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ABSTRACT

C3NET ALGORITHM USING DYNAMIC BAYESIAN NETWORK

Mohammed Abdulghani Taha
M.S. Department of Computer Engineering
Supervisor: Assist. Prof. Dr. Gokmen ALTAY

April 2013, 33 pages

Finding causal interactions between genes is one of the most important topics in
bioinformatics. Many gene regulatory network inference (GRNI) algorithm has been
introduced for this aim. In this study, we use C3NET algorithm and G1DBN algorithm.
C3NET algorithm’s inferred gene network is undirected. GIDBN algorithm’s inferred gene
network is directed but it’s too slow when applied to large expression data, it takes too much
time to infer directed gene networks.

Our approach solves both direction and time by applying Dynamic Bayesian Network to the
inferred gene network of C3NET to make the inferred gene network directed. So our approach
composed of two steps, in the first step decreases the interaction probability of genes by
C3NET algorithm, in the second step applies Dynamic Bayesian network to each pair
interaction of genes and make the undirected edges to directed edges.

Keywords: Dynamic Bayesian Network, Directed Acyclic Graph, networks inference,
conditional independence, time series modeling.



OZET

DINAMIK BAYES AGLARI KULLANARAK C3NET ALGORITMASI

Mohammed Abdulghani Taha
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Gkmen ALTAY

Nisan 2013, 33 sayfa

Genler arasindaki nedensel iliskileri bulma biyoinformatik’te en 6nemli konulardan biridir.
Bircok gen diizenleyici ag cikarim (GRNI) algoritmaslart bu amagla gelisitirilmistir. Bu
caligmada, C3NET algoritma ve G1DBN algoritmasi kullaniriliyor.

C3NET algoritmanin anlasilmaktadir gen ag1 yonsiizdir. GIDBN algoritmanm
anlasilmaktadir gen ag1 yonliidiir ama biiylik veriler’de uygulandiginda ¢ok yavas ¢aligiyor,
yonlendirilmis gen aglar1 bulmasi i¢in ¢ok fazla zaman gerektirir.

Yaklasimimiz  anlagilmaktadir gen ag1 yapmak icin C3NET ve Dinamik Bayes Ag1
uygulayarakd yon ve zaman gecikmesini ¢0ziyor. Bizim yaklasim iki adimdan olusuyor, ilk
adimda C3NET algoritmas: tarafindan genlerin etkilesimi olasiig1 azalr, ikinci asamada
genlerin her cift etkilesimi Dinamik Bayes ag gecerlidir ve yonstiz ag1 yonlii aga cevirir.
Anahtar Kelimeler: Dinamik Bayes Ag, Yonetmen Mercury Graph, ¢ikarim aglari, kosullu
bagimsizlik, zaman serisi modelleme.
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1. INTRODUCTION

1.1 PROBLEM DEFINITION

The structure and working mechanisms of molecules in cells of an organism will be clear
while, a logical understanding of biological and biomedical problems is performed. The
interaction among genes and gene product displays the gene networks of an individual, e.g.,
the transcriptional regulatory network, protein network or metabolic network (Lebre, 2012)
(Lebre, 2009). The blueprints of dynamical processes within cells are represented by these
networks (Altay & Emmert-Streib, 2011). Because of this, the inference of gene networks
from experimental data is called as one of the most important targets of the post-genomic era
and in system biology (Altay & Emmert-Streib, 2010).

An accurate detection of molecular interaction is allowed by classical molecular biology
approaches (Altay & Emmert-Streib, 2010). In the early 1940 s BEADLE and TATUM
(Emmert-Streib & Dehmer, 2010) focused on the assumption of the one gene-one enzyme
hypothesis which caused the study of the molecular biology for decades, but the current focus
IS on the systems properties of interacting genes (Emmert-Streib, 2011) (Vidal, 2009). Since
the high-throughput data has been appeared, the study of the behavior of such systems is
focused (Altay & Emmert-Streib, 2011). For example, a wealth information about the
expression of genes are provided by microarray experiments, these information can be utilized
by statistical analysis methods in order to investigate data systematically (Dudoit, Shaffer, &
Boldrick, 2003) (Speed, 2003). One of the important thing that increased the interest of the
microarray analysis is the causal interactions among thounsands of genes (Li & Gui, 2006)
(Xing & van der Laan, 2005). Here by causal, the direct interactions among genes that
correspond to experimentally verifiable biochemical interactions is meant (Altay & Emmert-
Streib, 2011).We mean, relationship between two gene is searched, e.g., “gen i activates gene
j”. It is known that most of the genes whose expression has been monitored using microarrays

are not present in the temporal evolution of the system (Lebre, 2009). So the determination of



the few ‘active’ genes and the relationships between them is required. In summary, we want to

estimate a network that contains the dependence relationships.

1.2 LITERATURE REVIEW

To infer these type of networks static modeling first was described which are not oriented
network. The relevance network (Butte, Tamayo, Slonim, Golub, & Kohane, 2000) or
correlation network (Steuer, Kurths, Fiehn, & Wechwerth, 2003) was one of the first tools
used to infer interactions between genes (Lebre, 2009). This method calculates pair wise
mutual information values among all genes and deletes the edges among genes which have
mutual information values that are not statistically significant (Altay & Emmert-Streib, 2010).
Also it is known as the covariance graph (Cox & Wermuth, 1996) in graphical models theory,
this undirected graph shows the pair-wise correlation between genes. There is an undirected
edge between two nodes (variables) whenever there is a correlation, this topology is taken
from the covariance matrix between gene expression levels (Lebre, 2009). However, the
relation between two nodes could be caused by linkage with other variables. This generates
fake edges due to indirect dependence relationships (Lebre, 2009).

As a result, there has been interest in the concentration graph (Lauritzen S. L., 1996), also
mentioned the covariance selection model, which manipulates the conditional dependence
structure between gene expression using Graphical Gaussian Models (GGMs). Let Y =
(Yi)lsiSp be a Gaussian vector representing the expression levels of p genes (Lebre, 2009).
Since they are conditionally dependent, an undirected edge is drawn between two variables Y1
and YJ (Lebre, 2009). The theory GGMs can be used only when the number of measurements
n is much higher than the number of variables p (Lebre, 2009). However most of the
microarray gene expression datasets are opposite where the number of variables p is much
higher than n. Thus, the interest in “small n, large p” forced the development of more
alternatives (Schafer & Strimmer, 2005) (Schafer & Strimmer, 2005) (Waddell & Kishino,
2000) (Waddell & Kishino, 2000) (Toh & Horimoto, 2002) (Toh & Horimoto, 2002) (Wu, Ye,
& Subramanian, 2003) (Wang, Myklebost, & Hovig, 2003).



Gene regulatory network inference (GRNI) algorithms are an essential means to gather
genome-scale causal interaction networks (Emmert-Streib, 2011). More of GRNI methods are
information theory based approaches (Butte & Kohane, 2000) (Watkinson, Liang, Wang,
Zheng, & Anastassiou, 2009). More of the such approaches are inference methods which are
based on calculation of mutual information (MI) values (Butte & Kohane, 2000) (Kraskov,
Stagbaur, & Grassberger, 2004) (Margolin, et al., 2006). Unlike Pearson correlation
coefficient, Ml value can detects linear and non-linear effects among gene pairs, so this is
more comfortable in a genome context (Li W. , 1990) (Steuer, Kurths, Daub, Weise, & Selbig,
2002).

So many methods are appeared. Another (GRNI) is ARACNE (Algorthim for the
Reconstruction of Accurate Cellular Networks) (Margolin, et al., 2006) which is similar to
RN. In ARACNE, the data processing inequality (DPI) (Cover & Thomas, 1991) is used to
eliminate the least significant edge of a triplet of genes, which is equal to the lowest mutual
information value thereof (Altay & Emmert-Streib, 2010). Since ARACNE can contain at
most as many interactions as inferred by RN, gives a better estimation of the inferred network
(Altay & Emmert-Streib, 2010). CLR (Context Likelihood of Relatedness) is another method
similar to RN (Faith, et al., 2007) which has a sensitive estimator for the connection among
genes, this is done by converting mutual information estimates into z-score like values. The
final GRNI method we illustrate is MRNET (maximum relevance/minimum redundancy
Network) (Meyer, Kontos, & Bonternpi, 2007). This method provide the maximum
relevance/minimum redundancy (MRMR) feature selection method (Ding & Peng, 2005)
(Tourassi, Frederick, Markey, & Floyd, 2001). A new GRNI algorithm, C3NET (Altay &
Emmert-Streib, 2010), is developed. C3NET is also based on Ml, and has been compared with
other GRNI algorithms (Altay & Emmert-Streib, 2010). We illustrate it in section Data and
Methods. Because our is related with C3NET. All the method we illustrate do not have an
accurate description of the interactions. For e.g, there is no direction between genes. Unlike
the other algorithms, Bayesian networks (BNs) model (Friedman, Linial, Nachman, & Pe'er,
2000) is directed relationships.



BN model is introduced by a Directed Acyclic Graph (DAG) and the set of conditional
probability distributions of each variable given its parents in the DAG (Pearl, 1988) based on a
probabilistic measure (Lebre, 2009). Static BNs has an careful restriction that gives the
structure of genetic networks, this restriction is because of its acyclicity constraint (Lebre,
2009). This limitation can be solved by providing Dynamic Bayesian network (DBNSs) which
is used for analyzing gene expression time series by Friedman et al.. However, the microarray
gene expression datasets are very huge, it takes long time to estimate the causal interaction
between genes. So here our approach solve the weakness by combining GRNI method C3NET
(Altay & Emmert-Streib, 2010) which decrease the number of genes and applying DBN
method to them. In our approach we use two packages, one is for C3NET algorithm which is
c3net (Altay & Emmert-Streib, 2011) package, second is for DBN which is GIDBN (Lebre,
2012).



2. DATA & METHODS

2.1 BAYESIAN NETWORK

Bayesian networks are very important in many areas of biological sciences like in cellular
networks (Friedman, 2004), modeling protein signaling pathways (Sachs, Perez, Pe'er,
Lauffenburger, & Nolan, 2005), systems biology, data integration (Sachs, Perez, Pe'er,
Lauffenburger, & Nolan, 2005), classification (Bradford, Needham, Bulpitt, & Westhead,
2006), and genetic data analysis (Beaumont & Rannala, 2004). Bayesian networks are suitable
for combining domain knowledge and data, expressing causal relationships and learning
incomplete datasets by using probability theory (Needham, Bradford, Bulpitt, & Westhead,
2007).

Bayesian networks have been used in many areas, e.g; they have been used in On-line
Analytical Processing (OLAP) performance enhancement (Scutari, Learning Bayesian
Networks with the bnlearn R Package, 2010), medical service performance analysis (Scutari,
2010) (Acid, de Campos, Fenandes-Luna, Rodriguez, & Salcedo, 2004), gene expression
analysis (Friedman, Linial, Nachman, & Pe'er, 2000), breast cancer prognosis and
epidemiology (Holmes & Jain, 2008). Essential tool for analyzing gene expression are
Bayesian networks.

2.1.1Distributions With Bayesian Networks

A finite set X = {Xy, ... X,} of random variables are considered, where each variable X; may
have value x; from domain Val(X;) (Friedman, Linial, Nachman, & Pe'er, 2000). Capital
letters like X,Y, X, are used for variable names and lowercase letters are used like X,y, z, to
illustrate values taken by those variables (Friedman, Linial, Nachman, & Pe'er, 2000).
Boldface capital letters X,Y, X are used for sets of variables, and boldface lowercase letters
X, Y, z, are used for the assignments of values to the variables in these sets (Friedman, Linial,
Nachman, & Pe'er, 2000). 1(X;Y|Z) is marked to mean X is independent of Y conditioned of
Z: P(X|Y,Z) = P(X|Z) (Friedman, Linial, Nachman, & Pe'er, 2000).



Figure 2.1 A simple Bayesian network structure.The Conditional independence statements
I(A4;E), IB;D |AE), I(C;A,D,E, | B), I(D;B,C,E | A), and I(E; A, D). The Joint
distribution: P(A,B,C,D,E) = P(A)P(B|A,E)P(C|B)P(D|A)P(E).
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Source: Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using Bayesian networks to analyse
expression data.

A Bayesian network is a joint probability distribution representation (Friedman, Linial,
Nachman, & Pe'er, 2000). The representation is composed of two components (Friedman,
Linial, Nachman, & Pe'er, 2000). G is the first component which represents a directed acyclic
graph (DAG) where its vertices are random variables X; ..., X, (Friedman, Linial, Nachman, &
Pe'er, 2000). 6 is the second component which defines the conditional distribution for each
variable, where its parent are given in G (Friedman, Linial, Nachman, & Pe'er, 2000). A
unique distribution on X, ..., X, is specified by these two components (Friedman, Linial,
Nachman, & Pe'er, 2000). Conditional independence assumptions that allow the joint
distribution to be decomposed is represented by the graph G. The graph G simulates the
Markov Assumption: Xi variables are independent and have a parent in G (Friedman, Linial,
Nachman, & Pe'er, 2000). Properties of conditional independencies and chain rule of
probabilities is applied for any joint distribution that satisfies markov assumption which

represented by the product form:



P(Xy, . Xn) = ﬁp(xi [Pac(x,)). (1)

Where Pa®(X;) is the set of parents of X; in G (Friedman, Linial, Nachman, & Pe'er, 2000).
Figure 1 illustrate a simple example of a graph G and the lists of the Markov independencies
(Friedman, Linial, Nachman, & Pe'er, 2000).

As in (1), a graph G provides a product form. To specify the fully joint distribution, the
conditional distributions in the product form is needed to be specified (Friedman, Linial,
Nachman, & Pe'er, 2000). This is will be the second part of the Bayesian network, which
describes these conditional distributions, P(X;|Pa®(X;)) for each variable X; (Friedman,
Linial, Nachman, & Pe'er, 2000). These distributions will be denoted by the parameter 6
(Friedman, Linial, Nachman, & Pe'er, 2000).

Conditional distribution is represented according to the variable types:
a) Discrete variables. P(X |U,,..,U,) can be represented as a table provides the
probability of values for X for each joint assignment to Uy, ..., U, , while the values of X

and Uy, ..., Uy are discrete (Friedman, Linial, Nachman, & Pe'er, 2000).

b) Continuous variables. Since the variables of X and U, ..., U, real valued, all possible
densities can not be represented (Friedman, Linial, Nachman, & Pe'er, 2000). Gaussian
distribution is used for multivariate continuos distributions (Friedman, Linial, Nachman, &

Pe'er, 2000). So here the conditional density of X with its parents represented as follow:

P(X|uy. u)~N (ao + Z a; . u;, 02>.

i
X is distributed around a mean which is linearly according to the values of its parents
(Friedman, Linial, Nachman, & Pe'er, 2000). The joint distribution is considered as a
multivariate Gaussian , where all the variables in a network have linear Gaussian
conditional distributions (Lauritzen & Wermuth, 1989).



c) Hybrid Network. Here if the network’s structure is represented by a mixture of discrete
and continuous variables. According to (Friedman, Linial, Nachman, & Pe'er, 2000)
conditional Gaussian distributions (Lauritzen & Wermuth, 1989) is used when a
continuous variable X has discrete parents. Then a linear Gaussian distribution of X given
its continuous parents is represented for each joint assignment to the discrete parents of X
(Friedman, Linial, Nachman, & Pe'er, 2000).

Static BNs has an careful restriction that gives the structure of genetic networks, this
restriction is because of its acyclicity constraint (Lebre, 2009). This limitation can be
solved by providing Dynamic Bayesian network (DBNSs) which is used for analyzing gene
expression time series by Friedman et al. (Friedman, Murphy, & Russel, 1998)

In DBNs each variable has two time slice (t and t + At) [2]. So directed edges means, the
edge from nodes at time t to the nodes they effected by the nodes at time t + At
(Needham, Bradford, Bulpitt, & Westhead, 2007). To infer genetic regulatory interactions
from microarray data, DBNs have been used (Needham, Bradford, Bulpitt, & Westhead,
2007).

2.2 DYNAMIC BAYESIAN NETWORK

Feedback is an important topic in many biological systems (Needham, Bradford, Bulpitt, &
Westhead, 2007). For modeling time series and feedback loops, BNs are absolutely
appropriated for these aims (Needham, Bradford, Bulpitt, & Westhead, 2007). If the variables
are indexed by time and replicated in the BN, so this mean BNs are used to model time series
and feedback loops, these type of networks are called as dynamic Bayesian networks (DBNS)
(Needham, Bradford, Bulpitt, & Westhead, 2007). See figure 2 (Lebre, 2009).

Until now many DBN representations that uses different probabilistic models have been used
(discrete models (Ong, Glasner, & Page, 2002) (Zou & Conzen, 2005), multivariate
autoregressive process (Opgen-Rhein & Strimmer, 2007), State Space or Hidden Markov
Models (Perrin, Ralaivola, Mazurie, Bottani, Mallet, & d'Alche Bue, 2003) (Wu, Zhang, &
Kusalik, 2004) (Rangel, et al., 2004), nonparametric additive regression model (Imoto, Goto,



& Miyano, 2002) (Imoto, et al., 2003) (Kim, Imoto, & Miyano, 2004) (Sugimoto & Iba,
2004). Kim et al. (Kim, Imoto, & Miyano, 2003) is a review of such models.

So here we will illustrate all the needed conditions for a DBN. For allowing such a DBN
representation the existence of a minimal DAG G will be showed (Lebre, 2009). Then the
approximation of G by g™ order conditional dependence DAGs G(? is proposed and their
probabilistic properties is analyzed by the reduction the dimension of the estimation of the
topology of G. Inclusion relationships between the DAGs G and G(? is established from
conditions on the topology of G and the faithfulness assumption (Lebre, 2009) . Then results
are used on DAGs G (@ (Lebre, 2009).

Figure 2.2 X& shows the expression level of gene G* at time t

/A
elole
/A
cfefe
/A
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/A

Source: Lebre, S. (2009). Inferring dynamic genetic networks with low order independencies.

2.3 G1IDBN ALGORITHM

The g order dependence DAGs G(@ has been recognized in (Lebre, 2009). Here the non-
Bayesian inference method for DAG ¢ providing a DBN representation for process X is used
(Lebre, 2009). From Corollary 3 in (Lebre, 2009) g4 IS assumed to be the maximal number
of parents in G. In Corollary 3, inferring G amounts to inferring G(@™me*) (Lebre, 2009). So

qmax

there are (,,_;~ ) potential sets that can guide to conditional independence (Lebre, 2009). In



order to develop an inference procedure for G, the true DAG G is a subgraph of g
(Propositon 6) in (Lebre, 2009). The inference of G is more faster and more accurate (Lebre,
2009). Then the 2 step-procedure is recognized for DBN inference , which is implemented in a
R package ‘G1DBN’ (Lebre, 2012) freely available from the CRAN.

2.3.1 First Step Of GIDBN (inferring gV)

The likelihood of an edge (X!_,,X:) is estimated by calculating the conditional dependence

between the variables Xi_l and X! given any variable XX_,. The partial regression coefficient

ajj|x is considered,

i— j k ijk
X¢ = Myje + ayeX;_; + aiXimg + 1,

Where the rank of the matrix (X]_,, Xt),., equals 2 and the errors N} &, are centered, have
same variance and are not correlated.

The conditional dependence between the variables Xi_l and X{ is calculated and given any
variable XX _,, then by testing the null assumption }[(i,'j'k: "aj;xk = 0" . To such purpose, one of
the three M-estimators for this coefficient is used: either the familiar Least Square (LS)
estimator, the Huber estimator, or Tukey bisquare (or biweight) estimator. The estimates d;;
are computed according to one of these estimators and get the p-value p;; from the standard

significance test as follow :

&ij|k
o (dij|k)

under (:]'[(i)'j'k: ai”k:O, -~ t(n - 4),

Where t(n — 4) refers to a student probability distribution with n — 4 degrees of freedom and

o(dj) is the variance estimates for d;.

10



Hence, a score S, (i,]) is allocated to each possible edge (Xi_l, Xi) equal to the maximum
MaXi;(P;x) of the p — 1 computed p-values, which is the best result to first-order conditional
independence. It is important to mention that this method does not obtain p-values for the
edges but let to order the potential edges of DAG G according to how similar (likely) they
are. The most significant edges for G(*) means the smallest score . The estimated DAG G

consist of the edges assigned the score below a chosen threshold «j.

2.3.2 Second Step Of G1DBN

The inferred DAG G is used as a reduction of the search space. The regression coefficient is

denoted by ai(f) for each pair (i, j) such that the set of edges (X!_, X )1 is in GU:

. 2 . .
Xi=me Y af X+

jepa(xtg@)

Where the rank of the matrix (X/ is [pa(X{, )| and the errors {ni};s,

—1)t22,j6pa(xt",g(1))

are centered, have the same variance, and are not correlated .

A score S,(i,j) equal to the p-value Pf? gained from the significance test for each edge of

g(l),

(2)
under (H") : ai(jZ)zo’ cr(él(v(]z)) ~t(n—1 - [pa(X{,GM)|)
ij

11



The score S,(i,j) = 1 are the edges that are not in G(*). The smallest score means the most
significant edges. The estimated DAG consist of the edges assigned the score below a chosen

threshold o.

The first step of GLDBN results a good estimation of G, this is proved in the Precision-Recall
curves in (Lebre, 2009) , also better results can be gained from second step of GIDBN which
needs to tune the o; and a,. In the first step of GIDBN a; is used for the selection threshold
of the edges of G | while «, is used for the selection threshold of the edges of G between the
edges of GV .

Algorithm1l: steps of GIDBN (Lebre, 2009)

Choose either LS, Huber or Tukey estimator and set o; and «, thresholds.
inferring gV,
Foralli € P,
Forall i € P, forall k # j, compute the p-value p; .
S1(i,j) = Maxy; (Pijx)-
E(GM) ={(X]_,.X))¢>1;i.j € P. suchthat S,(i,j) < a;}.
Step 2: inferring G from GV,
If N)2a*(G™) ~n — 1, choose a higher threshold a, and go to Stepl.

)

For all i such that Ny (X7, G™) = 1, copute the p-value p;;

o pg.)for all i,j €P such that (X{_l,Xti)thQ(l)v
S> (l’]) - {1 otherwise.

E(G) = {(X]_,.X})es1;i € P,(i,)) € P such that S,(i,j) < a;)}

12



2.3.3 Choice Of The Threshold

The selection of the threshold is not something easy, specially while utilizing multiple testing.
It is difficult to use standard approaches to choose «; threshold. Thus a heuristic approach to
choose «a; is used (Butte, Tamayo, Slonim, Golub, & Kohane, 2000). In general, a, threshold
is chosen after Step 1, where the number of genes have only on parent in DAG G (Lebre,
2009).

Unlike a; threshold, a, threshold is provided easier (Lebre, 2009). The usual thresholds are

1%, 5% or 10% or even lower threshold when a low number of edges is needed (Lebre, 2009).

2.4 C3NET ALGORITHM

In this section we illustrate c3net algorithm , its components and an example of its working
methods will be introduced.

C3net algorithm is composed of two steps (Altay & Emmert-Streib, 2010). In the first step of
c3net the non-significant connections are eliminated to each gene pairs (Lebre, 2009). This can
be achieved by testing the statistical significance of pair-wise mutual information (MI) values
absorbing resampling methods, which is similar to previous methods, e.g., RN or ARACNE
(Butte, Tamayo, Slonim, Golub, & Kohane, 2000) (Margolin, et al., 2006). Mathematically,
the mutual information (Cover & Thomas, 1991) of two variables X and Y which are random
is described as follow

_ p(x,yz)
IX,¥) = ;;p@ Nlog: s )

The mutual information is calculated from the data by using a suitable estimator allowing a
close approximation of the theoretical value of the population (Altay & Emmert-Streib, 2010).
Started form a fully connected matrix C, with C;; =1 for all i, j € V and a zero matrix 4, all

pair-wise mutual information values I;;, i, j € V are comprehensively tested, and C;; = C;; =0

ijs
is set if the null hypothesis H,: I;; = 0 cannot be rejected, for a given significance level a

(Altay & Emmert-Streib, 2010). In the second step of C3NET, first the neighborhood N; is
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determined, for all genes i € V (Altay & Emmert-Streib, 2010). To define the neighborhood
of gene , Ny Ny ={j: C;; =1andj # i} is used (Altay & Emmert-Streib, 2010). For this
purpose the auxiliary connectivity matrix C is introduced (Altay & Emmert-Streib, 2010). The
connection of each gene to its neighborhood that has the maximum mutual information value

is determined from N, and | (Altay & Emmert-Streib, 2010). This connection is determined

by
Jo (i) = argmax{l;;} (2)

If all mutual information values [;; for j € V were non-significant so Ng(i) # @ so an index
IS not assigned to j.(i) but the empty set is assigned (Altay & Emmert-Streib, 2010). From
this information the adjacency matrix A of the estimated undirected network by setting
Aij.iy = Ajeyi = 1 if jo (i) is set to an index (Altay & Emmert-Streib, 2010). All other
entries is set to zero or remain zero (Altay & Emmert-Streib, 2010). The principle steps of the
method are explained in algorithm 1 (Altay & Emmert-Streib, 2010). Finally, a gene can have
relation with more than one gene. This is indicated with a simple example composed of four

genes. Fig. 1 explain the example .

Algorithm 2 Steps of inference algorithm C3NET as shown in (Altay & Emmert-Streib,
2010).

1: Arinitiate adjacency matrix, A;; =0 forall i, j €V

2: C: initiate connectivity matrix, C;;=1forall i, j €V

3. estimate mutual information [;; forall i, j €V

4:repeat

5. Set C;; = 0if I;; = 0 is not statistically significant (hypothesis test)
6: until all pairs i # j are tested

7:foralli e Vdo

8:ifNg()={j:Cj=1andj =i}

14



9:ifN,(iI)= 0

10: j.(i) = ar gmaxjen, (i)
11: else

12: ;i) =@

13: endif

14: end for

15:foralli e Vdo

16: if j.()= 0

17: Aijey = Ajeyi = 1
18: endif

19: end for

20: return adjacency matrix A

15



Figure 2.3 Fundamental mechanism of C3NET.The red and black edges are the significant edges.

The edges in black are the maximum mutual information at the left hand side.

maximum mutual information

significant mutual information

Source: Altay, G., & Emmert-Streib, F. (2011). Structural influence of gene newtworks on their inference:
analysis of C3NET. Biology Direct

For example there are mutual information values | and its corresponding connectivity matrix

C, as a result of hypotheses tests, as follow taken from (Altay & Emmert-Streib, 2010):

1.0 0.7 09 08

;=(97 10 06 05
09 06 10 01

08 05 01 1.0

€= (3)

=R e
L R
[ R
[ == ]

Connection with neighboring genes are specified for each of the four genes with maximum
mutual information which is also statistically significant, in j. = (3,1,1,1) is resulted (Altay
& Emmert-Streib, 2010). Mutual information values that are not statistically significant are set
to zero in the matrix C (Altay & Emmert-Streib, 2010). From j. an auxiliary matrix can be

determined,
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(4)

N =]
o oo o
[ T e I e Y ]
o oo O

Which contains the exact edges added by each node (Altay & Emmert-Streib, 2010). Ml
information dose not support directional information, because its argument’s symmetry, so the
resulting adjacency matrix A is a symmetric adjacency matrix (Altay & Emmert-Streib, 2010).

(3)

Nl =]
Lo T e I e I S
[ T e I e I S
[ T e I e I ]

From Fig. 2 which is taken from (Altay & Emmert-Streib, 2010) we can see inferred network
provide by adjacency matrix A is star-like and gene 1 is connected to 3 other genes (Altay &

Emmert-Streib, 2010).

Figure 2.4 C3NET algorithm

,

4 3 4 3 4 3

Source: Altay, G., & Emmert-Streib, F. (2010). Inferring the conservative causal core of gene regulatory

networks. BMC System Biology.
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The computational complexity of C3NET is 0(n?) since matrices which has since of n xn
can enter C3NET procedure, this according to the pseudo code of C3NET algorithm in
Algorithm 1 (Altay & Emmert-Streib, 2010). We know that the knowledge about biological
regulatory networks are still not completed, so simulated data is used because their true
regulatory network is known (Altay & Emmert-Streib, 2010). This provides a good and
detailed analysis.

The simulation study is complemented with biological expression data to explain that the
assumptions made for our simulations are realistic enough to estimate these results to
biological data sets (Altay & Emmert-Streib, 2010). F-score is used to provide the
performance of an inference algorithm, = 2pr/(p + r) (Altay & Emmert-Streib, 2010) . Here

Tp
TP+FN'

the precision, p = TP/(TP + FP), and recall, r = Is the function of true positive

number (TP), false positive (FP) and false negative (FN) edges in an assumed network (Altay
& Emmert-Streib, 2010). The capabilities of an inference algorithm the way in (Meyer,
Kontos, & Bonternpi, 2007) is followed, which obtain an optimal cutoff value I, for the
mutual information values by maximizing the F-score (Altay & Emmert-Streib, 2010) (Meyer,
Kontos, & Bonternpi, 2007). Two biological networks are used in C3NET simulation study
(Altay & Emmert-Streib, 2010), which they are subnetworks of the transcriptional regulatory
network (TRN) of E. coli (Shen-Orr, Orr, Milo, Mangan, & Alon, 2002) (Ma, Kumar, Ditges,
Gunzer, Buer, & Zeng, 2004) and Yeast (Guelzim, Bottani, Bourgine, & Kepes, 2002). These
subnetworks were randomly sampled with the neighbor addition method from these TRNs
using SynTReN (Van den Bulche, et al., 2006). SynTReN is a generator of synthetic gene
expression data which is used for design and analysis of structure learning algorithms (Van
den Bulche, et al., 2006). The networks were consisted of n = 100 nodes (genes) (Altay &
Emmert-Streib, 2010).

Synthetic expression data (including noise) mimicking the mRNA concentration in steady-
state condition by using non-linear transfer functions based on Michaelis-Menten and Hill
enzyme kinetic equations (Fersht, 1985) (Mendes, Sha, & Ye, 2003) were generated with
SynTReN (Van den Bulche, et al., 2006). For C3NET (Altay & Emmert-Streib, 2010)
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simulations ensemble approach is used (Emmert-Streib & Altay, 2010) (Altay & Emmert-
Streib, 2010). Due to estimate the mutual information values for the synthetic data sets first,
copula-transform is applied to the data (Altay & Emmert-Streib, 2010). After that a parametric
Gaussian estimator is applied to estimate MI values (Altay & Emmert-Streib, 2010), as
illustrated in (Meyer, Kontos, & Bonternpi, 2007) and (Olsen, Meyer, & Bontempi, 2009), the
M1 values are estimated by

1 o?Xa?Y
1(X,Y) = (5) log (T) (6)

Here 02X and o2Y is the variance of X respectively Y and |C| is the determinant of the
covariance matrix (Altay & Emmert-Streib, 2010). (Milller-Madow, Shrikage or Schurmann-
Grassberger (Meyer, Kontos, & Bonternpi, 2007) (Meyer, Lafitte, & Bontempi, 2008) they are
estimator which can be used in C3NET algorithm but did not provide a better performance, so
the fastest estimator for (Altay & Emmert-Streib, 2010) simulations is used. E. coli data set is
the biological expression is used in (Altay & Emmert-Streib, 2010) which taken from (Faith,
et al., 2007). Due to obtain a reference network that can be used to provide the performance an
inference algorithm a curated network is assumed mostly depends on the RegulonDB database
(Gama-Castro, et al., 2008).

Implementation of C3NET: Using the R package (Altay & Emmert-Streib, 2010) (Altay &
Emmert-Streib, 2011)

C3NET is made usable for bioglogists by implementing a R package called c3net (Altay &
Emmert-Streib, 2011). The software package c3net is available from the web site https://r-
forge.r-project.org/projects/c3net and from the CRAN package repository.

The principle working mechanism of the c3net package is demonstrated by providing an
example data set (Altay & Emmert-Streib, 2010). In c3net package the data(expdata) and
data(truenet) commands are used to call the data set and the true network which are loaded in
R (Altay & Emmert-Streib, 2010). Here the expdata and truenet are the variables of data set
and true network respectively (Altay & Emmert-Streib, 2011).
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There is a function of the package c3net which takes the data set as input and outputs the
inferred network (Altay & Emmert-Streib, 2011). The detail of the function is: c3net(dataset,
alpha = 0.01, methodstepl= *““cutoff”, cutoff Ml = 0, MTCmethod = “BH’, itnum = 5,
network = FALSE) (Altay & Emmert-Streib, 2011). Here dataset and alpha are the data set
and user defined significance level a respectively (Altay & Emmert-Streib, 2010). The
method methodstepl, user can set three different options, {*“cutoff”’, “MTC”’, “justp”’}, this is
for eliminating nonsignificant edges (Altay & Emmert-Streib, 2011). It uses parameter
cutoffMI if methodstepl = ““cutoff”’, needs a numerical value which is used as cutoff value to
eliminate nonsignificant M1 value of edges in Step 1 of C3NET (Altay & Emmert-Streib,
2010). A multiple testing correction (MTC) method is used in Step 1 of C3NET if
methodstepl = “MTC” (Altay & Emmert-Streib, 2010). In this situation, a MTC method
require to be specified by the dependent parameter MTCmethod (e.g. MTCmethod = “BH”)
(Altay & Emmert-Streib, 2010). Different methods of MTC are available which are “BH”,
“bonferroni’’, “BY”’, “hochberg™, “holm”, “hommel” (Altay & Emmert-Streib, 2010). To
provide a null distubution and alpha the statistical significance level, the itnum required to be
assign to specify the number of iterations (Altay & Emmert-Streib, 2010). Only alpha and
itnum need to be assigned if methodstepl = ““justp”,and the elimination in Stepl is done

according to the p-values and the significance level @ only (Altay & Emmert-Streib, 2010).

The c3net package has the plotting option of the inferred network by using the igraph package
(Altay & Emmert-Streib, 2010). This can be published by assigning the parameter network in
c3net function to TRUE (e.g c3net(expdata, network = TRUE) (Altay & Emmert-Streib,
2011). In c3net package there is another important function to establish the performance of the
inference called checknet (Altay & Emmert-Streib, 2011).This done by executing
checknet(net, truenet) (Altay & Emmert-Streib, 2011). The output of the checknet function is
as follows: (prescision = 0.96, F-score = 0.34, recall = 0.21, TP = 181, FP = 6, FN = 683)
(Altay & Emmert-Streib, 2010).
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2.5 DATA SET PREPARATION

The synthetic network we use in our approach represents subnetworks of the transcriptional
regulatory network (TRN) of E. coli (Shen-Orr, Orr, Milo, Mangan, & Alon, 2002) (Ma,
Kumar, Ditges, Gunzer, Buer, & Zeng, 2004) and DAG (Pearl, 1988), we call them reference
networks. These (reference) subnetworks were randomly sampled with the neighbor addition
method from these TRNs using SynTReN (Van den Bulche, et al., 2006). With SynTReN
(Van den Bulche, et al., 2006) we sampled two simulated data sets from reference networks.
From these data sets we inferred a network according to our approach. In order to calculate the

performance of our inference approach we use (reference) networks.

As we noticed that the information about biological regulatory networks are not being
completed (Altay & Emmert-Streib, 2010), so we use simulated (reference) data since these
data’s underlying (true) regulatory network is known exactly. This let us make a detailed and

accurate analysis.

Figure 2.5 llustrates data set preparation.

underlying network G

e - simulate expression infer network
> @i data D(G) G'(D(G))
- :*- "
T comparison

Source: Altay, G., & Emmert-Streib, F. (2011). Structural influence of gene newtworks on their inference:

analysis of C3NET. Biology Direct
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We plot the reference networks see figure 6 and figure 7. The structure of reference network
that used in c3net is n x n matrix, since the inferred network of c3net is undirected (Altay &
Emmert-Streib, 2010). Actually the structure of reference network is composed of three
column, first column is for the prediction of gene the second is for the target gene and the third

column is for the score of direction (Lebre, 2012).

22



Figure 2.6 Reference network for DAG 100x100 sample
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Figure 2.7 Reference directed network for E.coli
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3. FINDINGS

3.1 OUR APPROACH

In this section we introduce our approach, describe its components and show its mechanism.
Our approach is composed of two steps, in the first step we apply c3net algorithm (Altay &
Emmert-Streib, 2011) to the synthetic data set, returning a symmetric mutual information
matrix n x n (Altay & Emmert-Streib, 2011). The non-zero elements in the returned matrix
show undirected edges between variables which are statistically significant (tested in the first
step of C3NET) (Altay & Emmert-Streib, 2011). We illustrated the C3NET algorithm in data
and method section. In the second step we take the inferred network of C3NET algorithm
which is the n xn matrix and apply the GIDBN (Lebre, 2009) to each pair of that has
interaction to find the direction between them. The inference procedures implemented in R
package ‘G1DBN’ and C3NET is available from the CRAN archive. GIDBN is a package
performs Dynamic Bayesian Network inference (Lebre, 2009) as we mentioned. The aim of
applying the dynamic Bayesian network to the output of C3NET algorithm is to make the
undirected edges between variables which are statistically significant to directed edges. Then
evaluate the performance of the inferred networks. Figure 8 illustrates the mechanism of our

approach.

Algorithm3: Steps of our approach

1: A: adjacency matrix A from C3NET algorithm 1.
2: for all pair 4;; =1 do

3: G1DBN algorithm 2.
4: returns estimated DAG G™): matrix S; (i, j)
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Figure 3.1 Two steps of our approach.

vz V3 V4 Vs Ve V7 ve va  vio Vi1
gene 0O 0.245 0.425 0.995 0.485 0.095 0.225 0.565 0.955 0.675 0.285
gene 035 0.445 0.555 0.715 0.315 0.585 0.745 0.405 0.535 0.215 0.275
gene 081 0.395 0.615 0.835 0.435 0.495 0.625 0.355 0.445 0.205 0.265 DATA SET
gene 061 0.225 0.325 0.8995 0.555 0.095 0.185 0.455 0.945 0.965 0.355
gene 042 0.425 0.555 0.695 0.245 0.535 0.645 0.385 0.575 0.165 0.285
gene 082 0.115 0.435 0.665 0.595 0.415 0.455 0.625 0.745 0.785 0.835
gene_028 0.105 0.465 0.645 0.635 0.495 0.475 0.655 0.735 0.795 0.815
gene_044 0.115 0.495 0.675 0.585 0.505 0.515 0.545 0.755 0.785 0.815
gene 006 0.105 0.455 0.615 0.575 0.465 0.485 0.685 0.665 0.775 0.795
gene 016 0.565 0.435 0.285 0.765 0.395 0.355 0.585 0.455 0.845 0.635

C3NET

3@6 INFERRED UNDIRECTED

el sehe 91 NETWORK
o4

DYNAMIC BAYESIAN NETWORK
(G1DBN PACKAGE)

=€ @y INFERRED DIRECTED
T NETWORK

.
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3.2 APPLYING OUR APPROACH

In this section we apply our approach to the simulated data sets and illustrate the results with
examples.
For the both synthetic data set E. coli (Shen-Orr, Orr, Milo, Mangan, & Alon, 2002) and DAG

(Pearl,1988), we apply first step of our approach, which is the C3NET algorithm by c3net
package which is available in CRAN. Then we generate the reference undirected network to
evaluate the performance of the output of the C3NET (Altay & Emmert-Streib, 2010)
algorithm see the table 1 and table 2. Then we apply second step of our approach which is
Dynamic Bayesian Network by G1DBN (Lebre, 2009), since the algorithm of the DBN is
complex, we apply G1DBN to a pair of gene instead to all of the dataset at the same time. If
we apply to all of the data set at the same time, it will take more time. So we apply the
G1DBN only to the pair of gene which has interaction. The knowledge of interaction is from
the output of the c3net algorithm (Altay & Emmert-Streib, 2010).

For example, when we apply c3net algorithm to the simulated data set of DAG (Shen-Orr,
Orr, Milo, Mangan, & Alon, 2002), there were 74 undirected interactions. As you see in the
table 1 there are 52 interactions which are TP and 22 interactions which are FP which is equal
to 74 interaction. Also we have 52 FN interactions which are the interactions available in the
reference network but not available in the inferred network after c3net. So we apply the
G1DBN to each pair of the interactions only see algorithm 3. Here we have two performance
evaluation one for undirected network, second for directed network. The F-score is 0.5842697,
recall is 0.5 and precision is 0.7027027 for undirected network. After the second step of our
approach we evaluate the performance of the inferred directed network as in the table 1. We
have 31 TP, 21 FP, and 0 FN. The F-score is equal to 0.7, recall is 1 and precision is 0.5961.

We do the same steps to the second data set see table 2. Then we plot both undirected and
directed inferred networks see figure 9 and figure 10. In figure 9 it is the inferred undirected
network with 74 interactions where the interactions are undirected, in figure 10 the inferred
network is directed after applying our approach, the red blue edges are the 31 TP 21 FP
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directed edges respectively. We apply the same steps to the simulated dataset of E.coli (Shen-
Orr, Orr, Milo, Mangan, & Alon, 2002) see figure 11,12. Unlike the data set of DAG
(Pearl,1988), the E.coli data set is large which have 1000 genes. Actually our approach is very

flexible for such large dataset.

Table 3.1 Performance evaluation of the DAG (Pearl, 1988) data set for c3net and G1DBN

algorithm

C3net

0.7027027

0.5842697

0.3

22

52

DEN

0.5961538

0.746988

21

Table 3.1 Performance evaluation of the data set E. coli (Shen-Orr, Orr, Milo, Mangan, & Alon,

2002) for c3net and G1DBN algorithm

C3net

03816092

0.2093977

0.1442851

332

538

1969

DBN

0.5060241

0.672

1

163

164
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Figure 3.2 Undirected inferred network from DAG, after applying C3NET algorithm

ene 018

ene_ 063 69 063 -
_ 38‘ eng_023 ene_026 gene_055
gene_009  gene_09 3 i N .
g&_om i . | .
gﬁ 07dene 095 Jene U%E Ifgene 038060 ae_tm %ﬁ e - 3 : %’3_”53
ene_036 W i : .i gene 039

e ene_003 \ e 044 | iﬁ 043
£ _UEB__? ene_005 3 E 042 ge UB 6 58 028 %E_UBG

_ iﬁ 040 gene_007
o 1 , ENE_UTB . eng 000 ene 008
ene = gene_083 - e/
7 : - erie_035  9ene 021 3 3
3 . i 3 = . ne_098 . %6_051

g
gen?ﬁ% /| __gene 010 g0 ? ene
efe_004mm — eng 01 ene_077
@ 9
] . 39 012 ge_ﬂ%

/ 33_092 gene_075 iﬁ os6 | EnE,’USS
ene 047  / “_gene_017 e 030 i
i gene_U19. 3 ene_0 ni gele_094 gﬁfﬂﬂ

__ gene 002 _
% i ene_080 @ _ gefie_089 w7 a 35 a3
N\ 3 3 g 3 - *3ent_070 P
“\gene 054 | _ . ie 0G4 be gene 0f 6
3 39-059 %@.85 -ﬁe—m e 088 , iﬂ 0 /N gene_065
' 6 ene_073 %

g:ne 057

ne 0 \ 3
. “gene 097 né. 034
ne 051 ehﬁ? . i-— E ne_o41 geng e 067 ene 0663
% ie 020
brle 025
aﬁe_uza a - %e:qﬁs__,.

29



Figure 3.3 Directed inferred network from DAG after applying G1DBN algorithm by our approach, the nodes with the red label
and edge are the true positive, and the blue ones are the false positive. Here TP=31, FP=21
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Figure 3.4 Undirected inferred network from E.coli , after applying C3NET algorithm
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Figure 3.5 Directed inferred network from E.coli after applying G1DBN algorithm by our approach, the nodes with the red label and

edge are the true positive, and the blue ones are the false positive. Here TP=168, FP=16
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4.CONCLUSION

GRNI methods are widely studied in order to infer causal regulatory networks. ARACNE,
CLR, MRNET, RN and C3NET are well-known inference methods that are frequently used.

In our study we merge between two algorithms which they are C3NET and G1DBN. Both of
them are used for inferring causal interactions between genes. The aim of our study is to
convert the undirected inferred network of C3NET to directed inferred network. For this

purpose we applied Dynamic Bayesian Network by G1DBN algorithm.

Applying Dynamic Bayesian Network to a large data set is complex and take time, but our

approach solves this problem in two steps. In the first step we decrease the probability of the
gene interactions by C3NET algorithm, then in the second step we apply the Dynamic
Bayesian Network to each pair of nodes not to whole inferred network. For example we

applied our approach to the expression data of E.coli .

In first step of our approach we applied C3NET algorithm to the 1000x2000 expression data
set of E.coli we obtained 870 interactions, 332 of the interactions were TP. Then in the second
step we applied Dynamic Bayesian Network to each pair of inferred network ( 870
interactions) by G1DBN. We find 168 TP directed edges without taking time.

Although our approach has been used for inferring causal interactions between genes, it may

be used in another field and applications such as causal relations among covariates, since the

requirements for the data are moderate.
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