
THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

EVALUATION AND IMPROVEMENT OF FEATURE

SELECTION TECHNIQUES FOR COGNITIVE STATE

CLASSIFICATION USING fMRI DATA

Master’s Thesis

CEYHUN CAN ÜLKER

İSTANBUL, 2012

THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

EVALUATION AND IMPROVEMENT OF FEATURE

SELECTION TECHNIQUES FOR COGNITIVE STATE

CLASSIFICATION USING fMRI DATA

Master’s Thesis

CEYHUN CAN ÜLKER

Supervisor: ASST. PROF. DR. TEVFİK AYTEKİN

İSTANBUL, 2012

THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

Title of the Master’s Thesis : Evaluation and Improvement of Feature Selection

Techniques for Cognitive State Classification using

fMRI Data

Name/Last Name of the Student : Ceyhun Can ÜLKER

Date of Thesis Defense : 14 May, 2012

The thesis has been approved by The Graduate School Of Natural And Applied Sciences.

Assoc. Prof. Dr. Tunç BOZBURA

Acting Director

This is to certify that we have read this thesis and that we find it fully adequate in scope, quality

and content, as a thesis for the degree of Master of Science.

Examining Commitee Members: Signature

Asst. Prof. Dr. Tevfik AYTEKİN (Supervisor) :

Asst. Prof. Dr. Kemal Egemen ÖZDEN :

Asst. Prof. Dr. Mehmet Alper TUNGA :

ACKNOWLEDGEMENTS

I would like to dedicate this thesis to beloved my father and my family. Without their

support, encourgement and belief in me, I don’t think I would be able to accomplish this.

I would like to specially thank my thesis advisor Dr. Tevfik Aytekin for being far more

than an advisor. His interest and belief in me saved me many times when in doubt and

despair, he had such an incredible tolarance for me. His being opened to new horizons,

his eagerness in learning and teaching, gave me an invaluable experience and knowledge.

I wish I could make much greater progress in return.

I am thankful to my jury members Dr. Egemen Özden and Dr. Alper Tunga for giving

their valuable time, helpfulness and costructive critisism. I also need to thank our depart-

ment chair Dr. Taşkin Kocak and every other faculty members for their tolerance, and

making life at Bahçeşehir University easy and enjoyable.

Lastly, I would must mention and thank Emin Akşehirli, Murat Yağcı, Ertunç Erdil, Jbid

Arsenyan, Erdem Erzurum, Bengi Aygün, Selçuk Keskin, Davut Özcan, Dilan Şahin,

Efsun Karaca, Necati Kılıç, Ali Karaali, Ömer Tura, İlkay Öksüz, Onur Önder, Sezer

Ulukaya, Güneş Akşehirli many other heroes that I forgot to name here for being really

helpful both technically and everyday life issues.

It was a great honor and pleasure for me to be met with each person mentioned in here.

14 May 2012 Ceyhun Can ÜLKER

ABSTRACT

EVALUATION AND IMPROVEMENT OF FEATURE SELECTION TECHNIQUES

FOR COGNITIVE STATE CLASSIFICATION USING fMRI DATA

Ülker, Ceyhun Can

Computer Engineering

Supervisor: Asst. Prof. Dr. Tevfik AYTEKİN

May 2012, 45 Pages

Recent research has shown that it is possible to classify cognitive states of human sub-

jects based on fMRI (functional magnetic resonance imaging) data. One of the obstacles

in classifying fMRI data is the problem of high dimensionality. A single fMRI snap-

shot consists of thousands of voxels and since a single experiment contains many fMRI

snapshots, the dimensionality of an fMRI data instance easily surpasses the order of tens

of thousands. So, feature selection methods become a must from both classification and

running time performance points of view. To this end several feature selection methods

are studied, either general or specific to fMRI data. So far, one of the best such methods,

which is specific to fMRI data, is called the “active” method. In this work we combine

genetic algorithms with the active method in order to improve the performance of feature

selection. Specifically, we first reduce the feature dimension using the active method and

search for informative features in that reduced space using genetic algorithms. We achieve

similar levels of classification performance using much less number of voxels than active

method offers.

Keywords: fMRI, Feature selection, Voxel selection, Genetic algorithm, Cognitive state

prediction

iv

ÖZET

fMRI VERİSİ KULLANARAK BİLİŞSEL HAL TASNİFİNDE ÖZNİTELİK SEÇİM

TEKNİLERİNİN DEĞERLENDİRİLMESİ VE İYİLEŞTİRİLMESİ

Ceyhun Can Ülker

Bilgisayar Mühendisliği

Tez Danışmanı: Yrd. Doç. Dr. Tevfik AYTEKİN

Mayıs 2012, 45 Sayfa

Son zamanlardaki araştırmalar insan deneklerin fMRI (fonksiyonel manyetik rezonans

görüntüleme) verisini kullanarak bilişsel hal ayırt etmenin mümkün olduğunu göstermiştir.

fMRI verisinin sınıflandırılmasını güçleştiren en büyük engellerden biri verinin yüksek

boyutlu ve seyrek olmasıdır. Tek bir fMRI enstantanesi binlerce voxel bulundurabilir ve

bir deney bir çok fMRI enstantanesi barındırdığından verinin boyutu kolaylıkla on bin-

leri geçebilir. Şu halde öznitelik seçimi yöntemlerinin kullanılması hem sınıflandırma

hem de çalışma zamanı başarımları bakımlarından zorunluluk halini almıştır. Bu yüzden

gerek genel gerekse fMRI verisine özgü bir çok öznitelik seçim yöntemi çalışılmıştır.

Şimdiye kadarki en iyi yöntemlerden biri de “aktif” olarak adlandırılan fMRI verisine

özgü öznitelik seçim yöntemidir. Bu çalışmada genetik algortima öznitelik seçimi başarı

mının arttırılmasını sağlamak için aktif yöntemi ile birleştirilmiştir. Özel olarak, öncelikle

aktif yöntem kullanılarak öznitelik boyutunu azaltıp, sonra bu indirgenmiş uzayda genetik

algoritma kullanılarak diğerlerinden daha çok bilgi taşıyan öznitelikler aranmıştır. Bu

yöntem yardımıyla aktif yöntemi ile benzer başarı seviyesi, aktif yöntemin sunduğundan

çok daha az sayıda voxel kullanılarak, sağlanabilmiştir.

Anahtar Kelimeler: fMRI, Öznitelik Seçme, Voksel Seçme, Genetik Algoritma, Bilişsel

Hal Tahmini

v

CONTENTS

TABLES . viii

FIGURES . ix

ABBREVIATIONS. x

SYMBOLS . xi

1. INTRODUCTION . 1

1.1 OUTLINE . 2

2. LITERATURE REVIEW .. 3

2.1 MACHINE LEARNING . 3

2.1.1 Learning Algorithms . 4

2.1.2 Ensemble Methods . 10

2.1.3 Feature Selection . 11

2.1.4 Genetic Algorithm . 12

2.1.5 Performance Evaluation . 14

2.2 fMRI . 15

2.2.1 Medical Imaging & BOLD . 15

2.2.2 Cognitive State Decoding Task . 16

2.2.3 fMRI Specific Feature Selection Methods . 16

2.2.4 Similar Previous Works . 17

3. MATERIALS & METHODS . 18

3.1 DATASETS . 18

3.1.1 StarPlus Dataset . 18

3.1.2 Science Dataset . 19

3.2 FEATURE SELECTION METHODS. 20

3.2.1 Genetic Algorithm . 20

3.2.2 Random Subspaces. 25

3.2.3 Functional Dependency Graph . 26

3.2.4 Other Methods . 26

4. EXPERIMENTAL RESULTS & EVALUATIONS . 28

4.1 GENETIC ALGORITHM . 28

vi

4.2 RANDOM SUBSPACES . 33

4.3 FUNCTIONAL DEPENDENCY GRAPH . 33

4.4 OTHER METHODS . 34

5. CONCLUSION.. 41

REFERENCES . 42

vii

TABLES

Table 4.1 : The values of the parameters used in the experiments. 30

Table 4.2 : Tables showing minimum % errors achieved per subject along

with the number of voxels used for that % error level. 36

Table 4.3 : Classification errors of Voting and Stacking using n = 250, n =
500, n = All initial voxels selected by Active method. 37

Table 4.4 : GNB error levels on Science dataset without . 37

Table 4.5 : Average of pairwise confusion matrices over subjects. 38

Table 4.6 : Comparison of Best GA individual vs Active method using tem-

porally averaged data. 39

Table 4.7 : Classification errors of GA spatially (with radius r) averaged data

with n initial number of voxels is selected. 40

viii

FIGURES

Figure 4.1 : Comparison of classification performances with respect to the

number of voxels selected of various learning algorithms using

active method and GA based feature selection methods. 32

Figure 4.2 : Classification errors per subjects vs. local set size.. 34

Figure 4.3 : Pairwise confusion matrices visualization for SVM classifier. 35

ix

ABBREVIATIONS

fMRI : Functional Magnetic Resonance Imaging

BOLD : Blood Oxygen Level Dependent Response

TR : Time Resolution

SVM : Support Vector Machines

KNN : K-Nearest Neighbour

GNB : Gaussian Naı̈ve Bayes

Voxel : Volume Element

x

SYMBOLS

Population : Ω

kth Generation : Ω
(k)

ith Individual of Population Ω : Ωi

jth Attribute of ith Individual of Population Ω : Ωi,j

Set of Indices : X
Individuals from Population Ω whose Indices Given by X : ΩX

ω Attributes of Individuals with Indices X in Population Ω : ΩX ,ω

Binary Vector, Typically Denoting a Specific Individual : ω

jth Attribute of Individual ω : ωj

Optimum Individual : ω∗

Number of Examples in a Dataset : N

Number of Features or Number of Voxels : n

Number of Individuals in a Population : p

Proportion of Individuals to Survive Selection : ρ

Proportion of Selected Attributes in an Initial Population : τ

Proportion of Mutated Attributes in an Individual : µ

Proportion of Exchanged Attributes in Crossover : κ

Dataset : D
Error : ǫ, ε

Estimated Error on Dataset D Using Learning Algorithm Ψ : ε̂D(Ψ)

Learning Algorithm Parameters : Θ

Threshold Parameter : Θ

Learning Method : Ψ

Indicator Function of x : 1{x}
Set of classes : C
k-Nearest Neigbour of x : Nk(x)

xi

1. INTRODUCTION

Machine learning techniques have been successfully applied to classify fMRI data in

order to decode cognitive states of humans (Mitchell et al., 2004), (Davatzikos et al.,

2005), (Mourão-Miranda et al., 2005), (Zhang & Lee, 2009), (Formisano et al., 2008),

(Shinkareva et al., 2008), (Yoshida & Ishii, 2005). One of the biggest challenges in ap-

plying machine learning methods to fMRI data lies in the nature of the fMRI dataset.

Typically, in fMRI datasets the dimensionality of the feature space is very high (in the or-

der of tens of thousands) whereas the number of examples is very limited (in the order of

hundreds or even less). High dimensionality effects both running time and classification

performance. From the classification point of view, more dimensionality generally means

more irrelevant information, which in turn may mean more noise. From the running

time point of view, high dimensionality increases both training and test times of machine

learning algorithms. These issues brings the need to reduce the number of features to a

reasonable level.

In cases where the number of features is large feature selection methods are typically

employed. There are different feature selection methods (Guyon & Elisseeff, 2003). One

class of such methods is named as the wrapper methods (Zongker & Jain, 1996) which

wraps a quality measure and based on that measure incrementally adds (starting with an

empty set) or removes (starting with a full set) features that are best (in case of removal,

worst) at each iteration. In this work, we utilize genetic algorithms, which can also be used

as a wrapper method and which is especially known to be performing well in searching

huge spaces (Siedlecki & Sklansky, 1989), (Kudo & Sklansky, 2000), (Liu et al., 2009).

As we will explain below in detail, using genetic algorithms we achieve similar levels of

classification performance with much less number of voxels.

1.1 OUTLINE

This thesis is organized as follows:

• In Chapter 1 a brief introduction is given to the problem at hand, feature selection

problem of cognitive state prediction using fMRI data.

• In Chapter 2 machine learning is explained, some of the machine learning tech-

niques are introduced. Also a brief introduction is given on fMRI type medical

imaging and BOLD signal. A thorough review done to literature, explaining what

has been done with machine learning so far to solve the high dimensionality prob-

lem, what works have been done with fMRI classification, available works on Ge-

netic Algorithm used as feature selection methods, etc.

• Chapter 3 puts the main work done throughout this thesis. The datasets are in-

troduces by giving information about the sources, structure of the dataset and the

experiments that resulted in those data. Under the methods section, reader is given

the methodology used for applying genetic algorithms as a feature selection method

to classify fMRI data. It follows with other methods tried such as functional depen-

dency graphs, random subspaces, etc.

• In Chapter 4 gives the experimentation framework employed and the experimental

results obtained by mentioned methods, by means of graphs and tables along with

their explanations.

• In Chapter 5, finally the thesis is wrapped up with the conclusion, thoughts and

experiences gained throughout the thesis work process.

2

2. LITERATURE REVIEW

2.1 MACHINE LEARNING

Some problems in Computer Sciences has well defined algorithmic solutions. Using those

algorithm, one guarantees to obtain a reasonable solution by conforming necessary con-

ditions. Let’s take searching for a certain element in an array as an example. By using

the Binary Search algorithm we can identify the location of that certain element if it ex-

ists, given that array is in sorted order. It is not the case that for some instances of the

problem (for example, with some different array) we can’t guarantee to find location or

determine existence. This is what makes a solution algorithmic, due to the properties of

an algorithm.

On the other hand there are still many problems either currently does not have a algorith-

mic solution or there are solutions but not practical enough to be widely applied. One

such problem is recognizing human faces. We as humans do not even think how we rec-

ognize faces, since we just can. But when it comes to program a machine so that it can

do that task, scientists face a serious problems. In such a problem, one is generally given

an image that contains a face of human. Finding a human face in an image is also a task

at a similar difficulty level with just recognizing a face in images with all the same angle,

pose, expression, illumination, location, size, etc. Leaving this problem aside, recognizing

faces with similar conditions have still have problems. Until now there are some methods

involving finding spatial distance between local facial features, such as distance between

eyes, mouth width, distance between nose and mouth and so on (Jain & Li, 2005). Even

if we can successfully find these metrics without human intervention, we need to come

up with some rules to so that we can assign importance to each of those metrics.

Contrary to algorithmic and rule based approaches, when human recognition is consid-

ered, rules become implicit and not easily visible all the time. A human, or in general

living beings, instead of being given a set of rules, they are rather exposed to many exam-

ples of that learning subject. Such agents implicitly find the underlying rules by simple

trial & error. If this kind of recognition was available to machines than it could be possible

for them to capture very complex relationship between given example and it’s associated

target mapping. This is what Machine Learning is about. According to Mitchell (1997), a

computer program is said to learn from experience E with respect to some class of tasks T

3

and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E. It can also be said that using machine learning one may expect to get

a function f̂ for which the gap between target variables y (or real function images f(x))

and answer of learned agent f̂(x) for each example data (x, y) is sufficiently small.

2.1.1 Learning Algorithms

There are plenty of useful tools under the umbrella of Machine Learning. Here in this

section some of the algorithms used throughout in this thesis will be given.

K-Nearest Neighbour

Suppose we are trying to approximate a continuous function. According to Weierstrass

definition for continuous functions f : X −→ Y in Royden (1988) equation (2.1) basi-

cally tells us that images of two close points under a continuous function cannot be too

far apart, according to distance metrics dX and dY in spaces X and Y , respectively.

∀ε ≥ 0, ∃δ ≥ 0; ∀x1,x2; dX(x1,x2) ≤ δ =⇒ dY (f(x1), f(x2)) ≤ ε (2.1)

From this one can conclude that target values of nearby points can be used for approxi-

mating value at an unknown point which is the intuition behind the K-Nearest Neighbour

algorithm. The algorithm first finds the nearest k points Nk(x) in the input space using

some metric d, then combines those target values y of points to obtain f(x) for an unseen

example x. For example if one wants to approximate a function f̂ using some known

f(x) for each (x, y) ∈ D, which is known to be a Regression type problem, he/she could

use following equation (2.2) after collecting nearest k points in set Nk(x).

f̂(x) =
1

k

∑

(xi,Ci)∈Nk(x)

f(xi) (2.2)

4

If the problem is finding a function that will assign each input value to a member of a finite

set of discrete values, which is called a Classification problem, then one can just check

the majority class within the nearest neighbours. Following equation (2.3) implements a

function with such a behaviour.

f(x) = argmax
C

∑

(xi,Ci)∈Nk(x)

1 {C = Ci} (2.3)

Gaussian Naı̈ve Bayes

This algorithm is based on Bayes formula (2.4). Bayes formula is used to invert condi-

tional probabilityX|Y to obtain Y |X . From machine learning viewpoint, since X is input

and Y is associated target class, X|Y is probability distribution of X of some certain class

Y and Y |X class probability based on input X .

p(Y |X) =
p(X|Y)p(Y)

p(X)
(2.4)

After calculating Y |X for each Y for a given X , one obtains the amount of evidence X

gives to support membership to class Y . From now on, what needs to be done to find the

associated class Y of X , is to just find the class that maximizes the evidence. Equation

(2.5) gives the function that approximates class of a given X .

f̂(x) = argmax
c

p(c|x) (2.5)

5

But as seen in (2.4), the denominator p(X) in calculation of p(Y |X) is all the same for a

fixed X , which makes it irrelevant for maximization. Therefore the classification function

can be further reduced to obtain its final simpler form in (2.6).

f̂(x) = argmax
c

p(x|c)p(c) (2.6)

Yet p(Y |X) still needs to be defined. This is where learning occurs. Firstly a model

needs to be defined. Although there are many possible probability distribution models,

for p(X|Y) Gaussian Distribution (2.7) and for p(Y) Multinomial Distribution (2.8) are

used throughout this thesis.

p(x) =
1√
2πσ

exp

{

−(x− µ)2

2σ2

}

, where x ∈ R (2.7)

p(c) = φc, where φc =

∑

(xi, ci)∈D

1 {ci = c}

|D| (2.8)

Finding parameters µ and σ is also pretty straightforward. Since a dataset D is given, one

can calculate conditional sample mean (2.9) and conditional sample variance (2.10).

µj|c =

∑

(xi,ci)∈D

1 {ci = c}xij

∑

(xi,ci)∈D

1 {ci = c} (2.9)

6

σ2
j |c =

∑

(xi, ci)∈D

1 {ci = c} (xij − µj |c)2
∑

(xi,ci)∈D

1 {ci = c} (2.10)

The method explained so far is enough to implement a Bayes classifier for single feature

dataset (where X ∈ R). On the other hand if Conditional Independence assumption

(2.11) is done, it can be generalized to many features (where X ∈ R
n).

X ⊥ Y |Z ⇐⇒ p(X, Y |Z) = p(X|Z)p(Y |Z) (2.11)

After this observation, one can easily generalize Bayes classifier to have n conditionally

independent variables xi each of which are modeled by Gaussian Distribution given in

(2.7).

f̂(x) = argmax
c

p(c)
n
∏

j=1

p(xj |c) (2.12)

Support Vector Machines

All of the two-class classification algorithms put a separating hypersurface between pos-

itive and negative examples. In case of linear classifiers, the hypersurface becomes a

(n+1)-dimensional hyperplane as in (2.13) where n is the dimensionality of input space,

w is the coefficients of linear separator and b is the intercept term.

7

f̂(x) = w
T
x + b (2.13)

Since points x satisfying f̂(x) = 0 are located on the plane, we can assign class labels

{−1, 1} by just checking whether this function outputs a positive number (label −1) or a

negative number (label 1).

There may be infinitely many separating hyperplanes found for a given dataset. But when

generalization capability concerned, it was shown by Vapnik (1995) that the hyperplane

that maximizes margin between closest points to the decision boundary gives the optimal

results. The optimization objective given in (2.14) tries to maximize the margin between

separating hyperplane and the closest points.

maximize
w,b

{

1

||w|| min
n

[

ynf̂(xn)
]

}

subject to ynf̂(xn) ≥ 1, n = 1, . . . , N

(2.14)

Since we know that minimum margin is considered to be 1, then the above maximization

problem turns into maximizing the reciprocal of magnitude of w, which is same as min-

imizing of ||w||2. To solve this optimization problem is Lagrangian Multipliers method

can be utilized which involves multiplying each of the constraints with a distinct coeffi-

cient called lagrangian multiplier and adding them up with the objective function, then

finding either minimum or maximum of resulting function which is called Lagrangian

Function (2.15). One point to be careful about if constraints are not with respect to zero,

one side of equality/inequality should be brought to other side to obtain zero on one side.

For example ynf̂(xn) ≥ 1 should be rewritten as ynf̂(xn)− 1 ≥ 0.

8

L(w, a, b) =
1

2
||w||2 −

N
∑

n=1

an

(

ynf̂(xn)− 1
)

(2.15)

To minimize this lagrangian function one just needs to derivate L(w, a, b) with respect

to a and b, set both to 0, and solve them. Solving the first equation after deriving L

with respect to a and setting to 0 yields equation (2.16), while the latter procedure yields

equation (2.17).

w =

N
∑

n=1

anynxn (2.16)

0 =
N
∑

n=1

anyn (2.17)

When w is given in (2.16) plugged into (2.15), Dual Lagrangian Function (2.18) will be

obtained and this function only depend on lagrange multipliers.

L̃(a) =
N
∑

n=1

an −
1

2

N
∑

n=1

N
∑

m=1

anamynymxn
T
xm (2.18)

The newly obtained function is again our optimization objective, but this time with respect

to lagrange multipliers a, and the constraint is the equation given in (2.17) along with

an ≥ 0. The new optimization problem will have the same aim as the initial optimization

9

problem and its counterpart. That’s why the first problem is called Primal Optimization

Problem and the second one is called Dual Optimization Problem. Since second one is

a tractable one rather than the first, solving it will give the maximal margin separating

hyperplane. Again plugging the equation (2.16) into (2.13), one obtains (2.19) which is

the equation for separating hyperplane.

f̂(x) =

N
∑

n=1

anynxn
T
x+ b (2.19)

Solving the dual optimization parameters will yield a, but one still needs to find b. For the

points where corresponding an is non-zero means that those points are closest points to

the margin, and ynf̂(x) = 1 will hold (Bishop, 2006). By plugging f̂(x) given in (2.19)

into those constraints with non-zero an, and solving for b will give (2.20).

b =
1

NS

∑

n∈NS

(

yn −
∑

m∈NS

amymxn
T
xm

)

(2.20)

where NS = {n|an 6= 0} are called Support Vectors.

One can further simplify the decision function for efficiency so that those points that are

not support vectors are not included in the decision function, yielding final form of SVM’s

classification function (2.21).

f̂(x) =
∑

n∈NS

anynxn
T
x+ b (2.21)

10

2.1.2 Ensemble Methods

Instead of using just one classifier, using a group of classifiers may improve classification

accuracy significantly. Using a collection, or an ensemble of classifiers in such manner is

called Ensemble Learning or Ensemble Methods. To understand how such a method will

perform better consider the case where the input space is 2-D plane, and positive examples

lie in a triangular region while negative ones are outside of that triangle. It is clear that

a single linear decision boundary cannot give a good classification performance. But if

one builds three linear decision boundaries each of which are co-linear with an edge of

the triangle, such an ensemble of classifiers would yield the optimum classifier. In such

cases it can also be thought as each classifier somehow captures a different aspect of

classification objective and contributes in their own way.

A more generalized approach to the above solution could be having K distinct classi-

fiers f̂k each trained isolated from others then taking the majority of responses of those

classifiers as the final classification. This approach is called committees (Bishop, 2006)

since each classifier giving votes for their deserved classes. Final classification function

is given in (2.22).

f̂(x) = argmax
c

K
∑

k=1

1
{

f̂k(x) = c
}

(2.22)

One can also use classifiers with different input spaces by mapping inputs to a different

space through a function φk(·) and then training different models in each respective space

as given in (2.23). Such a method is also employed in this work and will be demonstrated

in section 3.2.2.

f̂(x) = argmax
c

N
∑

k=1

1
{

f̂k (φk(x))
}

(2.23)

11

There are also various other techniques within ensemble methods such as cascaded clas-

sifiers or hierarchy of classifiers (Russell & Norvig, 2009), but they are beyond the scope

of this thesis.

2.1.3 Feature Selection

Even though machine learning is applied to variety of types of data, some data may pose

problem due to its dimensionality. As the number of dimensionality increases in input

space, size of the input space (i.e. number of possible inputs) increases exponentially.

This is the so called Curse of Dimensionality (Chávez et al., 2001). Since the sample

density is reduced number of possible classification functions increases significantly, but

only few of them are capable of generalizing well over the unseen data.

One of the biggest challenges in applying machine learning methods to fMRI data lies

in the nature of the fMRI dataset, which will further be explained in 2.2. Typically, in

fMRI datasets the dimensionality of the feature space is very high (in the order of tens of

thousands) whereas the number of examples is very limited (in the order of hundreds or

even less). High dimensionality effects both running time and classification performance.

From the classification point of view, more dimensionality generally means more irrele-

vant information, which in turn may mean more noise. From the running time point of

view, high dimensionality increases both training and test times of a machine learning

algorithms. These issues brings the need to reduce the number of features to a reasonable

level. Such techniques are called Feature Reduction techniques. One of the well known

subbranch of feature reduction techniques is Feature Selection where number of features

are reduced by just eliminating some certain number of features from data based on some

criteria. Following section gives brief information about a class of feature selection tech-

niques that is combined with Genetic Algorithm which will be further detailed in section

2.1.4 in this thesis.

Wrapper Methods

One class of such methods is named as the wrapper methods (Zongker & Jain, 1996)

which wraps a quality measure and based on that measure incrementally adds (starting

with an empty set) or removes (starting with a full set) features that are best (in case

of removal, worst) at each iteration. In this work, we utilize genetic algorithms, which

12

can also be used as a wrapper method and which is especially known to be performing

well in searching huge spaces (Siedlecki & Sklansky, 1989; Kudo & Sklansky, 2000).

As we will explain below in detail, using genetic algorithms we achieve similar levels of

classification performance with much less number of features.

2.1.4 Genetic Algorithm

A genetic algorithm is a biologically inspired search algorithm which tries to mimic evo-

lutionary process by the aid of computers to find an optimal solution to a problem (Gold-

berg, 1989). In a genetic algorithm, possible solutions of a problem are represented by

individuals. A set of individuals form a population. All individuals have the same set

of attributes but the values of these attributes may change from individual to individual.

Values of the attributes are discrete, most often binary (as in our case).

We will represent a population as a matrix and use the symbol Ω to denote it. Rows

of the matrix Ω represent individuals, ith row is denoted by Ωi. If a set X is used as a

subscript, which is represented with a capital letter, then ΩX means the matrix composed

of by taking the rows denoted in the index setX from the matrix Ω. Ωi,j is ith individual’s

jth attribute. ω, row vector, is used to denote some specific individual. When we use a

binary vector ω as a second subscript of a matrix as in ΩX ,ω, it means we are selecting

rows denoted in X , and columns whose indices correspond to a 1 in vector ω. 1{x} is the

indicator function as shown in (2.24).

1{x} =

1, if x is true

0, otherwise
(2.24)

The algorithm starts with a predetermined number of individuals p whose attributes are

generated randomly. (From here on we will denote the number of individuals in the

populations with a p.) In our case all the attributes are in binary domain, so each attribute

is a single bit binary number drawn from Bernoulli distribution with parameter ρ, which

is the parameter that determines the proportion of ones in the initial population.

13

Ωi,j ∼i.i.d Bernoulli(ρ) (where Ω ∈ {0, 1}p×n) (2.25)

where n is the number of voxels that the genetic algorithm will be working on. This

initial randomly generated population is called the first generation Ω
(1).

All the individuals’ fitnesses are measured through some metric f from the set of binary

vectors onto real numbers.

f : {0, 1}n 7−→ R

The population is sorted by their rows, so that the matrix conforms the condition given in

(2.26).

∀i, j; f(Ωi) ≥ f(Ωj)⇐⇒ i ≤ j (2.26)

The individuals with the best fitnesses are retained (some criterion could be selected, e.g.

best 30% of the population) and the rest are eliminated from the population. This phase is

called selection. Let τ be the ratio of survival, then the number of remaining individuals

will be p′ = ⌊pτ⌋.

Then the algorithm does the crossover operation among some of the individuals to create

new ones. Crossover is generally done in such a way that either predefined or randomly

selected attributes are interchanged (swapped) between two individuals. In case of uni-

form crossover (which we use in the experiments), attributes are selected randomly by

generating a binary string from a Bernoulli distribution with success parameter κ. Some

predetermined proportion τ of the population reproduces with crossover to form new in-

dividuals which are called offsprings. If P = {1, . . . , p′} is the set of indices of surviving

individuals and if A ⊂ P × P is the set of randomly selected pairs of individuals then

|A| = (p− p′)/2 individuals will be subject to crossover.

Finally the algorithm picks randomly a small proportion of individuals for mutation,

which causes some of their attributes to alter values. Resulting population is called the

next generation. From now on the algorithm continues to iterate in the same manner until

some stopping criterion is met such as the average or minimum fitness being above some

14

threshold. One then can select the individual with the highest fitness as the result of the

search which will be the output of the genetic algorithm as a solution to the current search

problem.

2.1.5 Performance Evaluation

In building a classifier there are two important points that needs to be considered. First, a

classifier needs to have a good overall quality in prediction performance. This means we

need to make use of maximum possible number of examples, otherwise we would have

poorly estimated the true performance of the trained system. Second, the performance

estimate of the classifier should be reliable. For a performance estimation to be robust,

we need to have enough examples to be used in testing.

The facts given above forbids us to use the hold-out methods which involves removing

some portion of the examples (typically 30-40%). This would not be an efficient way of

using of the available examples since we are using only 70% of the examples for training

purposes. It would yield a poorer system in terms of performance compared to the system

which could be obtained through training over the whole dataset. Another option might

be k-fold cross-validation, where data is divided into k pieces and take one of the pieces

as test and others as train and repeat this processes for every piece. If k is small (k = 5

and k = 10 are the most preferred values) then similar to hold-out method 20% or 10%

(corresponding to k = 5 and k = 10, respectively) of the data will not be used in the

training phase. On the other hand, using cross-validation in a leave-one-out (k = N)

fashion does the best in both perspectives, since it almost uses all the examples (except

one) as training, which results in a better trained system. And since it does many tests

(as many as the number of examples) our performance estimates are reliable. One issue

to argue against leave-one-out cross-validation is that it is computationally too expensive,

which causes the number of trainings required to evaluate the system to scale linearly

with the number of examples. But in our case, the number of examples is limited (only

80 examples) which makes the leave-one-out cross-validation the most favourable choice

for evaluation.

15

2.2 fMRI

fMRI stands for Functional Magnetic Resonance Imaging. fMRI images contain neu-

ral activity associated with a specific region in the brain. These images are often 3-

dimensional which can be thought as a stack of 2-dimensional images. fMRI images

may consist of a single snapshot or a sequence of snapshots with a certain amount of time

interval in between each of the snapshots, called time resolution.

2.2.1 Medical Imaging & BOLD

It is thought that blood oxygenation (hemodynamics) is strongly correlated to neural ac-

tivity. Since activation of a neuron requires energy, glucose consumption (burning of

glucose) increases. This brings a demand in oxygen so that glucose could be burnt using

it. After 1-2 seconds, this demand is supplied by the increased oxygenated blood cell

(hemoglobin) rate. This effect fades approximately in 4-6 seconds, making the oxygena-

tion rate return to the baseline. Since oxygenated hemoglobin cells are paramagnetic as

opposed to deoxygenated hemoglobin cells which are diamagnetic, these changes can be

observed through magnetic resonance detectors. This type of neural activity measurement

is called Blood Oxygen Level Dependent (BOLD) response.

Since fMRI devices can capture 3-dimensional images, we can have information about

which spatial location has how much neural activity. Spatial locations are separated from

each other, and each such unit of volume is called a volume element, in short, voxel.

Typically a voxel is a rectangular prism having sides about 1.5 mm long. This may vary

by the fMRI device, setting and experiment. Besides, having a higher resolution (i.e.

having smaller voxels) causes time resolution to be greater, and vice versa.

2.2.2 Cognitive State Decoding Task

By the help of development in neural imaging techniques, in recent studies, neuroscien-

tists concluded that neural activation in the brain has strong correlation with the currently

thought of the subject which is called cognitive state. Since fMRI images are sequences

of mental snapshots, such data is being examined to extract information related to the cur-

rent cognitive state, so that just by using such images predictions against which cognitive

16

state the subject is in can be held. In sections 3.1.2 and 3.1.1 two such examples will be

given. In the first one involves a task where it is tried to distinguish between whether the

image belongs to a subject who looks at a picture or belongs to a subject who looks at a

sentence. The second one is an example of such task where aim is to distinguish between

several semantic categories (such as buildings, tools, insects) by taking fMRI snapshot of

a subject who looks at a word describing an instance of those semantic categories.

2.2.3 fMRI Specific Feature Selection Methods

Active

As we mentioned above well-known general feature selection methods can be used for

dimensionality reduction. However, Mitchell et al. (2004) shows that instead of using

some general feature selection method, if we use some problem specific feature selection

method we can achieve better results. This problem specific feature selection method

proposed in Mitchell et al. (2004) is named as ‘active’ method. This method looks at

each voxel’s activity for each target class and compares it to the activity of that voxel in

the fixation period. The intuition is that the more the activation of a voxel during a task

(looking at a sentence or a picture) differs from its activation during the fixation period

the more informative that voxel is for that task. The method then chooses most active n

voxels. Value of n may be determined through cross-validation.

Accuracy

Another feature selection method mentioned in Mitchell et al. (2004) and Pereira et al.

(2009) is called the ‘accuracy’ method. This method ranks each voxel by its ability to

correctly classify an unseen example. This method is less efficient in terms of both com-

putational complexity and classification performance compared to active method, since it

requires evaluation of each voxel by some machine learning algorithm. Another downside

of this method is that it needs label information unlike active method. This brings in the

need of having a separate validation set. On the other hand, while using active method one

can just apply the feature selection technique and then continue without having to worry

about whether there is an information flow from test set to training set since it doesn’t

peek at labels of any examples.

17

2.2.4 Similar Previous Works

Genetic algorithms are widely utilized for feature selection and proven to be working well

with many machine learning problems (Kudo & Sklansky, 2000). Hong & Cho (2006)

employs a genetic algorithm approach to make problems more tractable and to increase

classification performance. Genetic algorithms are also applied to instantaneous cognitive

state discrimination problem. Ramirez & Puiggros (2007) applies genetic algorithm in a

similar manner as in our work and reports the results evaluated on fMRI images taken

while subjects are listening to either high or low pitch tones. Our work diverges from

Ramirez & Puiggros (2007) as we use genetic algorithms to search in a reduced feature

space and explore different approaches to make use of the final population as will be

explained in section 3.2.1. Boehm et al. (2011) also applies genetic algorithms as a feature

selection method, although their main concern is to demonstrate the potential of one-class

machine learning techniques.

18

3. MATERIALS & METHODS

3.1 DATASETS

There are a huge variety of data to awaiting to be applied on by machine learning. Fields

like astronomy, medical, economy, finance; all have data either in public or private reposi-

tories. While some of these fields have scarce amount of data, others have plenty of them.

Unfortunately, fMRI field is one of these fields mentioned that has too little amount of

data.

3.1.1 StarPlus Dataset

StarPlus is a publicly available dataset that is collected in Carnegie Mellon University

(Keller et al., 2001), (Mitchell et al., 2004) where the subjects are volunteering students.

Task: Picture vs. Sentence

It is a result of the experiment called Picture vs. Sentence. In this experiment setting

subjects are shown in sequence a picture and a sentence. After viewing the picture and

the sentence subjects are asked to answer whether the sentence correctly describes the

picture. Pictures are different arrangements of the symbols +, *, and/or $, such as shown

below
+

∗
Sentences are descriptions (either correct or incorrect) of the pictures such as “It is true

that the plus is below the star.”

An experiment consists of trials. In a trial, there are 4 phases: Picture, Fixation, Sentence,

Fixation. Picture and Sentence phases may interchange from trial to trial. Each phase

takes 4 seconds, and since the time resolution of fMRI device in this experiment is 500

milliseconds, there are 8 fMRI snapshots in each of these phases. For each subject there

are a total of 40 trials. In half of those trials pictures come before sentences, in the other

half sentences come before pictures. In fixation periods subjects are asked to stare at a

19

blank screen with a dot at its center, so that activation related to that task is decayed and

the activation at the next task will be independent from the previous activation.

The dataset is formed by taking the two subsequent 8 seconds interval from each trial, and

labelling each of them depending on which stimulus is shown, that is, if the stimulus is a

sentence then the interval is labelled as ‘S’ (for sentence) and if the stimulus is a picture

then the interval is labelled as ‘P’ (for picture). Therefore two examples are extracted out

of each trial. Since the number of trials is 40, we have a total of 80 examples.

The size of a 3-dimensional snapshot is 64 × 64 × 8, but many of the coordinates are

empty because they don’t correspond to a neural activity area in the brain. This means

that, even though there are 64 × 64 × 8 = 32, 768 available coordinates, only a smaller

portion of it is actually occupied. Number of occupied coordinates, i.e. voxels, are about

5,000 on average. The coordinates of the occupied voxels differ from subject to subject

which makes it difficult to build classifiers across subjects. Although there are methods

(Collins et al., 1994), (Mitchell et al., 2004) which bring all subjects to a common space,

we don’t employ such methods in this work. Subjects with different number of voxels do

not create any problems since the classifiers are built and evaluated on a per-subject basis.

As we mentioned above an example consists of not a single but a sequence of snapshots.

Since an example consists of an 8 seconds timespan and since after each 500 milliseconds

a snapshot is taken, a single example contains 16 snapshots. This means, there are ap-

proximately 16× 5, 000 = 80, 000 features in the original problem. Speaking in machine

learning terms, we have a design matrix of size 80 × 80, 000 which is considered to be a

very high dimensional and sparse dataset.

3.1.2 Science Dataset

This dataset again is a publicly available dataset. (Mitchell et al., 2008)

Task: Semantic Categories

In this experiment subjects are shown example names of certain 12 categories, such as

buildings, animals, insects, tools, etc. And they are asked to think about the those seman-

tic category they belong to. The classification task of a learning agent is also similar, they

20

need to classify the cognitive state of the subject, namely the semantic category, by look-

ing at the fMRI image taken during the presentation of the stimulus, which is the example

of any category mentioned before.

Data Structure & Format

This data has a similar structure to the former one since it is also a 3-dimensional fMRI

image. The only significant difference is the temporal dimension is not used. There are

12 categories. For each category there are 5 examples. These presentations also repeated

6 times. Excluding the temporal dimension, one can conclude that number of examples

are 12× 5× 6 = 360, and the dimensionality is just the number of voxels, approximately

about 10, 000. So in this dataset, each presentation of stimuli has one associated (which is

repeated 6 times), this eliminates the temporal dimension in a single data point. Another

point to note in this data is the number of examples in this data is not too scarce. So

doing k-fold cross validation is also feasible in this dataset compared to the previous one.

Such evaluations also done on this data set and results will be presented in corresponding

following sections.

3.2 FEATURE SELECTION METHODS

As already described before, this thesis mainly concentrates on improving classification

efficiency by focusing on feature selection methods. This section will describe the meth-

ods used as feature selection phase in training a learner.

3.2.1 Genetic Algorithm

As we describe before in section 2.1.4 active method sorts voxels according to their ac-

tivity levels and selects the top most active voxels. This methodology has one assumption

which might be an important drawback: it assumes that less active voxels are always less

informative. Although activity of a voxel during a task is important, a strict ordering ac-

cording to activity might not be the optimal solution. For example, there might a set of,

say, 50 voxels inside the most active 250 voxels which are more informative than the most

active 50 voxels. However, the active method cannot select a set of active voxels which

21

are not contiguous with respect to activity. In this thesis, we want to test this idea, i.e.,

search for a more informative set of voxels among the ones selected by the active method.

Transforming fMRI Data

Medical images can be of huge sizes and they don’t necessarily contain just spatial di-

mensions, they can also exhibit a temporal dimension. In case of fMRI images, it is more

frequent to have an image as a sequence of instantaneous images related to an experiment

(like ‘trials’ in the StarPlus experiment) rather than a single snapshot. To treat such data

we need to come up with a way of transforming it so that we have a standard input space

for any given machine learning algorithm. One basic approach described in Pereira et al.

(2009) is to serialize the 3-dimensional images into a flat vector in some order (for exam-

ple, the voxel order available in data); then each such vector that belongs to a single time

instance that is taken during the presentation of a single stimulus is concatenated one af-

ter another which makes a single example. For example, assuming that a single snapshot

contains 5000 voxels and a picture phase of a trial takes 16 snapshots then we will have

5000× 16 features in a single example. We may refer this form of data as classification-

ready form. This approach also used as prerprocessing in each of the method that comes

after this.

Adapting Genetic Algorithm

Now we describe how we apply genetic algorithm as a voxel selection method. The

solution space consists of binary vectors each of which represents a subset of the available

voxels. In a single binary vector the ith component indicate whether the ith voxel will be

selected or not (1 if selected, 0 otherwise). In this way we can represent any possible

solution to our problem with such binary vectors. If we can define a metric to measure

how fit an individual is and define a stopping criterion for the evolution process, these

definitions can be plugged into a standard genetic algorithm.

The fitness function has the crucial role here since it is the essential part that makes the

genetic algorithm applicable to the voxel selection problem of fMRI data. Fitness func-

tion maps an individual (a binary vector as described above) ω to its fitness value. We

can consider this function as parameterized by the dataset D comprising of the fMRI data

X (in its classification-ready form as described in section 3.2.1) and the corresponding

22

labels Y , and a learning algorithm Ψ. D and Ψ are used to evaluate the fitness of in-

put ω by approximating classification accuracy as represented by equation (3.1) using D
when voxels determined by ω is selected and learning algorithm Ψ is used. Procedure for

calculating fitness of an individual will be described in depth in algorithm 2.

fΨ,D(ω) = 1− ε̂Dω
(Ψ) (3.1)

Another issue for adapting genetic algorithm for this problem is inherent in the spatio-

temporal structure of the data which means that the data spans across some spatial domain

(i.e. voxels) as well as a temporal domain (i.e. 16 snapshots taken in 8 seconds). Since

the problem is to select voxels we can consider a voxel as a temporal sequence of values

bundled together, that is those 16 activation levels at successive snapshots. This means

that when we are selecting a voxel, we are either selecting all the activation values in the

temporal sequence or dropping them all. Equation (3.2) describes how an individual ω

can be converted to the corresponding expanded binary vector ω′ to implement this kind

of feature selection routine.

∀j ∈ {1, . . . , n}; ∀s ∈ {1, . . . , 16}; ω′
(s−1)∗n+j := ωj (3.2)

So this kind of vector will actually be used where voxel selection with an individual ω is

applied to a classification-ready data, that is, first the individual ω will be expanded into

a binary vector ω′ then columns that correspond to a 1 will be selected.

There some possible methods to use as a convergence condition which will determine

where the search will be terminated. We use to the relative change in average fitness

method to define a convergence criterion. If the relative change is below some predefined

threshold then we consider search as converged and no substantial change will happen.

Note that the search might have been stuck in a local minimum. In that case results might

be poorer with respect to global minimum and selected features may vary from run to run,

even though we are searching within the same set of voxels.

With these definitions, one can simply integrate them to a genetic algorithm to create

a feature selection method which finds useful voxels for the case of fMRI data which

consists of sequence of snapshots. One final issue is to decide on how to utilize the

23

individuals formed in the final generation. There are alternative methods here which will

be described in section 3.2.1.

Combining Individuals in Final Generation

After the genetic algorithm finishes we have a set of individuals in the final population.

At this point there might be different methods which can be applied to utilize this final set

of individuals. Below, we describe the different methods we use.

Best:

This is the most commonly used method. The selection phase of the genetic algorithm

already sorts the individuals in the population by their fitnesses, so one simply needs to

pick the first individual from that order as indicated by (3.3).

ω∗ := Ω
(t)
1 (3.3)

Intersection:

Another possible way to exploit the final population is to consider the best performing

individuals (M individuals) and select those voxels which appear in all of them. Since we

can regard each individual as a set of voxels, this method basically takes the intersection

of those sets. Equation (3.4) realizes this by simply multiplying corresponding bits in

each individual.

∀j; 1 ≤ j ≤ n, ω∗
j :=

M
∏

k=1

Ω
(t)
k,j (3.4)

24

Average:

This method can be considered as a generalization over the intersection method. Equation

(3.5) explains the procedure used in this method. It takes best performing M individuals,

treats them as vectors, and averages each of the attributes (which are either 1 or 0) over

those individuals, and then thresholds (θ) them to come up with a new binary vector.

Intersection is a special case of this, where θ = 1.

∀j; 1 ≤ j ≤ n, ω∗
j := 1{ 1

M

M
∑

k=1

Ω
(t)
k,j ≥ θ} (3.5)

Spatio-Temporal Feature Selection

Up until now we treat a voxel as a single, integral, standalone entity. Nevertheless, the data

has 16 activation values for each voxel that correspond to activations at different times,

namely, snapshots. Instead of just searching in the spatial dimension, one could also use

the temporal dimension, which is also available in the data as snapshots. In that case, one

can simply extend the definition of individual in our current genetic algorithm problem

instance as follows: Each bit of an individual now corresponds to the activation of a voxel

at a single snapshot. Actually we have referred to this in section 3.2.1 as expanded form.

Therefore the number of bits in those vectors became n× 16. This is a simple extension

that can easily be adapted and applied to the methods we use in this thesis. What one needs

to do is to change two steps: First, population must be generated using the expanded form

by modifying (2.25) accordingly (using n×16 instead of n should be sufficient) so that we

can select both voxels and time instants (snapshots). Second, one needs to use the output

of the genetic algorithm ω∗ directly (select column j, if and only if ω∗
j = 1), instead of

first expanding to cover all snapshots equally, as explained in equation (3.2).

We also conducted experiments for this case, too. But since the results were not satisfying

we do not include them in this thesis.

25

3.2.2 Random Subspaces

Random Subspaces is a kind of ensemble learning methods where various learners of the

ensemble have all the same learning algorithm but different set of features, each set are

established by randomly selecting among available features (?).

Stacking & Voting

When using an ensemble of classifiers simplest technique is to find majority voting of the

classifiers. This is called Voting.

But instead of simply using the classifiers in a discrete manner (either class 1 or class 2)

for each classifier, one can better utilize the classification results of individual classifiers

if they are able to produce class posterior probabilities given the inputs. Even if that

is not the case, one could have an estimate of trust for each of those probabilities by

estimating validation error. If one weights all the outcomes from classifiers inversely with

the classification error and averages it, a better classifier might be built. This type of

aggregation of ensemble of classifiers is called Stacking.

Locally Clustered Random Selection

In locally Clustered Random Selection, rather than all features having equal chance to be

chosen, there is simple rule to make them look spatially clustered. The rule is, if a feature

is selected, then there is a high chance that nearby features are also selected. One way to

achieve this rule is to determine some focal points, and randomly select features using a

2-dimensional Gaussian random variables having those focal points as their means.

The motivation behind this is, it is thought that the information in brain that are related to

each other are processed in spatially close regions. This is why this method thought to be

useful, and experimented on.

26

3.2.3 Functional Dependency Graph

Brain can be considered as a huge graph of neural connectivity. So modelling it as a graph

makes perfect sense. In functional dependency graph, one analyses the regions in brain by

how correlated they are with respect to neural activity within the some temporal course.

To implement this type of feature selection method, one first needs to define regions which

are disjoint subsets of voxels that close to each other spatially. For each temporal acti-

vation instance for a region, an average is taken over activation values of voxels within

each voxel set. Now we have #regions× 16×#examples values. One can now regard

regions as random variables and calculate covariance among each of those variables. This

operation needs to be done per class basis, so this yields two covariance matrices, and this

completes the training phase.

When a new instance has come, one needs to apply similar operation over the newly

acquired data, and obtain the covariance matrix. By matching the obtained matrix with

those two matrices obtained from training phase, one can determine the predicted class of

the test instance.

Graph matching is a uneasy topic. For that reason, a simple Jaccard matching is applied

over the edges of the graphs. Let A be the set of edges in the first matrix, and B be the set

of edges in the second matrix, then the Jaccard similarity can be found by equation (3.6).

J(A,B) =
A ∩ B

A ∪ B
(3.6)

For each class, whichever has the most Jaccard value is used as the predicted class.

3.2.4 Other Methods

Some other simpler methods are also tried on some datasets. These trials were not di-

rectly aiming to increase performance of the classifier. Rather they aimed to have a better

understanding of the data in terms of its temporal and spatial nature.

27

Mainly two methods are tried: Spatial averaging and temporal averaging.

Spatial Averaging

Since the data is distributed in a 3-dimensional space, one can easily find the voxels that

lie in the 3-lattice with some size s. Partitioning the space with such lattices and averaging

all the activations inside it, on can reduce the dimensionality exponential in s.

Temporal Averaging

The data have the temporal dimension, but if one wonders whether temporal activation

course is really relevant, following method can be employed. Instead of using all the tem-

poral activation instances of a voxel, one can average them out to get a single activation

per voxel.

28

4. EXPERIMENTAL RESULTS & EVALUATIONS

In this chapter the experiments done will be explained and the results will be given.

4.1 GENETIC ALGORITHM

Algorithm 1 describes the method how the experiments are conducted for evaluating the

performance of genetic algorithm and the active method.

Algorithm 1: Active vs. Genetic Algorithm Comparison

Input : X , Y , n, Ψ
Output: ε(GA), ε(Act)

X ← SelectActiveVoxels(X , n)

for i← 1 to N do

Tst← {i} ;

Trn← {1, . . . , N} \ Tst ;

ω∗← GeneticAlgorithm(XTrn, Y Trn, Ψ) ;

Θ
(GA) ← TrainΨ(XTrn, ω∗ , Y Trn) ;

Θ
(Act) ← TrainΨ(XTrn, Y Trn);

Ŷ
(GA) ← PredictΨ(Θ(GA), XTst, ω∗) ;

Ŷ
(Act) ← PredictΨ(Θ(Act), XTst) ;

ǫ(GA)
i ← 1{Ŷ (GA) 6= Y Tst} ;

ǫ(Act)
i ← 1{Ŷ (Act) 6= Y Tst}

ε(GA) ← 1/N
∑N

i=1 ǫ
(GA)

i ;

ε(Act) ← 1/N
∑N

i=1 ǫ
(Act)

i ;

Algorithm 1 takes an fMRI data X with labels Y and takes the number of initial voxels

n. First of all, line 1 applies active voxel selection to select n voxels. This is done prior

to anything else since genetic algorithm will search for a better voxel subset within that

initial active voxel set. This is also legitimate with respect to ‘peeking’, since active voxel

selection method does not make use of the labels, there will be no flow from target vari-

ables. Algorithm then continues with a loop over the examples of the input dataset. This

29

is done for the sake of leave-one-out cross-validation, so at each iteration one example

is held out as test example and the rest is retained as training-validation purposes. At

line 5 training-validation part is handed over to the function named GeneticAlgorithm

(appears in line 5) which is the modified genetic algorithm as described in section 3.2.1.

Lines 6 and 7 estimates the model parameters Θ of learning algorithm Ψ using training

data (XTrn,ω∗ for genetic algorithm, XTrn for active method and YTrn for both). XX ,ω

means that we first select the rows in set X , then select the columns j for which ωj = 1.

Lines 8–9 makes the predictions Ŷ for the two methods, using the parameters Θ that were

just estimated. The predictions checked against expected labels YTst and comparison re-

sults are stored in ǫ(GA) and ǫ(Act), respectively. These binary values are averaged over all

examples and returned as ε(Act) and ε(GA) which are estimated error rates of the algorithm

using active voxels and voxels found by the genetic algorithm within the active voxels,

respectively.

To determine the fittest individual we need to be able to compare different sets of voxels

that genetic algorithm gave us. For this purpose we come up with a cross-validation

scheme for determining fitness of an individual as given in algorithm 2. In each iteration

of genetic algorithm, when fitness of an individual is needed, algorithm 2 is invoked.

What it does is very similar to algorithm 1 because both perform cross-validation. It

basically holds out one example for validation at a time then tries to predict it correctly

using the voxels imposed by input ω. Since we need to estimate a fitness, and since the

more the fitness the better the system would likely to be, we can simply use the correct

classification rate for it.

Algorithm 2: CalculateFitness

input : ω, Ψ, X , Y
output: ϕ

for i← 1 to N do

Val← {i} ;

Trn← {1, . . . , N}\ Val;
Θ← TrainΨ(XTrn, ω, Y Trn) ;

Ŷ ← PredictΨ(Θ, XVal, ω) ;

ǫi ← 1{Ŷ 6= Y Val} ;

ϕ← 1− 1/N
∑N

i=1 ǫi
return ϕ

30

Experimental Results

We made our evaluations on a per-subject basis. In the graphs and tables, if no subject

is mentioned, then it means those values are obtained through averaging over subjects.

Subjects are mentioned by their subject numbers (e.g. 4748, 5680, etc.).

The experiments are done in a fashion that one can observe how much improvement is

done by genetic algorithm approach over active voxel selection method. To achieve this,

we first select subsets of voxels of different sizes by the active method, and then apply

genetic algorithm to search within those subsets of voxels in order to find a reduced set of

voxels whose performance is at least the same as that of the voxels selected by the active

method.

We evaluate several learning algorithms that are known to be performing better on such

high dimensional and very sparse data. We use Gaussian Naı̈ve Bayes (GNB), Support

Vector Machines (SVM) with linear kernel, and k-Nearest Neighbours (kNN) algorithms

for measuring improvement over the active method. We use the same algorithms for

evaluating the fitness of the individuals. For example, if we use kNN for evaluating the

performance of genetic algorithm then we also use kNN to determine the fitness of the

individuals in every iteration of the genetic algorithm.

Table 4.1: The values of the parameters used in the experiments.

p = 50 Size of the population

ρ = 0.4 Survival rate

τ = 0.5 Initial rate of the ratio of 1s in an individual

κ = 0.5 Uniform crossover exchange ratio

µ = 0.02 Mutation rate

θ = 0.3 Threshold for the average method

M = 10 # best individuals to use

n ∈ {25k|k ≤ 20, k ∈ N} # initial voxels selected by active method

The values of the parameters that are used in the experiments are given in Table 4.1. Our

method uses a genetic algorithm approach to search in the space of voxels selected by

the active method. As discussed earlier, this method is a promising way to find a subset

of voxels which perform better then the voxels selected by active method. Figure 4.1

shows the performance of kNN, GNB, and SVM algorithms for different feature selection

methods. The x-axis in these figures shows the number of voxels used by these algorithms

to achieve the specified classification performance. The graphs shown in Figure 4.1 are

31

smoothed by averaging the four surrounding points in order to better show the trends

in the results. As can be seen the best classification performance is achieved by using

SVM (about ∼90%). The classification performance of kNN and GNB are comparable

(at about ∼80%). (These results are similar to those given by Mitchell et al. (2004)). A

general pattern can be seen in these figures: all the curves have a, roughly, bowl shape.

This means that the performance of the algorithms achieve their best values for a specific

number of voxels (roughly between 150 and 300, depending on the learning algorithm)

and gets worse when we increase or decrease the number of voxels used.

Intersection method for combining individuals within a population performs worst in all

cases. This result is consistent with the findings mentioned in Pereira et al. (2009), where

different parts of the training sets yield pretty much different sets of voxels when some

voxel selection method like active method is applied. Since the intersection method in-

tersects the voxel sets selected by top M individuals, there may be no common voxels in

those sets, which results in a random guess. Such cases seem to increase the error rate

significantly. On the other hand when the intersection set is nonempty its size is small and

the voxels in those small intersection sets still has the potential of predicting the target

class. That is why this method can still have some classification performance using a very

small number of voxels.

We can see that the average and best methods let the algorithms to achieve similar clas-

sification performances by using substantially less number of voxels. Figure 4.1a, Figure

4.1b, and Figure 4.1c show that the GA based feature selection methods help the algo-

rithms (kNN and GNB) to achieve similar classification performances using much less

number of voxels. For example, in 5NN and GNB the best method achieves its low er-

ror rates using only about 70 voxels. The algorithm which gives the best classification

performance using the active method is SVM. Figure 4.1d shows the results when the

learning algorithm used is SVM. Here, we can see that the average method gives similar

classification performance to the active method. However, it can bee seen that the average

method achieves this performance using much less number of voxels. While SVM using

active method achieves its best performance using approximately 300 voxels, SVM using

the average method achieves similar accuracy levels using 150-200 voxels.

Table 4.2 reports the results in a per-subject manner. It shows the minimum classification

error along with the number of voxels used for each subject and method. The last row

in each table averages all those minimum values. Even though the classification perfor-

mances of the algorithms for different subjects show different levels of errors, it is clearly

32

Figure 4.1: Comparison of classification performances with respect to the number

of voxels selected of various learning algorithms using active method and

GA based feature selection methods.

Figure 4.1a 3NN

0 100 200 300 400 500
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

voxels selected

C
ro

ss
−

va
lid

at
io

n
cl

as
si

fic
at

io
n

er
ro

r
ra

te

Active
Best
Intersection
Average

Figure 4.1b 5NN

0 100 200 300 400 500
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

voxels selected

C
ro

ss
−

va
lid

at
io

n
cl

as
si

fic
at

io
n

er
ro

r
ra

te

Active
Best
Intersection
Average

Figure 4.1c GNB

0 100 200 300 400 500
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

voxels selected

C
ro

ss
−

va
lid

at
io

n
cl

as
si

fic
at

io
n

er
ro

r
ra

te

Active
Best
Intersection
Average

Figure 4.1d SVM

0 100 200 300 400 500
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

voxels selected

C
ro

ss
−

va
lid

at
io

n
cl

as
si

fic
at

io
n

er
ro

r
ra

te

Active
Best
Intersection
Average

33

seen that in general the GA based feature selection methods let the algorithms to achieve

similar levels of performance while using much less number of voxels.

4.2 RANDOM SUBSPACES

As explained in section 3.2.2, the methods available here can be considered as ensemble

methods. Experimental results obtained using those methods will be given here.

Stacking & Voting

This section gives the experimental results obtained from stacking and voting methods.

To do this experiment, first some number of voxels selected by Active method. Then as

mentioned in section 3.2.2 many random subsets are selected from (for this experiment

L = 10 subsets, therefore number of classifiers) available voxel set. Number of voxels in

a single set is held constant M = 50. Leave-one out cross-validation is run 50 times, and

results are averaged over them.

There is also another column in the results that has not been mentioned yet. One could

also use squares of the weights when using the stacking method. This is referred to as

Stacking2 in the tables. This method is tried because it could assign much lower trusts for

low accuracy classifiers so that the overall classification performance could benefit from

this. Table 4.3 shows the experimental results with different base set sizes obtained from

Active method.

Locally Clustered Random Selection

Throughout the experiments an ensemble of L = 10 classifiers are used and held fixed.

In Figure 4.2, one can observe how error falls as the number of voxels randomly selected

M for each classifier is increased. For small number of voxels, possibly due to lack

of information available, classifiers cannot do well. As the number increases error falls

since the available information increases. But after some point it saturates at 0, 15. 300

voxels for each classifier looks like it is optimal from both classification and running-time

efficiency.

34

Figure 4.2: Classification errors per subjects vs. local set size.

4.3 FUNCTIONAL DEPENDENCY GRAPH

Up until now the StarPlus dataset has been used used in experiments. In this one, Science

dataset is used. First of all, base error rates needs to be mentioned. Since this dataset

contains 12 class labels, the expected classification error of a random classifier is 1/12 =

0, 917. To better understand the separability of the data, GNB is run for 12 classes over

the data. Table 4.4 shows how well gnb does on this dataset with both leave-one-out and

6-fold cross validation schemas.

The mean errors is lower than the expected error of the random classifier but it is still

high. This shows how hard it is to naively separate this dataset.

Table 4.5 shows the accuracy of classifiers when they are fed the functional dependency

graphs extracted from input data. The classes are as follows:

Figure 4.3 visualizes this confusion matrix with a color map, for each subject.

35

Figure 4.3: Pairwise confusion matrices visualization for SVM classifier.

4.4 OTHER METHODS

In the remaining methods simple image-processing like manipulations are done to observe

how classification performance will be affected.

Table 4.6 shows the results of averaging activation values of a voxel for each time instance.

It also compares genetic algorithm with the active method under this basis. n represents

the number of voxels selected by active method. GA method again starts with the active

voxels selected.

Table 4.7 shows the results of neighbouring voxels averaging method. r is the radius

which defines a cube with sides 2r + 1 centered at the voxels. The experiment averages

all the non-overlapping cubes and assigns single voxels to them.

36

Table 4.2: Tables showing minimum % errors achieved per subject along with the

number of voxels used for that % error level.

Table 4.2a 3NN

Subj. Active GA Best GA Intrsct. GA Avg.

Error #voxels Error #voxels Error #voxels Error #voxels

4799 36.36% 75 29.95% 37 31.50% 31 28.57% 47

4820 17.58% 100 17.49% 49 16.21% 75 14.93% 147

4847 2.38% 350 1.19% 173 1.19% 30 2.47% 105

5675 10.26% 50 7.69% 23 6.41% 78 10.26% 137

5680 9.98% 150 8.61% 74 9.98% 28 9.89% 168

5710 6.23% 100 6.23% 48 7.51% 14 6.41% 43

Mean 13.80% 138 11.86% 67 12.13% 42 12.09% 108

Table 4.2b 5NN

Subj. Active GA Best GA Intrsct. GA Avg.

Error #voxels Error #voxels Error #voxels Error #voxels

4799 32.51% 375 30.22% 180 27.38% 47 27.38% 188

4820 22.53% 175 20.97% 86 21.34% 57 19.78% 188

4847 3.66% 400 3.75% 200 0.00% 41 3.66% 147

5675 12.64% 175 4.95% 80 8.70% 34 7.60% 190

5680 11.26% 100 12.36% 48 12.45% 26 12.36% 44

5710 4.95% 50 8.52% 26 7.33% 131 4.85% 41

Mean 14.59% 213 13.46% 103 12.87% 56 12.61% 133

Table 4.2c GNB

Subj. Active GA Best GA Intrsct. GA Avg.

Error #voxels Error #voxels Error #voxels Error #voxels

4799 31.25% 400 28.75% 189 27.50% 15 28.75% 195

4820 18.75% 450 16.25% 215 16.25% 58 18.75% 169

4847 5.00% 350 2.50% 167 1.25% 11 1.25% 199

5675 12.50% 350 10.00% 163 8.75% 28 11.25% 151

5680 13.75% 25 12.50% 10 12.50% 6 12.50% 287

5710 10.00% 75 7.50% 34 10.00% 12 8.75% 160

Mean 15.21% 275 12.92% 130 12.71% 22 13.54% 193

Table 4.2d SVM

Subj. Active GA Best GA Intrsct. GA Avg.

Error #voxels Error #voxels Error #voxels Error #voxels

4799 8.75% 150 6.25% 74 10.00% 22 7.50% 257

4820 15.00% 300 16.25% 146 21.25% 54 15.00% 256

4847 1.25% 150 0.00% 77 12.50% 2 1.25% 29

5675 3.75% 125 5.00% 61 11.25% 8 3.75% 291

5680 7.50% 250 6.25% 121 11.25% 20 6.25% 44

5710 7.50% 25 5.00% 11 8.75% 6 6.25% 28

Mean 7.29% 167 6.46% 81 12.50% 19 6.67% 151

37

Table 4.3: Classification errors of Voting and Stacking using n = 250, n = 500,

n = All initial voxels selected by Active method.

Table 4.3a 250 Active Voxels

Subject Voting Stacking Stacking2 Single SVM

4799 0,2625 0,1375 0,0875 0,0875

4847 0,3125 0,1125 0,0750 0,1875

4820 0,1375 0,2375 0,2000 0,0500

5675 0,3500 0,2375 0,1125 0,0250

5680 0,2625 0,1875 0,0625 0,0875

5710 0,1875 0,1750 0,1250 0,0750

Average 0,2521 0,1812 0,1104 0,0854

Table 4.3b 1000 Active Voxels

Subject Stacking Stacking2

4799 0,1250 0,0875

4847 0,1000 0,0875

4820 0,3000 0,2875

5675 0,2875 0,1125

5680 0,2250 0,1375

5710 0,1375 0,1000

Average 0,1958 0,1354

Table 4.3c No Feature Selection

Subject Voting Stacking Single SVM

4799 0,4625 0,2250 0,3750

4847 0,3625 0,2375 0,3125

4820 0,2625 0,3000 0,1125

5675 0,4500 0,3375 0,2750

5680 0,3125 0,2750 0,2250

5710 0,3375 0,2625 0,1750

Average 0,3646 0,2729 0,2458

Table 4.4: GNB error levels on Science dataset without .

6-fold CV Leave-one-out CV

Subject 1 0,753 0,756

Subject 2 0,858 0,856

Subject 3 0,897 0,864

Subject 4 0,753 0,747

Subject 5 0,897 0,886

Subject 6 0,911 0,903

Subject 7 0,908 0,908

Subject 8 0,886 0,881

Subject 9 0,900 0,881

Mean 0,863 0,853

38

Table 4.5: Average of pairwise confusion matrices over subjects.

Table 4.5a GNB

Versus C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11

C 0 0,44 0,43 0,44 0,44 0,47 0,46 0,44 0,48 0,44 0,45 0,44

C 1 0,36 0,41 0,42 0,41 0,39 0,42 0,44 0,47 0,40 0,42

C 2 0,42 0,38 0,46 0,37 0,36 0,41 0,35 0,38 0,44

C 3 0,39 0,45 0,41 0,39 0,46 0,39 0,38 0,48

C 4 0,44 0,43 0,43 0,44 0,45 0,44 0,46

C 5 0,37 0,40 0,43 0,42 0,42 0,45

C 6 0,41 0,47 0,40 0,47 0,43

C 7 0,45 0,53 0,44 0,42

C 8 0,46 0,43 0,48

C 9 0,46 0,41

C 10 0,40

Table 4.5b SVM

Versus C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11

C 0 0,30 0,25 0,30 0,29 0,31 0,41 0,38 0,36 0,28 0,34 0,34

C 1 0,35 0,29 0,35 0,36 0,32 0,33 0,36 0,31 0,34 0,32

C 2 0,36 0,27 0,31 0,25 0,27 0,32 0,29 0,34 0,35

C 3 0,26 0,39 0,35 0,26 0,37 0,32 0,27 0,33

C 4 0,28 0,32 0,32 0,38 0,29 0,39 0,29

C 5 0,35 0,32 0,32 0,24 0,29 0,35

C 6 0,35 0,40 0,31 0,40 0,36

C 7 0,39 0,47 0,39 0,34

C 8 0,37 0,41 0,36

C 9 0,38 0,26

C 10 0,35

C 0 = Animal, C 1 = Body part, C 2 = Building, C 3 = Build part, C 4 = Clothing, C 5 = Furniture,

C 6 = Insect, C 7 = Kitchen, C 8 = Man made, C 8 = Tool,

C 10 = Vegetable, C 11 = Vehicle

39

Table 4.6: Comparison of Best GA individual vs Active method using temporally

averaged data.

Table 4.6a n = 50

Subj. Active GA Best

4799 0,4375 0,4500

4820 0,3375 0,3750

4847 0,1875 0,1500

5675 0,2625 0,2500

5680 0,3000 0,3375

5710 0,1875 0,1375

Mean 0,2854 0,2833

Table 4.6b n = 100

Subj. Active GA Best

4799 0,3500 0,2750

4820 0,3625 0,3500

4847 0,1500 0,1125

5675 0,1500 0,1500

5680 0,2750 0,2375

5710 0,1125 0,1000

Mean 0,2333 0,2042

Table 4.6c n = 150

Subj. Active GA Best

4799 0,4750 0,4000

4820 0,2750 0,2375

4847 0,0750 0,0500

5675 0,1125 0,1000

5680 0,3000 0,2875

5710 0,1375 0,1000

Mean 0,2292 0,1958

Table 4.6d n = 240

Subj. Active GA Best

4799 0,4125 0,4125

4820 0,3000 0,2625

4847 0,0875 0,1375

5675 0,1625 0,1500

5680 0,2875 0,2750

5710 0,1375 0,1125

Mean 0,2313 0,2250

40

Table 4.7: Classification errors of GA spatially (with radius r) averaged data with n
initial number of voxels is selected.

Table 4.7a n = 240

1NN 3NN 5NN 9NN SVM GNB Mean

Original Data 0,1979 0,1792 0,1729 0,2104 0,0854 0,1813 0,1712

Averaged (r = 1) 0,2021 0,1812 0,1938 0,2250 0,0854 0,1979 0,1809

Averaged (r = 2) 0,1979 0,1917 0,1917 0,2250 0,0938 0,1958 0,1827

Table 4.7b n = 500

1NN 3NN 5NN 9NN SVM GNB Mean

Original Data 0,2083 0,2104 0,2125 0,2187 0,1063 0,2063 0,1938

Averaged (r = 1) 0,2167 0,2167 0,2104 0,2188 0,0958 0,2125 0,1952

Averaged (r = 2) 0,2104 0,2208 0,2125 0,2292 0,1042 0,2104 0,1979

Table 4.7c n = 1000

1NN 3NN 5NN 9NN SVM GNB Mean

Original Data 0,2708 0,2458 0,2396 0,2458 0,1438 0,2146 0,2267

Averaged (r = 1) 0,2542 0,2542 0,2521 0,2333 0,1271 0,2063 0,2212

Averaged (r = 2) 0,2521 0,2500 0,2417 0,2313 0,1271 0,2021 0,2174

41

5. CONCLUSION

Active method is one of the best performing voxel selection methods in the fMRI domain.

In this method voxels are sorted with respect to their activity values and the most active

voxels are selected. Although the level of activity of a voxel is an important indication of

its relevance for the task being performed, the level of activation might not be the only

parameter. So, in order to test this idea, we used active method to select sets of voxels

of different sizes and used genetic algorithms to search for better voxels in this reduced

space.

The results show that it is possible to further reduce the number of voxels substantially and

still achieve comparable classification performances. Specifically, the empirical results

show that the best classification performance is achieved using approximately 240 voxels

for this fMRI dataset. We can achieve similar classification performances using much less

number of voxels (between 100-150 voxels).

Using less number of voxels might be useful for achieving fast classification performances

for time-critical tasks. Also it might lead to a better understanding of which voxels are

more important for the classification task at hand. Researchers can focus on these small

but informative subsets of voxels.

Our genetic algorithm based technique is not specific to this dataset or to the active

method. It can be applied to other datasets and to other feature selection methods which

produces an ordering of features.

42

REFERENCES

Books

Bishop, C. M., 2006. Pattern Recognition and Machine Learning (Information Science

and Statistics). New Jersey: Springer-Verlag, Inc.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Jain, A. K. & Li, S. Z., 2005. Handbook of Face Recognition. Secaucus: Springer-Verlag,

Inc.

Mitchell, T. M., 1997. Machine Learning. New York: McGraw-Hill.

Royden, H. L., 1988. Real analysis. New York: Macmillan.

Russell, S. J. & Norvig, P., 2009. Artificial Intelligence: A Modern Approach. Prentice

Hall.

Vapnik, V. N., 1995. The Nature of Statistical Learning Theory. New York: Springer-

Verlag, Inc.

43

Periodicals

Boehm, O., Hardoon, D., & Manevitz, L., 2011. Classifying cognitive states of brain

activity via one-class neural networks with feature selection by genetic algorithms.

International Journal of Machine Learning and Cybernetics 2, pp. 125–134.

Chávez, E., Navarro, G., Baeza-Yates, R., & Marroquı́n, J. L., 2001. Searching in metric

spaces. ACM Comput. Surv. 33(3), pp. 273–321.

Collins, D., Neelin, P., Peters, T., & Evans, A., 1994. Automatic 3d intersubject regis-

tration of mr volumetric data in standardized talairach space. Journal of Computer

Assisted Tomography 18, pp. 192–205.

Davatzikos, C., Ruparel, K., Fan, Y., Shen, D., Acharyya, M., Loughead, J., Gur, R.,

& Langleben, D., 2005. Classifying spatial patterns of brain activity with machine

learning methods: Application to lie detection. NeuroImage 28(3), pp. 663–668.

Formisano, E., Martino, F. D., & Valente, G., 2008. Multivariate analysis of fmri time

series: classification and regression of brain responses using machine learning. Mag-

netic Resonance Imaging 26(7), pp. 921–934.

Guyon, I. & Elisseeff, A., 2003. An introduction to variable and feature selection. Journal

of Machine Learning Research 3, pp. 1157–1182.

Hong, J.-H. & Cho, S.-B., 2006. Efficient huge-scale feature selection with speciated

genetic algorithm. Pattern Recognition Letters 27(2), pp. 143–150.

Keller, T. A., Just, M. A., & Stenger, V. A., 2001. Reading span and the time-course of

cortical activation in sentence-picture verification. Annual Convention of the Psy-

chonomic Society, Orlando, FL .

Kudo, M. & Sklansky, J., 2000. Comparison of algorithms that select features for pattern

classifiers. Pattern Recognition 33(1), pp. 25–41.

Liu, H., Liu, L., & Zhang, H., 2009. Boosting feature selection using information metric

for classification. Neurocomputing 73(1-3), pp. 295–303.

Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., &

Newman, S., 2004. Learning to decode cognitive states from brain images. Machine

Learning 57, pp. 145–175.

Mitchell, T. M., Shinareva, S. V., Carlson, A., Chang, K., Malave, V. L., Mason, R. A.,

& J.T., M., 2008. Predicting human brain activity associated with the meanings of

nouns. Science 320, pp. 1191–1195.

Mourão-Miranda, J., Bokde, A. L., Born, C., Hampel, H., & Stetter, M., 2005. Classifying

brain states and determining the discriminating activation patterns: Support vector

machine on functional mri data. NeuroImage 28(4), pp. 980–995.

44

Pereira, F., Mitchell, T., & Botvinick, M., 2009. Machine learning classifiers and fmri: A

tutorial overview. NeuroImage 45(1, Supplement 1), pp. 199–209.

Ramirez, R. & Puiggros, M., 2007. A genetic programming approach to feature selection

and classification of instantaneous cognitive states. In Giacobini, M., ed., Applica-

tions of Evolutionary Computing, vol. 4448 of Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, pp. 311–319.

Shinkareva, S. V., Mason, R. A., Malave, V. L., Wang, W., Mitchell, T. M., & Just,

M. A., 2008. Using fmri brain activation to identify cognitive states associated with

perception of tools and dwellings. PLoS ONE 3(1), p. 1394.

Siedlecki, W. & Sklansky, J., 1989. A note on genetic algorithms for large-scale feature

selection. Pattern Recognition Letters 10(5), pp. 335–347.

Yoshida, W. & Ishii, S., 2005. Model-based reinforcement learning: a computational

model and an fmri study. Neurocomputing 63(0), pp. 253–269.

Zhang, Q. & Lee, M., 2009. Analysis of positive and negative emotions in natural scene

using brain activity and gist. Neurocomputing 72(4-6), pp. 1302–1306.

Zongker, D. & Jain, A., 1996. Algorithms for feature selection: An evaluation. Proceed-

ings of the 13th International Conference on Pattern Recognition 2, pp. 18–22.

45

CURRICULUM VITAE

Name Surname : Ceyhun Can ÜLKER

Address : Bahçeşehir Üniversitesi Mühendislik Fakültesi Çırağan

Caddesi 34353 Beşiktaş/İSTANBUL

Date and Place of Birth : 18.08.1988 ANKARA

Languages : Turkish (native), English (fluent)

B.S. : Bahçeşehir University

M.S. : Bahçeşehir University

Institute : The Graduate School of Natural and Applied Sciences

Program : Computer Engineering

Work Experience : Bahcesehir University Computer Engineering Depart-

ment Research and Teaching Assistant (Istanbul, 2010

- today)

46

