	4.55	5.29	2,594.01	40,644
Germany	3,363.09	2,105.51	179.70	6.08	5.41	5.77	4.85	4.12	3,329.15	40,468
Hungary	47.50	47.65	106.00	4.52	4.71	3.50	3.46	2.01	138.76	13,799
India	1,107.55	1,819.10	84.00	3.42	3.61	4.67	2.61	3.24	1,232.82	1,096
Indonesia	112.85	211.69	64.40	4.46	3.46	3.65	4.60	1.58	432.11	1,923
Ireland	136.62	144.03	88.90	6.01	5.15	5.45	4.80	3.15	259.71	59,608
Israel	113.46	236.36	55.40	5.66	5.00	4.48	3.85	2.23	166.99	23,257
Italy	2,313.48	1,072.69	220.40	4.66	4.63	4.82	4.41	3.35	2,116.20	35,641
Japan	6,497.19	4,453.47	141.60	5.88	5.17	5.71	4.92	4.50	4,377.94	34,264
Kazakhstan	8.90	41.38	20.90	3.14	3.51	3.58	3.07	3.56	104.85	6,772
Korea	1,974.02	1,123.63	201.60	5.08	5.42	4.42	4.81	3.62	1,049.24	21,653
Kuwait	120.70	188.05	76.20	4.06	4.93	5.44	3.96	1.07	114.74	43,087
Malaysia	150.00	325.66	53.50	5.14	4.80	5.18	5.72	1.93	186.64	7,028
Mexico	115.62	397.73	31.00	4.31	3.81	4.69	2.65	1.88	1,025.58	9,741
Netherlands	1,803.44	956.47	207.80	6.02	5.57	5.74	4.25	3.87	778.31	47,511
Nigeria	16.77	86.35	28.20	3.71	3.08	4.02	2.80	1.48	165.92	1,123
Norway	471.89	357.42	147.80	6.15	5.67	5.87	4.20	2.38	387.54	82,294
Panama	0.12	6.22	2.00	4.82	3.95	3.01	3.77	1.95	19.79	5,920
Peru	7.26	105.96	8.80	4.22	3.89	3.77	2.51	2.08	107.49	3,771
Philippines	29.25	103.22	34.10	3.60	3.50	3.32	2.96	1.78	144.07	1,624
Poland	84.57	207.32	47.50	3.54	4.56	4.09	3.21	1.72	425.32	11,157
Russian Federation	754.54	1,503.01	58.90	3.10	4.08	4.41	2.87	3.71	1,299.71	9,146
Saudi Arabia	679.84	515.11	161.50	4.18	4.54	5.97	4.07	1.40	384.08	15,847
Singapore	384.23	353.49	122.00	6.31	5.82	6.22	3.63	2.91	176.77	38,523
South Africa	425.75	833.55	55.00	4.58	4.03	4.72	4.09	2.42	286.30	5,933
Spain	2,962.12	1,800.10	189.70	5.62	4.80	5.00	4.84	3.77	1,440.84	32,105
Sweden	968.83	612.50	147.40	6.06	5.63	5.26	3.67	2.87	462.51	50,558
Switzerland	1,777.80	1,274.52	143.00	5.74	5.63	6.18	3.80	2.99	434.12	57,490
Thailand	108.21	196.05	64.20	4.46	4.24	4.54	4.45	1.89	247.11	3,689
Turkey	302.40	286.57	134.70	3.36	4.38	2.76	3.32	2.19	647.16	8,865
Ukraine	2.02	111.76	2.60	2.75	3.88	2.88	3.13	1.99	142.72	3,069
United Kingdom	10,324.50	3,858.51	270.10	6.09	5.34	2.88 4.97	5.51	6.55	2,799.04	45,901
-										46,627
United States	42,613.20	19,947.30	216.50	5.98	5.32	5.51	5.80	6.05	14,061.80	40,627

 Table 3.3: Input and output values for 2007

Source: Worldbank World Development Indicators and WEF Financial Development Report 2008

	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Average - Developed	3,359.44	1,862.72	136.94	5.51	5.20	5.22	4.26	3.22	1,561.16	39,026
Average - Developing	581.70	708.29	48.51	3.93	3.94	3.95	3.46	2.28	583.26	5,116
Average - Total	2,124.89	1,349.64	97.64	4.81	4.64	4.66	3.91	2.80	1,126.54	23,955
Standard Deviation - Developed	8,506.48	3,947.78	60.93	0.82	0.38	0.67	0.73	1.43	2,844.00	16,033
Standard Deviation - Developing	1,723.22	1,403.57	44.53	0.72	0.43	0.77	0.89	0.68	813.10	2,987
Standard Deviation - Total	6,534.52	3,112.58	69.69	1.10	0.75	0.95	0.89	1.24	2,222.34	20,843
Minimum - Developed	41.93	47.65	47.50	3.54	4.54	3.50	2.92	1.07	114.74	11,157
Minimum - Developing	0.12	6.22	2.00	2.75	3.08	2.76	2.47	1.48	19.79	1,096
Maximum - Developed	42,613.20	19,947.30	270.10	6.31	5.82	6.22	5.80	6.55	14,061.80	82,294
Maximum - Developing	7,791.70	6,226.31	180.10	5.38	4.89	5.18	5.72	3.71	3,494.06	9,877

 Table 3.4: Some descriptive statistics of input and output values

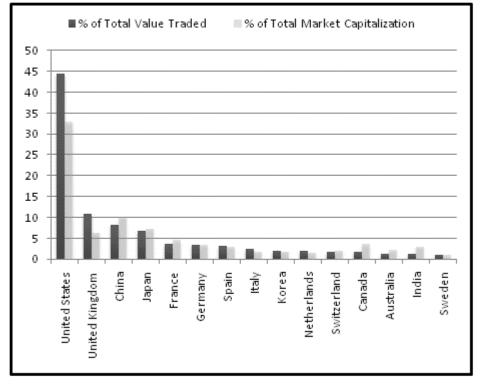


Figure 3.1: The biggest 15 markets for 2007

When the correlations between variables (Table 3.5) for year 2007 are inspected some implications as follows:

- Value traded and market capitalization is highly correlated whereas turnover ratio has a medium and nearly same correlation with the other two output variables.

- Value traded and market capitalization is highly correlated with GDP but not with GDP per capita.

- GDP per capita has medium or high correlation with the other input variables except GDP.

- GDP per capita is highly correlated with institutional environment, business environment and financial stability.

- Value traded and market capitalization has low correlation with institutional environment, business environment and financial stability.

- The correlation of GDP with banking and non-banking financial services is lower than the correlation with the stock market output variables.

	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Value Traded (Billion USD)	1.00									
Market Capitalization (Billion USD)	0.98	1.00								
Turnover Ratio (%)	0.46	0.46	1.00							
Institutional Environment	0.24	0.21	0.52	1.00						
Business Environment	0.22	0.20	0.64	0.85	1.00					
Financial Stability	0.24	0.27	0.57	0.72	0.73	1.00				
Banking Financial Services	0.48	0.48	0.58	0.60	0.52	0.54	1.00			
Non-Banking Financial Services	0.60	0.63	0.64	0.44	0.42	0.36	0.54	1.00		
GDP (Billion USD)	0.97	0.98	0.48	0.23	0.22	0.27	0.49	0.66	1.00	
GDP per Capita (USD)	0.24	0.21	0.59	0.81	0.86	0.74	0.46	0.44	0.23	1.00

Table 3.5: Correlations of variables for 2007

Country	Stage of Development	Overall Efficiency	Pure Technical Efficiency	Scale Efficiency	Market Capitalization (% of GDP)	Value Traded (% of GDP)	Turnover Ratio (%)
China	Developing	1.000	1.000	1.000	177.61	222.27	180.10
Egypt	Developing	1.000	1.000	1.000	106.76	40.68	45.60
Finland	Developed	1.000	1.000	1.000	150.24	221.12	182.00
Hungary	Developed	1.000	1.000	1.000	34.34	34.23	106.00
India	Developing	1.000	1.000	1.000	147.56	89.84	84.00
Indonesia	Developing	1.000	1.000	1.000	48.98	26.11	64.40
Italy	Developed	1.000	1.000	1.000	50.69	109.32	220.40
Korea	Developed	1.000	1.000	1.000	107.09	188.14	201.60
Netherlands	Developed	1.000	1.000	1.000	122.89	231.71	207.80
Saudi Arabia	Developed	1.000	1.000	1.000	134.12	177.01	161.50
Singapore	Developed	1.000	1.000	1.000	199.98	217.36	122.00
South Africa	Developing	1.000	1.000	1.000	291.14	148.71	55.00
Switzerland	Developed	1.000	1.000	1.000	293.61	409.55	143.00
Turkey	Developing	1.000	1.000	1.000	44.28	46.73	134.70
United Kingdom	Developed	1.000	1.000	1.000	137.85	368.86	270.10
United States	Developed	1.000	1.000	1.000	142.37	304.15	216.50
Kuwait	Developed	0.961	1.000	0.961	163.89	105.20	76.20
Spain	Developed	0.931	0.954	0.975	124.93	205.58	189.70
Thailand	Developing	0.924	0.943	0.980	79.34	43.79	64.20
Malaysia	Developing	0.836	0.900	0.929	175.11	80.65	53.50
Sweden	Developed	0.812	0.816	0.996	132.43	209.47	147.40
Nigeria	Developing	0.806	1.000	0.806	52.04	10.11	28.20
Philippines	Developing	0.794	1.000	0.794	71.66	20.31	34.10
Norway	Developed	0.778	0.794	0.980	92.23	121.77	147.80
Canada	Developed	0.775	0.782	0.991	153.54	115.55	84.70
Germany	Developed	0.755	0.782	0.965	63.35	101.19	179.70
Australia	Developed	0.752	0.774	0.972	151.54	154.39	110.50
Japan	Developed	0.665	0.668	0.995	101.73	148.41	141.60
France	Developed	0.652	0.653	1.000	106.83	131.80	131.50
Czech Republic	Developed	0.645	1.000	0.645	42.14	24.07	68.70
Israel	Developed	0.638	0.675	0.945	141.54	67.94	55.40
Russian Federation	Developing	0.626	1.000	0.626	115.61	58.04	58.90
Brazil	Developing	0.571	1.000	0.571	100.32	42.82	56.20
Ireland	Developed	0.534	0.565	0.946	55.46	52.61	88.90
Chile	Developing	0.477	0.818	0.583	129.57	27.07	23.00
Belgium	Developed	0.426	0.455	0.937	84.28	55.78	65.30
Poland	Developed	0.390	0.698	0.559	48.74	19.88	47.50
Kazakhstan	Developing	0.362	1.000	0.362	39.46	8.49	20.90
Peru	Developing	0.350	1.000	0.350	98.57	6.76	8.80
Austria	Developed	0.344	0.344	0.998	61.71	32.76	57.80
Mexico	Developing	0.280	1.000	0.280	38.78	11.27	31.00
Ukraine	Developing	0.269	1.000	0.269	78.31	1.41	2.60
Colombia	Developing	0.231	0.306	0.756	49.07	4.98	13.10
Argentina	Developing	0.165	1.000	0.165	33.03	3.14	9.90
Panama	Developing	0.152	1.000	0.152	31.42	0.59	2.00

Table 3.6: DEA efficiency scores for 2007

When classical DEA model is solved by applying CCR and BCC formulation using the input and output values given in Table 3.3, the efficiency scores of overall efficiency, pure technical efficiency and scale efficiency is found as shown in Table 3.6. Overall efficiency is calculated assuming constant return to scale (CCR), pure technical efficiency is calculated assuming variable return to scale (BCC) and finally scale efficiency is calculated dividing overall efficiency score by pure technical efficiency score.

As seen in the literature survey, most of the empirical studies accept market capitalization as percent of GDP, value traded as percent of GDP and turnover ratio as the indicators of the stock market development. Therefore they are given in Table 3.6 to have an insight about the relation between efficiency and development of the stock markets.

Table 3.7 is derived from Table 3.6 as a descriptive summary and has some of the implications below:

- 16 countries are overall efficient, 28 countries are pure technical efficient and 17 countries are scale efficient.

- Average overall efficiency is 0.73, average pure technical efficiency is 0.89 and average scale efficiency is 0.73.

- While in overall efficiency 40 percent of the developed countries and 30 percent of the developing countries are found efficient, in pure technical efficiency developing countries have higher percentage values.

- Average market capitalization (percent of GDP) of overall efficient countries for both developed countries and developing countries is close to each other.

- Average value traded (percent of GDP) of overall efficient countries for developed countries is more than twice of developing countries.

- The biggest difference between overall efficient and overall inefficient countries in terms of average development indicators is in average value traded (percent of GDP).

58

	Ove	Overall Efficiency			Pure Technical Efficiency			Scale Efficiency		
	А	В	С	А	В	С	А	В	С	
Number of Efficient Countries	10	6	16	12	16	28	11	6	17	
% of Efficient Countries	40.00	30.00	35.56	48.00	80.00	62.22	44.00	30.00	37.78	
Average Efficiency	0.80	0.64	0.73	0.84	0.95	0.89	0.92	0.54	0.73	
Standard Deviation of Efficiency	0.22	0.33	0.28	0.20	0.16	0.19	0.14	0.28	0.29	
Average Market Capitalization (% of GDP) of Efficient Countries	137.32	136.06	136.84	131.60	92.22	109.10	115.90	95.43	106.80	
Average Market Capitalization (% of GDP) of Inefficient Countries	101.62	78.02	90.23	101.41	108.27	103.02	101.25	78.02	89.64	
Average Value Traded (% of GDP) of Efficient Countries	226.14	95.72	177.24	199.23	46.08	111.71	152.31	44.69	46.51	
Average Value Traded (% of GDP) of Inefficient Countries	103.09	22.82	64.34	109.01	39.12	92.57	101.04	22.82	61.93	
Average Turnover Ratio (%) of Efficient Countries	183.09	93.97	149.67	164.65	51.03	99.73	136.94	46.51	97.64	
Average Turnover Ratio (%) of Inefficient Countries	106.18	29.03	69.93	111.37	38.45	94.21	104.37	29.03	66.70	

Table 3.7: Some statistics derived from Table 3.6

*A: Developed Countries; B: Developing Countries; C: Countries regarding criteria

Beside efficiency scores, DEA gives the target values for an inefficient DMU to be efficient. In Table 3.8 the target values calculated by CCR formulation for three output variables is given for all inefficient DMUs. For example, Norway to be efficient in year 2007, should increase market capitalization value to 813.11 value traded to 529.06 and turnover ratio to 189.98.

Another property of DEA is to give reference table. Reference table shows the reference countries for other countries with reference weights.

From the reference table for 2007 that is given in Table 3.9 it can be stated that the first three country which most referenced by other countries are Finland, Saudi Arabia and China.

		Value Traded Market Capitalization Turnauar Datio (0							
	Value (Billior		Market Cap (Billion		Turnover	Ratio (%)			
Country	Original Value	Target Value	Original Value	Target Value	Original Value	Target Value			
Argentina	8.25	482.46	86.68	523.85	9.90	59.83			
Australia	1,322.82	2,263.92	1,298.43	1,725.93	110.50	146.88			
Austria	121.42	915.62	228.71	665.57	57.80	168.20			
Belgium	255.69	1,227.54	386.36	906.39	65.30	153.19			
Brazil	584.95	3,013.08	1,370.38	2,400.00	56.20	98.43			
Canada	1,645.47	3,636.67	2,186.55	2,822.86	84.70	142.08			
Chile	44.47	267.27	212.91	446.71	23.00	48.26			
Colombia	10.34	270.34	101.96	441.12	13.10	56.68			
Czech Republic	41.93	246.23	73.42	183.89	68.70	106.52			
France	3,418.89	6,908.67	2,771.22	4,248.56	131.50	201.60			
Germany	3,363.09	6,255.56	2,105.51	2,788.91	179.70	238.03			
Ireland	136.62	538.45	144.03	376.98	88.90	166.50			
Israel	113.46	322.48	236.36	370.33	55.40	86.80			
Japan	6,497.19	12,481.26	4,453.47	6,698.23	141.60	212.97			
Kazakhstan	8.90	65.81	41.38	114.34	20.90	57.75			
Kuwait	120.70	276.24	188.05	195.66	76.20	79.28			
Malaysia	150.00	205.77	325.66	389.54	53.50	63.99			
Mexico	115.62	1,796.07	397.73	1,418.33	31.00	110.55			
Nigeria	16.77	107.72	86.35	210.52	28.20	34.97			
Norway	471.89	813.11	357.42	529.06	147.80	189.98			
Panama	0.12	45.73	6.22	40.90	2.00	13.15			
Peru	7.26	165.88	105.96	302.75	8.80	25.14			
Philippines	29.25	68.11	103.22	149.25	34.10	42.95			
Poland	84.57	701.98	207.32	531.34	47.50	121.74			
Russian Federation	754.54	2,954.57	1,503.01	2,402.40	58.90	94.15			
Spain	2,962.12	4,776.06	1,800.10	1,934.53	189.70	203.87			
Sweden	968.83	1,192.57	612.50	753.95	147.40	181.44			
Thailand	108.21	155.08	196.05	212.19	64.20	69.48			
Ukraine	2.02	214.83	111.76	415.55	2.60	27.55			

Table 3.8: Target values for outputs in 2007

It is seen from Table 3.9 that the countries that should take Turkey as a reference for year 2007 are Poland (0.113), Brazil (0.021), Mexico (0.359), Philippines (0.028) and Thailand (0.133).

The reference tables are also used to calculate target values given in Table 3.8. When Norway is taken as an example again, from Table 3.9 the reference countries of Norway and their weights are Finland (0.556), Saudi Arabia (0.331) and Netherlands (0.153). If the value in market capitalization is taken; the target value is calculated as follows:

Target value of market capitalization = The value of market capitalization of Finland * 0.556 + The value of market capitalization of Saudi Arabia * 0.331 + The value of market capitalization of Netherlands * 0.153 = 543.34 * 0.556 + 679.84 * 0.331 +

1,803.44 * 0.153 = 813.91. It is slightly different from the target value shown in Table 3.8 because of rounding errors.

No	Country		Countries	s Taken as Refe	erences		No of being Reference
1	Australia	23 (0.438)	6 (0.295)	29 (0.170)			0
2	Austria	29 (0.008)	6 (0.386)	23 (0.200)	19 (0.421)		0
3	Belgium	19 (0.160)	6 (0.424)	29 (0.048)	23 (0.290)		0
4	Canada	29 (0.337)	23 (0.569)				0
5	Czech Republic	6 (0.175)	19 (0.194)	9 (0.409)			0
6	Finland	6(1)					18
7	France	6 (0.302)	29 (0.462)	24 (0.218)	25 (0.021)		0
8	Germany	24 (0.141)	12 (0.798)	6 (0.051)	25 (0.069)		0
9	Hungary	9 (1)					3
10	Ireland	19 (0.209)	6 (0.729)				0
11	Israel	6 (0.157)	42 (0.213)	20 (0.382)			0
12	Italy	12 (1)					3
13	Japan	25 (0.166)	6 (0.270)	24 (0.208)	29 (0.398)		0
14	Korea	14 (1)					2
15	Kuwait	6 (0.369)	23 (0.028)	20 (0.066)			0
16	Netherlands	16(1)					1
17	Norway	19 (0.331)	6 (0.576)	16 (0.153)			0
18	Poland	29 (0.025)	19 (0.582)	14 (0.040)	44 (0.113)		0
19	Saudi Arabia	19 (1)					14
20	Singapore	20(1)					5
21	Spain	24 (0.412)	14 (0.124)	19 (0.352)	6 (0.054)	12 (0.004)	0
22	Sweden	29 (0.039)	19 (0.012)	6 (0.861)	23 (0.052)	24 (0.031)	0
23	Switzerland	23 (1)					9
24	United Kingdom	24 (1)					5
25	United States	25 (1)					3
26	Argentina	42 (0.296)	6 (0.034)	19 (0.203)	29 (0.026)		0
27	Brazil	6 (0.113)	19 (0.048)	29 (0.374)	44 (0.021)		0
28	Chile	6 (0.011)	20 (0.172)	42 (0.458)			0
29	China	29 (1)					14
30	Colombia	42 (0.388)	29 (0.001)	19 (0.111)	31 (0.378)		0
31	Egypt	31 (1)					6
32	India	32 (1)					2
33	Indonesia	33 (1)					1
34	Kazakhstan	42 (0.087)	9 (0.436)	31 (0.148)			0
35	Malaysia	42 (0.416)	9 (0.301)	31 (0.175)	19 (0.007)		0
36	Mexico	44 (0.359)	29 (0.199)	6 (0.104)	12 (0.034)		0
37	Nigeria	32 (0.066)	31 (0.645)				0
38	Panama	20 (0.104)	23 (0.003)	20 (0.021)			0
39	Peru	6 (0.02)	42 (0.346)	20 (0.021)			0
40	Philippines	32 (0.014)	44 (0.028)	31 (0.832)	20 (0 2 11)		0
41	Russian Federation	42 (0.121)	23 (0.114)	19 (0.060)	29 (0.341)		0
42	South Africa	42 (1)	10 (0.0 (0)	44 (0.122)	20 (0.002)	21 (0.012)	9
43	Thailand	33 (0.045)	19 (0.069)	44 (0.133)	29 (0.003)	31 (0.813)	0
44	Turkey	44 (1)					5
45	Ukraine	42 (0.495)	23 (0.002)				0

Table 3.9: Reference table for 2007

3.5.2 Results and Evaluation of 2008

In order to solve conventional DEA for year 2008, the data in Table 3.10 is employed. Here the first three columns include the data for output variables and the last seven columns include the data for input variables of 45 countries in alphabetical order.

As seen in Table 3.11 the average of value traded in terms of billion USD is 2,725.59 for developed countries, 452.65 for developing countries and 1,715.39 for 45 countries. The average of market capitalization in terms of billion USD is 1,037.92 for developed countries, 311.65 for developing countries and 715.13 for 45 countries. Similarly, the average of value turnover ratio is 137.02 for developed countries, 47.24 for developing countries and 97.64 for 45 countries.

When input variables is considered, the average values of 45 countries are 4.56 for institutional environment; 4.70 for business environment; 4.77 for financial stability; 3.76 for banking financial services; 2.70 for non-banking financial services; 1,229.82 billion USD for GDP and finally 26,369 USD for GDP per capita. There is a difference in these values depending on the stage of development as in output variables.

From Table 3.10 it can be calculated that in 2008, about 47 percent of all value traded in the world and 36.5 percent of world's market capitalization value belongs to United States. The selected 15 countries that have the highest values in value traded have 94 percent share in value traded and 88 percent share in market capitalization (See Figure 3.2). These 15 countries are United States, United Kingdom, China, Japan, France, Germany, Spain, Italy, Korea, Netherlands, Switzerland, Canada, Australia, India and Brazil. The only difference from 2007 is that Brazil enters the list instead of Sweden. Among 15 countries; United States, United Kingdom, China, Japan and France together have 74.5 percent share in value traded and 65.5 percent share in market capitalization. All these statistics similar to the statistics of year 2007 but there is a slight increase in share of the market capitalization values. As only considered the value traded and market capitalization; USA has the highest values among developed countries, China has lowest values among developing countries.

Country	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Argentina	13.42	52.31	19.31	3.23	3.81	3.68	2.78	2.28	326.58	8,189
Australia	1,017.71	675.62	103.06	5.56	5.68	5.48	5.01	4.36	1,039.42	48,499
Austria	104.52	72.30	68.98	5.71	5.29	4.81	4.24	1.87	414.67	49,739
Belgium	211.78	167.45	76.09	5.54	5.08	4.66	4.79	2.48	505.37	47,194
Brazil	727.79	589.38	74.27	3.64	3.63	5.13	3.46	3.20	1,637.92	8,532
Canada	1,770.63	1,002.22	123.72	5.62	5.94	5.57	4.83	3.99	1,499.11	45,003
Chile	36.56	132.43	21.17	4.29	4.84	5.62	3.43	1.87	170.85	10,167
China	5,470.53	2,793.61	121.30	4.07	4.09	4.83	4.77	3.31	4,521.83	3,414
Colombia	12.48	87.03	13.21	3.30	4.11	4.80	2.57	1.65	242.58	5,389
Czech Republic	43.03	48.85	70.39	4.31	4.19	5.08	3.85	1.41	216.08	20,729
Egypt	69.64	85.89	61.85	3.87	3.70	4.27	3.09	2.16	162.84	1,997
Finland	390.41	154.37	155.12	5.67	5.88	5.27	3.78	2.26	270.48	50,905
France	3,265.49	1,492.33	152.45	5.35	5.09	5.27	4.05	3.98	2,854.23	44,471
Germany	3,105.29	1,107.96	191.54	5.66	5.60	5.34	4.23	3.52	3,634.53	44,264
Hungary	30.80	18.58	93.01	4.41	4.68	3.70	2.37	1.48	154.67	15,408
India	1,049.75	645.48	85.19	3.38	3.51	4.23	3.12	3.12	1,214.21	1,065
Indonesia	110.68	98.76	71.30	3.54	3.26	4.44	2.63	1.96	510.50	2,245
Ireland	37.21	49.40	85.04	5.61	5.48	4.48	4.98	3.21	266.33	60,178
Israel	109.16	134.46	58.87	4.68	4.60	4.76	3.97	1.89	202.10	27,652
Italy	668.94	520.86	284.24	4.22	4.94	4.44	4.01	2.82	2,296.63	38,385
Japan	5,879.44	3,220.49	153.23	5.43	5.45	4.57	5.15	4.03	4,886.97	38,268
Kazakhstan	3.45	31.08	11.73	3.39	4.05	3.50	2.52	2.81	133.44	8,514
Korea	1,466.00	494.63	181.18	4.26	5.35	4.73	4.16	3.02	931.40	19,162
Kuwait	122.74	107.17	83.16	3.94	4.51	5.49	3.79	1.13	148.02	54,260
Malaysia	85.21	187.07	33.24	4.86	4.49	5.14	4.66	2.44	221.83	8,212
Mexico	108.20	232.58	34.33	3.59	3.90	5.13	2.37	2.01	1,089.88	10,248
Netherlands	1,143.04	387.91	169.18	5.82	5.84	4.91	4.90	4.10	872.87	53,076
Nigeria	1,145.04	49.80	29.30	3.83	2.95	4.71	2.45	1.26	207.12	1,370
Norway	368.26	125.92	152.17	5.89	5.98	5.73	4.34	2.26	450.92	94,568
Panama	0.26	6.57	4.01	4.51	4.09	4.57	4.05	1.59	23.18	6,821
Peru	5.11	55.63	6.33	4.31 3.70	3.95	4.90	2.77	1.59	129.11	4,477
	17.21	52.10	22.16	3.62	3.35	4.90	2.63	1.81	129.11	1,844
Philippines	67.95	90.23	45.68	3.90	4.34	4.12	3.17	1.81	528.32	13,857
Poland				3.90						
Russian Federation	562.23	397.18	75.02		4.21	4.50	1.80	4.13	1,666.95 475.09	11,743
Saudi Arabia	524.72	246.34	137.82	4.60	4.88	5.60	3.58	2.03		19,152
Singapore	270.90	180.02	101.34	6.17	6.05	5.61	4.68	3.37	193.33	39,950
South Africa	401.49	491.28	60.61	4.41	4.15	4.67	3.75	2.13	276.45	5,666
Spain	2,440.24	946.11	177.57	5.12	4.92	4.66	5.07	3.25	1,594.47	35,000
Sweden	641.75	252.54	157.02	5.87	5.93	5.07	4.61	2.67	487.58	52,884
Switzerland	1,505.27	862.66	145.59	5.70	5.84	5.66	4.56	3.19	502.45	65,699
Thailand	116.77	102.59	78.20	4.08	4.43	4.57	3.49	1.58	272.43	4,043
Turkey	239.71	117.93	118.52	3.50	4.37	3.79	2.96	1.83	730.34	9,881
Ukraine	2.54	24.36	3.73	3.08	3.73	3.19	2.38	2.39	180.36	3,899
United Kingdom	6,486.96	1,851.95	226.85	5.54	5.63	4.57	5.32	6.36	2,662.65	43,361
United States	36,467.40	11,737.60	232.26	5.63	5.70	4.56	4.21	5.93	14,369.10	47,209

 Table 3.10: Input and output values for 2008

Source: Worldbank World Development Indicators and WEF Financial Development Report 2009

	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Average - Developed	2,725.59	1,037.92	137.02	5.21	5.31	4.99	4.31	3.05	1,658.27	42,755
Average -	,	,								,
Developing	452.65	311.65	47.24	3.75	3.93	4.49	3.08	2.26	694.25	5,886
Average -										
Total	1,715.39	715.13	97.12	4.56	4.70	4.77	3.76	2.70	1,229.82	26,369
Standard Deviation - Developed	7,241.49	2,346.40	59.62	0.69	0.56	0.50	0.68	1.31	2,920.96	17,762
Standard	,,2111.19	2,5 10110	07102	0.07	0.00	0.00	0.00		2,720170	17,702
Deviation -										
Developing	1,214.98	615.30	37.04	0.50	0.45	0.61	0.77	0.73	1,033.24	3,381
Standard Deviation - Total	5,526.77	1,816.52	67.58	0.95	0.86	0.60	0.94	1.15	2,312.90	22,810
Minimum -										
Developed	30.80	18.58	45.68	3.90	4.19	3.70	2.37	1.13	148.02	13,857
Minimum -										
Developing	0.26	6.57	3.73	3.01	2.95	3.19	1.80	1.26	23.18	1,065
Maximum - Developed	36,467.40	11,737.60	284.24	6.17	6.05	5.73	5.32	6.36	14,369.10	94,568
Maximum - Developing	5,470.53	2,793.61	121.30	4.86	4.84	5.62	4.77	4.13	4,521.83	11,743

 Table 3.11: Some descriptive statistics of variables for 2008

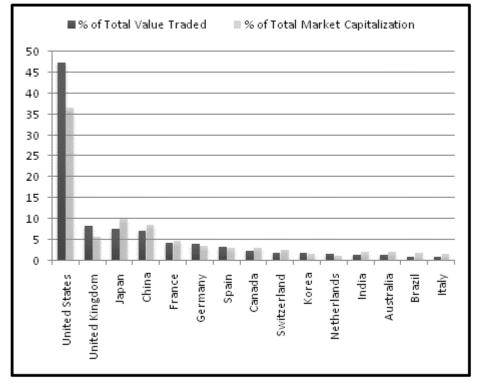


Figure 3.2: The biggest 15 markets in 2008

When the correlations between variables for year 2008 given in Table 3.12 are inspected some implications as follows:

- Value traded and market capitalization is highly correlated whereas turnover ratio has a medium and nearly same correlation with the other two output variables as in year 2007.

- Value traded and market capitalization is highly correlated with GDP but not with GDP per capita.

- GDP per capita has medium or high correlation with the other input variables except GDP.

- GDP per capita is highly correlated with institutional environment, business environment.

- Value traded and market capitalization has low correlation with institutional environment, business environment, financial stability and banking financial services.

	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Value Traded (Billion USD)	1.00									
Market Capitalization (Billion USD)	0.99	1.00								
Turnover Ratio (%)	0.45	0.46	1.00							
Institutional Environment	0.26	0.26	0.57	1.00						
Business Environment	0.26	0.26	0.67	0.89	1.00					
Financial Stability	-0.02	0.00	0.25	0.55	0.51	1.00				
Banking Financial Services	0.22	0.26	0.58	0.84	0.75	0.48	1.00			
Non-Banking Financial Services	0.60	0.62	0.63	0.46	0.52	0.09	0.52	1.00		
GDP (Billion USD)	0.96	0.98	0.53	0.24	0.26	0.00	0.25	0.65	1.00	
GDP per Capita (USD)	0.20	0.19	0.60	0.83	0.85	0.51	0.67	0.39	0.19	1.00

 Table 3.12: Correlations of variables for 2008

Country	Stage of Development	Overall Efficiency	Pure Technical Efficiency	Scale Efficiency	Market Capitalization (% of GDP)	Value Traded (% of GDP)	Turnover Ratio (%)
China	Developing	1.000	1.000	1.000	61.63	120.69	121.30
Egypt	Developing	1.000	1.000	1.000	52.75	42.77	61.85
Finland	Developed	1.000	1.000	1.000	57.22	144.71	155.12
Hungary	Developed	1.000	1.000	1.000	12.01	19.91	93.01
India	Developing	1.000	1.000	1.000	53.16	86.46	85.19
Indonesia	Developing	1.000	1.000	1.000	19.35	21.68	71.30
Italy	Developed	1.000	1.000	1.000	22.68	29.13	284.24
Korea	Developed	1.000	1.000	1.000	53.11	157.40	181.18
Kuwait	Developed	1.000	1.000	1.000	72.40	82.92	83.16
Saudi Arabia	Developed	1.000	1.000	1.000	51.85	110.44	137.82
Singapore	Developed	1.000	1.000	1.000	93.12	140.12	101.34
South Africa	Developing	1.000	1.000	1.000	177.71	145.23	60.61
Switzerland	Developed	1.000	1.000	1.000	172.44	300.90	145.59
Thailand	Developing	1.000	1.000	1.000	37.66	42.86	78.20
Turkey	Developing	1.000	1.000	1.000	16.15	32.82	118.52
United Kingdom	Developed	1.000	1.000	1.000	69.55	243.63	226.85
United States	Developed	1.000	1.000	1.000	81.69	253.79	232.26
Sweden	Developed	0.962	0.963	0.999	51.80	131.62	157.02
Spain	Developed	0.958	1.000	0.958	59.34	153.04	177.57
Norway	Developed	0.926	0.930	0.996	27.93	81.67	152.17
Netherlands	Developed	0.922	0.930	0.991	44.44	130.95	169.18
Japan	Developed	0.822	0.830	0.990	65.90	120.31	153.23
France	Developed	0.756	0.773	0.978	52.28	114.41	152.45
Russian Federation	Developing	0.754	1.000	0.754	23.82	33.71	75.02
Czech Republic	Developed	0.744	0.887	0.840	22.61	19.92	70.39
Canada	Developed	0.731	0.745	0.981	66.85	118.11	123.72
Nigeria	Developing	0.710	1.000	0.710	24.05	9.63	29.30
Germany	Developed	0.669	0.687	0.974	30.31	84.94	191.54
Israel	Developed	0.649	0.673	0.963	66.53	54.01	58.87
Australia	Developed	0.647	0.649	0.998	65.00	97.91	103.06
Brazil	Developing	0.642	0.705	0.911	35.97	44.42	74.27
Ireland	Developed	0.632	0.664	0.952	18.55	13.97	85.04
Malaysia	Developing	0.544	0.550	0.988	84.58	38.53	33.24
Belgium	Developed	0.512	0.553	0.925	33.16	41.95	76.09
Austria	Developed	0.499	0.506	0.985	17.51	25.31	68.98
Chile	Developing	0.465	0.583	0.797	77.51	21.40	21.17
Philippines	Developing	0.450	1.000	0.450	31.11	10.28	22.16
Poland	Developed	0.397	0.461	0.862	17.08	12.86	45.68
Mexico	Developing	0.343	0.810	0.423	21.34	9.93	34.33
Panama	Developing	0.324	1.000	0.324	28.33	1.10	4.01
Colombia	Developing	0.258	1.000	0.258	35.77	5.13	13.21
Peru	Developing	0.242	1.000	0.242	43.08	3.96	6.33
Argentina	Developing	0.238	0.620	0.383	15.93	4.09	19.31
Kazakhstan	Developing	0.223	1.000	0.223	23.29	2.58	11.73
Ukraine	Developing	0.087	1.000	0.223	13.53	1.41	3.73
UNIAIIIE	Developing	0.067	1.000	0.007	15.55	1.41	5.75

Table 3.13:	Efficiency	scores	for	2008
-------------	------------	--------	-----	------

After classical DEA model is solved by applying CCR and BCC formulation using the input and output data in Table 3.10 the efficiency scores of overall efficiency, pure technical efficiency and scale efficiency is calculated as shown in Table 3.13.

Table 3.14 is derived from Table 3.13 as a descriptive summary and has some of the implications below:

- 17 countries are overall efficient, 26 countries are pure technical efficient and 17 countries are scale efficient. This implies that scale efficiency determining factor for overall efficiency.

- Number of pure technical efficient developing countries is higher than overall efficient developing countries as in year 2007.

- Average overall efficiency is 0.74, average pure technical efficiency is 0.88 and average scale efficiency is 0.84.

- Average values of the stock market development indicators of overall efficient countries is about half of the year 2007.

	Ove	rall Efficie	ency	Pure Te	chnical Ef	ficiency	Sca	le Efficie	ncy
	А	В	С	А	В	С	А	В	С
Number of Efficient Countries	10	7	17	11	15	26	10	7	17
% of Efficient Countries	40.00	35.00	37.78	44.00	75.00	57.78	40.00	35.00	37.78
Average Efficiency	0.83	0.61	0.74	0.85	0.91	0.88	0.98	0.68	0.84
Standard Deviation of Efficiency	0.19	0.33	0.28	0.18	0.16	0.17	0.04	0.34	0.27
AverageMarketCapitalization(%ofGDP)ofEfficientCountries	68.61	59.77	64.97	67.76	42.76	53.34	68.61	59.77	64.97
Average Market Capitalization (% of GDP) of Inefficient Countries	42.62	35.25	39.20	41.42	47.07	42.91	42.62	35.25	39.20
AverageValueTraded(% ofGDP)ofEfficientCountries	148.29	70.36	116.20	148.73	37.35	84.47	148.29	70.36	116.20
AverageValueTraded(% of GDP)ofInefficientCountries	80.07	14.32	49.54	74.85	23.67	61.38	80.07	14.32	49.54
Average Turnover Ratio (%) of Efficient Countries	164.06	85.28	131.62	165.29	50.83	99.25	164.06	85.28	131.62
Average Turnover Ratio (%) of Inefficient Countries	119.00	26.75	76.17	114.82	36.47	94.20	119.00	26.75	76.17

Table 3.14: Some statistics derived from Table 3.13

*A: Developed Countries; B: Developing Countries; C: Countries regarding criteria

The target values calculated by CCR model for three output variables for all inefficient DMUs given in Table 3.15 shows the value of outputs for those DMUs to be efficient in year 2008.

From the reference table for 2008 that is given in Table 3.16 it can be state that the first three country which is most referenced by other countries are Italy, Korea and South Africa.

Although Turkey was found overall efficient in year 2008 there is no other country that takes Turkey as reference.

	Value	Fraded	Market Caj	pitalization	Turnover Ratio (%)		
	(Billior	uSD)	(Billion	n USD)	Turnover	Katio (%)	
Country	Original Value	Target Value	Original Value	Target Value	Original Value	Target Value	
Argentina	13.42	416.63	52.31	220.21	19.31	81.29	
Australia	1,017.71	2,468.10	675.62	1,044.33	103.06	159.30	
Austria	104.52	323.87	72.30	166.09	68.98	138.33	
Belgium	211.78	613.19	167.45	327.20	76.09	148.68	
Brazil	727.79	1,872.45	589.38	917.66	74.27	115.64	
Canada	1,770.63	3,521.83	1,002.22	1,370.71	123.72	169.21	
Chile	36.56	287.12	132.43	284.76	21.17	45.52	
Colombia	12.48	370.41	87.03	336.91	13.21	51.14	
Czech Republic	43.03	137.14	48.85	65.63	70.39	94.56	
France	3,265.49	5,459.80	1,492.33	1,974.67	152.45	201.72	
Germany	3,105.29	4,639.22	1,107.96	1,753.18	191.54	286.16	
Ireland	37.21	337.87	49.40	138.11	85.04	134.57	
Israel	109.16	298.54	134.46	207.25	58.87	90.74	
Japan	5,879.44	11,953.03	3,220.49	3,917.37	153.23	186.39	
Kazakhstan	3.45	124.40	31.08	139.44	11.73	52.63	
Malaysia	85.21	289.42	187.07	344.12	33.24	61.15	
Mexico	108.20	1,880.86	232.58	678.94	34.33	100.21	
Netherlands	1,143.04	1,240.01	387.91	435.66	169.18	183.53	
Nigeria	19.95	78.72	49.80	70.11	29.30	41.25	
Norway	368.26	397.74	125.92	191.65	152.17	164.35	
Panama	0.26	28.91	6.57	20.29	4.01	12.39	
Peru	5.11	187.51	55.63	229.44	6.33	28.31	
Philippines	17.21	108.78	52.10	115.87	22.16	49.29	
Poland	67.95	503.81	90.23	227.01	45.68	114.92	
Russian Federation	562.23	1,190.19	397.18	526.86	75.02	99.52	
Spain	2,440.24	2,700.97	946.11	987.70	177.57	185.38	
Sweden	641.75	728.18	252.54	262.53	157.02	163.23	
Ukraine	2.54	245.95	24.36	278.72	3.73	42.68	

 Table 3.15: Target values for outputs in 2008

No	Country		Countries Taken as References								
1	Australia	23 (0.617)	42 (0.025)	25 (0.028)	14 (0.339)		0				
2	Austria	6 (0.593)	12 (0.096)	15 (0.229)			0				
3	Belgium	23 (0.214)	12 (0.107)	6 (0.561)			0				
4	Canada	23 (0.514)	25 (0.058)	42 (0.092)	14 (0.416)		0				
5	Czech Republic	19 (0.038)	6 (0.215)	9 (0.523)	12 (0.026)		0				
6	Finland	6(1)					8				
7	France	23 (0.329)	24 (0.057)	25 (0.116)	12 (0.341)	14 (0.093)	0				
8	Germany	12 (0.886)	25 (0.103)	24 (0.046)			0				
9	Hungary	9 (1)					4				
10	Ireland	6 (0.835)	12 (0.018)				0				
11	Israel	23 (0.010)	6 (0.393)	42 (0.229)	20 (0.144)		0				
12	Italy	12 (1)					15				
13	Japan	23 (0.197)	24 (0.094)	25 (0.289)	12 (0.034)	14 (0.329)	0				
14	Korea	14(1)					13				
15	Kuwait	15 (1)					3				
16	Netherlands	12 (0.043)	6 (0.202)	14 (0.772)			0				
17	Norway	25 (0.001)	15 (0.202)	6 (0.787)	12 (0.090)		0				
18	Poland	19 (0.406)	14 (0.157)	43 (0.161)	12 (0.063)		0				
19	Saudi Arabia	19 (1)					3				
20	Singapore	20(1)					5				
21	Spain	23 (0.210)	24 (0.133)	25 (0.025)	12 (0.205)	14 (0.335)	0				
22	Sweden	12 (0.005)	6 (0.675)	14 (0.314)			0				
23	Switzerland	23 (1)					9				
24	United Kingdom	24 (1)					4				
25	United States	25 (1)					10				
26	Argentina	42 (0.140)	31 (0.264)	14 (0.164)	19 (0.195)		0				
27	Brazil	32 (0.273)	14 (0.302)	29 (0.204)	12 (0.046)		0				
28	Chile	20 (0.106)	42 (0.450)	23 (0.052)			0				
29	China	29 (1)					1				
30	Colombia	42 (0.588)	25 (0.001)	14 (0.079)	23 (0.008)		0				
31	Egypt	31 (1)					4				
32	India	32 (1)					5				
33	Indonesia	33 (1)					1				
34	Kazakhstan	42 (0.256)	9 (0.356)	20 (0.040)			0				
35	Malaysia	9 (0.167)	42 (0.678)	20 (0.045)			0				
36	Mexico	32 (0.173)	25 (0.031)	14 (0.371)	12 (0.039)		0				
37	Nigeria	32 (0.025)	33 (0.216)	43 (0.061)	31 (0.307)		0				
38	Panama	15 (0.042)	20 (0.088)				0				
39	Peru	42 (0.467)					0				
40	Philippines	42 (0.081)	32 (0.028)	31 (0.680)			0				
41	Russian Federation	32 (0.196)	25 (0.022)	12 (0.273)			0				
42	South Africa	42 (1)					11				
43	Thailand	43 (1)					2				
44	Turkey	44 (1)					0				
45	Ukraine	42 (0.536)	31 (0.078)	14 (0.017)	9 (0.025)		0				

Table 3.16: Reference table for 2008

3.5.3 Results and Evaluation of 2009

The data in Table 3.18 is used to solve classical DEA for year 2009. In Table 3.18 the first three columns includes the data for output variables and the last seven columns includes the data for input variables of 45 countries in alphabetical order.

As seen in Table 3.17 the average of value traded in terms of billion USD is 2,631.13 for developed countries, 624.94 for developing countries and 1,739.49 for 45 countries. The average of market capitalization in terms of billion USD is 1,349.77 for developed countries, 540.32 for developing countries and 990.01 for 45 countries. Similarly, the average of value turnover ratio is 108.23 for developed countries, 56.97 for developing countries and 85.45 for 45 countries.

When input variables is considered, the average values of 45 countries are 4.58 for institutional environment; 4.70 for business environment; 4.54 for financial stability; 3.81 for banking financial services; 2.80 for non-banking financial services; 1,116.22 billion USD for GDP and finally 23,298 USD for GDP per capita. There is a difference in these values depending on the stage of development as in output variables.

From Table 3.17 it can be calculated that in 2009, about 60 percent of all value traded in the world and 36.5 percent of world's market capitalization value belongs to United States. It was 47 percent for value traded in year 2008. The selected 15 countries that have the highest values in value traded have 94 percent share in value traded and 88 percent share in market capitalization. These 15 countries are United States, China, Japan, United Kingdom, Spain, Korea, France, Germany, Canada, India, Switzerland, Australia, Russian Federation, Brazil and Netherlands (See Figure 3.3).

As compared by the selected 15 countries that have the highest values in value traded of year 2008, it is seen that the share and rank of developing countries is increased.

Among 15 countries United States, China, Japan, United Kingdom and Spain together have 83 percent share in value traded and 62 percent share in market capitalization. In these statistics compared to the statistics of year 2008, there is a serious increase in share of the value traded value of United States and China.

	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Average -										
Developed	2,631.13	1,349.77	108.23	5.25	5.28	4.68	4.34	3.06	1,559.69	37,696
Average -										
Developing	624.94	540.32	56.97	3.75	3.97	4.35	3.14	2.48	674.21	5,299
Average -										
Total	1,739.49	990.01	85.45	4.58	4.70	4.54	3.81	2.80	1,166.14	23,298
Standard										
Deviation -										
Developed	9,248.14	2,996.50	66.50	0.71	0.48	0.69	0.74	1.23	2,880.27	15,562
Standard										
Deviation -										
Developing	1,982.81	1,114.53	60.32	0.54	0.48	0.72	0.73	0.89	1,109.95	2,803
Standard										
Deviation -										
Total	7,026.08	2,366.32	68.17	0.98	0.82	0.72	0.95	1.12	2,292.39	20,013
Minimum -										
Developed	18.47	28.29	40.57	3.87	4.42	2.89	2.21	1.40	98.42	11,273
Minimum -										
Developing	0.05	8.05	0.74	2.83	2.83	3.07	2.05	1.25	24.71	1,118
Maximum -										
Developed	46,735.90	15,077.30	348.58	6.08	5.99	6.11	5.36	6.07	14,119.00	79,089
Maximum- Developing	8,956.19	5,007.65	229.61	5.05	4.62	5.68	4.91	4.45	4,985.46	9,644

Table 3.17: Some descriptive statistics of variables

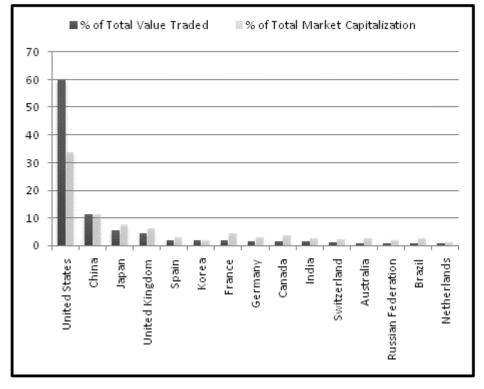


Figure 3.3: The biggest 15 markets in 2009

Country	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Argentina	2.73	48.93	5.39	3.21	4.02	3.24	2.93	2.48	307.16	7,626
Australia	761.82	1,258.46	78.78	5.47	5.48	5.21	5.06	3.96	924.84	42,279
Austria	25.53	53.58	40.57	5.66	5.37	4.80	4.21	1.96	381.08	45,562
Belgium	127.80	261.43	59.60	5.59	5.54	4.83	4.88	2.55	471.16	43,671
Brazil	649.19	1,167.33	73.91	3.61	3.80	5.15	3.22	3.56	1,573.41	8,121
Canada	1,239.63	1,680.96	92.40	5.87	5.72	5.03	4.76	4.49	1,336.07	39,599
Chile	37.57	209.48	21.97	4.46	4.53	5.38	3.24	1.86	163.67	9,644
China	8,956.19	5,007.65	229.61	4.08	4.26	4.93	4.91	4.45	4,985.46	3,744
Colombia	12.95	133.30	11.75	3.52	4.33	4.44	2.65	2.06	234.05	5,126
Czech Republic	20.61	52.69	40.59	4.20	4.67	4.79	3.88	1.73	190.27	18,139
Egypt	52.81	89.95	60.07	3.85	3.81	4.39	3.03	2.14	188.41	2,270
Finland	91.17	91.02	74.30	5.78	5.87	5.09	4.08	2.12	237.99	44,581
France	1,365.81	1,972.04	78.85	5.51	5.56	5.13	4.09	3.39	2,649.39	41,051
Germany	1,288.87	1,297.57	107.16	5.78	5.51	4.72	4.33	3.43	3,330.03	40,670
Hungary	25.94	28.29	110.69	4.59	4.75	2.89	2.21	1.52	128.96	12,868
India	1,088.89	1,179.24	119.35	3.21	3.35	4.03	3.06	3.53	1,310.17	1,134
Indonesia	115.31	178.19	83.27	3.54	3.22	4.39	2.61	2.07	540.27	2,349
Ireland	18.47	29.88	46.60	5.55	5.36	3.60	5.07	3.18	227.19	51,049
Israel	88.29	182.10	55.78	5.13	4.45	4.47	4.15	2.21	195.39	26,256
Italy	459.73	317.32	109.70	4.32	4.76	4.29	4.13	2.70	2,112.78	35,084
Japan	4,192.62	3,377.89	128.80	5.54	5.13	4.46	5.17	4.14	5,069.00	39,738
Kazakhstan	4.04	57.66	9.10	3.23	4.16	3.82	2.86	2.55	115.31	7,257
Korea	1,581.49	836.46	237.62	4.11	5.33	4.15	3.96	4.15	832.51	17,078
Kuwait	69.93	95.94	68.86	3.87	4.51	4.91	3.73	1.44	98.42	35,215
Malaysia	72.97	255.95	32.94	5.05	4.59	5.68	4.70	3.17	193.09	7,030
Mexico	77.06	340.57	26.89	3.51	3.90	4.98	2.59	1.98	874.81	8,143
Netherlands	604.16	542.53	129.87	5.76	5.66	4.51	5.34	3.65	792.13	47,917
Nigeria	4.57	33.32	11.01	3.63	2.83	3.07	2.43	1.25	173.00	1,118
Norway	247.76	227.23	140.31	5.88	5.62	5.37	4.33	2.13	381.77	79,089
Panama	0.05	8.05	0.74	4.28	4.14	4.09	4.03	1.65	24.71	7,155
Peru	3.14	69.75	5.00	3.67	3.83	4.82	2.73	1.63	130.33	4,469
Philippines	17.20	80.13	26.01	3.64	3.34	4.38	2.75	2.17	161.20	1,752
Poland	55.78	135.28	49.47	4.04	4.42	4.55	3.13	2.17	430.08	11,273
Russian Federation	682.54	861.42	108.50	3.15	4.43	4.17	2.05	4.28	1,231.89	8,684
Saudi Arabia	336.98	318.77	119.26	4.36	5.02	6.11	3.53	4.28	369.18	14,540
Singapore South Africa	252.27 342.50	310.77	102.80	6.08 4.42	5.91 3.92	5.66 4.56	4.64	3.61 2.76	182.23	36,537 5 786
	342.50	704.82	57.27			4.56	3.68	2.76	285.37	5,786
Spain Swadan	1,599.26	1,297.23	142.58	4.96	4.87	3.94	5.24	3.64	1,460.25	31,774
Sweden	390.32	432.30	113.99	6.05	5.99	4.62	4.81	2.40	406.07	43,654
Switzerland	795.56	1,070.69	82.30	5.66	5.80	5.64	4.52	2.75	491.92	63,629
Thailand	134.94	138.19	112.08	4.32	4.29	4.71	3.55	1.60	263.77	3,893
Turkey	243.53	225.74	141.72	3.82	4.62	3.70	3.07	1.90	614.60	8,215
Ukraine	0.59	16.79	2.87	2.83	3.94	3.13	2.62	2.48	113.55	2,468
United Kingdom	3,402.50	2,796.44	146.40	5.79	5.45	3.99	5.36	5.51	2,174.53	35,165
United States	46,735.90	15,077.30	348.58	5.58	5.37	4.26	4.01	6.07	14,119.00	45,989

Table 3.18: Input and output values for 2009

Source: Worldbank World Development Indicators and WEF Financial Development Report 2010

When the correlations shown in Table 3.19 between variables for year 2009 are inspected some implications as follows:

- Value traded and market capitalization is highly correlated whereas turnover ratio has a medium correlation with the other two output variables but the degree of correlation is increased compared to the other years.

- Value traded and market capitalization is highly correlated with GDP but not with GDP per capita. However the correlation coefficient between value traded and GDP is less than the past two years.

- GDP per capita is highly correlated with institutional environment, business environment and banking financial services.

- Value traded and market capitalization has low correlation with institutional environment, business environment, financial stability and banking financial services.

- Financial stability has very low correlation with other variables.

	Value Traded (Billion USD)	Market Capitalization (Billion USD)	Turnover Ratio (%)	Institutional Environment	Business Environment	Financial Stability	Banking Financial Services	Non- Banking Financial Services	GDP (Billion USD)	GDP per Capita (USD)
Value Traded (Billion USD)	1.00									
Market Capitalization (Billion USD)	0.97	1.00								
Turnover Ratio (%)	0.68	0.74	1.00							
Institutional Environment	0.18	0.24	0.33	1.00						
Business Environment	0.15	0.19	0.40	0.87	1.00					
Financial Stability	-0.04	0.01	0.06	0.41	0.39	1.00				
Banking Financial Services	0.12	0.23	0.36	0.82	0.73	0.36	1.00			
Non-Banking Financial Services	0.55	0.68	0.65	0.35	0.38	0.02	0.50	1.00		
GDP (Billion USD)	0.93	0.97	0.73	0.23	0.19	-0.01	0.23	0.67	1.00	
GDP per Capita (USD)	0.18	0.21	0.32	0.85	0.85	0.32	0.70	0.30	0.22	1.00

Table 3.19: Correlations of variables for 2009

After classical DEA model is solved by applying CCR and BCC formulation using the input and output data in Table 3.18 the efficiency scores of overall efficiency, pure technical efficiency and scale efficiency is obtained as shown in Table 3.20.

Country	Stage of Development	Overall Efficiency	Pure Technical Efficiency	Scale Efficiency	Market Capitalization (% of GDP)	Value Traded (% of GDP)	Turnover Ratio (%)
China	Developing	1.000	1.000	1.000	100.46	179.67	229.61
Hungary	Developed	1.000	1.000	1.000	21.93	20.11	110.69
India	Developing	1.000	1.000	1.000	90.01	83.11	119.35
Korea	Developed	1.000	1.000	1.000	100.47	189.97	237.62
Kuwait	Developed	1.000	1.000	1.000	97.48	71.06	68.86
Saudi Arabia	Developed	1.000	1.000	1.000	86.34	91.28	119.26
Singapore	Developed	1.000	1.000	1.000	170.53	138.43	102.80
South Africa	Developing	1.000	1.000	1.000	246.46	119.76	57.27
Switzerland	Developed	1.000	1.000	1.000	217.65	161.72	82.30
Thailand	Developing	1.000	1.000	1.000	52.37	51.14	112.08
Turkey	Developing	1.000	1.000	1.000	36.58	39.46	141.72
United Kingdom	Developed	1.000	1.000	1.000	128.60	156.47	146.40
United States	Developed	1.000	1.000	1.000	105.76	327.83	348.58
Norway	Developed	0.924	0.969	0.954	59.52	64.90	140.31
Indonesia	Developing	0.914	1.000	0.914	32.98	21.34	83.27
Egypt	Developing	0.886	1.000	0.886	47.76	28.04	60.07
Russian Federation	Developing	0.886	1.000	0.886	69.99	55.46	108.50
Canada	Developed	0.876	0.881	0.994	125.81	92.78	92.40
Australia	Developed	0.848	0.851	0.996	136.07	82.37	78.78
Sweden	Developed	0.847	0.857	0.988	106.46	96.12	113.99
Spain	Developed	0.781	0.810	0.965	88.84	109.52	142.58
Brazil	Developing	0.645	0.710	0.909	74.26	41.30	73.91
Netherlands	Developed	0.632	0.633	1.000	68.49	76.27	129.87
France	Developed	0.617	0.618	0.998	74.43	51.55	78.85
Italy	Developed	0.616	0.618	0.996	15.02	21.76	109.70
Israel	Developed	0.612	0.612	1.000	93.48	45.33	55.78
Japan	Developed	0.607	0.610	0.996	66.66	82.74	128.80
Malaysia	Developing	0.601	0.637	0.943	133.59	38.08	32.94
Philippines	Developing	0.561	1.000	0.561	49.93	10.72	26.01
Chile	Developing	0.540	0.861	0.627	127.99	22.95	21.97
Finland	Developed	0.525	0.572	0.918	38.32	38.38	74.30
Germany	Developed	0.486	0.504	0.965	38.77	38.51	107.16
Belgium	Developed	0.430	0.432	0.996	55.80	27.27	59.60
Czech Republic	Developed	0.370	0.405	0.914	27.69	10.83	40.59
Poland	Developed	0.341	0.392	0.870	31.45	12.97	49.47
Ireland	Developed	0.337	0.363	0.928	13.15	8.13	46.60
Mexico	Developing	0.323	0.546	0.591	38.93	8.81	26.89
Austria	Developed	0.284	0.292	0.971	13.92	6.63	40.57
Nigeria	Developing	0.282	1.000	0.282	19.72	2.71	11.01
Colombia	Developing	0.254	0.680	0.373	57.75	5.61	11.75
Kazakhstan	Developing	0.237	0.866	0.273	52.82	3.70	9.10
Peru	Developing	0.217	1.000	0.217	55.04	2.47	5.00
Panama	Developing	0.134	1.000	0.134	32.57	0.22	0.74
Argentina	Developing	0.086	0.190	0.450	15.85	0.88	5.39
Ukraine	Developing	0.084	1.000	0.084	14.79	0.52	2.87

Table 3.20: Efficiency scores in 2009

Table 3.21 is derived from Table 3.20 as a descriptive summary and has some of the implications below:

- 13 countries are overall efficient, 21 countries are pure technical efficient and 15 countries are scale efficient.

- Number of pure technical efficient developing countries is higher than overall efficient developing countries as in other years. However number of overall efficient developed countries is equal to number of overall efficient developed countries.

- Average overall efficiency is 0.66, average pure technical efficiency is 0.80 and average scale efficiency is 0.84.

- Average values of the stock market development indicators of overall efficient countries have increased compared to year 2008.

	Ove	erall Efficie	ency	Pure Teo	chnical E	fficiency	Sc	ale Efficier	ncy
	А	В	С	А	В	С	А	В	С
Number of Efficient Countries	8	5	13	8	13	21	10	5	15
% of Efficient Countries	32.00	25.00	28.89	32.00	65.00	46.67	40.00	25.00	33.33
Average Efficiency	0.73	0.58	0.66	0.74	0.87	0.80	0.98	0.66	0.84
Standard Deviation of Efficiency	0.26	0.35	0.31	0.25	0.22	0.24	0.04	0.33	0.27
AverageMarketCapitalization(% ofGDP)ofEfficientCountries	116.10	105.18	11.90	116.10	65.28	84.64	109.08	105.18	107.78
Average Market Capitalization (% of GDP) of Inefficient Countries	61.99	54.93	58.68	61.99	71.60	64.79	59.46	54.93	57.20
AverageValueTraded(% of GDP) of EfficientCountries	144.61	94.63	125.39	144.61	45.74	83.40	127.85	94.63	116.77
AverageValueTraded(% of GDP) of InefficientCountries	50.95	16.19	34.65	50.95	17.33	41.14	49.63	16.19	32.91
Average Turnover Ratio (%) of Efficient Countries	152.07	132.01	144.35	152.07	73.65	103.62	140.22	132.01	137.48
Average Turnover Ratio (%) of Inefficient Countries	87.61	31.96	31.52	87.61	25.99	69.64	86.91	31.96	59.44

Table 3.21: Some statistics derived from Table 3.20

*A: Developed Countries; B: Developing Countries; C: Countries regarding criteria

The target values calculated by CCR model for three output variables for all inefficient DMUs are given in Table 3.22. Target values determine the value of outputs for those DMUs to be efficient in year 2009 by assuming inputs values are constant.

From the reference table for 2008 (Table 3.23) it can be stated that the first four countries which are most referenced by other countries are Korea, South Africa, United States and Hungary.

It is seen from Table 3.23 that the countries which should take Turkey as a reference for year 2009 are Germany (0.720), Italy (0.714) and Austria (0.110).

	Value Traded (Billion USD)		Market Cap (Billion		Turnover	Ratio (%)
Country	Original Value	Target Value	Original Value	Target Value	Original Value	Target Value
Argentina	2.73	453.25	48.93	571.36	5.39	62.94
Australia	761.82	1,434.22	1,258.46	1,484.69	78.78	95.45
Austria	25.53	369.01	53.58	273.27	40.57	143.10
Belgium	127.80	735.90	261.43	607.81	59.60	138.57
Brazil	649.19	3,682.51	1,167.33	1,808.93	73.91	114.53
Canada	1,239.63	2,669.08	1,680.96	1,919.62	92.40	106.37
Chile	37.57	200.40	209.48	387.78	21.97	40.67
Colombia	12.95	326.76	133.30	525.42	11.75	46.31
Czech Republic	20.61	178.49	52.69	142.29	40.59	109.62
Egypt	52.81	108.13	89.95	112.53	60.07	67.79
Finland	91.17	206.65	91.02	173.28	74.30	141.45
France	1,365.81	8,124.75	1,972.04	3,196.34	78.85	127.80
Germany	1,288.87	9,479.06	1,297.57	3,234.58	107.16	220.31
Indonesia	115.31	423.85	178.19	442.91	83.27	91.13
Ireland	18.47	213.60	29.88	127.47	46.60	138.37
Israel	88.29	160.35	182.10	297.77	55.78	91.21
Italy	459.73	5,521.75	317.32	1,940.10	109.70	178.22
Japan	4,192.62	16,104.40	3,377.89	5,563.39	128.80	212.13
Kazakhstan	4.04	131.81	57.66	243.36	9.10	38.41
Malaysia	72.97	213.65	255.95	426.01	32.94	54.83
Mexico	77.06	2,394.05	340.57	1,055.94	26.89	83.37
Netherlands	604.16	1,576.91	542.53	857.82	129.87	205.34
Nigeria	4.57	121.51	33.32	129.49	11.01	39.03
Norway	247.76	447.07	227.23	309.28	140.31	151.89
Panama	0.05	29.93	8.05	59.88	0.74	5.51
Peru	3.14	156.42	69.75	321.90	5.00	26.16
Philippines	17.20	113.02	80.13	142.89	26.01	46.38
Poland	55.78	651.04	135.28	396.75	49.47	145.08
Russian Federation	682.54	3,073.26	861.42	1,272.11	108.50	122.46
Spain	1,599.26	3,712.73	1,297.23	1,660.25	142.58	182.48
Sweden	390.32	635.97	432.30	510.55	113.99	134.62
Ukraine	0.59	106.52	16.79	198.99	2.87	34.01

Table 3.22: Target values for outputs in 2009

No	Country		Countries	s Taken as Refe	erences		No of being Reference
1	Australia	23 (0.486)	24 (0.283)	42 (0.245)			0
2	Austria	9 (0.433)	44 (0.110)	14 (0.117)	19 (0.435)		0
3	Belgium	14 (0.220)	9 (0.332)	25 (0.001)	19 (0.200)	23 (0.307)	0
4	Canada	42 (0.304)	25 (0.024)	24 (0.327)	23 (0.397)	· · /	0
5	Czech Republic	9 (0.771)	14 (0.085)	42 (0.070)			0
6	Finland	23 (0.071)	19 (0.016)	9 (1.048)	14 (0.074)		0
7	France	42 (0.264)	25 (0.161)	14 (0.069)	23 (0.486)		0
8	Germany	14 (0.216)	44 (0.720)	25 (0.192)			0
9	Hungary	9 (1)					13
10	Ireland	14 (0.119)	9 (0.995)				0
11	Israel	9 (0.607)	14 (0.007)	42 (0.390)			0
12	Italy	14 (0.164)	44 (0.714)	25 (0.109)			0
13	Japan	24 (0.023)	23 (0.285)	25 (0.328)	14 (0.299)		0
14	Korea	14 (1)					21
15	Kuwait	15 (1)					0
16	Netherlands	9 (0.19)	14 (0.694)	23 (0.134)	19 (0.048)	25 (0.008)	0
17	Norway	14 (0.175)	9 (0.493)	19 (0.467)			0
18	Poland	42 (0.038)	14 (0.358)	43 (0.203)	9 (0.192)	19 (0.115)	0
19	Saudi Arabia	19 (1)					8
20	Singapore	20(1)					4
21	Spain	24 (0.076)	23 (0.176)	25 (0.051)	14 (0.586)		0
22	Sweden	14 (0.086)	9 (0.702)	25 (0.005)	19 (0.084)	23 (0.302)	0
23	Switzerland	23 (1)					11
24	United Kingdom	24 (1)					5
25	United States	25 (1)					13
26	Argentina	24 (0.020)	23 (0.029)	42 (0.559)	14 (0.108)		0
27	Brazil	14 (0.176)	25 (0.043)	42 (0.454)	29 (0.139)		0
28	Chile	42 (0.498)	20 (0.118)				0
29	China	29 (1)					2
30	Colombia	23 (0.011)	42 (0.677)	25 (0.001)	14 (0.027)		0
31	Egypt	32 (0.028)	43 (0.575)				0
32	India	32 (1)					4
33	Indonesia	32 (0.313)	43 (0.450)	14 (0.014)			0
34	Kazakhstan	9 (0.083)	42 (0.287)	20 (0.124)			0
35	Malaysia	9 (0.153)	42 (0.577)	20 (0.047)			0
36	Mexico	14 (0.107)	25 (0.044)	43 (0.047)	42 (0.362)	19 (0.139)	0
37	Nigeria	43 (0.264)	32 (0.079)				0
38	Panama	42 (0.081)	20 (0.008)				0
39	Peru	42 (0.457)					0
40	Philippines	32 (0.040)	43 (0.335)	42 (0.069)			0
41	Russian Federation	29 (0.073)	14 (0.388)	25 (0.039)			0
42	South Africa	42 (1)					17
43	Thailand	43 (1)					7
44	Turkey	44 (1)					3
45	Ukraine	43 (0.138)	9 (0.036)	42 (0.254)			0

Table 3.23: Reference table for 2009

3.6 EVALUATION OF EFFICIENCY IN TIME BY TFP INDEX

By solving classical Data Envelopment Analysis models for 2007, 2008 and 2009, the efficiency scores were found. However these scores are not enough to compare the efficiency in time. In order to compare efficiency change and to understand indeed the reason of the change Malmquist Total Factor Productivity Index can be used.

Malmquist Total Factor Productivity Index measures total factor productivity change over time using distance functions. It does not require behavioral assumptions such as cost minimization, profit maximization or price information which makes it useful compared to other indexes. Malmquist Total Factor Productivity Index is product of change in efficiency (also called "catching up") by change in technical efficiency.

TFP Index = Change in Efficiency (CE) * Change in Technical Efficiency (CTE) (3.1)

In Equation 3.1, CE measures the efficiency catching-up of the regarding DMU. If CE = 1, that means the country is still in the same position relative to the efficient boundary. When CE > 1 the country has moved closer to the frontier, whereas if CE < 1 the country has moved away from the frontier between two periods. Also, CTE indicates the change in technology. CTE < 1 implies a negative shift of the frontier, CTE > 1 implies positive shift (progress) and CTE = 1 implies no shift in the technological frontier (Hadad et al. 2011, p.5).

In this section, first DEA efficiency scores and their analysis will be given then in contact with efficiency scores, efficiencies of countries will be analyzed by using Malmquist Total Factor Productivity Index.

The overall efficiency scores of countries for 2007, 2008 and 2009 and also the average of overall efficiency scores of these three years is given in Table 3.24.

Country	State of Development	2007 Overall Efficiency	2008 Overall Efficiency	2009 Overall Efficiency	Averag of Overa Efficienc
China	Developing	1.000	1.000	1.000	1.00
Hungary	Developed	1.000	1.000	1.000	1.00
India	Developing	1.000	1.000	1.000	1.00
Korea	Developed	1.000	1.000	1.000	1.00
Saudi Arabia	Developed	1.000	1.000	1.000	1.00
Singapore	Developed	1.000	1.000	1.000	1.00
South Africa	Developing	1.000	1.000	1.000	1.00
Switzerland	Developed	1.000	1.000	1.000	1.00
Turkey	Developing	1.000	1.000	1.000	1.00
United Kingdom	Developed	1.000	1.000	1.000	1.00
United States	Developed	1.000	1.000	1.000	1.00
Kuwait	Developed	0.961	1.000	1.000	0.98
Thailand	Developing	0.924	1.000	1.000	0.97
Indonesia	Developing	1.000	1.000	0.914	0.97
Egypt	Developing	1.000	1.000	0.886	0.96
Spain	Developed	0.931	0.958	0.781	0.89
Norway	Developed	0.778	0.926	0.924	0.87
Sweden	Developed	0.812	0.962	0.847	0.87
Italy	Developed	1.000	1.000	0.616	0.87
Netherlands	Developed	1.000	0.922	0.632	0.85
Finland	Developed	1.000	1.000	0.525	0.84
Canada	Developed	0.775	0.731	0.876	0.79
Russian Federation	Developing	0.626	0.754	0.886	0.75
Australia	Developed	0.752	0.647	0.848	0.74
Japan	Developed	0.665	0.822	0.607	0.69
France	Developed	0.652	0.756	0.617	0.67
Malaysia	Developing	0.836	0.544	0.601	0.66
Germany	Developed	0.755	0.669	0.486	0.63
Israel	Developed	0.638	0.649	0.612	0.63
Brazil	Developing	0.571	0.642	0.645	0.61
Philippines	Developing	0.794	0.450	0.561	0.60
Nigeria	Developing	0.806	0.710	0.282	0.59
Czech Republic	Developed	0.645	0.744	0.370	0.58
Ireland	Developed	0.534	0.632	0.337	0.50
Chile	Developing	0.477	0.465	0.540	0.49
Belgium	Developed	0.426	0.512	0.430	0.45
Poland	Developed	0.390	0.397	0.341	0.37
Austria	Developed	0.344	0.499	0.284	0.37
Mexico	Developing	0.280	0.343	0.323	0.31
Kazakhstan	Developing	0.362	0.223	0.237	0.27
Peru	Developing	0.350	0.242	0.217	0.27
Colombia	Developing	0.231	0.258	0.254	0.24
Panama	Developing	0.152	0.324	0.134	0.20
Argentina	Developing	0.165	0.238	0.086	0.16
Ukraine	Developing	0.269	0.087	0.084	0.14

Table 3.24: 2007, 2008 and 2009 overall efficiency scores

When the data given in Table 3.24 analyzed, some of implications can be as follows:

- Countries found efficient in all three years:

Developed Countries: Hungary, Korea, Saudi Arabia, Singapore, Switzerland,United Kingdom, United States (7 countries in total),

ii) Developing Countries: China, India, South Africa, Turkey (4 countries in total),

- Countries found efficient in any two years:
- i) Developed Countries: Italy, Finland, Kuwait (3 countries in total),
- ii) Developing Countries: Indonesia, Egypt, Thailand (3 countries in total),

- Countries found efficient in only one year:

- i) Developed Countries: Netherlands,
- ii) Developing Countries: None

- Countries found inefficient in all three years:

Developed Countries: Norway, Canada, Australia, Sweden, Spain, France,
 Israel, Japan, Germany, Belgium, Czech Republic, Poland, Ireland, Austria (14 countries in total),

Developing Countries: Russian Federation, Brazil, Malaysia, Philippines, Chile,
 Mexico, Nigeria, Colombia, Kazakhstan, Peru, Panama, Argentina, Ukraine (13
 countries in total).

As seen, except countries found efficient in all three years, according to the stage of development, the number of countries in the categories are very close.

From the Table 3.25 it can be stated that, number of countries found efficient in each type of efficiency is minimum in 2009. Number of pure technical efficient developing countries is more than twice of overall efficient countries whereas it is not valid for developed countries.

Table 3 25. Number	of officiant and	inofficient	countries for three years	2
Table 5.25: Number	of efficient and	memcient	countries for three years	5

		Overal [®] fficient		Pure Technical Efficiency			al Scale Efficiency				
Year	А	В	С	Α	В	С	Α	В	С		
2007	10	6	16	12	16	28	11	6	17		
2008	10	7	17	11	15	26	10	7	17		
2009	8	5	13	8	13	21	10	5	15		

*A: Developed Countries; B: Developing Countries; C: All Countries

In Figure 3.4, the overall efficiency scores of three years given as three categories; developed, developing and all countries. As seen the average of the overall efficiency scores of the developed countries is higher in each three years and it first slightly increases then decreases. However the average of the overall efficiency scores of the developing countries decreases with a linear trend.

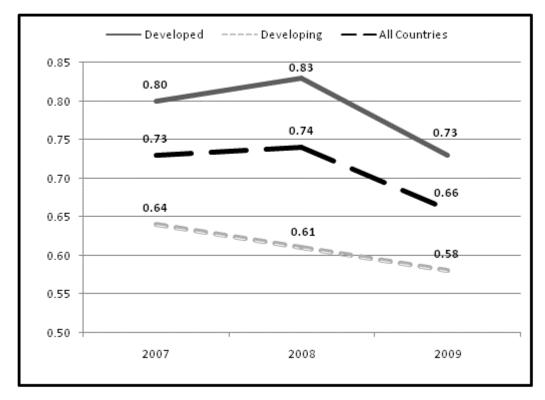


Figure 3.4: Overall efficiency scores of three years according to stage of development

As explained in the beginning of this section to take only the efficiency scores in consideration may be captious to evaluate change in efficiency. In order to evaluate change in efficiency in time, Malmquist Total Factor Productivity Index can be employed.

In Table 3.26, Malmquist Total Factor Productivity Index calculated by Deap 2.1 is given. As seen, average change in efficiency (CE) is greater than 1 from 2007 to 2008 and less than 1 from 2008 to 2009. Also, average change in Technical efficiency (CTE) is less than 1 from 2007 to 2008 and greater than 1 from 2008 to 2009. Similarly, Total

Factor Productivity Index (TFP Index) is less than 1 from 2007 to 2008 and greater than 1 from 2008 to 2009.

The average of Total Factor Productivity Index is 0.953 which indicates a decrease in 2008 and 2009 in the average with respect to 2007. According to the average of Total Factor Productivity Index 16 countries has an index value which is greater than 1, these countries are Thailand, Russian Federation, Australia, United States, Mexico, Hungary, Brazil, Korea, Chile, Indonesia, Colombia, Canada, Turkey, China, India and United Kingdom. 10 of these 16 countries are developing countries which implies that developing countries have gained more importance in the period 2007-2009. When the global financial crisis which reached to peak in 2008 is thought, this result is meaningful.

Additional comments can be made by the help of Figure 3.5. As seen in Figure 3.5 Total Factor Productivity Index for developed countries is decreasing in 2008 less than those of developing countries but increasing in 2009 less than developing countries. This is another meaningful result to evaluate the direction of stock markets in the financial crisis.

The first 5 countries according to the average of the value traded in billion USD in the period 2007-2009 were United States, China, United Kingdom, Japan and France. When these countries evaluated in terms of TFP Index, it is seen that in this period United States, China and United Kingdom have an average TFP Index greater than 1. In the same period Japan and France have an average TFP Index less than 1.

		2007-2008		20	008-200	9		
				-				Average
	Stage of			TFP			TFP	of TFP
Country	Development	CE	CTE	Index	CE	CTE	Index	Index
Thailand	Developing	1.082	1.040	1.125	1.000	1.437	1.437	1.281
Russian Fed.	Developing	1.205	0.773	0.931	1.175	1.282	1.507	1.219
Australia	Developed	0.860	0.684	0.588	1.310	1.279	1.676	1.132
United States	Developed	1.000	0.866	0.866	1.000	1.397	1.397	1.132
Mexico	Developing	1.222	0.796	0.972	0.942	1.294	1.219	1.096
Hungary	Developed	1.000	0.861	0.861	1.000	1.325	1.325	1.093
Brazil	Developing	1.125	0.664	0.747	1.005	1.427	1.433	1.090
Korea	Developed	1.000	0.856	0.856	1.000	1.315	1.315	1.086
Chile	Developing	0.976	0.689	0.672	1.162	1.287	1.495	1.084
Indonesia	Developing	1.000	1.003	1.003	0.914	1.272	1.162	1.083
Colombia	Developing	1.118	0.813	0.909	0.982	1.276	1.254	1.082
Canada	Developed	0.944	0.636	0.600	1.198	1.296	1.552	1.076
Turkey	Developing	1.000	0.829	0.829	1.000	1.240	1.240	1.035
China	Developing	1.000	0.497	0.497	1.000	1.566	1.566	1.032
India	Developing	1.000	0.670	0.670	1.000	1.378	1.378	1.024
United Kingdom	Developed	1.000	0.755	0.755	1.000	1.273	1.273	1.014
Norway	Developed	1.190	0.813	0.967	0.998	1.014	1.012	0.990
Panama	Developing	2.129	0.670	1.426	0.415	1.318	0.547	0.987
South Africa	Developing	1.000	0.728	0.728	1.000	1.237	1.237	0.983
Philippines	Developing	0.566	1.006	0.570	1.247	1.089	1.359	0.965
Egypt	Developing	1.000	1.019	1.019	0.886	1.016	0.900	0.960
Malaysia	Developing	0.650	0.779	0.506	1.105	1.250	1.382	0.944
Kuwait	Developed	1.040	0.744	0.774	1.000	1.109	1.109	0.942
Sweden	Developed	1.184	0.794	0.940	0.880	1.071	0.943	0.942
Poland	Developed	1.019	0.777	0.791	0.858	1.258	1.079	0.935
Saudi Arabia	Developed	1.000	0.693	0.693	1.000	1.176	1.176	0.935
France	Developed	1.159	0.744	0.862	0.816	1.224	0.999	0.931
Kazakhstan	Developing	0.616	0.774	0.477	1.063	1.289	1.370	0.924
Japan	Developed	1.236	0.709	0.877	0.739	1.310	0.968	0.923
Singapore	Developed	1.000	0.663	0.663	1.000	1.177	1.177	0.920
Belgium	Developed	1.201	0.777	0.933	0.840	1.077	0.906	0.920
Israel	Developed	1.017	0.688	0.699	0.943	1.157	1.091	0.895
Spain	Developed	1.029	0.776	0.799	0.816	1.210	0.987	0.893
Switzerland	Developed	1.000	0.710	0.710	1.000	1.030	1.030	0.870
Austria	Developed	1.451	0.765	1.110	0.569	1.019	0.579	0.845
Netherlands	Developed	0.922	0.827	0.762	0.686	1.331	0.913	0.838
Peru	Developing	0.693	0.669	0.463	0.894	1.338	1.196	0.830
Italy	Developed	1.000	1.201	1.201	0.616	0.691	0.425	0.813
Germany	Developed	0.887	1.063	0.943	0.727	0.932	0.677	0.810
Ireland	Developed	1.184	0.819	0.970	0.533	1.177	0.627	0.799
Argentina	Developing	1.436	0.770	1.105	0.361	1.352	0.487	0.796
Czech Republic	Developed	1.154	0.796	0.919	0.497	1.152	0.573	0.746
Ukraine	Developing	0.325	0.728	0.236	0.965	1.181	1.140	0.688
Nigeria	Developing	0.881	1.011	0.890	0.397	1.141	0.453	0.672
Finland	Developed	1.000	0.758	0.758	0.525	1.002	0.526	0.642
	Average	1.033	0.793	0.815	0.890	1.215	1.091	0.953

Table 3.26: Change in Efficiency (CE), change in technical efficiency (CTE) and TFP Index

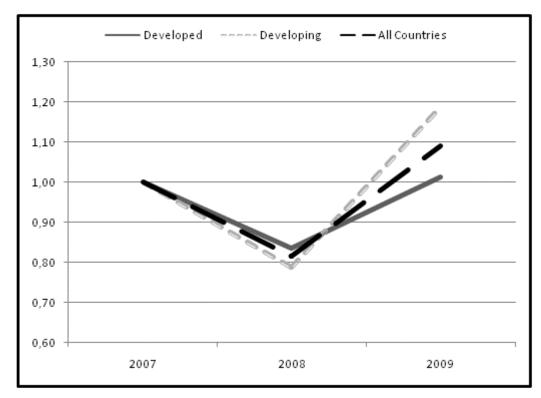


Figure 3.5: TFP Index for 2007 - 2009

To gain a deeper understanding about the relation between overall efficiency change and change in total factor productivity, selected two countries will be analyzed.

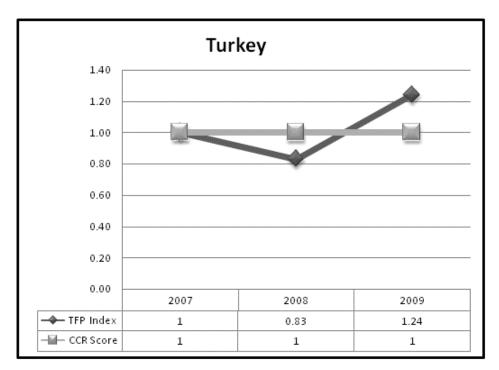


Figure 3.6: Overall efficiency and TFP Index for Turkey

The first country to be analyzed is Turkey. As seen in Figure 3.6, CCR score (overall efficiency) of Turkey is 1 in all of the three years whereas TFP Index is decreasing from 2007 to 2008 and then increasing from 2008 to 2009. Although efficiency score did not changed total factor productivity is increased. This implies a success in technical efficiency.

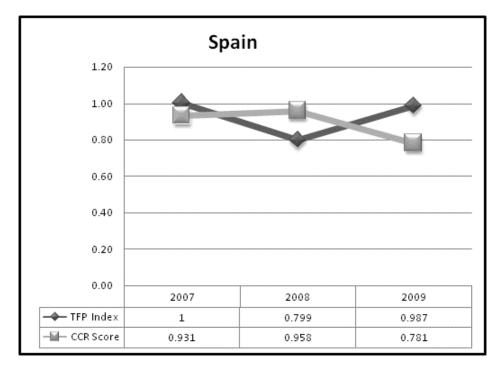


Figure 3.7: Overall efficiency and TFP Index for Spain

Another country to be analyzed is Spain. As seen in Figure 3.7 CCR score (overall efficiency) of Spain is increasing slightly from 2007 to 2008 but TFP Index is decreasing. This implies a failure in technical efficiency. Additionally CCR score (overall efficiency) of Spain is decreasing from 2008 to 2009 but TFP Index is increasing. This implies a success in technical efficiency.

There are many alternative trends changing from country to country. All the figures belonging 45 countries in the study are given in Appendix 1 to make evaluations about the efficiency change and total factor productivity change.

3.7 APPLICATION AND RESULTS OF FUZZY DEA

In this section Wang, Greatbanks and Yang (2005) approach is used to solve Fuzzy Data Envelopment Analysis (FDEA) model. In this FDEA model the inputs and outputs are same as in classical DEA model. In Wang, Greatbanks and Yang (2005) there are two efficiency scores instead of one score. They are lower bound efficiency and upper bound efficiency. In order to remind LP models for lower and upper bound efficiencies of Wang, Greatbanks and Yang (2005), they are given below

LP Model for Lower Bound Efficiency:

Maximize
$$\theta_{j0}^{L} = \sum_{r=1}^{s} u_r y_{rj0}^{L}$$
 (3.2)

subject to $\sum_{i=1}^{m} v_i x_{ij0}^U = 1$,

$$\sum_{r=1}^{s} u_r y_{rj}^U - \sum_{i=1}^{m} v_i x_{ij}^L \le 0, \quad j = 1, 2, \dots, n$$

$$u_r, v_i \ge \varepsilon \quad \forall r, i.$$

LP Model for Upper Bound Efficiency:

Maximize
$$\theta_{j0}^{L} = \sum_{r=1}^{s} u_{r} y_{rj0}^{U}$$
 (3.3)
subject to $\sum_{i=1}^{m} v_{i} x_{ij0}^{L} = 1$,
 $\sum_{r=1}^{s} u_{r} y_{rj}^{U} - \sum_{i=1}^{m} v_{i} x_{ij}^{L} \le 0$, $j = 1, 2, ..., n$

 $u_r, v_i \ge \varepsilon \quad \forall r, i.$

In order to solve these LP formulations one needs to know lower and upper boundaries. Lower and upper boundaries will be found applying α -cut sets approach of Zimmermann (1991) on triangular fuzzy numbers. In this study, elements of triangular fuzzy numbers are taken as values of input and output variables in each three year (2007, 2008, and 2009). For a variable, the minimum of the three years' values is the smallest possible value (a), the maximum of the three years' values is the largest possible value (b), and the other is the most promising value (m).

For a variable, the lower bound and upper bound can be found as follows:

Lower Bound =
$$L = a + \alpha (m-a)$$
 (3.4)

Upper Bound =
$$U = b - \alpha (b-m)$$
 (3.5)

An example of calculating lower and upper bounds will be given as using value traded variable of Turkey. The values of the value traded of Turkey in years 2007, 2008 and 2009 are 302.40, 239.71 and 243.53 respectively. When converted triangular fuzzy number;

a = 239.71; m = 243.53 and b = 302.40.

The lower bound for $\alpha = 0.25$ is L = 239.71 + 0.25(243.53-239.71) = 240.67 The upper bound for $\alpha = 0.25$ is U = 302.40 - 0.25(302.40-243.53) = 287.68.

The lower bound for $\alpha = 0.50$ is L = 239.71 + 0.50(243.53-239.71) = 241.62 The upper bound for $\alpha = 0.50$ is U = 302.40 - 0.50(302.40-243.53) = 272.96.

The lower bound for $\alpha = 0.75$ is L = 239.71 + 0.75(243.53-239.71) = 242.57 The upper bound for $\alpha = 0.50$ is U = 302.40 - 0.75(302.40-243.53) = 258.24. As seen in Figure 3.8, the smallest interval can be obtained when $\alpha = 0.75$ and the largest interval is obtained when $\alpha = 0.25$. Furthermore, efficiency scores are generally getting higher as α is getting higher (See Table 3.27).

For all variables of each DMU's lower and upper bounds are calculated and given in Appendix 2. Using the lower and upper bounds given Appendix 2 and solving LP models in Microsoft Excel Solver for $\alpha = 0.25$, 0.50 and 0.75, the lower bound and upper bound efficiency scores are calculated and given in Table 3.27.

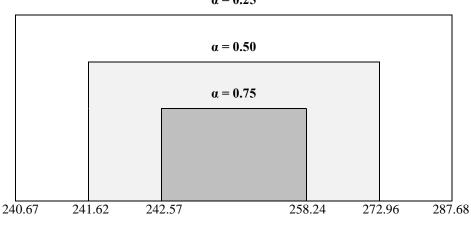


Figure 3.8: Intervals for three a levels

In Table 3.27, average of 2007, 2008 and 2009 overall efficiency scores obtained by using classical DEA and minimum absolute distances to these scores are given besides FDEA results. As seen average of lower bound efficiencies of 45 countries for $\alpha = 0.25$, 0.50 and 0.75 are 0.481, 0.553 and 0.636 respectively. Average of upper bound efficiencies of 45 countries are 0.730 for all α levels. However, minimum of upper bound efficiency scores is decreasing while α is increasing.

Another implication from Table 3.27 is about minimum absolute difference to average of 2007, 2008 and 2009 overall efficiency scores obtained by using classical DEA. 26 countries have the minimum difference to average of 2007, 2008 and 2009 overall efficiency scores for upper bound efficiency of $\alpha = 0.75$; 9 countries for upper bound efficiency of $\alpha = 0.25$; 5 countries for lower bound efficiency of $\alpha = 0.75$ and 5 countries for upper bound efficiency of $\alpha = 0.50$.

		0.25		0.50		0.75		
Country	Value of Lower Bound Efficiency (1)	Value of Upper Bound Efficiency (2)	Value of Lower Bound Efficiency (3)	Value of Upper Bound Efficiency (4)	Value of Lower Bound Efficiency (5)	Value of Upper Bound Efficiency (6)	Average of 2007- 2009 Overall Efficiency in Classical DEA (7)	Minimum Absolute Difference to (7)
Argentina	0.078	0.196	0.092	0.175	0.109	0.152	0.163	6
Australia	0.446	0.736	0.560	0.778	0.701	0.820	0.749	2
Austria	0.249	0.402	0.289	0.402	0.339	0.399	0.376	6
Belgium	0.316	0.454	0.355	0.452	0.399	0.448	0.456	2
Brazil	0.351	0.596	0.413	0.616	0.521	0.635	0.619	4
Canada	0.443	0.830	0.554	0.844	0.695	0.855	0.794	2
Chile	0.363	0.476	0.412	0.496	0.469	0.516	0.494	4
China	0.633	1.000	0.741	1.000	0.862	1.000	1.000	6
Colombia	0.174	0.243	0.194	0.241	0.216	0.240	0.248	2
Czech Republic	0.373	0.603	0.452	0.608	0.538	0.619	0.586	2
Egypt	0.678	1.000	0.785	1.000	0.895	1.000	0.962	6
Finland	0.525	1.000	0.668	1.000	0.826	1.000	0.842	5
France	0.395	0.683	0.484	0.695	0.585	0.700	0.675	2
Germany	0.398	0.666	0.498	0.694	0.624	0.730	0.637	5
Hungary	0.832	1.000	0.889	1.000	0.945	1.000	1.000	6
India	0.753	1.000	0.826	1.000	0.909	1.000	1.000	6
Indonesia	0.724	1.000	0.821	1.000	0.908	1.000	0.971	6
Ireland	0.332	0.617	0.409	0.614	0.498	0.611	0.501	5
Israel	0.452	0.627	0.499	0.618	0.548	0.607	0.633	2
Italy	0.488	1.000	0.633	1.000	0.802	1.000	0.872	5
Japan	0.470	0.635	0.525	0.649	0.595	0.659	0.698	6
Kazakhstan	0.151	0.321	0.174	0.292	0.201	0.262	0.274	6
Korea	0.779	1.000	0.847	1.000	0.921	1.000	1.000	6
Kuwait	0.660	1.000	0.751	1.000	0.862	1.000	0.987	6
Malaysia	0.428	0.724	0.478	0.685	0.540	0.649	0.660	6
Mexico	0.193	0.280	0.217	0.287	0.254	0.294	0.315	6
Netherlands	0.582	0.887	0.665	0.882	0.757	0.873	0.851	6
Nigeria	0.299	0.659	0.428	0.695	0.584	0.733	0.599	5
Norway	0.719	0.815	0.779	0.847	0.844	0.880	0.876	6
Panama	0.103	0.225	0.122	0.206	0.140	0.184	0.203	4
Peru	0.163	0.303	0.181	0.276	0.201	0.249	0.270	4
Philippines	0.370	0.586	0.422	0.580	0.489	0.575	0.602	2
Poland	0.287	0.354	0.318	0.367	0.353	0.383	0.376	6
Russian Federation	0.419	0.926	0.511	0.879	0.627	0.829	0.755	6
Saudi Arabia	0.712	1.000	0.796	1.000	0.892	1.000	1.000	6
Singapore	0.743	1.000	0.826	1.000	0.911	1.000	1.000	6
South Africa	0.785	1.000	0.860	1.000	0.934	1.000	1.000	6
Spain	0.636	0.850	0.724	0.877	0.824	0.905	0.890	4
Sweden	0.595	0.884	0.670	0.886	0.776	0.891	0.874	2
Switzerland	0.701	1.000	0.791	1.000	0.891	1.000	1.000	6
Thailand	0.628	1.000	0.729	1.000	0.850	1.000	0.975	6
Turkey	0.787	1.000	0.861	1.000	0.931	1.000	1.000	6
Ukraine	0.052	0.259	0.060	0.194	0.070	0.131	0.147	6
United Kingdom	0.582	1.000	0.705	1.000	0.844	1.000	1.000	6
United States	0.382	1.000	0.705	1.000	0.936	1.000	1.000	6
								U
Average - All No of Efficient DMUs	0.481 0	0.730 17	0.553 0	0.730 17	0.636 0	0.730 17	0.710	
Average - Inefficient	0.398	0.642	0.467	0.642	0.548	0.642	0.616	
Minimum	0.052	0.042	0.407	0.042	0.070	0.131	0.147	
Maximum	0.832	1.000	0.889	1.000	0.945	1.000	1.000	

Table 3.27: Lower and upper bound efficiencies for three α levels

Other interesting results are that none of the countries is efficient in lower bound and number of efficient countries is equal and 17 in upper bound. When consider the number of efficient countries according to the average of overall efficiency in classical DEA results; 16 countries are efficient in 2007, 17 countries are efficient in 2008 and 13 countries are efficient in 2009, it can be stated that upper bound efficiency in FDEA produces generally better efficiency scores as compared classical DEA.

A graphical presentation of average, minimum and maximum scores of FDEA model is given in Figure 3.9.

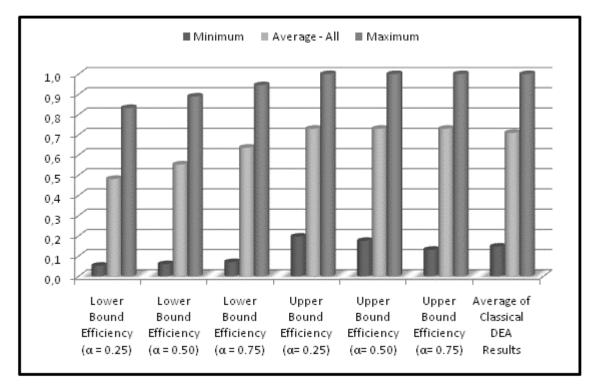


Figure 3.9: Graphical presentation of FDEA results

3.8 RANKING DMUs AND COMPARING WITH DEA

In this section DMUs (countries) will be ranked using lower bound efficiency and upper bound efficiency together by applying "Minimax Regret Approach" which is proposed by Wang, Greatbanks and Yang (2005) as explained in subsection 2.3.10.3 of this study.

To remind, the formulation of MRA was as follows.

$$min_{i}\{max(r_{i})\} = min_{i}(max[max_{j\neq i}\{a_{j}^{U}\} - a_{i}^{L}, 0])$$

In this part, the MRA will be explained by an example for $\alpha = 0.25$. Consider Table 3.28. In Table 3.28, second column is lower bound efficiencies of countries, third column is upper bound efficiencies of countries, and fourth column is maximum of upper bound efficiencies excluding related country. According to the MRA, in the fourth column maximum of upper bound efficiencies excluding related country also called maximum loss of efficiency is calculated. All of them are greater than zero. Final step is to select the minimum of maximum loss of efficiencies. In the first iteration this country is Hungary. Thus Hungary becomes most efficient country and gets number 1 in ranking.

Similar iteration goes on like this but after iteration 1; Hungary is extracted from the list. This time United States has the minimum loss among the maximum loss of efficiencies (See Table 3.29). All calculations were done for all countries for three α levels and the results are given in Table 3.31.

Country	a_i^L	a_i^U	$max_{j\neq i}\left\{a_{j}^{U}\right\}$	$max_{j\neq i} \{a_j^U\} - a_i^L$
Argentina	0.078	0.196	1.000	0.922
Australia	0.078	0.736	1.000	0.554
Austria	0.249	0.402	1.000	0.751
Belgium	0.249	0.402	1.000	0.684
Brazil	0.310	0.494	1.000	0.649
Canada	0.331	0.390	1.000	0.557
Chile	0.363	0.830	1.000	0.637
China	0.633	1.000	1.000	0.367
Colombia	0.033	0.243	1.000	0.826
Colonibla Czech Republic				0.627
-	0.373	0.603	1.000	
Egypt Finland	0.678	1.000	1.000	0.322
	0.525	1.000	1.000	0.475
France	0.395	0.683	1.000	0.605
Germany	0.398	0.666	1.000	0.602
Hungary	0.832	1.000	1.000	0.168
India	0.753	1.000	1.000	0.247
Indonesia	0.724	1.000	1.000	0.276
Ireland	0.332	0.617	1.000	0.668
Israel	0.452	0.627	1.000	0.548
Italy	0.488	1.000	1.000	0.512
Japan	0.470	0.635	1.000	0.530
Kazakhstan	0.151	0.321	1.000	0.849
Korea	0.779	1.000	1.000	0.221
Kuwait	0.660	1.000	1.000	0.340
Malaysia	0.428	0.724	1.000	0.572
Mexico	0.193	0.280	1.000	0.807
Netherlands	0.582	0.887	1.000	0.418
Nigeria	0.299	0.659	1.000	0.701
Norway	0.719	0.815	1.000	0.281
Panama	0.103	0.225	1.000	0.897
Peru	0.163	0.303	1.000	0.837
Philippines	0.370	0.586	1.000	0.630
Poland	0.287	0.354	1.000	0.713
Russian Federation	0.419	0.926	1.000	0.581
Saudi Arabia	0.712	1.000	1.000	0.288
Singapore	0.743	1.000	1.000	0.257
South Africa	0.785	1.000	1.000	0.215
Spain	0.636	0.850	1.000	0.364
Sweden	0.595	0.884	1.000	0.405
Switzerland	0.701	1.000	1.000	0.299
Thailand	0.628	1.000	1.000	0.372
Turkey	0.787	1.000	1.000	0.213
Ukraine	0.052	0.259	1.000	0.948
United Kingdom	0.582	1.000	1.000	0.418
United States	0.818	1.000	1.000	0.182

Table 3.28: MRA calculation to determine the first country

Country	a_i^L	a_i^U	$max_{j\neq i}\left\{a_{j}^{U}\right\}$	$max_{j\neq i}\left\{a_{j}^{U}\right\}-a_{i}^{L}$
Argentina	0.078	0.196	1.000	0.922
Australia	0.446	0.736	1.000	0.554
Austria	0.249	0.402	1.000	0.751
Belgium	0.316	0.454	1.000	0.684
Brazil	0.351	0.596	1.000	0.649
Canada	0.443	0.830	1.000	0.557
Chile	0.363	0.476	1.000	0.637
China	0.633	1.000	1.000	0.367
Colombia	0.174	0.243	1.000	0.826
Czech Republic	0.373	0.603	1.000	0.627
Egypt	0.678	1.000	1.000	0.322
Finland	0.525	1.000	1.000	0.475
France	0.395	0.683	1.000	0.605
Germany	0.398	0.666	1.000	0.602
India	0.753	1.000	1.000	0.247
Indonesia	0.724	1.000	1.000	0.276
Ireland	0.332	0.617	1.000	0.668
Israel	0.452	0.627	1.000	0.548
Italy	0.488	1.000	1.000	0.512
Japan	0.470	0.635	1.000	0.530
Kazakhstan	0.151	0.321	1.000	0.849
Korea	0.779	1.000	1.000	0.221
Kuwait	0.660	1.000	1.000	0.340
Malaysia	0.428	0.724	1.000	0.572
Mexico	0.193	0.280	1.000	0.807
Netherlands	0.582	0.887	1.000	0.418
Nigeria	0.299	0.659	1.000	0.701
Norway	0.719	0.815	1.000	0.281
Panama	0.103	0.225	1.000	0.897
Peru	0.163	0.303	1.000	0.837
Philippines	0.370	0.586	1.000	0.630
Poland	0.287	0.354	1.000	0.713
Russian Federation	0.419	0.926	1.000	0.581
Saudi Arabia	0.712	1.000	1.000	0.288
Singapore	0.743	1.000	1.000	0.257
South Africa	0.785	1.000	1.000	0.215
Spain	0.636	0.850	1.000	0.364
Sweden	0.595	0.884	1.000	0.405
Switzerland	0.701	1.000	1.000	0.299
Thailand	0.628	1.000	1.000	0.372
Turkey	0.787	1.000	1.000	0.213
Ukraine	0.052	0.259	1.000	0.948
United Kingdom	0.582	1.000	1.000	0.418
United States	0.818	1.000	1.000	0.182

Table 3.29: MRA calculation to determine the second country

In Table 3.31, beside FDEA rankings, the ranking for the average value of three years' overall efficiency score is given. When a country is efficient in classical DEA the sign

"-" is used in the ranking column. To compare fuzzy DEA results with overall efficiency result of classical DEA is reasonable since they both use CRR logic. From Table 3.31 some implications can be stated as follows:

- There is not any such difference in ranking among Fuzzy Data Envelopment results for three α levels. However, generally classical DEA ranking is very close to FDEA ranking except some countries.

- The first 7 countries in FDEA ranking for three α levels are the same with different combinations. Also these 7 countries were found efficient in classical DEA models for three years. These countries are Hungary, United States, South Africa, Turkey, Korea, Singapore and India.

- Other countries found efficient in classical DEA models in 2007, 2008 and 2009 were Saudi Arabia, Switzerland, China and United Kingdom. When the ranks of these countries in FDEA models are investigated, it is seen that Saudi Arabia has rank 9-10, Switzerland has rank 10-11, China has rank 13-14-15, and United Kingdom has rank 15-16-17.

- 13 countries have the same ranking position for all α levels in FDEA model. 9 of them are in rank between 37 and 45. These countries are Belgium, Austria, Mexico, Colombia, Kazakhstan, Argentina, Peru, Panama and Ukraine.

- Three countries have the same rank in all four models. These countries and their ranks are: Austria – 38; Mexico – 39; Ukraine – 45.

- When Austria and Mexico which are the countries that have the same ranks in all four models are investigated in detail the order of lower and upper bound efficiencies for three α levels and average of classical DEA results differs.

- Austria and Mexico has the 38th and 39th ranks respectively with the efficiency scores in different models as follows:

Country	Lower	Upper	Lower	Upper	Lower	Upper	Average of
	Bound	Bound	Bound	Bound	Bound	Bound	Classical
Country	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency	DEA
	$(\alpha = 0.25)$	$(\alpha = 0.25)$	$(\alpha = 0.50)$	$(\alpha = 0.50)$	$(\alpha = 0.75)$	$(\alpha = 0.75)$	Results
Austria	0.249	0.402	0.289	0.402	0.339	0.399	0.376
Mexico	0.193	0.280	0.217	0.287	0.254	0.294	0.315

Table 3.30: Comparison of efficiency scores of two special countries

Country	Stage of Development	Classical DEA	Fuzzy DEA $\alpha = 0.25$	Fuzzy DEA $\alpha = 0.50$	Fuzzy DEA $\alpha = 0.75$
Hungary	Developed	-	1	1	1
United States	Developed	-	2	2	2
South Africa	Developing	-	4	4	3
Turkey	Developing	-	3	3	4
Korea	Developed	-	5	5	5
Singapore	Developed	-	7	7	6
India	Developing	-	6	6	7
Indonesia	Developing	14	8	8	8
Egypt	Developing	15	12	11	9
Saudi Arabia	Developed	-	10	9	10
Switzerland	Developed	-	11	10	11
Kuwait	Developed	12	13	13	12
China	Developing	-	15	14	13
Thailand	Developing	13	16	15	14
United Kingdom	Developed	-	17	16	15
Norway	Developed	17	9	12	16
Finland	Developed	21	20	19	17
Italy	Developed	19	21	20	18
Spain	Developed	16	14	17	19
Sweden	Developed	18	18	18	20
Netherlands	Developed	20	19	21	21
Russian Federation	Developing	23	24	22	22
Canada	Developed	22	22	23	23
Australia	Developed	24	23	24	24
Germany	Developed	28	29	27	25
Nigeria	Developing	32	34	30	26
France	Developed	26	28	28	27
Japan	Developed	25	25	25	28
Malaysia	Developing	27	26	29	29
Israel	Developed	29	27	26	30
Czech Republic	Developed	33	30	31	31
Brazil	Developing	30	33	33	32
Ireland	Developed	34	35	34	33
Philippines	Developing	31	31	32	34
Chile	Developing	35	32	36	35
Poland	Developed	37	36	35	36
Belgium	Developed	36	37	37	37
Austria	Developed	38	38	38	38
Mexico	Developing	39	39	39	39
Colombia	Developing	42	40	40	40
Kazakhstan	Developing	40	41	41	41
Argentina	Developing	44	42	42	42
Peru	Developing	41	43	43	43
Panama	Developing	43	44	44	44
Ukraine	Developing	45	45	45	45

Table 3.31: Ranking in classical DEA and fuzzy DEA

The graphical representation of efficiency scores of Austria and Mexico are given in Figure 3.10 and Figure 3.11 respectively. Similar figures that show lower bound efficiencies, upper bound efficiencies and average of classical DEA overall efficiency scores of three years are given for all countries in Appendix 3.

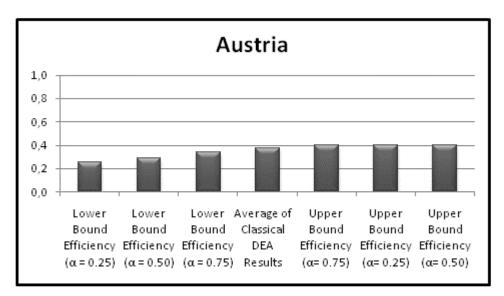


Figure 3.10: Efficiency scores for Austria

Figure 3.11: Efficiency scores for Mexico

4. CONCLUSION AND FURTHER RESEARCH

Value traded in 2009 in the world was about 80 trillion USD while total GDP of the world in 2009 was about 56 trillion USD. This is one of the reasons why stock markets are important for an economy. All countries are searching ways to improve their stock markets. A way for countries to examine the comparative situation of their stock markets can be to analyze their efficiency level. By analyzing efficiency, countries can evaluate how they use their potential. The aim of this study was to examine the efficiency of stock markets with a country-based approach by using classical and fuzzy Data Envelopment Analysis methods. Thus, it is expected that decision makers can see their efficiency level and develop policies and solutions if their stock markets are not efficient.

Efficiency can be defined as the degree of realization of the stock market objectives defined for a country as a result of the activities realized for reaching these goals. The methods for measuring efficiency can be classified under there headings: the ratio analysis, parametric methods and non-parametric methods. In this study Data Envelopment Analysis (DEA) which is one of the non-parametric methods is used as a method for evaluating stock market efficiencies of countries.

Data Envelopment Analysis is a relatively new, linear programming based, data oriented approach which is directed to frontiers rather than central tendencies for evaluating the performance or efficiencies of a set of peer entities called Decision Making Units (DMUs) which convert multiple inputs into multiple outputs (Cooper 2004).

DEA has some strengths compared to other methods such as does not need to have specific functional forms of relations between inputs and outputs, a large number of inputs and outputs can be considered at the same time in DEA and the weights of inputs and outputs are determined by the model. DEA is used in different areas to evaluate efficiency such as banking, health, and education. However, during the literature survey, any internationally cited article is found which examines the efficiency of stock markets by using DEA method.

There are four stages in a DEA application:

- a) Determination of DMUs to be analyzed,
- b) Determination of appropriate inputs and outputs for the model,
- c) Determination of DEA model,
- d) Evaluation of results.

In this study, 45 countries of which 25 are developed countries and 20 are developing countries determined as DMUs. The 45 countries represent 90 percent of whole world in terms of market capitalization value and 95 percent of the whole world in terms of trading volume.

Determination of appropriate inputs and outputs for the model was done by the help of literature survey about the determinants of the stock market development. Considering literature survey and special characteristics of DEA application, input and output variables were determined.

Inputs variables in DEA models in this study are

- Gross Domestic Product (GDP),
- GDP per capita and,

the first five pillars of Financial Development Report of World Bank namely;

- Institutional environment,
- Business environment,
- Financial stability,
- Banking financial services,
- Non-banking financial services.

Outputs variables in DEA models in this study are

- Market capitalization value in billion USD (the sum of product of stock price by stock number),
- Value traded in billion USD (the value of buying or selling through year),
- Turnover ratio (division of the value traded to average market capitalization).

Classical and fuzzy Data Envelopment Analysis methods were used in this study to determine the relative efficiency of the stock markets. In classical DEA application output-oriented CCR and BCC models were used. The efficiency scores in fuzzy DEA is found and ranked by Wang et al. (2005) approach which is proposed for interval values and similar to CCR. The comparison of efficiency scores of classical DEA and fuzzy DEA were done by using the average of CCR model scores of classical DEA.

In addition efficiency scores; in classical DEA models the change in efficiency by time which is measured by using Malmquist Total Productivity Index and in fuzzy DEA models the ranks of the countries which are found by Minimax Regret Approach in terms of efficiency is evaluated.

Classical DEA was used to obtain efficiency scores for three years: 2007, 2008 and 2009. In fuzzy DEA, the values of 2007, 2008 and 2009 were used to get triangular fuzzy numbers and then lower and upper bounds for three α -cut levels (0.25, 0.50, and 0.75).

The models in classical DEA are solved by Deap Version 2.1, the FDEA model in solved by the help of Microsoft Excel 2007 Solver Add-in formed by Dr. İsmail Şafak.

Some important findings in the study can be summarized as follows:

Implications related to market indicators and their relations:

• In 2007, about 45 percent of all value traded in the world and 33 percent of world's total market capitalization value belongs to United States. 15 countries that have the highest values in value traded have 94 percent share in value traded and 85 percent share in market capitalization.

• In 2008, about 47 percent of all value traded in the world and 36.5 percent of world's market capitalization value belongs to United States. 15 countries that have the highest values in value traded have 94 percent share in value traded and 88 percent share in market capitalization.

• In 2009, about 60 percent of all value traded in the world and 36.5 percent of world's market capitalization value belongs to United States. It was 47 percent for value traded in year 2008. 15 countries that have the highest values in value traded have 94 percent share in value traded and 88 percent share in market capitalization.

• The data above imply that only a limited number of countries are dominating the stock markets and the most important stock markets are the stock markets of United States with about 50 percent share in value traded.

• Turkey was found efficient in all three years in classical DEA but the share of Turkey in total value traded is about only 0.32 percent. This implies that Turkey is efficient but a small stock market.

• Value traded and market capitalization is highly correlated with each other whereas turnover ratio has a medium and nearly same correlation with the other two output variables.

• Value traded and market capitalization is highly correlated with GDP (about 0.95) but not with GDP per capita (about 0.20). As seen in literature survey most of the studies take market capitalization to GDP and value traded to GDP as indicators of the stock market development but the correlations among GDP, value traded and market capitalization is considered this approach may need to be revised.

Implications related to classical DEA:

• In classical DEA for 2007; 16 countries were overall efficient, 28 countries were pure technical efficient and 17 countries were scale efficient. In classical DEA for 2008, 17 countries are overall efficient, 26 countries are pure technical efficient and 17 countries are scale efficient. In classical DEA for 2009 13 countries are overall efficient, 21 countries are pure technical efficient and 15 countries are scale efficient. Number of

efficient countries in all three type of efficiency is the minumum in year 2009. This result may depend on changes in portfolio investment policies after global financial crisis. Investors are maybe becoming more risk-averse and investing their money to safe markets.

• In classical DEA, average overall efficiency is 0.73 in 2007, 0.74 in 2008 and 0.66 in 2009; average pure technical efficiency is 0.89 in 2007, 0.88 in 2008 and 0.80 in 2009; average scale efficiency is 0.73 in 2007, 0.84 in 2008 and 0.84 in 2009. Average overall efficiency and average pure technical efficiency is decreasing from 2007 to 2009 whereas average scale efficiency is increasing in that period.

• It can be interpreted from average effiency scores that overall efficiency is highly affected from scale efficiency in 2007 and from pure technical efficiency in 2009.

• In classical DEA, average overall efficiency is 0.80 in 2007, 0.83 in 2008 and 0.73 in 2009 for developed countries and 0.64 in 2007, 0.61 in 2008 and 0.58 in 2009 for developing countries. These results show that developed countries have greater overall efficiency scores than developing countries on the average.

• When the reference tables of classical DEA in 2007, 2008 and 2009 are evaluated together it can be stated countries that referenced most by other countries are South Africa, Korea, Switzerland, Finland and United States.

• According to the classical DEA overall efficiency results the number of countries found efficient in all three years is 11. These countries are Hungary, Korea, Saudi Arabia, Singapore, Switzerland, United Kingdom, United States, China, India, South Africa, and Turkey.

• According to the classical DEA overall efficiency results the number of countries found efficient in any two years is 6. These countries are Italy, Finland, Kuwait, Indonesia, Egypt, and Thailand.

• According to the classical DEA overall efficiency results the number of countries found efficient in only one of three years is 1. This country is Netherlands.

• According to the classical DEA overall efficiency results the number of countries found inefficient in all three years is 27. These countries are Norway, Canada, Australia, Sweden, Spain, France, Israel, Japan, Germany, Belgium, Czech Republic, Poland, Ireland, Austria, Russian Federation, Brazil, Malaysia, Philippines, Chile, Mexico, Nigeria, Colombia, Kazakhstan, Peru, Panama, Argentina, and Ukraine.

• The average of Total Factor Productivity Index is 0.953 which indicates a decrease in 2008 and 2009 in the average with respect to 2007. According to the average of Total Factor Productivity Index 16 countries has an index value which is greater than 1, these countries are Thailand, Russian Federation, Australia, United States, Mexico, Hungary, Brazil, Korea, Chile, Indonesia, Colombia, Canada, Turkey, China, India and United Kingdom. 10 of these 16 countries are developing impliying that developing countries have gained more importance in the period 2007-2009. When that global financial crisis which reached to peak in 2008 is considered, this result is meaningful.

Implications related to fuzzy DEA and comparison with classical DEA:

• In fuzzy DEA average of lower bound efficiencies of 45 countries for $\alpha = 0.25$, 0.50 and 0.75 are 0.481, 0.553 and 0.636 respectively. Average of upper bound efficiencies of 45 countries are 0.730 for all α levels. When it is considered that in classical DEA, average overall efficiencies were 0.73 in 2007, 0.74 in 2008 and 0.66 in 2009, it can be stated that on the average upper bound efficiency scores of fuzzy DEA is closer to classical DEA scores than lower bound efficiency scores.

• Another implication from fuzzy DEA efficiency scores is about minimum absolute difference to average of 2007, 2008 and 2009 overall efficiency scores obtained by using classical DEA. 26 countries have the minimum difference to average of 2007, 2008 and 2009 overall efficiency scores for upper bound efficiency of $\alpha = 0.75$ of; 9 countries for upper bound efficiency of $\alpha = 0.25$; 5 countries for lower bound efficiency of $\alpha = 0.75$ and 5 countries for upper bound efficiency of $\alpha = 0.50$. Thus, it can be concluded that among α levels, $\alpha=0.75$ in upper bound efficiency produdes the closest scores to classical DEA.

• When the number of efficient countries is taken into account, it can be stated that upper bound efficiency in FDEA produces generally better efficiency scores as compared with classical DEA.

• According to the Minimax Regret Approach, there is not any such difference in ranking among Fuzzy Data Envelopment results for three α levels. However, generally classical DEA ranking is very close to FDEA ranking except some countries.

• The first 7 countries in FDEA ranking for three α levels are the same with different combinations. Also these 7 countries were found efficient in classical DEA models for three years. These countries are Hungary, United States, South Africa, Turkey, Korea, Singapore and India.

• Other countries found efficient in classical DEA models in 2007, 2008 and 2009 were Saudi Arabia, Switzerland, China and United Kingdom. When the ranks of these countries in FDEA models are investigated, it is seen that Saudi Arabia has rank 9-10, Switzerland has rank 10-11, China has rank 13-14-15, and United Kingdom has rank 15-16-17.

• 13 countries have the same ranking position for all α levels in FDEA model. 9 of them are in rank between 37 and 45. These countries are Belgium, Austria, Mexico, Colombia, Kazakhstan, Argentina, Peru, Panama and Ukraine.

• There is a pattern when the ranking of efficiency scores in lower bound, upper bound and average of classical DEA overall efficiency when all countries examined. After efficiency scores are ranked from the smallest to the biggest, it is seen that they follow a pattern with little changes for some countries. The ranking is like that; lower bound efficiency for α =0.25, lower bound efficiency for α =0.50, lower bound efficiency for α =0.75, average of classical DEA overall efficiency, upper bound efficiency for α =0.25, upper bound efficiency for α =0.50 and upper bound efficiency for α =0.75.

This study has unavoidable limitations and several important issues that warrant further research. Lack of another study researching the same issue is the most important problem creating comparison difficulty. Input and output variables are selected with a highly subjective approach. Most of input variables are based on pillars of Financial Development Report of World Economic Forum and the subjects evaluated in this report is not simply measuring issues. There is no absolute way to evaluate subjects so the report methodology and its weighting policy of pillars are subjective in it. Another problem is that the methods to evaluate the size of stock markets are not reliable. This prevents doing logical comparisons between stock markets and evaluating efficiency scores as considering size. Additionally, this study has limitation about the period examined. Only three years was studied and maybe this is not enough to check the robustness of the model and results. This study gives information about the inefficient countries but not the reason of inefficiency.

Regarding future research, researchers can research the same subject for broader periods with different input and output variables. They also study the reasons of inefficiency and can develop a model explaining the factors with their degree of influence.

It is expected that this study can supply a different point of view and useful guidance for the governments and stock exchanges to compare themselves with other countries.

REFERENCES

Books

- Coelli T.J., Rao D.S.P., O'Donnel C.J. and Battase G.E., 2005. An Introduction to Efficiency, and Productivity Analysis. LLC, USA: Springer Science+Business Media.
- Cooper W.W., Seiford L. and Tone K. (Eds), 2000. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Boston: Kluwer Academic Publishers.
- Cooper, W.W. (Editor). 2004. *Handbook on Data Envelopment Analysis*. Hingham, MA, USA: Kluwer Academic Publishers.
- Kecek G., 2010. Veri Zarflama Analizi/Teori ve Uygulama Örneği. Ankara: Siyasal Kitabevi.
- Ramanathan R., 2003. An Introduction to Data Envelopment Analysis: A tool for Performance Measurement. Sage Publishing.

Periodicals

- Ake B. & Ognaligui R.W. 2010. Financial Stock Market and Economic Growth in Developing Countries: The Case of Douala Stock Exchange in Cameroon, *International Journal of Business and Management*, 5 (5).
- Athanasios V. & Antonios A. 2010. The Effect of Stock and Credit Market Development on Economic Growth an Empirical Analysis for Italy. *International Research Journal of Finance and Economics*, ISSN 1450 - 2887, Issue 41.
- Auerbach p & Siddiki J.U. 2004. Financial Liberalization and Economic Developmet: An Assessment, *Journal of Economic Surveys*, **18** (3).
- Banker, R.D., Cooper W.W., Seiford L.M., Thrall and Zhu J. 2004. Returns to Scale in Different DEA Models, *European Journal of Operational Research*, **154**.
- Baysal M.E. & Toklu B. 2001. Veri Zarflama Analizi ile Bazı Orta Öğretim Kurumlarının Performanslarının Değerlendirilmesi, *Süleyman Demirel Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi*, **6** (2).
- Beck T., Laeven L., Levine R. and Demirgüç Kunt A. 2008. Finance, Firm Size and Growth, Journal of Money, Credit and Banking, **40** (7).
- Billmeier A. & Massa I. 2009. What drives stock market development in emerging marketsinstitutions, remittances or natural resources?, Emerging Markets Review, **10** (1).
- Blum D., Federmair K., Fink G. and Haiss P. 2002. The Financial-Real Sector Nexus: Theory and Empirical Evidence, IEF Working Paper No. 43, Research Institute for European Affairs.
- Buchanan B. ve English P.C. 2007. Law, finance, and emerging market returns, Emerging Markets Review, **8** (3).
- Teknik İlerleme, Etkinlikteki Değişme ve Verimlilik Analizi: 1999-2003", Tarımsal Ekonomik Araştırma Enstitüsü, Ocak 2006, Ankara
- Caves D.W., L.R. Christensen and W.E. Diewert. 1982. The Economic Theory of Index Numbers and Measurement of Input, Output and Productivity. *Econometrica*, **50** (1393-1414).
- Chinn M.D. & Ito H. 2006. What matters for financial development? Capital controls, institutions, and interaction, *Journal of Development Economics*, **81**.
- Coelli T.J. 1996. A Guide to DEAP Version 2.1:A Data Envelopment Analysis (Computer) Program, *Centre For Efficiency and Productivity Analysis (CEPS) Working Papers*, The University of New England, **8** (96).
- Cooper W.W. 2005. Origins, Uses of, and Relations between Goal Programming and Data Envelopment Analysis, *Journal of Multicriteria Decision Analysis*, **13** (1).
- Cooper W.W., Li S., SEIFORD L.M., TONE K., Thrall R.M. and Zhu., J. 2001. Sensitivity and Stability Analysis in DEA: Some Recent Developments, *Journal of Productivity Analysis*, 15 (3).

- Deb S.G. ve Mukherjee J. 2008. Does Stock Market Development Cause Economic Growth? A Time Series Analysis for Indian Economy, *International Research Journal of Finance and Economics*, 1450-2887, (21).
- Demirgüç Kunt A. & Levine R. 1999. Bank-Based and Market-Based Financial Systems: Cross-Country Comparisons, *World Bank Policy Working Paper* **2143**.
- Demirgüç Kunt A. & Levine R. 1995. Stock Market Development and Financial Intermediaries:Stylized Facts, *Finance and Private Sector Development Division Policy and Research Department World Bank.*
- Dritsaki C. & Dritsaki-Bargiotae M. 2005. The Causal Relationship Between Stock, Credit Market and Economic Development: An Empirical Evidence for Greece, *Economic Change and Restructuring*.
- Dyson R.G., Allen R., Camanho A.S., Podinovski V.V., Sarrico c.S. and Shale E.A. 2001. Pitfalls and Protocols in DEA, *European Journal of Operational Research*, **132** (2).
- El-Wassal ve Kamal A. 2005. Understanding the Growth in Emerging Stock Markets, *Journal* of Emerging Market Finance, **4** (3).
- Emrouznejad A. & Anouze A.L. 2009. A note on the modeling the efficiency of top Arab banks, *Expert Systems with Applications*, **36** (3).
- Ergungor, O. Emre, 2004. Market- vs. bank-based financial systems: Do rights and regulations really matter?, *Journal of Banking & Finance*, **28** (12).
- Fare, R., Grosskopf, S., Norriss, M. and Zhang, Z.Y. 1994. Productivity Growth, Technical Progress and Efficiency Change in Industrialized Countries, *The American Economic Review*, 84 (66-80).
- Frost C.A., Gordon E.A. and Hayes A.F. 2006. Stock Exchange Disclosureand Market Development: An Analysis of 50 International Exchanges, *Journal of Accounting Research*, 44 (3).
- Garcia V.F. & Liu L. 1999. Macroeconomic Determinants Of Stock Market Development, Journal of Applied Economics, II (1).
- Gattoufi S., Oral M. ve Reisman A. 2004. Data envelopment analysis literature: a bibliogrophy update, *Socio-Economic Planning Sciences*, **38**.
- Golany B. ve Yu G. 1997. Theory and Methodology Estimating Returns to Scale in DEA, *European Journal of Operational Research*, **103**.
- Goldsmith R.W. 1969. Financial Structure and Development, Yale University Press, New Haven C.
- Gökdeniz İ., Erdoğan M. and KALYÜNCÜ K. 2003. Finansal Piyasaların Ekonomik Büyümeye Etkisi ve Türkiye Örneği (1989-2002), *G.Ü. Ticaret ve Turizm Eğitim Fakültesi Dergisi*, **1**.
- Greenwood J. & Smith B.D. 1997. Financial Markets in Development, and the Development of Financial Markets, *Journal of Economic Dynamics and Control*, **21** (1).

- Greenwood J. & Jovanovic B. 1990. Financial Development, Growth and the Distribution of Income, *Journal of Political Economy*, **98**.
- Gurley J.G. & Shaw E. S. 1955. Financial Aspects of Economic Development, *The American Economic Review*, **45** (4).
- Hadad, Muliaman D., Hall, Maximilian J. B., Kenjegalieva, Karligash A., Santoso, Wimboh and Simper, R. 2011. Productivity changes and risk management in Indonesian banking: a Malmquist analysis, *Applied Financial Economics*, First published on: 23 (5).
- Hatami-Marbini, A., Emrouznejad A., and Tavana M. 2011. A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. *European Journal of Operational Research* 1 (16).
- Hossain S. & Kamal M. 2010. Does Stock Market Development Cause Economic Growth?: A Time Series Analysis For Bangladesh Economy, *Journal of International Finance and Economics*, **10** (2).
- Kar M. & Pentecost E.J. 2000. Financial Development and Economic Growth in Turkey: Further Evidence on the Causality Issue, *Loughborough University Economic Research*, **00** (27).
- Kao C., Liu S.T. 2011. Efficiencies of two-stage systems with fuzzy data, *Fuzzy Sets and Systems*, **2**.
- King R.G. & Levine R. 1993. Finance and Growth: Schumpeter Might Be Right, *The Quarterly Journal of Economics*, **108** (3).
- La Porta R., Lopez-De-Silanes F. and Shleifer A. 2006. What Works in Securities Laws?, *The Journal of Finance*, **1**.
- La Porta R., Lopez-De-Silanes F., Shleifer A. and Vishny R.W. 1998. Law and Finance, *The Journal of Political Economy*, **106** (6).
- Seiford Lawrence M. 1996. Data Envelopment Analysis: The Evolution of the State of Art (1978–1995), *Journal of Productivity Analysis*, **7** (99–137).
- Levine R. ve Zervos S. 1998. Capital Control Liberalization and Stock Market Development, *World Development*, **26** (7).
- Levine R. ve Zervos S. 1998. Stock Markets, Banks and Economic Growth, *The American Economic Review*, 88.
- Levine Ross. 1997. Financial Development and Economic Growth: Views and Agenda, *Journal* of Economic Literature, **35**.
- Levine, Ross 2002. Bank-Based or Market-Based Financial Systems: Which Is Better?, *Journal of Financial Intermediation*, **11** (4).
- Mohammadi A. & Ranaei H. 2011. The Application of DEA based Malmquist Productivity Index in Organizational Performance Analysis, *International Research Journal of Finance and Economics* 1450-2887. 62 (70).

- Müslümov A. & Aras G. 2002. Sermaye Piyasası Gelişmesi ve Ekonomik Büyüme Arasında Nedensellik İlişkileri: OECD Ülkeleri Örneği, *İktisat İşletme ve Finans Dergisi*, **198**.
- Naceur S.B., Ghazouani S. and Omran M. 2007. The determinants of stock market development in the Middle-Eastern and North African region, *Managerial Finance*, **33** (7).
- Nowbutsing B. M. & ODIT M. P. 2009. Stock Market Development And Economic Growth: The Case Of Mauritius, *International Business & Economics Research Journal*, **8** (2).
- Pagano M., "Financial Markets and Growth: An Overview", European Economic Review, Vol. 37, 1993.
- Patrick H. 1966. Financial Development and Economic Growth in Underdeveloped Countries, Economic Development and Cultural Change, 14 (2).
- Rajan R.G. & Zingales L. 1998. Financial Dependence and Growth, *The American Economic Review*, **88** (3).
- Rousseau P.L. & Wachtel P. 2000. Equity Markets and Growth: Cross-Country Evidence on Timing and Outcomes, 1980-1995, *Journal of Banking and Finance*, **24**.
- Tachiwou A.M. 2010. Stock Market Development and Economic Growth: The Case of West African Monetary Union, *International Journal of Economics and Finance*, **2** (3).
- Tankersley W.B. and Tankersley J.E. 1996. Relative Efficiency of Electric Cooperatives in South Carolina: An Application and the DEA, *Coastal Business Review*, **5**.
- Tavares G. 2002. A Bibliography of Data Envelopment Analysis (1978-2001), *Rutger Research Report*, Rutgers University.
- Ulucan Aydın, 2002. İSO 500 Şirketlerinin Etkinliklerinin Ölçülmesinde Veri Zarflama Analizi Yaklaşımı: Farklı Girdi Çıktı Bileşenleri ve Ölçeğe Göre Getiri Yaklaşımları ile Değerlendirmeler, *Ankara Üniversitesi Siyasal Bilgiler Fakültesi Dergisi*, **57** (2).
- Van Nieuwerburgh S., Buelens F. and Cuyvers L. 2006. Stock market development and economic growth in Belgium, *Explorations in Economic History*, **43** (1).
- World Economic Forum, 2008. Financial Development Report. Switzerland.
- World Economic Forum, 2009. Financial Development Report. Switzerland.
- World Economic Forum, 2010. Financial Development Report. Switzerland.
- Yartey, Charles A. 2008. The Determinants of Stock Market Development in Emerging Economies: Is South Africa Different?, *IMF Working Paper*.
- Yun, Y.B., H. Nakayama and T. Tanino, 2004. Continuous Optimization a Generalized Model for Data Envelopment Analysis, *European Journal of Operational Research*, **157**.
- Yücel Fatih 2009 1. Temel Bileşenler Yöntemiyle Türk Sermaye Piyasası Gelişiminin Ekonomik Büyüme Üzerine Etkilerinin Bir Analizi, *Sosyoekonomi*.

Other Publications:

- Ağir Hüseyin, (2003). İMKB'nin Ekonomik Büyümeye Katkısının Ekonometrik Analizi. *Thesis* for the M.A. degree. Kahramanmaraş. KSÜ Sosyal Bilimler Enstitüsü.
- Baysal, Mehmet Emin, (1999). Veri Zarflama Analizi ile Orta Öğretimde Performans Ölçümü. *Thesis for the M.S. degree*. Ankara. Gazi Üniversitesi Fen Bilimleri Enstitüsü.
- Lorcu Fatma,(2008). Veri Zarflama Analizi İle Türkiye ve Avrupa Birliği Ülkelerinin Sağlık Alanındaki Etkinliklerinin Değerlendirilmesi. *Thesis for the Ph.D. degree*. İstanbul. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü.
- Özcan Gözde, (2007). Veri Zarflama Analizi ve Bankacılık Sektöründe Bir Uygulama. *Thesis* for the M.S. degree. Kütahya. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü.
- Yeniel, M.Seçkin, (2009). The Relationship Between Economic Growth and Financial Development in the EU Member and Candidate Countries: Evidence From Dynamic and Static Panel Data Models. *Thesis for the M.A. degree*. İzmir. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü
- Karagöz, K. & Armutlu R., (2007). Hisse Senedi Piyasasının Gelişimi ve Ekonomik Büyüme: Türkiye Örneği, *İnönü Üniversitesi 8. Türkiye Ekonometri ve İstatistik Kongresi*, Malatya.
- Kularatne Chandana, (2001). An Examination of the Impact of Financial Deepening on Long-Run Economic Growth: An Application of a VECM Structure to a Middle- Income Country Context, *Trade and Industrial Policy Strategies Annual Forum*.

APPENDICES

APPENDIX A: Total Factor Productivity (TFP) Index and Overall (CCR) Efficiency Score Graphics of Countries for 2007-2009

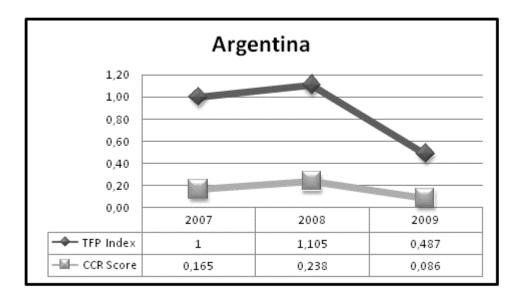


Figure A.1: TFP and CCR Scores for Argentina

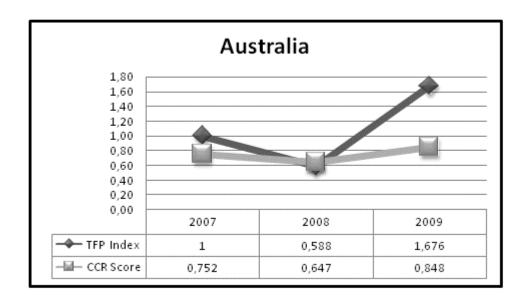


Figure A.2: TFP and CCR Scores for Australia

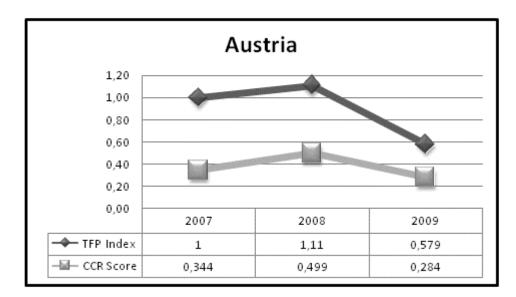


Figure A.3: TFP and CCR Scores for Austria

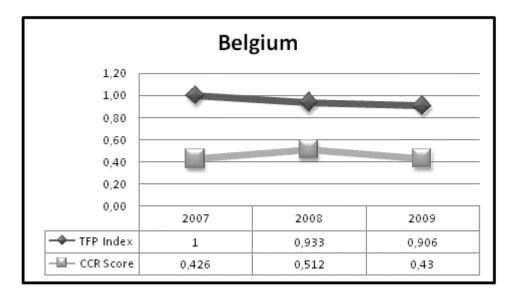


Figure A.4: TFP and CCR Scores for Belgium

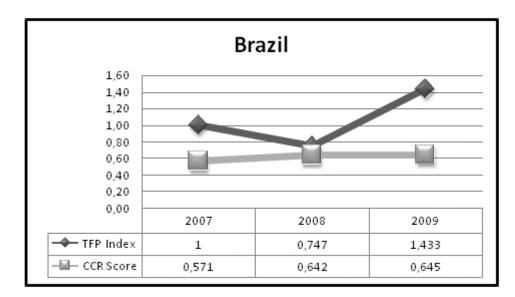


Figure A.5: TFP and CCR Scores for Brazil

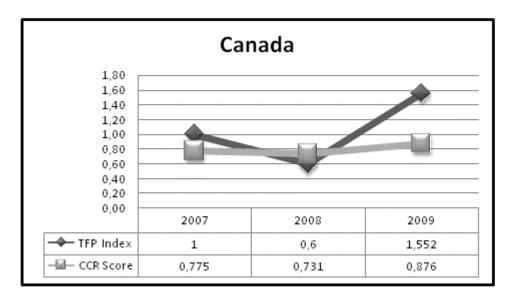


Figure A.6: TFP and CCR Scores for Canada

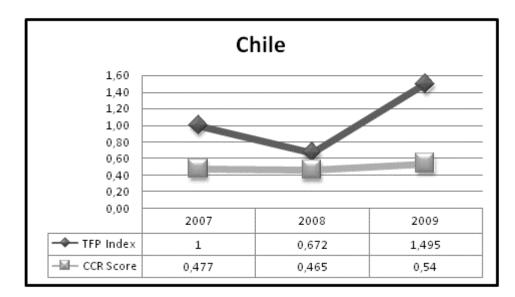


Figure A.7: TFP and CCR Scores for Chile

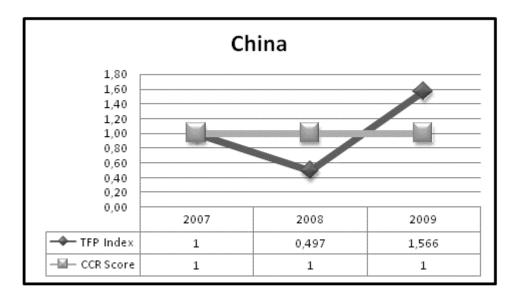


Figure A.8: TFP and CCR Scores for China

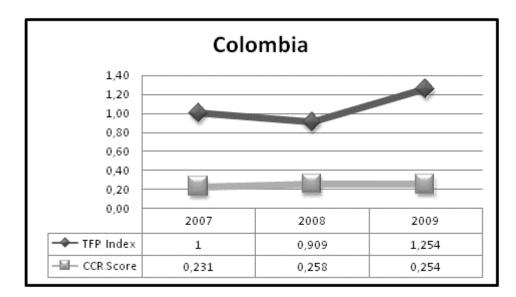


Figure A.9: TFP and CCR Scores for Colombia

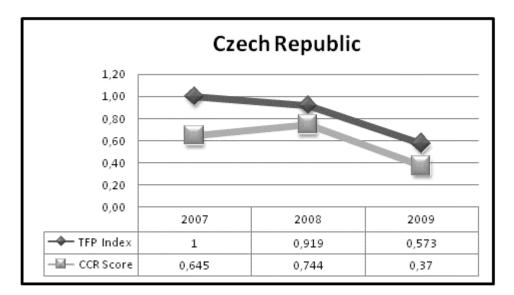


Figure A.10: TFP and CCR Scores for Czech Republic

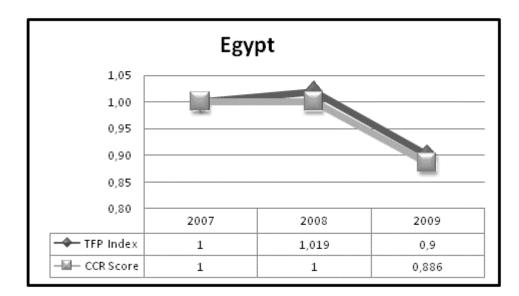


Figure A.11: TFP and CCR Scores for Egypt

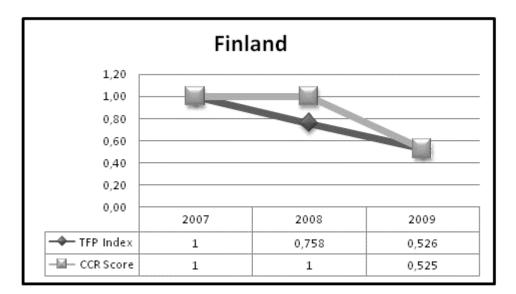


Figure A.12: TFP and CCR Scores for Finland

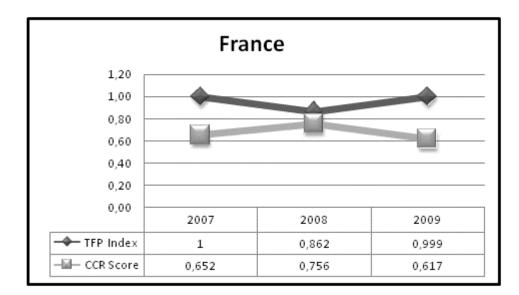


Figure A.13: TFP and CCR Scores for France

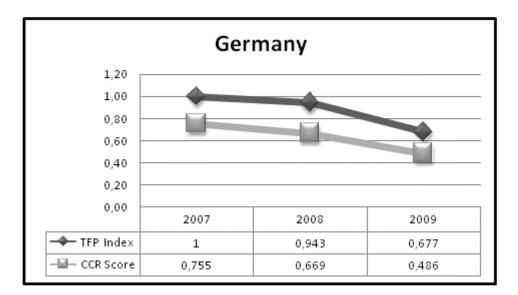


Figure A.14: TFP and CCR Scores for Germany

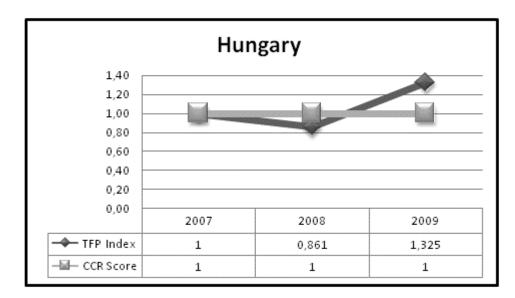


Figure A.15: TFP and CCR Scores for Hungary

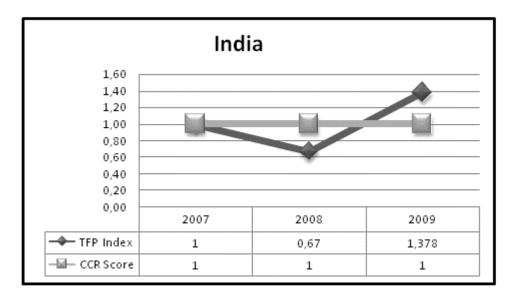


Figure A.16: TFP and CCR Scores for India

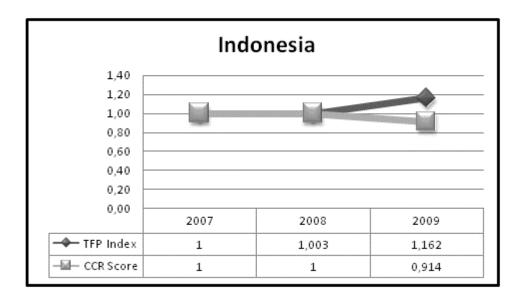


Figure A.17: TFP and CCR Scores for Indonesia



Figure A.18: TFP and CCR Scores for Ireland

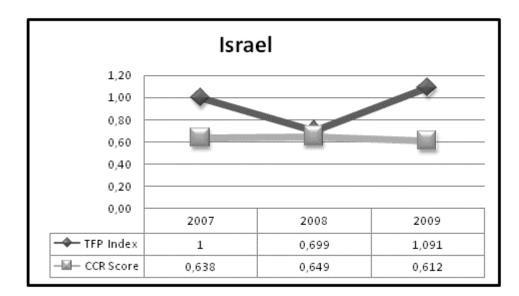


Figure A.19: TFP and CCR Scores for Israel

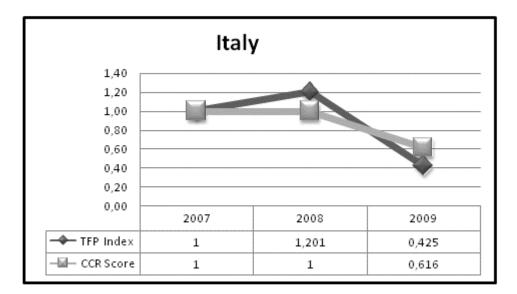


Figure A.20: TFP and CCR Scores for Italy

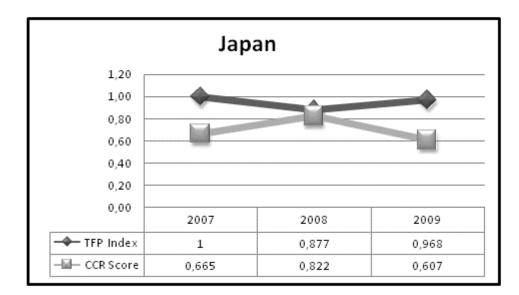


Figure A.21: TFP and CCR Scores for Japan



Figure A.22: TFP and CCR Scores for Kazakhstan

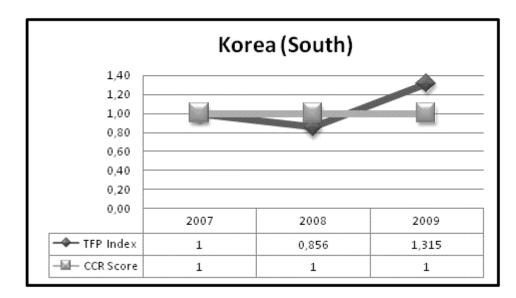


Figure A.23: TFP and CCR Scores for Korea (South)

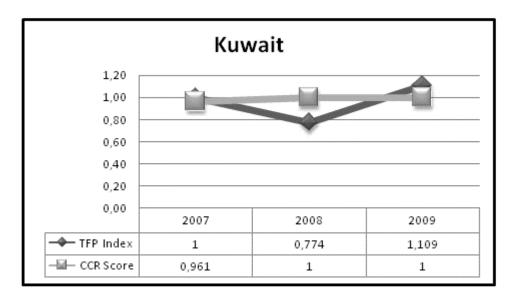


Figure A.24: TFP and CCR Scores for Kuwait

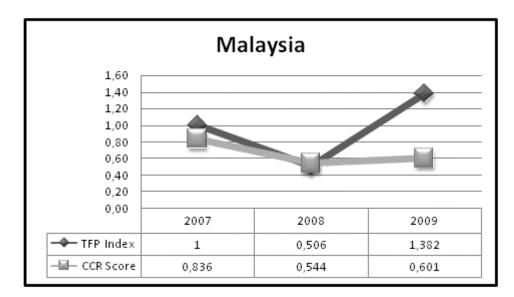


Figure A.25: TFP and CCR Scores for Malaysia

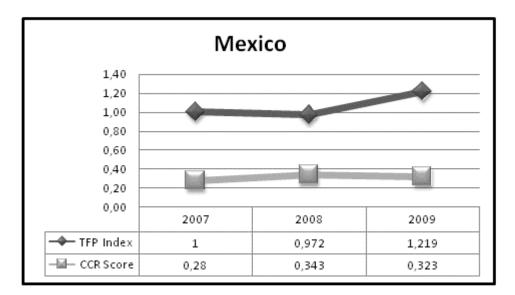


Figure A.26: TFP and CCR Scores for Mexico

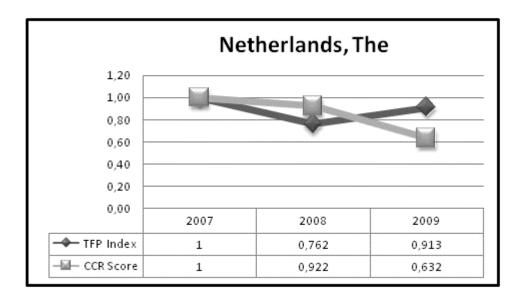


Figure A.27: TFP and CCR Scores for Netherlands, The

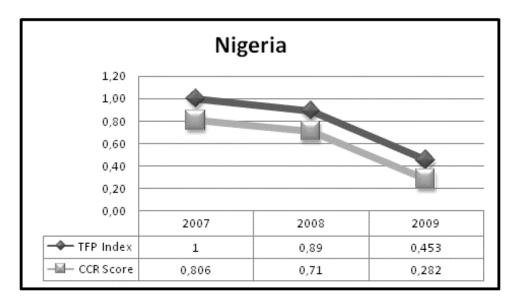


Figure A.28: TFP and CCR Scores for Nigeria

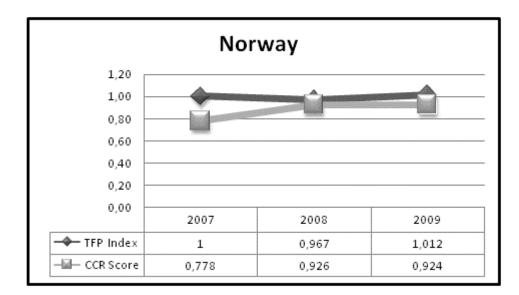


Figure A.29: TFP and CCR Scores for Norway

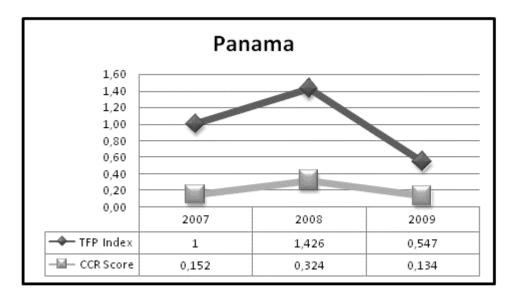


Figure A.30: TFP and CCR Scores for Panama

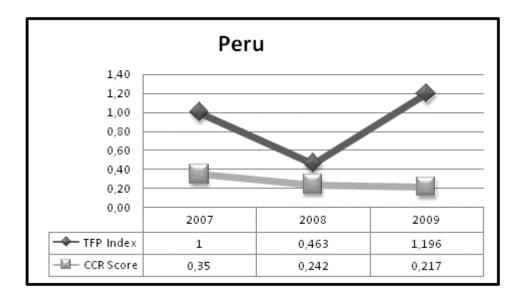


Figure A.31: TFP and CCR Scores for Peru

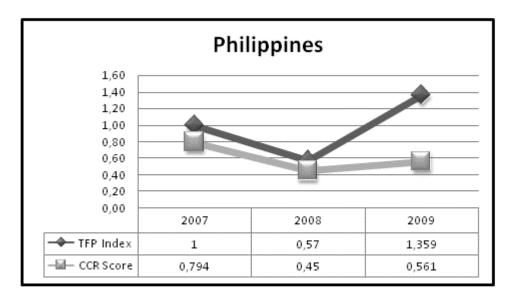


Figure A.32: TFP and CCR Scores for Philippines

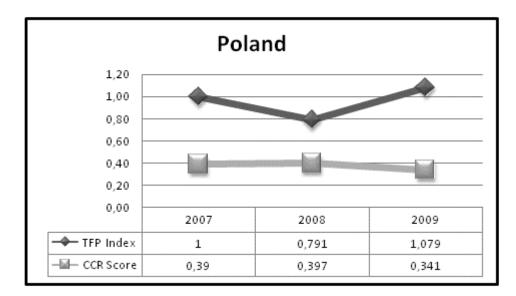


Figure A.33: TFP and CCR Scores for Poland

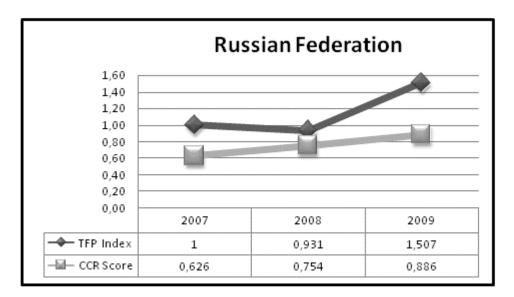


Figure A.34: TFP and CCR Scores for Russian Federation

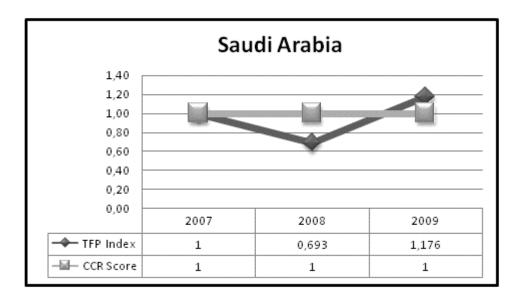


Figure A.35: TFP and CCR Scores for Saudi Arabia

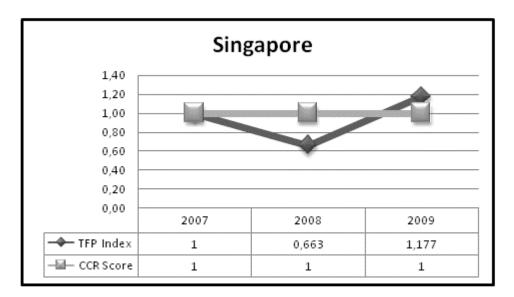


Figure A.36: TFP and CCR Scores for Singapore

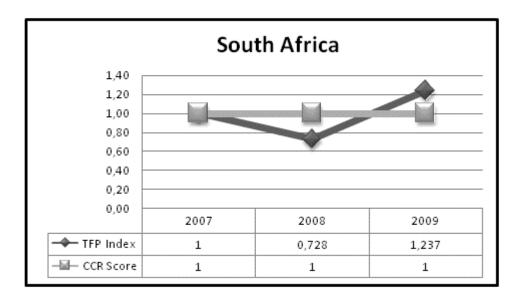


Figure A.37: TFP and CCR Scores for South Africa

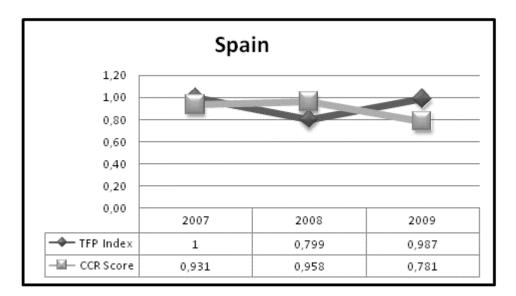


Figure A.38: TFP and CCR Scores for Spain

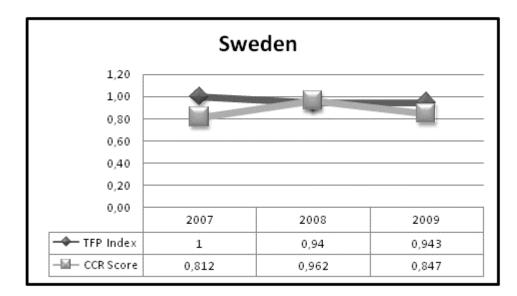


Figure A.39: TFP and CCR Scores for Sweden

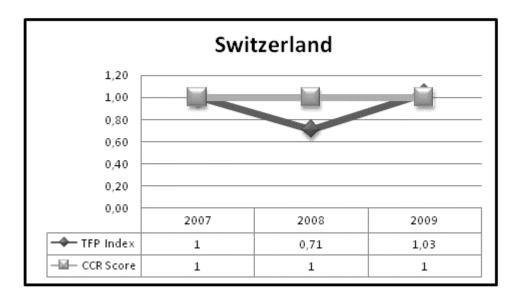


Figure A.40: TFP and CCR Scores for Switzerland

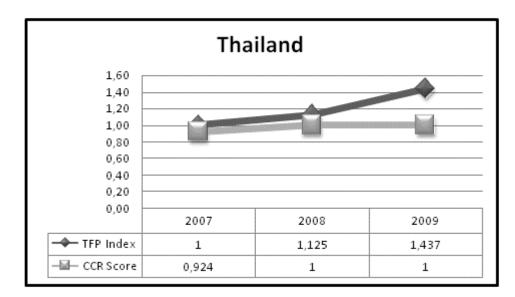


Figure A.41: TFP and CCR Scores for Thailand

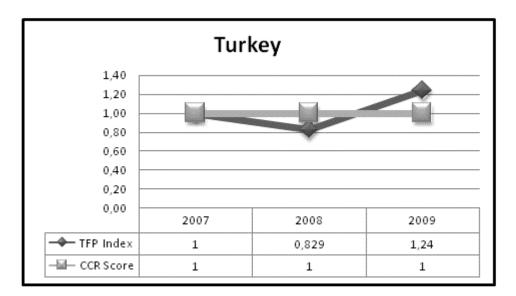


Figure A.42: TFP and CCR Scores for Turkey

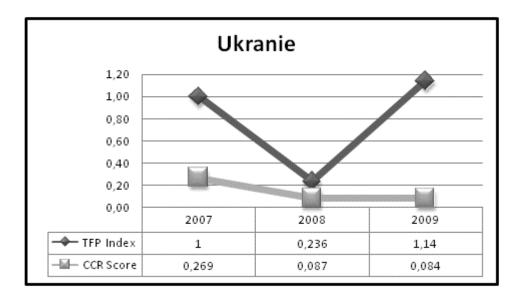


Figure A.43: TFP and CCR Scores for Ukraine

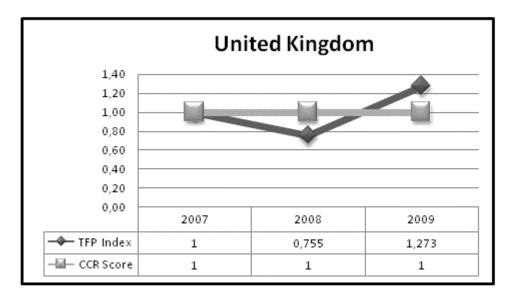


Figure A.44: TFP and CCR Scores for United Kingdom

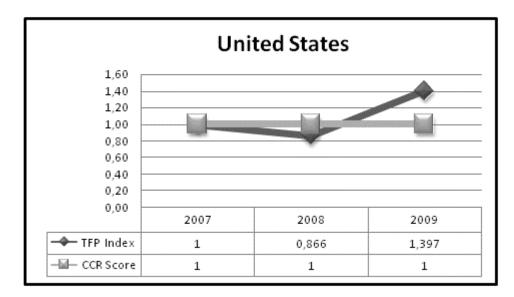


Figure A.45: TFP and CCR Scores for United States

APPENDIX B: Lower and Upper Bounds of Variables

ContropyLULULULULULArgentian4.1117.1347.8078.0065.210.605.815.0 </th <th></th> <th></th> <th>Traded n USD)</th> <th></th> <th>pitalization n USD)</th> <th></th> <th colspan="2">urnover Ratio (%)</th> <th colspan="2">Institutional Environment</th> <th>iness onment</th>			Traded n USD)		pitalization n USD)		urnover Ratio (%)		Institutional Environment		iness onment
Astratia825.791,246.54821.331,288.4484.85108.645.495.855.305.63Austria45.28117.2058.26189.6144.8866.195.675.785.025.33Brazil601.01708.14733.871,319.6260.6374.183.623.683.673.95Canada1,341.091,739.341,171.912.060.1586.63115.895.686.155.685.055.89Chila6.050.828.665.073,347.125.921.65136.00217.233.524.084.084.22Colombia10.8712.8390.76125.4612.0913.183.363.175.955.785.025.875.975.895.795.895.795.895.755.805.713.291.75.285.705.815.755.811.755.775.975.705.815.755.815.755.815.755.815.755.815.755.815.755.815.755.815.755.815.755.815.755.815.755.815.755.815.95	Country	L	U	L	U	L	U	L	U	L	U
Austrian45.2817.2058.26189.6144.8866.195.705.905.23Belgium148.7924.7219.04355.161.0273.405.555.025.31Canada1,31.0017.391,11.912,060.158.6311.583.623.683.82Canada1,34.091,73.931,17.1912,060.158.631.5803.524.044.88China60.528.65.073,47.125,221.651.50.017.233.524.084.22Colombia10.8712.8390.7612.5412.091.183.661.323.804.22Cache Republic25.944.27649.8116.5916.051.25.218.855.066.103.544.234.74Finland165.9850.1110.6819.35.312.5218.855.066.105.755.125.78France1,840.733,380.541.15.361.90.3512.5218.855.696.103.233.41Germany1,72.83.29.41.15.801.90.3512.5218.855.696.103.233.41India1.05.941.10.2.81.90.751.65.148.301.083.544.33.303.41India1.05.941.10.2.81.69.148.301.01.83.544.544.643.544.54India1.05.941.12.81.69.148.30 </td <td>Argentina</td> <td>4.11</td> <td>12.13</td> <td>49.78</td> <td>78.09</td> <td>6.52</td> <td>16.96</td> <td>3.22</td> <td>3.32</td> <td>3.84</td> <td>4.00</td>	Argentina	4.11	12.13	49.78	78.09	6.52	16.96	3.22	3.32	3.84	4.00
Belgium148.79244.72190.94355.1361.027.405.555.785.025.43Brazil601.01708.14733.871.319.6260.6371.183.686.013.505.80Canada136.101.733.871.219.122.060.1586.631.505.641.505.641.505.651.505.651.505.651.505.651.505.651.502.1201.313.535.714.084.22Colombia10.8712.849.7612.544.766.974.164.284.714.75Egypt5.2865.5086.501.62.622.571.419.211.74.25.395.755.125.47France1.840.733.30.541.612.202.571.419.211.74.25.395.755.125.74Germany1.742.983.20.541.153.611.90.531.22.91.85.148.585.606.015.445.88Hungary1.742.983.20.541.15.361.90.531.62.148.501.01.25.311.303.511.133.311.511.63.148.501.01.23.443.303.511.633.555.505.808.613.643.783.56France1.340.21.34.21.55.18.631.501.55.18.681.603.555.505.808.655.505.505.805.60<	Australia	825.79	1,246.54	821.33	1,288.44	84.85	108.64	5.49	5.85	5.30	5.63
Brazil601.01708.14733.871,319.6260.6374.183.623.683.75Canada1,341.091,739.341,171.912060.1586.63115.895.686.015.505.50China6,500.828,665.073,347.125,921.6513.6021.723.524.084.084.22Colombia10.8712.8390.7612.64614.091.183.363.733.894.28Czech Republic25.9442.7649.8168.2447.6269.974.143.864.025.795.88Finland165.98505.11106.86315.4794.2111.85.706.125.795.88France1,840.733,380.541,612.2621.5218.855.606.015.445.85Germany27.1643.3221.0142.8196.26109.524.444.574.694.74India1.059.541,102.80778.921.651.1484.0311.083.251.855.605.105.415.335.755.111.321.445.305.442.323.413.393.233.41Indonesia1.059.541.102.81.7018.620.5128.755.505.108.144.545.305.445.305.445.305.445.305.445.305.445.305.445.305.445.305.455.45 <td>Austria</td> <td>45.28</td> <td>117.20</td> <td>58.26</td> <td>189.61</td> <td>44.88</td> <td>66.19</td> <td>5.67</td> <td>5.96</td> <td>5.29</td> <td>5.35</td>	Austria	45.28	117.20	58.26	189.61	44.88	66.19	5.67	5.96	5.29	5.35
Canada1,341.091,739.341,719.12,060.1586.63115.895,686.015.59Chile36.8142.75151.6921.0521.3021.744.354.614.88China6,050.828,650.73,471.125,21.6513.0017.233.524.084.22Clombia10.8712.8390.76125.4612.0913.183.363.733.894.28Czech Republic25.9442.7649.8168.2447.6269.974.164.284.314.75Egypt52.8865.5086.90126.9149.2117.285.706.125.71France1.840.733,380.541.612.622.571.4392.0114.215.395.755.125.74Germany1,742.983,298.641,155.361,002.3766.1380.283.444.574.591.404.544	Belgium	148.79	244.72	190.94	355.13	61.02	73.40	5.55	5.78	5.02	5.43
Chile36.8142.75151.69212.0521.3722.744.335.154.614.88China6,050.828,665.073,347.125,921.6515.00217.233.284.28Colombia12.8412.849,0712.5412.0913.183.683.733.894.28Czech Republic25.9442.7649.8168.2447.6269.974.164.284.314.75Egypt52.8865.5086.90126.9549.2261.413.864.023.795.87France1,840.733,380.541,612.262,571.4392.01147.115.95.755.125.47Germany1,742.983,298.641,155.36190.3511.0813.253.413.393.59India111.20114.70118.62203.2266.1380.283.544.393.59Indonesia111.20114.70118.62203.2755.058.104.795.534.494.90Japan512.03111.7634.67120.3715.028.424.564.504.594.504.504.50Japan4,614.336,342.753,5599.751.813.653.5413.7328.284.154.885.415.835.505.103.534.514.534.564.50Japan4,614.336,342.753,5599.751.633.553.54 </td <td>Brazil</td> <td>601.01</td> <td>708.14</td> <td>733.87</td> <td>1,319.62</td> <td>60.63</td> <td>74.18</td> <td>3.62</td> <td>3.68</td> <td>3.67</td> <td>3.95</td>	Brazil	601.01	708.14	733.87	1,319.62	60.63	74.18	3.62	3.68	3.67	3.95
China6,050.828,665.073,347.125,921.6513.00217.233,524.084.02Colombia10.8712.8390.76125.4612.0913.183.363.733.894.28Czech Republic25.9442.7649.8168.2447.6269.974.164.284.313.78Finland165.98505.11106.8631.54794.51175.285.705.125.47Germany1,74.2983,208.641,151.61105.35125.2918.855.996.015.445.78Hungary27.1643.3221.0142.8196.2610.524.444.574.694.74India1.05.941,102.89778.921,659.1484.3011.083.253.403.393.59Indonesia111.22114.70118.6220.3261.1880.283.544.233.293.41Ireland9.51112.38146.3722.7955.058.104.795.575.105.205.44Japan4,61.436,342.733.259.44148.45813.2015.025.454.845.464.70Japan4,61.436,342.753.259.44148.45813.2015.024.544.585.695.11Japan4,61.431.375.85.955.109.755.105.125.265.105.165.165.165.165.165.16 </td <td>Canada</td> <td>1,341.09</td> <td>1,739.34</td> <td>1,171.91</td> <td>2,060.15</td> <td>86.63</td> <td>115.89</td> <td>5.68</td> <td>6.01</td> <td>5.50</td> <td>5.89</td>	Canada	1,341.09	1,739.34	1,171.91	2,060.15	86.63	115.89	5.68	6.01	5.50	5.89
Colombia10.8712.8390.7612.54612.0913.183.363.733.894.28Czech Republic25.9442.7649.8168.2447.6269.974.164.284.314.75Egypt52.8865.5086.90126.9549.241.1587.0061.25.795.88France1,840.733,380.541,612.262,571.4392.01147.215.395.755.125.47Germany1,742.983,298.641,155.361,903.53125.291.88.585.066.115.795.42Iungary1,059.541,102.89778.921,651.1484.3010.813.253.413.394.51Iradan1,059.541,102.89778.921,651.1484.3010.813.253.494.09Iradan23.15111.7618.6220.3266.1380.284.554.494.50Irada23.51112.38146.3722.3755.05.814.795.554.494.09Irada21.631.902.35368.20934.73137.37268.284.254.584.664.90Japan4,614.336,342.753,259.844,184.58132.00150.215.404.504.50Kazakhstan32.65122.2398.75167.8370.0781.424.524.50Kazakhstan76.03133.80204.2930.2843.50 <t< td=""><td>Chile</td><td>36.81</td><td>42.75</td><td>151.69</td><td>212.05</td><td>21.37</td><td>22.74</td><td>4.33</td><td>5.15</td><td>4.61</td><td>4.88</td></t<>	Chile	36.81	42.75	151.69	212.05	21.37	22.74	4.33	5.15	4.61	4.88
Czech Republic25.9442.7649.8168.2447.6269.974.164.284.314.75Egypt52.8865.0086.90126.9549.2261.413.864.023.733.80Finland165.9850.11106.86315.4794.51175.265.705.125.715.12Germany1,742.983.380.541,612.262,71.4392.01147.215.905.015.445.78Hungary27.1643.3221.0142.8196.2610.9.24.444.574.694.74India1.059.5411.22114.7018.62203.2266.1380.283.544.233.233.11Indonesia11.12114.7018.62203.7155.058.104.235.205.545.545.805.805.145.33Iralay51.03190.2356.2122.7955.5058.105.80 </td <td>China</td> <td>6,050.82</td> <td>8,665.07</td> <td>3,347.12</td> <td>5,921.65</td> <td>136.00</td> <td>217.23</td> <td>3.52</td> <td>4.08</td> <td>4.08</td> <td>4.22</td>	China	6,050.82	8,665.07	3,347.12	5,921.65	136.00	217.23	3.52	4.08	4.08	4.22
Egypt52.8865.5086.90126.9549.2261.413.864.023.733.89Finland165.98505.11106.86315.4794.51175.285.706.125.795.88France1,840.733,305.441,152.622,571.4392.01147.215.935.755.125.47Germany1,742.983,208.641,152.561,005.35152.92188.585.606.444.58Hungary27.1643.3221.0142.8196.26109.524.444.574.694.74India1.059.541,102.89778.921,659.1484.30110.813.253.413.393.59Indonsia111.22114.70118.62203.326.61380.284.254.584.69Jaral93.51112.38146.37222.7955.0058.104.795.534.494.90Iraly512.031.902.35368.20934.73137.37268.284.254.584.634.20Japan4,614.336.342.753.259.844,184.58132.00150.325.665.145.885.345.40Korea1,494.871,875.8980.091,051.84186.2923.603.534.514.58Kazakhstan3.597.631,33.80204.29308.2433.0281.423.595.575.595.80Newait82.631,22	Colombia	10.87	12.83	90.76	125.46	12.09	13.18	3.36	3.73	3.89	4.28
Finand165.98505.11106.86315.4794.51175.285.706.125.795.88France1,840.733,380.541,612.262,571.4392.01147.215.395.755.125.47Germany1,742.983,298.641,155.361,903.53125.29188.586.600.524.444.574.69Iungary27.1643.3221.0142.8196.2610.524.444.574.694.74India1.059.541,102.89778.921,659.1484.30110.813.253.413.393.59Indonesia111.2114.70118.62203.3266.1380.283.544.233.233.41Ireland23.15111.7634.76120.3756.2187.935.575.915.205.54Igaan4.614.336.342.753.259.844,184.58132.00150.325.465.805.145.38Korea1.944.871,875.89800.901,051.84186.2928.624.154.885.404.54Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.83Malaysia76.03133.80204.29308.2433.0248.434.915.125.86Netherlands7.881,63.84426.5682.2913.069.033.653.595.90Netherlands7.621	Czech Republic	25.94	42.76	49.81	68.24	47.62	69.97	4.16	4.28	4.31	4.75
France1.840.733.380.541.612.262.571.4392.011.71.215.395.755.125.44Germany1.742.983.298.641.155.361.903.53125.291.88.585.696.015.445.88Hungary27.1643.3221.0142.8196.26109.524.444.574.694.71India1059.541.102.90718.02203.3263.1880.283.544.233.333.31Indonesia111.22114.7018.62203.2765.1087.935.755.915.205.41Igan23.15111.7634.76120.3765.1187.935.755.915.055.104.645.055.145.38Igan461.4363.42.753.259.844.18.4813.200150.225.45.806.115.38Kazakhstan3.597.6833.655.599.7518.613.163.353.654.13Kuvait82.63122.2398.75167.8370.7081.423.834.915.124.54Kuvait82.63163.834240.2938.34471.2115.3028.434.915.125.59Netherlands73.881.63.834240.532.9413.1215.1815.185.814.743.833.91Nigria7.6219.1637.4477.2115.3029.145.586.095.59	Egypt	52.88	65.50	86.90	126.95	49.22	61.41	3.86	4.02	3.73	3.89
Germany1,742.983,298.641,155.361,903.53125.29188.585.696.015.445.58Hungary27.1643.3221.0142.8196.6110.95.24.444.574.694.74India1,059.541,102.89778.921,659.1484.30110.813.253.413.393.59Indonesia111.22114.70118.62203.2766.1380.283.544.235.205.45Israel93.51112.38146.3722.795.5058.104.795.5058.104.795.50Japan4,614.336,342.753,259.844,184.58132.00150.235.465.485.35Korea1,494.871,875.8936.5053.599,758.163.163.353.545.40Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.83Malaysia76.03133.80204.2938.2423.024.834.915.124.524.53Nigeria76.219.1637.4477.2115.3029.033.553.805.395.395.308.286.095.395.305.38.26.035.905.305.38.26.315.395.355.355.305.355.355.355.355.355.355.355.355.355.355.355.355.35 <td>Finland</td> <td>165.98</td> <td>505.11</td> <td>106.86</td> <td>315.47</td> <td>94.51</td> <td>175.28</td> <td>5.70</td> <td>6.12</td> <td>5.79</td> <td>5.88</td>	Finland	165.98	505.11	106.86	315.47	94.51	175.28	5.70	6.12	5.79	5.88
Hungary27.1643.3221.0142.8196.26109.524.444.574.694.74India1.059.541,102.89778.921,659.1484.30110.813.253.413.393.59Indonesia111.22114.70118.62203.2766.1380.283.544.233.233.41Ireland23.15111.7634.76120.3756.2187.935.575.915.205.45Israel23.51112.38146.37222.7955.5058.104.795.534.494.90Japan4.614.336.342.753.259.844.184.58132.00150.325.465.805.145.38Karakhstan3.597.6833.6553.599.7518.613.163.353.654.31Kuwait86.63122.2398.75167.8370.7081.423.894.034.514.83Malaysia76.03133.80204.29308.2433.0248.434.915.124.524.50Nigeria7.6219.1637.4477.2115.3020.033.653.802.863.05Norway277.88445.98151.2552.4715.302.813.644.093.534.74Norway277.88445.98151.245.315.338.183.684.093.533.47Peru3.636.7259.1696.91 <td>France</td> <td>1,840.73</td> <td>3,380.54</td> <td>1,612.26</td> <td>2,571.43</td> <td>92.01</td> <td>147.21</td> <td>5.39</td> <td>5.75</td> <td>5.12</td> <td>5.47</td>	France	1,840.73	3,380.54	1,612.26	2,571.43	92.01	147.21	5.39	5.75	5.12	5.47
India1.059.541.102.89778.921.659.1484.30110.813.253.413.393.59Indonesia111.22114.70118.62203.3266.1380.283.544.233.233.41Ireland23.15111.7634.76120.3756.2187.935.575.915.205.45Israel93.51112.38146.37222.7955.5058.104.795.534.494.90Ialy512.031.902.35368.20934.73137.37268.284.254.584.664.90Japan4.614.336.342.753.259.844.184.58132.00150.325.465.805.145.38Kazakhstan3.597.6833.6553.599.7518.613.163.353.654.40Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.83Malaysia76.03133.80204.29308.2433.024.844.915.124.75Mexico84.84113.76259.58383.4427.9233.503.534.133.833.90Netherlands738.881.638.34426.56852.99139.69198.145.785.975.905.80Norway277.88445.98151.25324.87142.18151.085.886.095.33.643.59Parama0.070.22 <td< td=""><td>Germany</td><td>1,742.98</td><td>3,298.64</td><td>1,155.36</td><td>1,903.53</td><td>125.29</td><td>188.58</td><td>5.69</td><td>6.01</td><td>5.44</td><td>5.58</td></td<>	Germany	1,742.98	3,298.64	1,155.36	1,903.53	125.29	188.58	5.69	6.01	5.44	5.58
Indonesia111.22114.70118.62203.3266.1380.283.544.233.233.41Ireland23.15111.7634.76120.3756.2187.935.575.915.005.41Israel93.51112.38146.7722.7955.0058.104.795.534.494.90Italy512.031,902.35368.20934.73137.305.81.04.785.805.144.58Japan4.614.336.342.753.259.444.184.58132.00150.235.465.305.414.885.345.34Kazakhstan3.597.6833.653.599.7518.613.163.554.13Korea1.494.871,875.89580.091,051.84186.2928.624.154.885.445.40Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.53Malysia76.03133.80204.29308.243.0248.434.034.514.53Netherlands7.381,638.34426.56852.99139.6919.145.785.975.595.80Netherlands7.6219.1637.4477.2115.302.043.633.604.333.63Norway277.88455.8459.169.617.535.765.846.095.334.13Peru3.636.7259.16 <t< td=""><td>Hungary</td><td>27.16</td><td>43.32</td><td>21.01</td><td>42.81</td><td>96.26</td><td>109.52</td><td>4.44</td><td>4.57</td><td>4.69</td><td>4.74</td></t<>	Hungary	27.16	43.32	21.01	42.81	96.26	109.52	4.44	4.57	4.69	4.74
Ireland23.15111.7634.76120.3756.2187.935.775.915.205.44Israel93.51112.38146.37222.7955.5058.104.795.534.494.90Ialy512.031.902.35368.20934.73137.37268.284.254.584.664.90Japan4.614.336.342.753.259.844.184.58132.00150.325.465.805.145.38Kazakhstan3.597.6833.6553.599.7518.613.163.353.654.13Korea1.494.871.875.89580.091.051.84186.20228.624.154.885.41Kuwait82.63122.2398.75167.8370.0081.423.894.034.514.83Malaysia76.03133.80204.29308.243.0248.434.915.124.524.57Mexico84.84113.76259.58383.4427.923.503.534.133.833.90Netherlands738.881.638.34426.56852.99139.69198.145.785.975.595.80Norway277.88445.98151.25324.87142.18151.085.886.033.513.44Panama0.070.226.317.681.055.504.344.743.994.13Peru3.636.7259.169.61 <td< td=""><td>India</td><td>1,059.54</td><td>1,102.89</td><td>778.92</td><td>1,659.14</td><td>84.30</td><td>110.81</td><td>3.25</td><td>3.41</td><td>3.39</td><td>3.59</td></td<>	India	1,059.54	1,102.89	778.92	1,659.14	84.30	110.81	3.25	3.41	3.39	3.59
Israel93.51112.38146.37222.7955.5058.104.795.534.494.90Italy512.031902.35368.20934.73137.37268.284.254.584.664.90Japan4.614.336.342.753,259.844,184.58132.00150.325.465.805.145.38Karakhstan3.597.6833.6553.599.7518.613.163.353.654.13Korea1.494.871875.89580.091.051.84186.29228.624.154.885.405.40Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.53Malaysia76.03133.80204.29308.2433.024.844.915.124.524.57Mexico84.84113.76259.5883.4427.92318.505.354.133.833.90Netherlands76.3219.1637.4477.2115.309.033.653.802.653.50Norway277.8845.98151.25324.87142.18151.085.886.095.633.94Peru3.636.7259.169.617.538.183.684.093.553.94Poland58.2880.41104.94189.3146.134.864.014.314.513.553.544.534.54Sugapore59.23 <td>Indonesia</td> <td>111.22</td> <td>114.70</td> <td>118.62</td> <td>203.32</td> <td>66.13</td> <td>80.28</td> <td>3.54</td> <td>4.23</td> <td>3.23</td> <td>3.41</td>	Indonesia	111.22	114.70	118.62	203.32	66.13	80.28	3.54	4.23	3.23	3.41
Iraly512.031,902.35368.20934.73137.37268.284.254.584.664.90Japan4,614.336,342.753,259.844,184.58132.00150.325.465.805.145.38Kazakhstan3.597.6833.6553.599.7518.613.163.353.654.13Korea1,494.871,875.89580.091,051.84186.2922.624.154.885.345.40Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.83Malyasia76.03133.00204.29308.2433.2028.624.133.833.90Netherlands738.881,638.34426.56852.99139.69198.145.785.955.80Nigeria7.6219.1637.4477.2115.3029.033.653.803.653.90Norway277.88445.98151.25324.87142.18151.085.886.095.333.144.353.90Palama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.169.915.338.183.684.014.363.55Poland58.280.1110.49189.3143.614.334.634.914.144.38Sugapore52.3173.6515.241.32.1 </td <td>Ireland</td> <td>23.15</td> <td>111.76</td> <td>34.76</td> <td>120.37</td> <td>56.21</td> <td>87.93</td> <td>5.57</td> <td>5.91</td> <td>5.20</td> <td>5.45</td>	Ireland	23.15	111.76	34.76	120.37	56.21	87.93	5.57	5.91	5.20	5.45
Japan4,614.336,342.753,259.844,184.58132.00150.325.465.805.145.38Kazakhstan3.597.6833.6553.599.7518.613.163.353.654.13Korea1,494.871,875.89580.091,051.84186.29228.624.154.885.345.40Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.83Malaysia76.03133.80204.29308.2433.0248.434.915.124.524.75Mexico84.84113.76259.58383.4427.9233.503.534.133.833.90Netherlands73.881,638.34426.56852.99139.69198.145.785.975.595.80Nigeria7.6219.1637.4477.2115.0329.033.653.802.863.59Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.643.533.47Poland58.8280.41101.49189.3146.134.8983.634.014.364.53Sudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81<	Israel	93.51	112.38	146.37	222.79	55.50	58.10	4.79	5.53	4.49	4.90
Kazakhstan3.597.683.6553.599.7518.613.163.353.654.13Korea1.494.871.875.89580.091.051.84186.29228.624.154.885.345.40Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.83Malaysia76.03133.80204.29308.2433.0248.434.915.124.524.75Mexico84.84113.76259.58383.4427.9233.503.534.133.833.90Netherlands738.881,638.34426.56852.99139.69198.145.785.975.595.80Norway277.88445.98151.25324.87142.18151.085.886.095.635.90Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.634.003.853.94Philippines17.2026.2459.1197.4523.1232.083.613.644.35Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801	Italy	512.03	1,902.35	368.20	934.73	137.37	268.28	4.25	4.58	4.66	4.90
Korea1,494.871,875.89580.091,051.84186.29228.624.154.885.345.40Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.83Malaysia76.03133.80204.29308.2433.0248.434.915.124.524.75Mexico84.84113.76259.58383.4427.9233.503.534.133.833.90Netherlands738.881,638.34426.56852.99139.69198.145.785.975.595.80Nigeria7.6219.1637.4477.2115.3029.033.653.802.863.99Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.684.093.853.47Poland78.8280.41101.49189.3146.1348.983.634.014.364.53Sugapore58.2035.50212.71342.6162.93101.703.033.144.114.38Sugapore256.93355.90212.71342.81101.70117.206.106.285.844.91Singapore256.93355.90212.71342.81101.70117.206.106.505.715.975.925.065.014.25Sweden<	Japan	4,614.33	6,342.75	3,259.84	4,184.58	132.00	150.32	5.46	5.80	5.14	5.38
Kuwait82.63122.2398.75167.8370.7081.423.894.034.514.83Malaysia76.03133.80204.29308.2433.0248.434.915.124.524.75Mexico84.84113.76259.58383.4427.9233.503.534.133.833.90Netherlands738.881,638.34426.56852.99139.69198.145.785.975.595.80Nigeria7.6219.1637.4477.2115.3029.033.653.802.863.05Norway277.88445.98151.25324.87142.18151.085.886.095.635.90Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.684.093.853.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Sudi Arabia383.91641.06264.44466.02123.90155.584.234.544.604.53Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.575.784.414.543.954.12Sweden453.18887.06297.4856	Kazakhstan	3.59	7.68	33.65	53.59	9.75	18.61	3.16	3.35	3.65	4.13
Malaysia76.03133.80204.29308.2433.0248.434.915.124.524.75Mexico84.84113.76259.58383.4427.9233.503.534.133.833.90Netherlands738.881,638.34426.56852.99139.69198.145.785.975.595.80Nigeria7.6219.1637.4477.2115.3029.033.653.802.863.05Norway277.88445.98151.25324.87142.18151.085.886.095.635.90Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.684.093.853.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia38.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.446.02South Africa357.25419.68544.67801.3755.5759.784.414.544.944.94Sweden453.1887.06	Korea	1,494.87	1,875.89	580.09	1,051.84	186.29	228.62	4.15	4.88	5.34	5.40
Mexico84.84113.76259.58383.4427.9233.503.534.133.833.90Netherlands738.881,638.34426.56852.99139.69198.145.785.975.595.80Nigeria7.6219.1637.4477.2115.3029.033.653.802.863.05Norway277.88445.98151.25324.87142.18151.085.886.095.635.90Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.684.093.853.94Philippines17.2026.2459.1197.4523.1232.083.613.644.353.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.65 <td>Kuwait</td> <td>82.63</td> <td>122.23</td> <td>98.75</td> <td>167.83</td> <td>70.70</td> <td>81.42</td> <td>3.89</td> <td>4.03</td> <td>4.51</td> <td>4.83</td>	Kuwait	82.63	122.23	98.75	167.83	70.70	81.42	3.89	4.03	4.51	4.83
Mexico84.84113.76259.58383.4427.9233.503.534.133.833.90Netherlands738.881,638.34426.56852.99139.69198.145.785.975.595.80Nigeria7.6219.1637.4477.2115.3029.033.653.802.863.05Norway277.88445.98151.25324.87142.18151.085.886.095.635.90Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.684.093.853.94Philippines17.2026.2459.1197.4523.1232.083.613.644.353.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.65 <td>Malaysia</td> <td>76.03</td> <td>133.80</td> <td>204.29</td> <td>308.24</td> <td>33.02</td> <td>48.43</td> <td>4.91</td> <td>5.12</td> <td>4.52</td> <td>4.75</td>	Malaysia	76.03	133.80	204.29	308.24	33.02	48.43	4.91	5.12	4.52	4.75
Nigeria7.6219.1637.4477.2115.3029.033.653.802.863.05Norway277.88445.98151.25324.87142.18151.085.886.095.635.90Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.684.093.853.94Philippines17.2026.2459.1197.4523.1232.083.613.643.353.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40<		84.84	113.76	259.58	383.44	27.92	33.50	3.53	4.13	3.83	3.90
Norway277.88445.98151.25324.87142.18151.085.886.095.635.90Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.684.093.853.94Philippines17.2026.2459.1197.4523.1232.083.613.643.353.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35 <td>Netherlands</td> <td>738.88</td> <td>1,638.34</td> <td>426.56</td> <td>852.99</td> <td>139.69</td> <td>198.14</td> <td>5.78</td> <td>5.97</td> <td>5.59</td> <td>5.80</td>	Netherlands	738.88	1,638.34	426.56	852.99	139.69	198.14	5.78	5.97	5.59	5.80
Panama0.070.226.317.681.053.504.344.743.994.13Peru3.636.7259.1696.915.338.183.684.093.853.94Philippines17.2026.2459.1197.4523.1232.083.613.643.353.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Urkey240.67	Nigeria	7.62	19.16	37.44	77.21	15.30	29.03	3.65	3.80	2.86	3.05
Peru3.636.7259.1696.915.338.183.684.093.853.94Philippines17.2026.2459.1197.4523.1232.083.613.643.353.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.83Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Urkey240.67287.68144.88271.36122.57139.973.403.744.575.97Urkine <td< td=""><td>Norway</td><td>277.88</td><td>445.98</td><td>151.25</td><td>324.87</td><td>142.18</td><td>151.08</td><td>5.88</td><td>6.09</td><td>5.63</td><td>5.90</td></td<>	Norway	277.88	445.98	151.25	324.87	142.18	151.08	5.88	6.09	5.63	5.90
Philippines17.2026.2459.1197.4523.1232.083.613.643.353.47Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.374.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kin	Panama	0.07	0.22	6.31	7.68	1.05	3.50	4.34	4.74	3.99	4.13
Poland58.8280.41101.49189.3146.1348.983.634.014.364.53Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.59 <td>Peru</td> <td>3.63</td> <td>6.72</td> <td>59.16</td> <td>96.91</td> <td>5.33</td> <td>8.18</td> <td>3.68</td> <td>4.09</td> <td>3.85</td> <td>3.94</td>	Peru	3.63	6.72	59.16	96.91	5.33	8.18	3.68	4.09	3.85	3.94
Russian Federation592.31736.54513.241,342.6162.93100.133.033.144.114.38Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.374.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.57	Philippines	17.20	26.24	59.11	97.45	23.12	32.08	3.61	3.64	3.35	3.47
Saudi Arabia383.91641.06264.44466.02123.90155.584.234.544.634.99Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.374.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.57		58.82	80.41	101.49	189.31	46.13	48.98	3.63	4.01	4.36	4.53
Singapore256.93355.90212.71342.81101.70117.206.106.285.846.02South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.57	Russian Federation	592.31	736.54	513.24	1,342.61	62.93	100.13	3.03	3.14	4.11	4.38
South Africa357.25419.68544.67801.3755.5759.784.414.543.954.12Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.374.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.57	Saudi Arabia	383.91	641.06	264.44	466.02	123.90	155.58	4.23	4.54	4.63	4.99
Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.59	Singapore	256.93	355.90	212.71	342.81	101.70	117.20	6.10	6.28	5.84	6.02
Spain1,809.512,831.651,033.891,674.38151.33186.675.005.504.824.91Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.59	South Africa	357.25	419.68	544.67	801.37	55.57	59.78	4.41	4.54	3.95	4.12
Sweden453.18887.06297.48567.45122.34154.615.926.065.715.98Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.374.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.59											
Switzerland972.981,709.67914.671,223.5697.47144.945.675.735.675.83Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.374.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.59	-						154.61				
Thailand110.35130.40111.49181.5867.70103.614.144.434.254.40Turkey240.67287.68144.88271.36122.57139.973.403.744.374.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.59						97.47	144.94				
Turkey240.67287.68144.88271.36122.57139.973.403.744.374.56Ukraine0.952.4118.6889.912.673.512.773.023.773.93United Kingdom4,173.629,365.122,088.073,592.99166.51259.295.606.025.375.59	Thailand						103.61		4.43	4.25	
Ukraine 0.95 2.41 18.68 89.91 2.67 3.51 2.77 3.02 3.77 3.93 United Kingdom 4,173.62 9,365.12 2,088.07 3,592.99 166.51 259.29 5.60 6.02 5.37 5.59								3.40		4.37	
United Kingdom 4,173.62 9,365.12 2,088.07 3,592.99 166.51 259.29 5.60 6.02 5.37 5.59											
	United States	38,003.85	45,705.23	12,572.53	18,729.80	220.44	319.50	5.59	5.89	5.33	5.62

Table B.1: Lower and Upper Bounds of Variables for $\alpha = 0.25$

		ncial oility	Fina	nking ancial vices	Bin	Banking ancial vices		DP 1 USD)		r Capita SD)
Country	L	U	L	U	L	U	L	U	L	U
Argentina	3.00	3.57	2.80	2.91	2.33	2.48	272.38	321.73	6,859	8,048
Australia	5.15	5.41	4.34	5.05	4.04	4.34	873.82	1,010.78	41,065	46,944
Austria	4.80	5.56	4.22	4.30	1.89	2.08	374.49	406.27	45,028	48,695
Belgium	4.70	5.12	4.48	4.86	2.31	2.53	461.76	496.82	43,289	46,313
Brazil	3.98	5.15	2.66	3.40	2.92	3.47	1,417.84	1,621.79	7,419	8,429
Canada	5.09	5.49	4.78	5.07	4.09	4.46	1,358.07	1,480.35	40,496	44,548
Chile	4.70	5.56	3.29	3.65	1.73	1.87	163.83	169.22	9,703	10,095
China	4.86	5.11	4.81	4.96	3.30	4.17	3,751.00	4,869.55	2,842	3,662
Colombia	4.31	4.71	2.59	3.16	1.71	2.02	214.03	240.45	4,787	5,323
Czech Republic	4.42	5.01	3.15	3.87	1.43	1.67	178.23	209.63	17,178	20,081
Egypt	3.63	4.36	3.05	3.32	1.85	2.16	138.56	182.02	1,722	2,202
Finland	5.13	5.26	3.26	4.01	2.13	2.23	239.98	264.35	45,062	49,805
France	5.14	5.25	4.06	4.44	3.54	4.96	2,607.86	2,803.02	40,746	43,616
Germany	4.88	5.66	4.26	4.72	3.45	3.97	3,329.37	3,558.41	40,518	43,365
Hungary	3.04	3.65	2.25	3.19	1.49	1.89	131.41	150.69	13,100	15,006
India	4.08	4.56	2.72	3.11	3.15	3.46	1,218.86	1,290.83	1,073	1,125
Indonesia	3.84	4.43	2.62	4.11	1.68	2.04	451.70	532.83	2,004	2,323
Ireland	3.82	5.21	4.85	5.05	3.16	3.20	235.32	264.67	53,189	60,036
Israel	4.47	4.69	3.88	4.11	1.97	2.23	174.09	200.42	24,007	27,303
Italy	4.33	4.73	4.04	4.34	2.73	3.22	2,113.64	2,251.52	35,223	37,699
Japan	4.49	5.43	4.98	5.17	4.06	4.41	4,505.20	5,023.49	35,265	39,371
Kazakhstan	3.52	3.76	2.61	3.02	2.62	3.37	107.47	128.91	6,893	8,200
Korea	4.22	4.65	4.01	4.65	3.17	4.02	857.23	1,019.78	17,599	21,031
Kuwait	5.04	5.48	3.75	3.92	1.09	1.36	102.50	139.70	37,183	51,467
Malaysia	5.15	5.56	4.67	5.47	2.06	2.99	188.25	214.64	7,029	7,916
Mexico	4.76	5.09	2.43	2.64	1.91	2.00	912.50	1,073.81	8,543	10,121
Netherlands	4.61	5.53	4.41	5.23	3.71	4.04	781.77	852.68	47,613	51,786
Nigeria	3.31	4.54	2.44	2.71	1.25	1.43	167.69	198.59	1,119	1,308
Norway	5.46	5.84	4.23	4.34	2.16	2.35	383.21	435.07	79,890	91,499
Panama	3.28	4.45	3.84	4.05	1.61	1.88	20.64	24.33	6,146	7,071
Peru	4.03	4.88	2.57	2.76	1.61	1.97	112.90	130.02	3,945	4,475
Philippines	3.52	4.32	2.66	2.91	1.79	2.08	148.35	165.25	1,656	1,821
Poland	4.21	4.72	3.14	3.20	1.72	2.21	426.51	503.76	11,186	13,211
Russian Federation	4.23	4.48	1.86	2.67	3.82	4.24	1,248.85	1,575.14	8,800	11,094
Saudi Arabia	5.69	6.08	3.54	3.95	1.40	1.87	372.90	452.34	14,867	18,325
Singapore	5.62	6.08	3.88	4.67	3.03	3.55	178.13	190.56	37,033	39,593
South Africa	4.59	4.71	3.70	4.01	2.20	2.68	278.68	286.07	5,696	5,896
Spain	4.12	4.92	4.90	5.20	3.35	3.74	1,445.69	1,560.92	31,857	34,277
Sweden	4.73	5.21	3.91	4.76	2.47	2.82	420.18	481.31	45,380	52,303
Switzerland	5.65	6.05	3.98	4.55	2.81	3.14	448.57	499.82	59,025	65,182
Thailand	4.55	4.68	3.51	4.23	1.59	1.82	251.28	270.26	3,740	4,005
Turkey	3.00	3.77	2.99	3.26	1.85	2.12	622.74	709.54	8,377	9,627
Ukraine	2.94	3.18	2.44	3.00	2.09	2.46	120.84	170.95	2,618	3,691
United Kingdom	4.14	4.87	5.33	5.47	5.72	6.50	2,296.56	2,764.94	37,214	45,266
United States	4.34	5.27	4.06	5.40	5.96	6.07	14,076.10	14,306.58	46,149	47,063

Table B.1: Lower and Upper Bounds of Variables for $\alpha = 0.25$ (continued)

	Value Traded (Billion USD)			pitalization n USD)	Turnover Ratio (%)		Institutional Environment			siness onment
Country	L	U	L	U	L	U	L	U	L	U
Argentina	5.49	10.84	50.62	69.50	7.65	14.60	3.22	3.29	3.87	3.97
Australia	889.77	1,170.27	967.04	1,278.45	90.92	106.78	5.52	5.75	5.36	5.58
Austria	65.03	112.97	62.94	150.50	49.19	63.39	5.69	5.88	5.29	5.33
Belgium	169.79	233.74	214.44	323.90	62.45	70.70	5.57	5.72	5.04	5.31
Brazil	617.07	688.49	878.36	1,268.86	65.05	74.09	3.63	3.67	3.72	3.90
Canada	1,442.55	1,708.05	1,341.59	1,933.76	88.55	108.06	5.75	5.97	5.58	5.83
Chile	37.06	41.02	170.95	211.19	21.57	22.49	4.38	4.92	4.69	4.87
China	6,631.12	8,373.95	3,900.63	5,616.98	150.70	204.85	3.70	4.08	4.08	4.18
Colombia	11.41	12.72	94.49	117.63	12.43	13.16	3.41	3.66	3.97	4.22
Czech Republic	31.27	42.48	50.77	63.05	54.64	69.55	4.17	4.26	4.43	4.72
Egypt	52.95	61.36	87.92	114.62	52.84	60.96	3.86	3.97	3.76	3.86
Finland	240.79	466.88	122.69	261.77	114.71	168.56	5.73	6.01	5.82	5.88
France	2,315.65	3,342.19	1,732.19	2,371.63	105.17	141.97	5.43	5.67	5.15	5.38
Germany	2,197.08	3,234.19	1,202.77	1,701.54	143.43	185.62	5.72	5.93	5.46	5.56
Hungary	28.37	39.15	23.43	37.97	99.51	108.35	4.47	4.56	4.70	4.73
India	1,069.32	1,098.22	912.36	1,499.17	84.59	102.27	3.30	3.40	3.43	3.56
Indonesia	111.76	114.08	138.48	194.94	67.85	77.29	3.54	4.00	3.24	3.36
Ireland	27.84	86.91	39.64	96.71	65.82	86.97	5.58	5.81	5.26	5.42
Israel	98.72	111.31	158.28	209.23	55.59	57.33	4.91	5.40	4.53	4.80
Italy	564.34	1,491.21	419.09	796.77	165.05	252.32	4.27	4.49	4.70	4.85
Japan	5,036.03	6,188.32	3,299.19	3,915.68	135.20	147.41	5.49	5.71	5.15	5.31
Kazakhstan	3.74	6.47	36.23	49.52	10.41	16.31	3.19	3.31	3.78	4.11
Korea	1,523.75	1,777.76	665.55	980.05	191.39	219.61	4.19	4.67	5.34	5.39
Kuwait	95.32	121.72	101.55	147.61	72.53	79.68	3.91	4.00	4.51	4.72
Malaysia	79.09	117.61	221.51	290.81	33.09	43.37	4.96	5.10	4.54	4.70
Mexico	92.63	111.91	286.57	369.15	28.94	32.67	3.55	3.95	3.86	3.90
Netherlands	873.60	1,473.24	465.22	749.50	149.52	188.49	5.79	5.92	5.62	5.75
Nigeria	10.67	18.36	41.56	68.07	19.60	28.75	3.67	3.77	2.89	3.02
Norway	308.01	420.07	176.58	292.33	144.06	149.98	5.89	6.02	5.65	5.83
Panama	0.09	0.19	6.39	7.31	1.37	3.00	4.40	4.67	4.02	4.12
Peru	4.12	6.19	62.69	87.86	5.66	7.56	3.69	3.96	3.86	3.92
Philippines	17.20	23.23	66.12	91.68	24.09	30.05	3.61	3.63	3.35	3.43
Poland	61.87	76.26	112.75	171.30	46.59	48.48	3.72	3.97	4.38	4.49
Russian Federation	622.39	718.54	629.30	1,182.22	66.96	91.76	3.06	3.13	4.15	4.32
Saudi Arabia	430.85	602.28	282.55	416.94	128.54	149.66	4.27	4.48	4.71	4.95
Singapore	261.59	327.57	245.39	332.13	102.07	112.40	6.13	6.24	5.87	5.98
South Africa	372.00	413.62	598.05	769.19	56.13	58.94	4.42	4.50	3.98	4.09
Spain	2,019.75	2,701.18	1,121.67	1,548.67	160.08	183.64	5.04	5.37	4.84	4.90
Sweden	516.04	805.29	342.42	522.40	130.70	152.21	5.96	6.06	5.78	5.96
Switzerland	1,150.41	1,641.54	966.68	1,172.61	112.65	144.30	5.68	5.72	5.72	5.82
Thailand	112.49	125.85	120.39	167.12	71.20	95.14	4.20	4.39	4.27	4.36
Turkey	241.62	272.96	171.83	256.15	126.61	138.21	3.43	3.66	4.38	4.50
Ukraine	1.30	2.28	20.57	68.06	2.74	3.30	2.79	2.96	3.81	3.91
United Kingdom	4,944.73	8,405.73	2,324.20	3,327.48	186.63	248.48	5.67	5.94	5.40	5.54
United States	39,540.30	44,674.55	13,407.45	17,512.30	224.38	290.42	5.61	5.81	5.35	5.54

Table B.2: Lower and Upper Bounds of Variables for $\alpha = 0.50$

		ancial bility	Fin	nking ancial vices	Bin	Banking ancial vices		DP n USD)		er Capita SD)
Country	L	U	L	U	L	U	L	U	L	U
Argentina	3.08	3.46	2.82	2.89	2.38	2.48	283.97	316.87	7,115	7,907
Australia	5.17	5.35	4.57	5.04	4.11	4.31	890.83	982.13	41,470	45,389
Austria	4.81	5.31	4.23	4.28	1.92	2.04	376.69	397.88	45,206	47,650
Belgium	4.75	5.03	4.58	4.84	2.37	2.52	464.89	488.27	43,416	45,433
Brazil	4.37	5.14	2.85	3.34	3.01	3.38	1,469.70	1,605.67	7,653	8,327
Canada	5.15	5.42	4.80	4.99	4.18	4.43	1,380.07	1,461.59	41,392	44,094
Chile	4.93	5.50	3.34	3.58	1.77	1.87	163.99	167.58	9,761	10,022
China	4.88	5.05	4.84	4.94	3.31	3.88	4,007.95	4,753.65	3,032	3,579
Colombia	4.36	4.62	2.61	2.99	1.77	1.98	220.70	238.31	4,900	5,258
Czech Republic	4.54	4.94	3.39	3.87	1.44	1.60	182.24	203.18	17,498	19,434
Egypt	3.84	4.33	3.06	3.25	1.95	2.15	146.65	175.62	1,814	2,134
Finland	5.17	5.26	3.43	3.93	2.14	2.21	241.97	258.22	45,543	48,705
France	5.15	5.22	4.07	4.32	3.69	4.64	2,621.70	2,751.81	40,848	42,761
Germany	5.03	5.56	4.28	4.59	3.48	3.82	3,329.59	3,482.28	40,569	42,467
Hungary	3.20	3.60	2.29	2.92	1.50	1.77	133.86	146.71	13,333	14,603
India	4.13	4.45	2.84	3.09	3.18	3.39	1,223.52	1,271.50	1,081	1,115
Indonesia	4.02	4.42	2.62	3.62	1.77	2.02	471.30	525.39	2,084	2,297
Ireland	4.04	4.97	4.89	5.03	3.17	3.20	243.45	263.02	55,328	59,893
Israel	4.48	4.62	3.91	4.06	2.05	2.22	181.19	198.75	24,757	26,954
Italy	4.37	4.63	4.07	4.27	2.76	3.09	2,114.49	2,206.42	35,362	37,013
Japan	4.52	5.14	5.04	5.16	4.09	4.32	4,632.46	4,977.99	36,266	39,003
Kazakhstan	3.54	3.70	2.69	2.97	2.68	3.19	110.08	124.37	7,015	7,885
Korea	4.29	4.58	4.06	4.49	3.32	3.89	881.96	990.32	18,120	20,408
Kuwait	5.18	5.47	3.76	3.88	1.10	1.29	106.58	131.38	39,151	48,674
Malaysia	5.16	5.43	4.68	5.21	2.19	2.81	189.87	207.46	7,029	7,621
Mexico	4.84	5.06	2.48	2.62	1.93	2.00	950.20	1,057.73	8,942	9,995
Netherlands	4.71	5.33	4.58	5.12	3.76	3.99	785.22	832.50	47,714	50,496
Nigeria	3.55	4.37	2.44	2.63	1.26	1.37	169.46	190.06	1,121	1,246
Norway	5.55	5.80	4.27	4.34	2.20	2.32	384.65	419.23	80,692	88,431
Panama	3.55	4.33	3.90	4.04	1.62	1.80	21.49	23.95	6,371	6,988
Peru	4.30	4.86	2.62	2.75	1.62	1.86	118.30	129.72	4,120	4,473
Philippines	3.72	4.25	2.69	2.86	1.80	1.99	152.63	163.90	1,688	1,798
Poland	4.32	4.67	3.15	3.19	1.73	2.05	427.70	479.20	11,215	12,565
Russian Federation	4.29	4.46	1.93	2.46	3.92	4.21	1,265.80	1,483.33	8,915	10,445
Saudi Arabia	5.79	6.04	3.56	3.83	1.40	1.72	376.63	429.58	15,193	17,499
Singapore	5.64	5.94	4.14	4.66	3.14	3.49	179.50	187.78	37,530	39,236
South Africa	4.62	4.70	3.72	3.92	2.28	2.59	280.91	285.83	5,726	5,859
Spain	4.30	4.83	4.96	5.16	3.45	3.71	1,450.55	1,527.36	31,939	33,553
Sweden	4.85	5.17	4.14	4.71	2.54	2.77	434.29	475.04	47,106	51,721
Switzerland	5.65	5.92	4.16	4.54	2.87	3.09	463.02	497.19	60,560	64,664
Thailand	4.56	4.64	3.52	4.00	1.59	1.75	255.44	268.10	3,791	3,968
Turkey	3.23	3.75	3.02	3.20	1.87	2.05	630.88	688.75	8,540	9,373
Ukraine	3.01	3.16	2.50	2.88	2.19	2.03	128.13	161.54	2,768	3,484
United Kingdom	4.28	4.77	5.34	5.44	5.94	6.46	2,418.59	2,730.85	39,263	44,631
United States	4.41	5.04	4.11	5.01	5.99	6.06	14,090.40	14,244.05	46,308	46,918
United States	4.41	5.04	4.11	5.01	5.99	0.00	14,090.40	14,244.03	+0,308	40,918

Table B.2: Lower and Upper Bounds of Variables for $\alpha = 0.50$ (continued)

	Value Traded (Billion USD)			pitalization n USD)		er Ratio %)	Institutional Environment			iness onment
Country	L	U	L	U	L	U	L U		L	U
Argentina	6.87	9.54	51.47	60.90	8.77	12.25	3.23	3.26	3.89	3.95
Australia	953.74	1,093.99	1,112.75	1,268.45	96.99	104.92	5.54	5.66	5.42	5.53
Austria	84.77	108.75	67.62	111.40	53.49	60.60	5.70	5.79	5.29	5.31
Belgium	190.78	222.76	237.93	292.66	63.87	68.00	5.58	5.65	5.06	5.20
Brazil	633.13	668.84	1,022.84	1,218.09	69.48	74.00	3.63	3.65	3.76	3.85
Canada	1,544.01	1,676.76	1,511.28	1,807.36	90.48	100.23	5.81	5.92	5.65	5.78
Chile	37.31	39.29	190.21	210.33	21.77	22.23	4.42	4.69	4.76	4.85
China	7,211.41	8,082.82	4,454.14	5,312.32	165.40	192.48	3.89	4.07	4.09	4.13
Colombia	11.95	12.60	98.23	109.79	12.76	13.13	3.47	3.59	4.04	4.17
Czech Republic	36.60	42.21	51.73	57.87	61.67	69.12	4.19	4.23	4.55	4.70
Egypt	53.01	57.22	88.94	102.29	56.45	60.52	3.87	3.92	3.78	3.84
Finland	315.60	428.64	138.53	208.07	134.91	161.84	5.75	5.89	5.84	5.87
France	2,790.57	3,303.84	1,852.11	2,171.84	118.34	136.74	5.47	5.59	5.17	5.29
Germany	2,651.19	3,169.74	1,250.17	1,499.56	161.56	182.66	5.75	5.86	5.49	5.53
Hungary	29.59	34.98	25.86	33.13	102.75	107.17	4.49	4.54	4.70	4.72
India	1,079.11	1,093.56	1,045.80	1,339.21	84.89	93.73	3.34	3.39	3.47	3.54
Indonesia	112.31	113.47	158.33	186.57	69.58	74.29	3.54	3.77	3.25	3.31
Ireland	32.52	62.06	44.52	73.06	75.43	86.00	5.60	5.71	5.31	5.39
Israel	103.94	110.23	170.19	195.66	55.69	56.55	5.02	5.26	4.56	4.70
Italy	616.64	1,080.08	469.97	658.81	192.72	236.36	4.30	4.41	4.73	4.81
Japan	5,457.74	6,033.88	3,338.54	3,646.79	138.40	144.51	5.51	5.63	5.16	5.24
Kazakhstan	3.89	5.25	38.80	45.45	11.07	14.02	3.21	3.27	3.92	4.08
Korea	1,552.62	1,679.62	751.00	908.25	196.50	210.61	4.22	4.47	5.35	5.37
Kuwait	108.01	121.21	104.36	127.39	74.37	77.94	3.92	3.97	4.51	4.62
Malaysia	82.15	101.41	238.73	273.38	33.17	38.30	5.00	5.07	4.57	4.64
Mexico	100.42	110.06	313.57	354.86	29.97	31.83	3.57	3.77	3.88	3.90
Netherlands	1,008.32	1,308.14	503.88	646.02	159.35	178.83	5.81	5.87	5.64	5.71
Nigeria	13.72	17.57	45.68	58.94	23.90	28.48	3.69	3.74	2.92	2.98
Norway	338.13	394.16	201.90	259.78	145.93	148.89	5.89	5.96	5.66	5.75
Panama	0.10	0.15	6.48	6.94	1.68	2.50	4.45	4.59	4.06	4.10
Peru	4.62	5.65	66.22	78.80	6.00	6.94	3.69	3.83	3.88	3.91
Philippines	17.21	20.22	73.12	85.91	25.05	28.03	3.62	3.63	3.36	3.40
Poland	64.91	72.11	124.02	153.29	47.04	47.99	3.81	3.94	4.40	4.46
Russian Federation	652.46	700.54	745.36	1,021.82	70.99	83.39	3.08	3.11	4.18	4.27
Saudi Arabia	477.78	563.50	300.66	367.85	133.18	143.74	4.32	4.42	4.80	4.92
Singapore	266.24	299.23	278.08	321.45	102.43	107.60	6.15	6.21	5.89	5.95
South Africa	386.75	407.56	651.44	737.00	56.70	58.10	4.42	4.46	4.00	4.06
Spain	2,230.00	2,570.71	1,209.45	1,422.95	168.83	180.61	5.08	5.25	4.85	4.88
Sweden	578.89	723.52	387.36	477.35	139.05	149.80	6.01	6.05	5.86	5.95
Switzerland	1,327.84	1,573.40	1,018.68	1,121.65	127.82	143.65	5.69	5.71	5.76	5.81
Thailand	114.63	121.31	129.29	152.65	74.70	86.67	4.26	4.36	4.28	4.33
Turkey	242.57	258.24	198.78	240.94	130.66	136.46	3.47	3.58	4.38	4.44
Ukraine	1.66	2.15	22.47	46.21	2.80	3.08	2.81	2.89	3.84	3.90
United Kingdom	5,715.85	7,446.35	2,560.32	3,061.96	206.74	237.66	5.73	5.87	5.42	5.50
United States	41,076.75	43,643.88	14,242.38	16,294.80	228.32	261.34	5.62	5.72	5.36	5.45

Table B.3: Lower and Upper Bounds of Variables for $\alpha = 0.75$

		ncial bility	Fin	nking ancial vices	Bin	Banking ancial vices		DP n USD)		er Capita SD)
Country	L	U	L	U	L	U	L	U	L	U
Argentina	3.16	3.35	2.83	2.87	2.43	2.48	295.56	312.01	7,371	7,767
Australia	5.19	5.28	4.79	5.02	4.19	4.29	907.84	953.49	41,874	43,834
Austria	4.81	5.06	4.23	4.26	1.94	2.00	378.89	389.48	45,384	46,606
Belgium	4.79	4.93	4.69	4.81	2.42	2.50	468.03	479.71	43,544	44,552
Brazil	4.75	5.14	3.03	3.28	3.11	3.29	1,521.55	1,589.54	7,887	8,224
Canada	5.20	5.34	4.81	4.91	4.28	4.40	1,402.07	1,442.83	42,288	43,639
Chile	5.15	5.44	3.38	3.50	1.82	1.86	164.15	165.95	9,819	9,950
China	4.91	4.99	4.88	4.93	3.31	3.60	4,264.89	4,637.74	3,223	3,496
Colombia	4.40	4.53	2.63	2.82	1.83	1.93	227.37	236.18	5,013	5,192
Czech Republic	4.67	4.86	3.62	3.86	1.46	1.54	186.26	196.73	17,819	18,786
Egypt	4.06	4.30	3.08	3.17	2.04	2.15	154.75	169.23	1,905	2,066
Finland	5.20	5.25	3.61	3.86	2.14	2.18	243.96	252.08	46,024	47,605
France	5.16	5.20	4.08	4.21	3.83	4.31	2,635.55	2,700.60	40,949	41,906
Germany	5.19	5.45	4.31	4.46	3.50	3.67	3,329.81	3,406.16	40,619	41,568
Hungary	3.35	3.55	2.33	2.64	1.51	1.64	136.31	142.73	13,566	14,201
India	4.18	4.34	2.95	3.08	3.21	3.31	1,228.17	1,252.16	1,088	1,106
Indonesia	4.21	4.40	2.63	3.12	1.87	1.99	490.90	517.95	2,165	2,271
Ireland	4.26	4.72	4.94	5.00	3.17	3.19	251.58	261.36	57,468	59,750
Israel	4.48	4.55	3.94	4.02	2.13	2.22	188.29	197.07	25,507	26,605
Italy	4.40	4.54	4.10	4.20	2.79	2.95	2,115.35	2,161.31	35,502	36,327
Japan	4.54	4.86	5.09	5.16	4.11	4.23	4,759.71	4,932.48	37,267	38,635
Kazakhstan	3.56	3.64	2.78	2.91	2.75	3.00	112.69	119.84	7,136	7,571
Korea	4.35	4.50	4.11	4.32	3.47	3.75	906.68	960.86	18,641	19,785
Kuwait	5.31	5.45	3.78	3.83	1.12	1.21	110.66	123.06	41,119	45,880
Malaysia	5.17	5.31	4.69	4.96	2.31	2.62	191.48	200.28	7,029	7,325
Mexico	4.91	5.02	2.54	2.61	1.96	1.99	987.89	1,041.66	9,342	9,868
Netherlands	4.81	5.12	4.74	5.01	3.82	3.93	788.67	812.31	47,815	49,207
Nigeria	3.78	4.19	2.45	2.54	1.26	1.32	171.23	181.53	1,122	1,185
Norway	5.64	5.77	4.30	4.33	2.23	2.29	386.09	403.38	81,493	85,363
Panama	3.82	4.21	3.97	4.04	1.64	1.73	22.34	23.57	6,596	6,905
Peru	4.56	4.84	2.68	2.74	1.62	1.74	123.70	129.41	4,294	4,471
Philippines	3.92	4.19	2.72	2.80	1.80	1.90	156.91	162.55	1,720	1,775
Poland	4.44	4.61	3.16	3.18	1.73	1.89	428.89	454.64	11,244	11,919
Russian Federation	4.35	4.43	1.99	2.26	4.03	4.17	1,282.76	1,391.52	9,031	9,796
Saudi Arabia	5.88	6.01	3.57	3.70	1.40	1.56	380.35	406.83	15,520	16,673
Singapore	5.65	5.80	4.39	4.65	3.26	3.43	180.87	185.01	38,026	38,880
South Africa	4.64	4.68	3.73	3.84	2.35	2.51	283.14	285.60	5,756	5,823
Spain	4.48	4.75	5.01	5.11	3.54	3.67	1,455.40	1,493.81	32,022	32,829
Sweden	4.96	5.12	4.38	4.66	2.60	2.72	448.40	468.78	48,832	51,140
Switzerland	5.66	5.79	4.34	4.53	2.93	3.04	477.47	494.55	62,094	64,146
Thailand	4.56	4.61	3.54	3.78	1.60	1.67	259.61	265.94	3,842	3,930
Turkey	3.47	3.72	3.04	3.13	1.88	1.97	639.02	667.95	8,702	9,119
Ukraine	3.07	3.15	2.56	2.75	2.29	2.41	135.43	152.13	2,918	3,276
United Kingdom	4.43	4.67	5.35	5.40	6.15	6.41	2,540.62	2,696.75	41,312	43,996
United States	4.49	4.80	4.16	4.61	6.02	6.06	14,104.70	14,181.53	46,468	46,772

Table B.3: Lower and Upper Bounds of Variables for $\alpha = 0.75$ (continued)

APPENDIX C: Efficiency Scores of Countries in Fuzzy Data Envelopment (FDEA) and Average of Classical Data Envelopment (DEA) Results of Countries

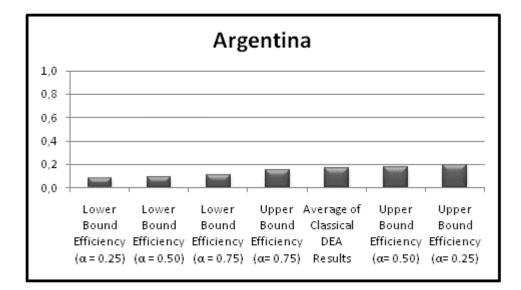


Figure C.1: FDEA and DEA Efficiency Scores for Argentina

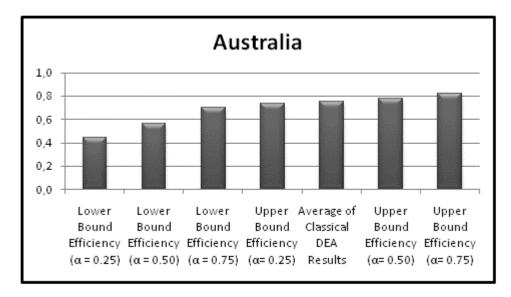


Figure C.2: FDEA and DEA Efficiency Scores for Australia

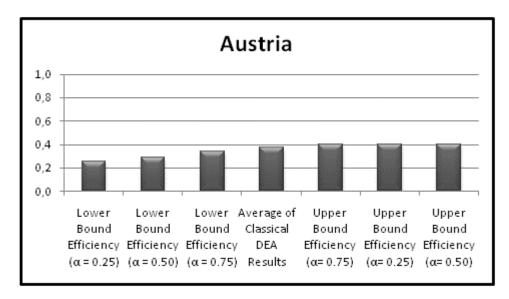


Figure C.3: FDEA and DEA Efficiency Scores for Austria

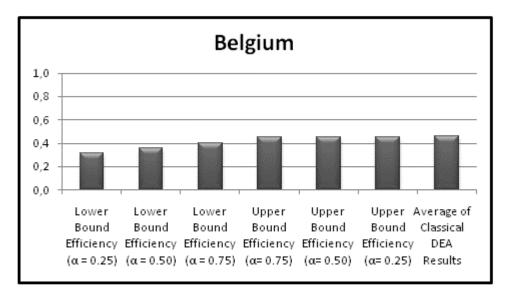


Figure C.4: FDEA and DEA Efficiency Scores for Belgium

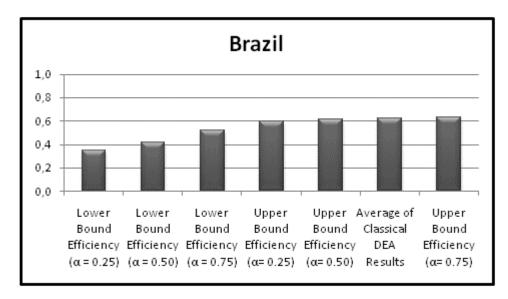


Figure C.5: FDEA and DEA Efficiency Scores for Brazil

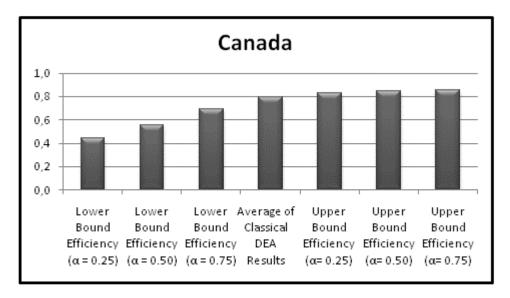


Figure C.6: FDEA and DEA Efficiency Scores for Canada

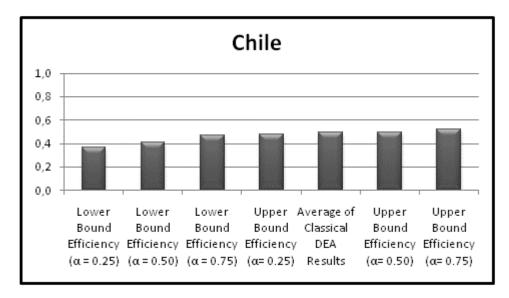


Figure C.7: FDEA and DEA Efficiency Scores for Chile

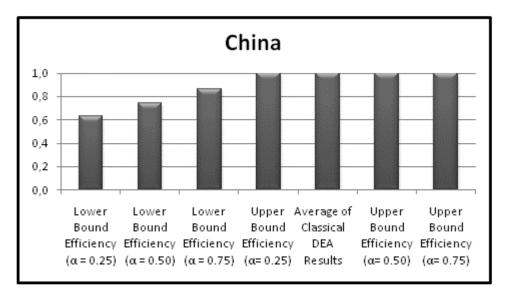


Figure C.8: FDEA and DEA Efficiency Scores for China

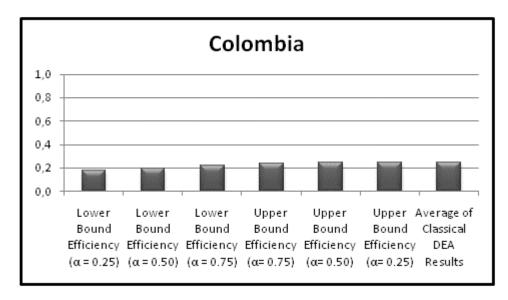


Figure C.9: FDEA and DEA Efficiency Scores for Colombia

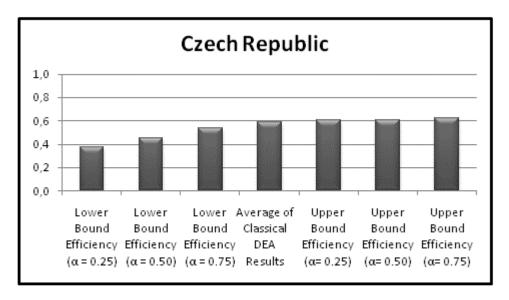


Figure C.10: FDEA and DEA Efficiency Scores for Czech Republic

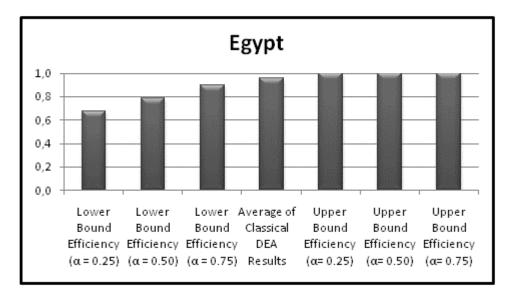


Figure C.11: FDEA and DEA Efficiency Scores for Egypt

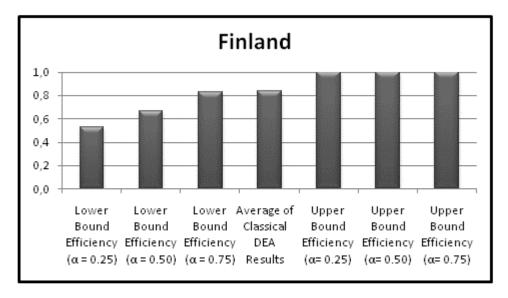


Figure C.12: FDEA and DEA Efficiency Scores for Finland

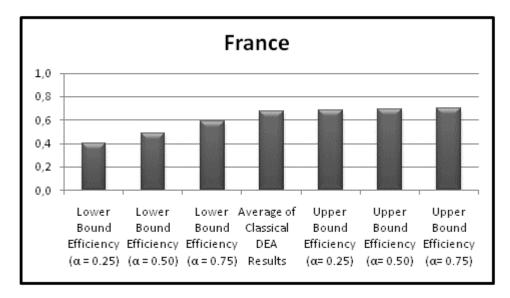


Figure C.13: FDEA and DEA Efficiency Scores for France

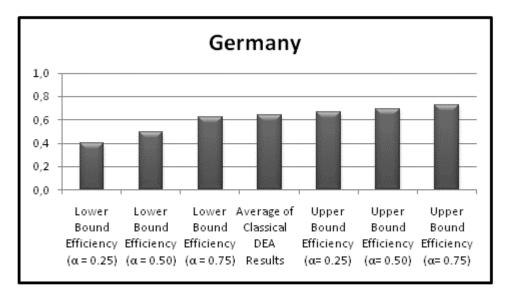


Figure C.14: FDEA and DEA Efficiency Scores for Germany

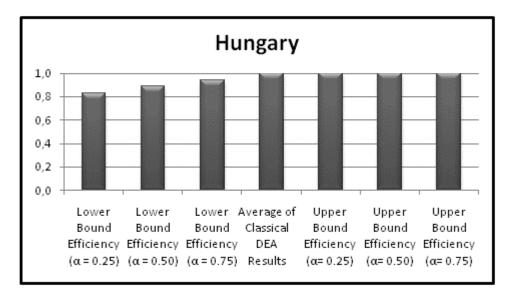


Figure C.15: FDEA and DEA Efficiency Scores for Hungary

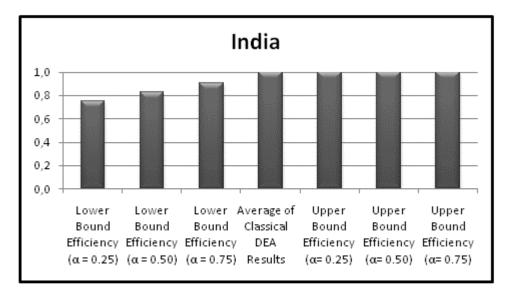


Figure C.16: FDEA and DEA Efficiency Scores for India

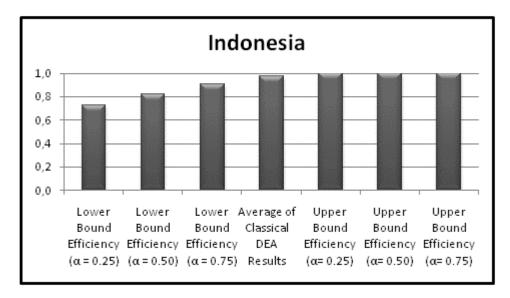


Figure C.17: FDEA and DEA Efficiency Scores for Indonesia

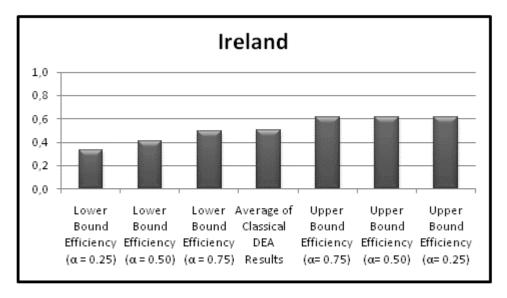


Figure C.18: FDEA and DEA Efficiency Scores for Ireland

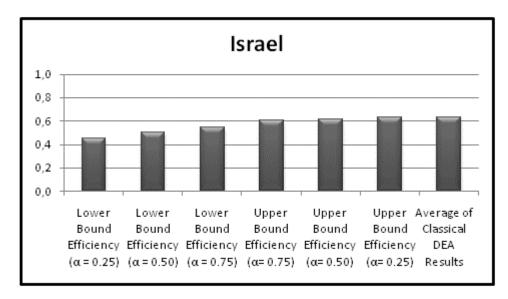


Figure C.19: FDEA and DEA Efficiency Scores for Israel

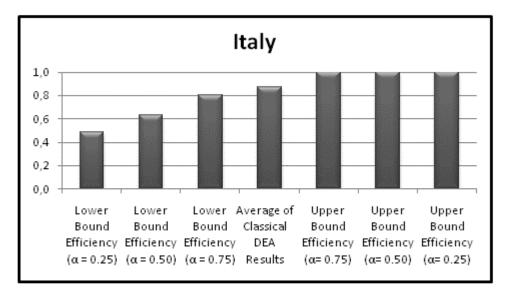


Figure C.20: FDEA and DEA Efficiency Scores for Italy

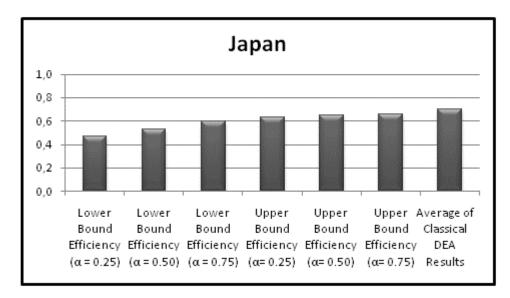


Figure C.21: FDEA and DEA Efficiency Scores for Japan

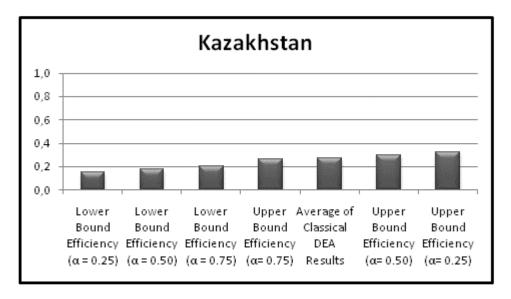


Figure C.22: FDEA and DEA Efficiency Scores for Kazakhstan

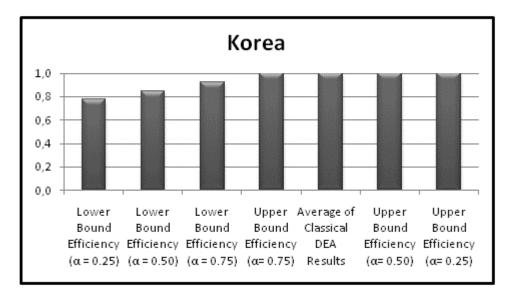


Figure C.23: FDEA and DEA Efficiency Scores for Korea

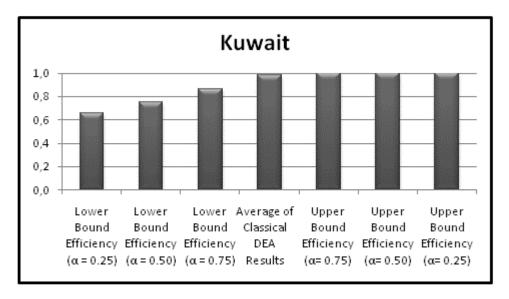


Figure C.24: FDEA and DEA Efficiency Scores for Kuwait

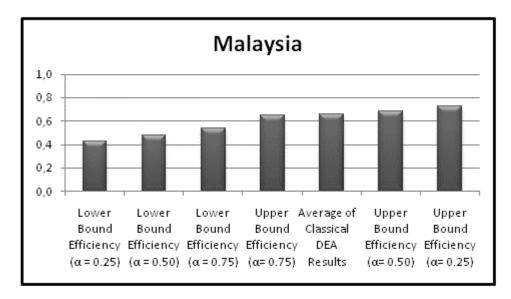


Figure C.25: FDEA and DEA Efficiency Scores for Malaysia

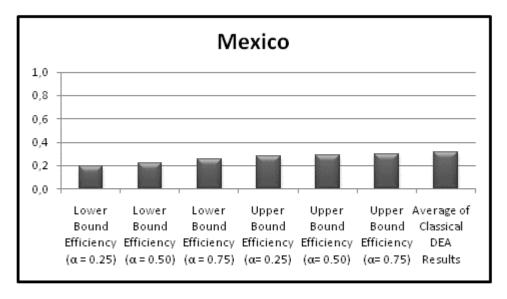


Figure C.26: FDEA and DEA Efficiency Scores for Mexico

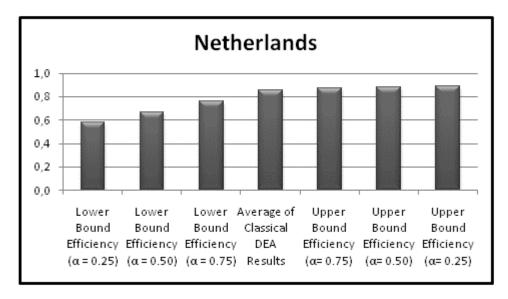


Figure C.27: FDEA and DEA Efficiency Scores for Netherlands, The

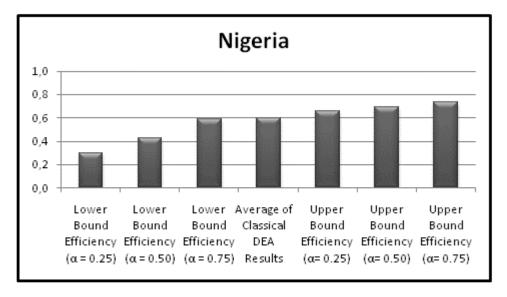


Figure C.28: FDEA and DEA Efficiency Scores for Nigeria

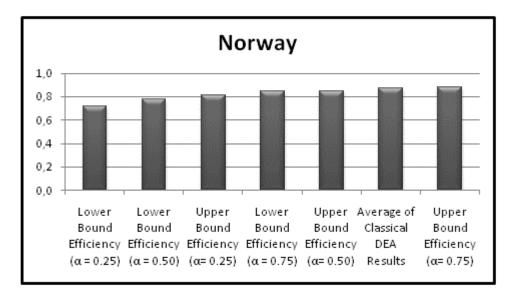


Figure C.29: FDEA and DEA Efficiency Scores for Norway

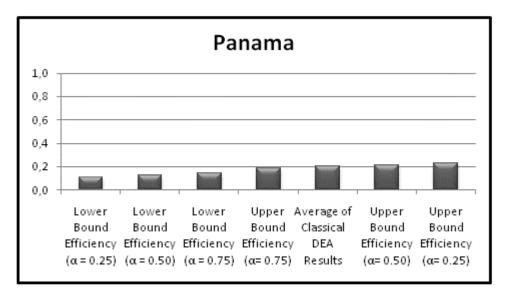


Figure C.30: FDEA and DEA Efficiency Scores for Panama

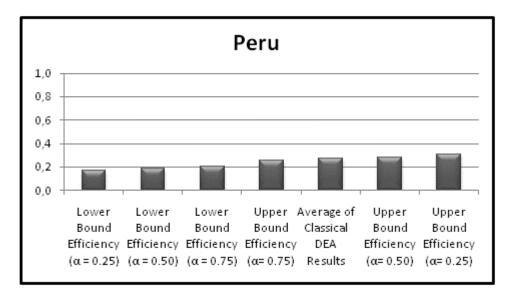


Figure C.31: FDEA and DEA Efficiency Scores for Peru

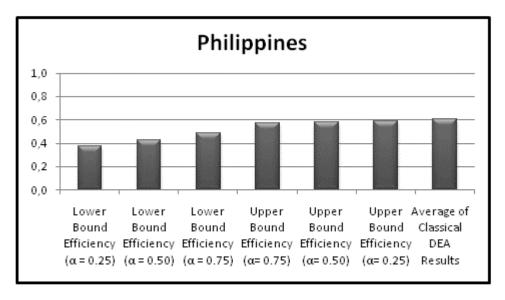


Figure C.32: FDEA and DEA Efficiency Scores for Philippines

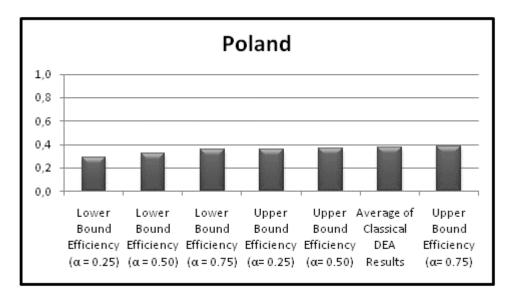


Figure C.33: FDEA and DEA Efficiency Scores for Poland

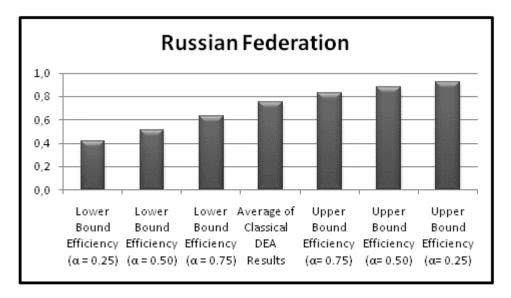


Figure C.34: FDEA and DEA Efficiency Scores for Russian Federation

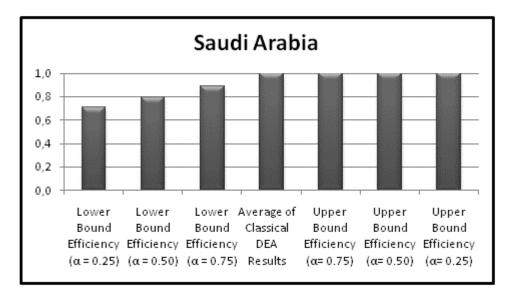


Figure C.35: FDEA and DEA Efficiency Scores for Saudi Arabia

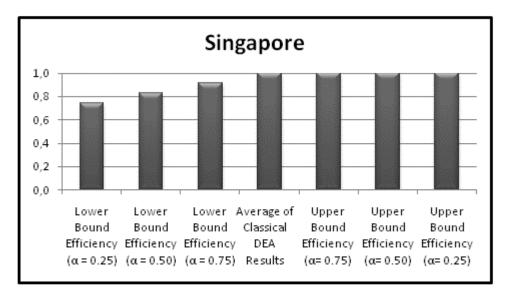


Figure C.36: FDEA and DEA Efficiency Scores for Singapore

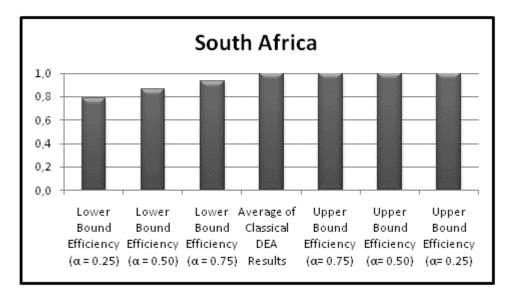


Figure C.37: FDEA and DEA Efficiency Scores for South Africa

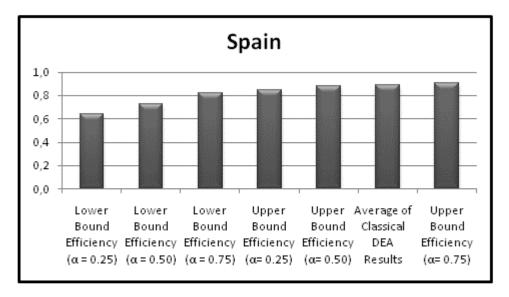


Figure C.38: FDEA and DEA Efficiency Scores for Spain

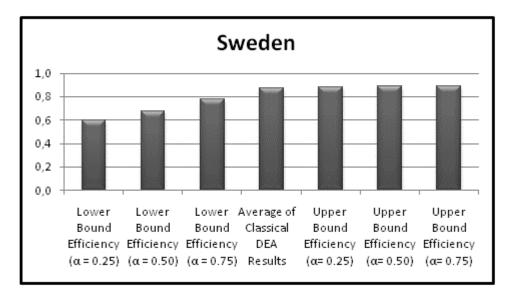


Figure C.39: FDEA and DEA Efficiency Scores for Sweden

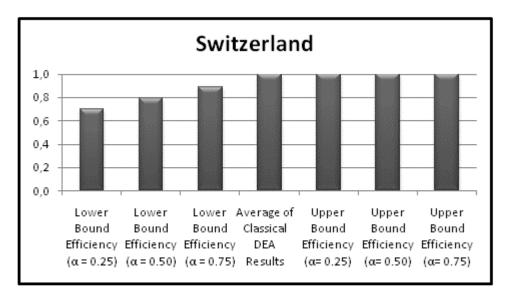


Figure C.40: FDEA and DEA Efficiency Scores for Switzerland

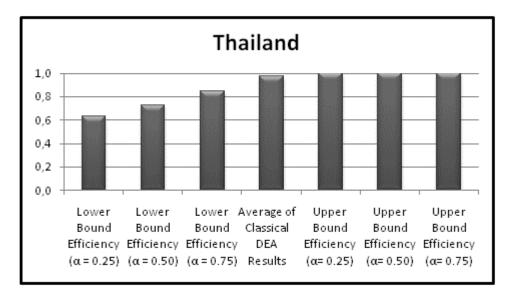


Figure C.41: FDEA and DEA Efficiency Scores for Thailand

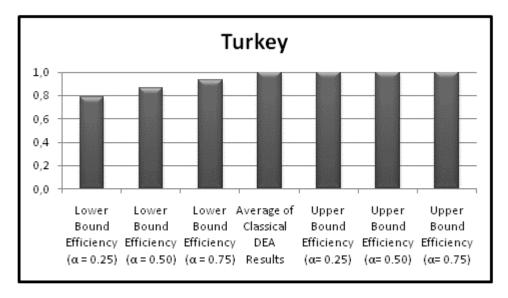


Figure C.42: FDEA and DEA Efficiency Scores for Turkey

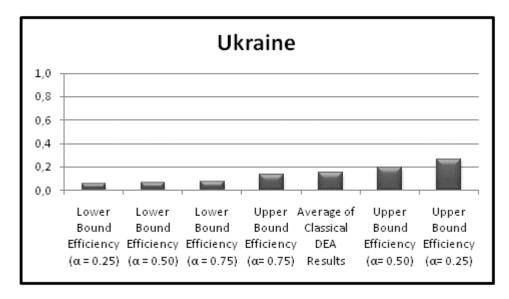


Figure C.43: FDEA and DEA Efficiency Scores for Ukraine

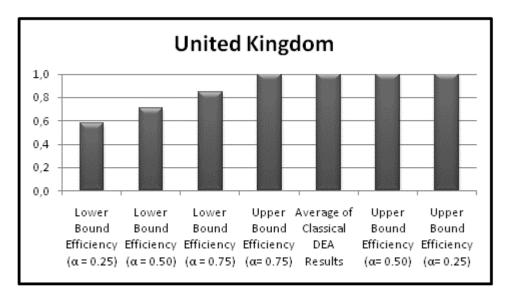


Figure C.44: FDEA and DEA Efficiency Scores for United Kingdom

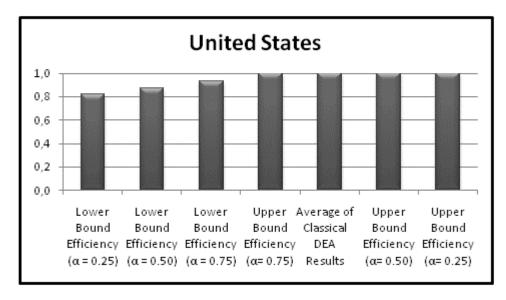


Figure C.45: FDEA and DEA Efficiency Scores for United Staes

CURRICULUM VITAE

Name Surname: HAKAN BALKAN

Address: İstinye Mahallesi Boğaziçi Caddesi No: 19/11- Sarıyer / İstanbul
E-mail: balkanhakan@yahoo.com
Place and Date of Birth: Adana – February 27, 1979
Primary Education: Osmangazi Primary School – İstanbul - 1993
Secondary Education: Gündoğdu High School – Adana - 1996
Bachelor of Science: Marmara University - Industrial Engineering - 2002
Master of Science: Bahçeşehir University
Name of Institution: The Graduate School of Natural and Applied Sciences
Name of Program: Industrial Engineering
Marital Status: Married with a son
Working Life: Human Resources Specialist in Istanbul Stock Exchange since 2008