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ABSTRACT 
 

     GPF: GIGAHERTZ PULSE FITTER 
 
 

Başaran, Ali 
 
 

Electrical and Electronics Engineering 
Thesis Advisor: Asst. Prof.  H. Fatih Uğurdağ 

 
 

January 2012, 45 Pages 
 

High energy particle physics experiments require the processing of a superposition of 
signals from many particle detectors. Such signal contains many high frequency pulses, 
each of which belongs to a particle. The mathematical characteristics of a pulse, such as 
rise/fall times and amplitude, indicate the particle type. Processing of these signals on 
the fly, as they are received from detectors, is critical. Sending them to an array of hard 
disks to be processed later by a farm of computers would have multiple drawbacks. It 
would require too much bandwidth between the data acquisition cards and the storage 
array, too many disks, and too many computers so that they can keep up with the 
incoming data. Our solution to this problem is Gigahertz Pulse Fitter (GPF). GPF is a 
Data Acquisition System (DAQ) with a Field Programmable Gate Array (FPGA) next 
to Analog-to-Digital Converter (ADC). The FPGA processes the pulses as they occur 
and send only the pulse parameters to the storage/computer farm, thus enormously 
reducing bandwidth, storage, and compute requirements of the farm. This thesis outlines 
the design of GPF from concept to C code, from C code to SystemC code, from 
SystemC to HW architecture, from HW architecture to FPGA implementation. During 
this process, this thesis contributes in the following departments. It outlines a flow so 
that design verification stops being a moving target and the design works the first time it 
is programmed on the FPGA. It presents a novel architecture that combines pipelining 
and parallelism. The parallel part of the architecture is based on our concept of 
Optimized Performance Per Unit Block (OP-PUB). OP-PUB architecture is flexible and 
can be adapted to any pulse rate by calculating the necessary number of Identical 
Parallel Processors (IPPs) and FIFO sizes based on a formula. OP-PUB features a 
priority encoder based dispatcher at the top level and "Loop Pipelining" inside the IPPs. 
The IPP is a specialized CPU executing a fixed iteration body with an indeterminate 
number of iterations. On the FPGA implementation side, we use code generation 
techniques as well as smart pipelining and resource utilization. The architecture and 
design flow proposed are generic enough to withstand changes in the specifics of the 
curve fitting algorithms employed. 
Keywords: FPGA design, Loop Pipelining, Particle Experiment, IPP, OP-PUB. 
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ÖZET 
 

GDB: GİGAHERTZ DARBE BETİMLEYİCİ 
 

Başaran, Ali 
 

Elektrik-Elektronik Mühendisliği 
Tez Danışmanı: Yrd. Doç. Dr. H. Fatih Uğurdağ 

 
 

Ocak 2012, 45 Sayfa 
 

Yüksek enerji parçacık fiziği deneylerinde parçacık dedektörlerinden gelen üstüste 
koyulmuş sinyallerin işlenmesi gerekir. Söz konusu sinyaller, her biri bir parçacığa 
karşılık gelen yüksek frekanslı darbeler içerir. Darbeye ait genlik, yükselme ve alçalma 
zamanı gibi matematiksel öğeler parçacığın cinsini belirtir. Dedektörlerden gelen 
sinyallerin hiçbir gecikme olmaksızın işlenmesi önemlidir. Sinyalleri sabit disklerde 
saklayıp sonradan işlenmek üzere bilgisayarlara gönderemezdik. Data Acquisiton (DAQ 
kartları ile sabit diskler arasında çok fazla bant genişliği, çok sayıda sabit disk ve gelen 
veriye yetişebilmek için çok sayıda bilgisayar gerekirdi. Bizim bu probleme 
bulduğumuz çözümün adı Gigahertz Darbe Betimleyici (GDB). GDB, Analog-Dijital-
Çevirici’nin yanındaki Field Programmable Gate Array’den (FPGA) oluşan bir DAQ 
olarak tanımlanabilir. Darbeler geldikçe sözkonusu FPGA bu darbeleri işler ve 
bilgisayarlara darbeye ait örneklerin kendisinden ziyade darbeye ait parametreleri 
gönderir. Böylece bant genişliğini ve sabit disk ihtiyacını önemli ölçüde azaltırız. Bu 
tezde GDB dizaynı; konseptten C koduna, C kodundan SystemC koduna, SystemC 
kodundan donanım mimarisine, donanım mimarisinden FPGA uygulamasına ana 
hatlarıyla anlatılmaktadır. Dizaynın doğrulanması FPGA aktarımından bağımsız 
gerçekleştirilmiştir; dizayn FPGA ile programlandığı ilk seferde çalışır durumdadır. 
Pipelining ve paralelleştirme tekniklerinin birleştirilmesiyle yeni bir mimari 
sunmaktadır. Mimarinin paralel kısmı bizim OP-PUB (Optimized Performance Per Unit 
Block) konseptine dayanır. OP-PUB mimarisi esnektir ve yeterli IPP (Identical Parallel 
Processor) sayısı ve FIFO derinlikleri hesaplanarak her darbe sıklığına göre 
ayarlanabilir. OP-PUB üstünde öncelik temelli bir dağıtıcı ve IPP’lerin içinde "Loop 
Pipelining" barındırır. IPP, sabit bir iterasyonu önceden belirlenmemiş sayıda 
gerçekleyen özelleştirilmiş bir CPU olarak düşünülebilir. FPGA uygulaması kısmında, 
kod üretimi tekniklerinin yanı sıra verimli kaynak kullanımı ve akıllı pipelining 
kullanmaktayız. Tezde yer alan mimari ve dizayn akışı gerçeklediğimiz algoritmaya 
özgü değişikliklere uyum sağlayabilecek ölçüde kapsamlıdır. 
Anahtar Kelimeler: FPGA dizayn, Loop Pipelining, Parçacık Deneyleri, IPP, OP-

PUB. 
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1. INTRODUCTION 
 
 

In this chapter, the main problem is defined and contributions of this thesis are listed in 

addition to brief explanation of the history of our work and the outline of the whole 

thesis.    

 

1.1    PROBLEM DEFINITION 
 

High-energy physics experiments deal with high frequency pulses. They require DAQ 

systems in order to detect and process the incoming signals from particle detectors. 

Whenever there is a particle, the detectors output a series of signals, which we call 

“pulse”. This pulse is unique for each particle type and has certain mathematical 

characteristics such as amplitude, t0, and tau. Therefore, the curve defined with the 

mentioned parameters actually indicates the type of particle. In the usual experiment 

setup, unique electronic devices are used to measure each parameter. Firstly, there is a 

trigger mechanism to decide whether or not the pulse data will be recorded. Then a huge 

variety of different hardware is used for every parameter, which makes the whole 

system noisy, costly and even risky. Our goal is to combine the functionality of all 

electronic devices, each devoted to a unique parameter. Thus our project deals with the 

problem of building  a single compact DAQ system to detect the pulse and apply an 

algorithm to define the parameters of the curve that best fit the pulse data. This DAQ 

system uses a programmable hardware called FPGA. In this thesis, we focus on the 

implementation of the hardware block called, “GPF”. Figure 1-1 shows the simplicity of 

our proposal versus the traditional experiment setup. 
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  Figure 1.1: Traditional setup versus GPF 

 
  Reference: Veli Uğur Güney, (2010), Triggerless Particle Identification 
  System, June 2010 

 

It is also essential to maintain the system in dead-timeless manner. The signals coming 

from the particle detectors are analyzed and processed on the fly. This ensures that we 

do not lose any pulse during computation time. In digital designer point of view, our 

challenge is to implement a pipelined architecture, which will also have Identical 

Parallel Processors that execute the curve-fitting algorithm. The rate of pulse coming 

from the particle detectors can vary and our system has to have sufficient flexibility to 

handle it.  

 

Lastly, our problem can be broken down to 3 phases: Detection of the pulse, guessing 

an initial set of parameters, and computing the best set of parameters.  

 

1.2    CONTRIBUTIONS OF THE THESIS 

 

•   The most important contribution of this thesis is the efficiency offered to High 

Energy Physics Experiments. FPGA implementation of the curve-fitting 

algorithm proposes a much faster and less complex experiment flow.  

 

•    Electronic modules dedicated to calculate a unique parameter will be replaced 

by a dead-timeless FPGA design. In traditional setup, each electronic module is 



 
 

 
 

3 

locked during its computation time, i.e., it is unable to accept a new input while 

it is busy. Unlike the current devices, our design outputs a set of valid 

parameters on the fly, which accelerates the whole process by approximately 10 

percent. This speed factor will in turn drastically reduce power consumption and 

cost.  

 

•   The area reduction and simplicity should also be taken into account since all 

parameters will be computed using a single compact board instead of a 

collection of electronic devices.  

 

•   We use FPGA instead of CPU to fit our curve. Our trials show that using a C 

code to process the incoming samples would be able to handle a maximum pulse 

rate of 1 kHz. However, our FPGA design, GPF, can handle 1MHz pulse rate 

and even more. In terms of performance, GPF is as powerful as 1000 computers. 

 

•   GPF is composed of a series of pipelined modules and a variable amount of 

identical parallel processors. Each IPP has a unique architecture that consists of 

Loop Pipelining. The concept of Loop Pipelining allows us to share resource and 

maximize throughput at the same time. 

 

•   At this point, we also propose the concept of Optimized Performance Per Unit 

Block. The unit blocks are the IPPs executing an algorithm whose runtime is 

indeterminate. The number of IPPs and the amount of resource used in each IPP 

is such that the throughput of GPF is maximized, i.e., we output a valid set of 

parameters as frequently as possible.  

 

•   It is always essential for programmers to maintain flexibility. One of the 

advantages of FPGA design is the fact that the design itself is reprogrammable. 

Our design work consists of a parameter definition interface, as a result of 

which, hardware definition code with a sufficient number of IPPs can be 

generated based on a specification of pulse rate and clock frequency.    
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1.3 HISTORY OF THIS RESEARCH WORK 

 

This thesis is based on the TUBITAK project proposed by Taylan Akdogan in 2007. 

Main goal was to establish a system with significant computational power that serves 

the purpose of many special electronic modules used for physics experiments in CERN. 

Taylan Akdogan and Veli Ugur Guney provided theoretical fundamentals and the core 

algorithm whereas H. Fatih Ugurdag and Ali Basaran were responsible for the 

implementation on FPGA. Alongside these four people, Onur Baskirt also contributed 

to the project in early phases. Although the design was verified on testbench from TR to 

GP, we could not upload the bitfile on FPGA since there were some issues with the 

Virtex5 board.  
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2. PREVIOUS WORK AND BACKGROUND 
 

 
In this chapter, earlier projects and articles that inspired our system are listed. Then a 

brief section will follow, giving background information about the concept of loop 

pipelining. 

 

2.1   DAQ SYSTEMS 

 

The DAQ that resembles our system the most was used in a mid-scale experiment in 

MIT (Akdogan T., 1999).  Compton electron beam polarimeter system was introduced 

in 1999 and is still present.  MIT/Bates electron beam polarimeter was used to measure 

the polarization of an electron beam that was polarized with the highest current. 

(Akdogan T., 2005) High-energy photons were  produced after Compton interaction and 

detected with CsI crystal detectors. In this structure, every measurement had to be 

completed within 15 minutes and the measurement system had to deal with 100 kHz 

event rate. Due to the fact that handling this event rate with traditional methods was 

impossible, Taylan Akdogan and his colleagues developed an ADC-based system with 

VME-based sampling. The events were sampled at 100 Msps and recorded using a basic 

threshold mechanism. This dead-timeless measurement setup was more than 

satisfactory. (Franklin W.A., 2000) Unlike our design, all signal processing is done on 

CPU. Nevertheless, this project is the basis of our thesis since data is processed on the 

fly in dead-timeless manner.  

 

Hien and Senzaki from Japan (2001) added FPGA to their system created for nuclear 

spectroscopy.  The sampling rate in this study has reached only up to 40 Msps and dead 

time for each trigger is about 1 µs. Although FPGA is not used for signal processing and 

the system has dead-time, it is an important step forward since an FPGA is used in a 

DAQ. 

 

Bolic and Drndarevic developed an FPGA-based photon spectroscopy system (2002).  
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This system measured pulse length and intensity with FPGA. This study minimized the 

usage of analogous circuits by bringing the concept of realizing digital pulse processing 

on FPGA. Although the 8-bit 60 MHz digitizer unit used in this experiment is modest, it 

is conceptually essential since CPU was replaced with FPGA. 

 

Nicolau from Italy (2006) also designed an FPGA-based ADC sampling DAQ system. 

The most important contribution of this study is that the time resolution is set below      

1 ns with the usage of 200 Msps 8-bit ADC. However, FPGA is only used as control 

unit for triggering the pulse instead of processing the samples. The system is triggered 

using a basic threshold mechanism.  

 

Similar concepts are applied to a Positron Emission Tomography (PET) based medical 

imaging system using a non-stop sampling ADC. (Streun M., 2002) The FPGA in this 

work processes 12-bit samples at 40MSps and computes electron-positron annihilation 

time with a precision better than the sampling period (2 ns versus 25 ns).  

 

In 2007, Giachero from Italy developed a dead-timeless DAQ system. This system was 

also VME-based using 18-bit ADC which ensured high precision. However, FPGA was 

still not used for signal processing. In this system, the sampling rate was as low as 5 

kHz.  

 

Gua J.R. and his colleagues made a research (2005) on how FPGA can be utilized in 

DAQ systems. Main goal was to establish a programmable system with high-

performance data processing. In this study, an FPGA with 10 GHz input was presented 

which shows us that FPGA-based DAQ systems can handle all kinds of pulse-based 

signals in experimental physics. 

 

Arcidiacano designed a trigger supervisor for NA48 experiment at CERN. (1999) It was 

an FPGA-based 40 MHz pipelined hardware system which is almost dead-timeless. The 

system processed trigger information from local trigger sources. Unlike our design, the 
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frequency is low and no intelligent algorithm is applied on the input. However, 

considering the fact that this system was developed at 1999, it is a vital step forward.  

 

Khomich and his colleagues investigated the advantageous role of FPGA versus CPU 

by implementing a tracking algorithm for ATLAS experiment (2006). They used a 

hybrid FPGA-CPU implementation and compared the performance to CPU-only 

implementation. It was shown that the parallel processing nature of hardware, FPGA, 

gave up to 3 times speed.  

 

The work that is most similar to ours was presented by Haselman M. and Hauck S. 

(2009) Their setup is used for PET and they fit a model to the pulses. However, the 

model they fit to pulses is not the same as ours. The parameters they derive from the 

pulse are pretty similar to ours though, indicating pulse timing, length, energy, and DC 

offset. They do not use a high-precision compute- intensive iterative algorithm like ours 

to converge on to the curve parameters, because they are interested in a specific type of 

pulse shape, for which they use a reference shape. They target 100 MHz sampling, 220 

kHz pulse rate, and a pulse timing precision of 60 ps, whereas our targets are 1 GHz or 

higher sampling, several million pulses per second, and 20 ps precision in pulse timing. 

 

2.2  LOOP PIPELINING 

 

The concept of loop pipelining is crucial in our design since it enables us to maintain an 

optimal balance between throughput and resource usage. Rodrigues from Portugal 

(2002) used this concept for fast DCT algorithm. Like our design, the subsequent loops 

were made to follow one another by a global FSM.  

 

Jin Qu conducted a research on the scheduling for loop pipelining. (2010) Since loop 

pipelining can be scheduled in various ways and the scheduling affects both resource 

usage and maximum clock frequency, finding the most optimal scheduling is essential. 

For this purpose, a generic method is presented in his paper.  
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3. SYSTEM ARCHITECTURE AND DESIGN METHODOLOGY 
 

 
In this chapter, system architecture, on which GPF will be made use of, will be described. 

Then the GPF overview will be given along with the equation and graphical view of our 

curve model. OP-PUB concept that is introduced by this thesis will be explained in the 

following section and then our implementation flow including why we chose SystemC 

and fixed point will be told. 

 

 3.1  SYSTEM ARCHITECTURE 

 

As mentioned before, our system is designed to be used in high energy particle physics 

experiments. It consists of a series of particle detectors, data acquisition units, PCIe 

interface, a host computer and a compute farm, as shown in Figure 3.1. 

  
Figure 3.1: System level view of experiment setup 
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Particle detectors are made up of a scintillator coupled to photomultiplier tube. (PMT) 

PMTs absorb the light emitted by the scintillator and reemit it in the form of electrons via 
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the photoelectric effect. The subsequent multiplication of those electrons results in an 

electrical pulse. This is the kind of electrical pulse that is pushed toward the data 

acquisition units. Particle detectors output analogous signal which means that it needs to 

be digitized so that it can be processed in hardware.  Figure 3.2 shows the inner regions 

of a compact scintillation detector. Details of its structure are beyond the scope of our 

thesis. 
 

       Figure 3.2: Particle detector view 

 
 

Data acquisition units should have an Analog-to-Digital Converter. (ADC) The ADC 

converts the continuous signal to quantized digital data. The samples regarding the 

electrical pulse, are basically 8-bit integers. The frequency of ADC is 1.5 GHz, which 

means we have 12 Gbps data burst from ADC towards the rest of DAQ. 

 
     Figure 3.3:  Data acquisition unit 
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Our FPGA is placed at the output of ADC, as shown in Figure 3.3, thus it has an ADC 

interface. The ADC interface receives 8-bit samples with 1.5GHz frequency. However, 

the clock frequency of GPF is 200 MHz, almost 8 times slower than the incoming 8-bit 

samples. For that purpose, ADC interface collects 8-bit samples in an asynchronous FIFO 

outputs 64-bit 8-sample blocks to GPF. This means that every clock cycle GPF receives 8 

samples instead of 1. In some cases, GPF does not receive valid sample blocks due to the 

fact that our clock frequency is not exactly one eighth of the sample frequency of ADC. 

GPF has to discard its input when the valid signal from ADC is low. Interfaces are shown 

in the FPGA layout below.  

 
  Figure 3.4: FPGA layout 
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GPF, our design, takes this 64-bit 8-sample blocks and the valid signal from ADC and 

outputs the pulse parameters when the curve-fitting is done. GPF communicates with host 

computer via PCIe interface. It takes some parameters regarding trigger condition  from 

the host computer as input and operates accordingly. This feature enables us to maintain a 

hardware-software co-design. The hardware description language written for GPF takes 

into account the information driven by the host computer. It provides flexibility and eases 

debugging. Thus when FPGA is powered on, GPF “talks” to the computer and the 

experimenter can alter the parameters on-the-fly. 

 

 



 
 

 
 

11 

PCIe is an improved computer expansion card standard of PCI. It is widely used in high-

performance systems. (Koop M.J., 2008) Briefly, PCI is a computer bus that enables us to 

attach hardware devices to computers, such as FPGA. The output of GPF is sent to the 

computer using this protocol. The IP that is synthesized to interface this protocol was 

provided to us by VMETRO company.  

 

3.2 GPF ARCHITECTURE 

 

The architecture of GPF is divided into 6 parts. The order of data path is Trigger, Pulse 

Detect, Guess Parameters, Dispatch Logic, Fitter Agents and Report Logic respectively. 

 

Figure 3.5: GPF macro architecture 

 

 
 

Figure 3.5 shows the submodules that belong to GPF. The data flow from TR to DL is 

pipelined. However, the output of DL is dispatched to a variable amount of parallel fitters 

which we call Identical Parallel Processors. Thus the architecture of GPF is mixed; we 

have series of pipelined modules and parallel processors. IPPs also have a pipelined 

architecture to maximize throughput. 

 

As it can be seen from Figure 3.5, the output of TR is connected to the Pulse Detect 
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module. The task of PD is to compute the parameters that can be computed on-the-fly. 

The amplitude, offset and vHalf are calculated as data is pushed towards GP; there is no 

need to store the samples. GP makes the initial guess of final parameters and for that 

purpose, storage of the parameters from PD and sample data are required.  

 

When GP is done with the parameters, its output is dispatched to one of the available 

processor which we call “Fitter”. The dispatch logic is embedded in a separate module 

called “DL”. DL also stores the output of GP when no fitter is available. The report logic 

receives the availability information from each fitter and sends it back to DL. Runtime of 

a fitter is indeterminate due to the nature of the algorithm called “Downhill Simplex 

Method”. 

 
  Figure 3.6: Pulse Shape with threshold 

THR_H2L THR_L2H

 
 

Figure 3.6 actually shows the input and output of GPF. The digital data input from ADC 

is shown in blue and the continuous red line is the curve that will eventually be defined 

by the output of GPF; the set of parameters. The pulse can be defined by the following 

parameters: amplitude, tau, offset, t0. The curve model is given below:  

 

V(t) = V0 + u(t − t0) ⋅A ⋅
t − t0

τ
⋅e 1− (t − t0)

τ  

 

(3.1) 
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Naturally, every sub module is assigned a unique task. TR takes in 5 parameters from the 

host computer via PCIe as well as the valid signal and 64-bit data (8 samples) from ADC. 

The 5 parameters that TR takes from ADC are: prelength, postfactor, maximum pulse 

length, high-to-low threshold and low-to-high threshold. As mentioned before, these 

parameters are defined by the user and can be modified during runtime.  

 

Figure 3.6 has two threshold points randomly placed as an example. If the curve is going 

downwards, i.e. tau is negative, the pulse can be called a “negative pulse” as in Figure 

3.6. In this case, samples first cross high-to-low threshold, thr_h2l, and then thr_l2h. 

When the pulse is positive, the order is obviously vice versa.  

 

3.3 OP-PUB CONCEPT 

 

This thesis introduces a concept called, “OP-PUB”, which stands for Optimized 

Performance Per Unit Block. It is actually a solid solution to the problem of finding the 

most optimal design architecture to implement our curve-fitting algorithm.  

 

In our verification environment, the average pulse rate is 1MHz and our FPGA operates 

under single, synchronous clock domain with 200MHz frequency. This means that we 

have valid pulse data and guess parameters output by GP in every 200 cycles. There has 

to be a set of modules that take these samples and 3 initial guess parameters as input and 

apply our curve-fitting algorithm. In order to express the generic nature of our concept, 

detailed mathematical explanation of the algorithm will not be discussed here. However, 

we have to state that it executes a loop with indeterminate number of iterations. It can be 

as few as 4 iterations and as much as the highest possible number specified by the user. In 

our case, this limit is set to 500. Each iteration calls a function whose runtime is 

dependent on pulse length. Therefore, the runtime of our algorithm can be described by 

the following equation: 

 

T = k1+N•(k2 ⋅L+ k3)  

 

(3.2) 
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In the equation above, T is the number of instructions fetched by the processor, or in 

hardware designer’s perspective, the number of clock cycles. In either case, it is basically 

a quantitative description of the runtime of our algorithm. The symbol, N, stands for the 

number of iterations and L is the length of pulse. Note that both N and L can not be pre-

determined but they obey a certain range and a probability distribution. The range for N 

is [4,500] and the average is approximately 22. The pulse length varies from 8 to 128 and 

the average is nearly 36. These variables, especially N, are in such a probability 

distribution that the standard deviation is very low. Given these facts, we had 3 

architectural options: (1) No pipelining and No parallelism (2) Pipelining without 

parallelism (3) Combination of pipelining and parallelism: OP-PUB.  

 

Let us suppose that we chose option (1). In that case, Fitter would consist of cascaded 

instruction stages where each stage would correspond to an arithmetic equation. 

Theoretically, the area of Fitter, except for the enormous line of multiplexers, would be: 

one memory as big as Lmax ⋅8  (note that each sample in pulse is in 8-bit integer format) 

for the pulse data, a multiplier and an adder that can handle arithmetic operands with 

maximum bit width, owing to the fact that we can use the same hardware module in every 

stage. This architecture, alone, is highly utilized in terms of resources but is very poor in 

terms of runtime and causes the necessity of implementing enormous memory at the 

output of GP, the pulse data has to be stored in every 200 cycles because Fitter would be 

busy. When the Fitter hits a long pulse with Nmax, for instance, it would not be able to 

accept a new input from GP for as long as Tmax = k1+ 500•(k2 ⋅128+ k3) . Given that k2 is 

12, this would mean 768000 cycles (ignoring k1 and k3), in other words, 3840 valid pulse 

data would have to be stored since there is a pulse in every 200 cycles. Considering a 

series of pulses whose N and L are slightly above average, the need for storage would 

grow exponentially with unknown rate, thus there would definitely be a memory 

overflow. 

 

Option (2) offers a greedy approach in terms of runtime. Suppose we divide all the set of 

instructions to pipeline stages. In every 200 cycles, the new pulse data and parameters are 

pushed towards this new Fitter that is always available. However, this Fitter must have 
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huge built-in hardware to handle Nmax and Lmax. In other words, 3840 pipeline stages have 

to be implemented. This means there would not be any resource sharing, leading to 

enormous non-utilized area. The designer would not make use of the indeterminate run 

time of the algorithm, assuming a fixed maximum for each variable.  

 

OP-PUB, however, combines pipelining and parallelism such that the total area is 

relatively small and runtime is as low as Option (2). We have a variable amount of Fitters 

and a dispatcher logic that sends the pulse data and parameters from GP to the available 

Fitter with the highest priority. (see Figure 3.6) Unlike Option (1), when GPF hits a pulse 

with high N and L values, only one of the Fitters are busy, the next pulse data is sent to 

an available one. Also, these Fitters do not accept a new input while they are busy, 

enabling us to share resource. We call them, “Identical Parallel Processors”.  

 

Identical Parallel Processors can now be said to operate under average values for N and L 

due to the equation above. Thus the runtime for each IPP is Tavg = k1+ 22•(12 ⋅36+ k3) , 

which is 9504. If we want to push pulse data and parameters whenever there is a valid 

(200 cycles in average), we must have 48 Fitters. Note that this amount can be reduced if 

we can eliminate k2, which is the number of constant operations performed on each 

sample whenever the function, namely FindChi2, is called. If we choose not to share any 

resource, we can divide FindChi2 to 12 pipeline stages and eliminate k2 out of the 

equation. However, two of these operations require multiplication. Since a multiplier is 

“expensive” in terms of area, we want to pipeline such that only one multiplier is used per 

each IPP. 
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    Figure 3.7: Loop pipelining flow 
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Figure 3.10 is an abstract illustration of our loop pipelining flow. Our challenge was to 

provide a way to reduce the run time of this function along with keeping the single 

multiplier constraint. The standard pipelining would consist of 12 distinct hardware units 

for the 12 different operations since they have to be executed simultaneously, on the same 

cycle. However, in our loop pipelining flow, the operations are divided to two stages 

because two of the 12 operations require multiplication and we only have one multiplier 

in each Fitter. The resource, multiplier, is shared between two stages and the data is still 

piped. Thus k2 is reduced to 2 instead of 12. 

 

Note that the number of fitters can be calculated by the following equation: 

 

NFitter = Tavg ⋅Fpulse Fclk  

 

In order to support flexibility, we added a perl script that takes N and L as input 

arguments and according to the given equations, generates RTL such that the sufficient 

amount of fitters are instantiated.  

 

3.3  DESIGN METHODOLOGY 

 

Our design methodology resembles the industry-standard FPGA design flow. Firstly, the 

system model for the algorithm is written, usually in MATLAB.  

(3.3) 
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Then this system model is validated using software, SystemC. After the system model 

validation is completed, the SystemC code is translated to RTL. The RTL behavior also 

has to be verified. Eventually, the RTL is synthesized and programmed on FPGA. Like 

industry, these implementation steps can not be seperated with sharp borders. SystemC 

code might be modified during RTL development due to a bug or to ease verification, for 

example, and this modification causes the validation of SystemC code against System 

Model to be repeated.  
 

         Figure 3.8: Implementation flow 
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There are several reasons as to why we chose SystemC. SystemC is not actually a 

different software language, in fact it is a superset of C++ that supports multiple 

concurrent processes. We can emulate our hardware modules using the threads in 

SystemC that works parallel. These threads can be interpreted as different hardware 

modules and SystemC allows communication between those modules. This makes RTL 

translation a lot easier than any other “language” such as C.  
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      Figure 3.9: Floating versus fixed point example 
 

 
 

 

Due to the fact that there are lots of arithmetic computations used in our algorithm, we 

had to choose between two data types: floating point and fixed point. Figure 3.12 shows 

two SystemC code samples (note that SystemC also has a built-in fixed point library) 

showing the difference between these two data types. Floating point has the advantage of 

“unlimited” precision but floating point DSPs are more expensive and generally not 

preferrable if the designer can afford the loss of precision introduced by fixed point. We 

chose to use fixed point after validating our SystemC code against our System model and 

concluding that the precision is more than satisfactory. This validation process was to 

input the same set of files that represent the likely output of ADC towards both models 

and compare their output, as shown in the figure below. This comparison was done via 

plotting the final curve using MATLAB. 

   
     Figure 3.10: Fixed point validation 
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Although SystemC resembles hardware behavior, direct translation of the SystemC code 

to RTL is usually impossible. In a SystemC module, all computations are executed in a 

single cycle; however in RTL, we have to meet a high frequency constraint (200 MHz), 

thus each computation is divided into stages. We have to synthesize our RTL to see 

whether we can meet our constraint and if we cannot do so, we must modify our RTL 

which is usually to divide the combinational architecture into more pipeline stages. Thus 

we have to verify our RTL against SystemC iteratively, each flop insertion requires 

another long simulation run. 

 

Our verification methodology consists of automated self-checking testbenches written for 

each submodule that belong to GPF. The RTL behavior is automatically compared to the 

behavior of SystemC. Basically, the same set of inputs at each clock cycle is driven to the 

SystemC module and RTL, and the output of RTL is compared to the output of SystemC 

via the testbench written in Verilog. It can be considered as a direct comparison of two 

output files. Verification environment is in Linux and the tool we used was Icarus Verilog 

and GTKwave for viewing waveforms.  
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4. SUBMODULE LEVEL MICRO ARCHITECTURE 
 
 

In this section, the detailed micro architecture is given for each module in GPF. 
 
4.1. TR (Trigger) 
 

       Table 4.1: TR interface 

Name Direction Bitwidth Source/Destination 
clk input 1 ADC 
rst input 1 ADC 
dIn input 64 ADC 
wEn input 1 ADC 

preLength input 3 CPU 
postFactor input 5 CPU 

param_threshold_h2l input 8 CPU 
param_threshold_l2h input 8 CPU 
param_width_max input 8 CPU 

dOut output 64 PD 
dOutTag output 2 PD 

 

Clock is 200MHz internal FPGA clock and shared between all GPF submodules as well 

as reset. They are both synchronous. TR receives 64-bit sample block from ADC. This 

block consists of 8 consecutive samples in ascending order - the first sample in [7:0] 

range, second in [15:8] and so on.  

 

ADC cannot output valid sample blocks in approximately every 8 cycles. Thus there is a 

signal called wEn to disable TR from storing the incoming sample block when the 

output of ADC is not valid. In other words, TR stores the sample block in memory 

whenever wEn is high.  

 

TR receives the user-defined parameters from CPU. The preLength is the amount of 8-

sample blocks that are going to be included in the pulse once one of the received 

samples is below or above the specified thresholds. The maximum number of samples 

that can be included in the pulse data is 56.  
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There is also another signal, postFactor, that determines the amount of samples that are 

going to be written to and read from FIFO after one of the incoming samples passes the 

second threshold line. Samples come in multiples of 8, thus 3 fractional bits are 

reserved for this signal as well as 2 bits for integer.   

 
TR outputs the sample blocks, dOut, as well as a handshaking signal called dOutTag.  
 

Figure 4.1: TR macro architecture 
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Figure 4.1 shows the macro architecture for TR that is composed of three main units. 

The task of threshold comparison is to find whether there is any pair of samples that 

cross prm_thr_h2l or prm_thr_l2h. We have to compare each sample with these values 

and tell whether S(i-1) is larger than high-to-low threshold and S(i) is smaller. 

Obviously, vice versa is true for low-to-high threshold. Suppose the output of each 

comparator is a single bit signal that is logic high when the sample is larger than the 

given threshold and logic low when it is smaller. We have to find whether the output of 

S(i) is logic high and the output of S(i-1) is logic low.  
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Figure 4.2: Threshold comparison high-to-low standard 
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Figure 4.2 is a low-level architectural description of the standard threshold comparison 

approach. The three dots can be visualized as the same pair of comparators tied to an 

AND2 gate between samples 2-5. Since the output of a comparator is 1 when S(i) is 

smaller than or equal to threshold and 0 when it is larger, there is an inverter in front of 

the output of each comparator. Thus the output of AND2 gates will be high when there 

is a crossing between S(i-1) and S(i) and the OR8 tree is high when any of these 

crossings occur. Notice the first comparison is done between the last sample from the 

sample block in the previous cycle, sample7_r. This is basically the flopped output of 

sample7.  

 



 
 

 
 

23 

This architecture contains 8 comparators, 8 inverters, 8 AND2 gates and 1 OR8 tree that 

is composed of 7 OR2 gates. Considering the fact that this is duplicated for threshold 

comparison low-to-high except for the location of inverters, we have 16 comparators, 

16 inverters, 16 AND2 gates and 14 OR2 gates. If the pulse is decaying (tau is 

negative), S(i) will be greater than or equal to S(i). The question is whether we can use 

this information to optimize this architecture in terms of area. 

 
If we were sure that the pulses were always long enough that both crossings can not 

occur in the same 8-sample window, the solution would be to put a multiplexer in front 

of each comparator and compare the samples to either prm_thr_h2l or prm_thr_l2h 

depending on TR state. (see Figure 3.8) This would easily be our choice since 

multiplexers demand much less area than comparators.  

 
Figure 4.3: Reduction of comparators 
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As we can see from Figure 4.3, each parameter input of comparator and the output is 

multiplexed. This makes a total of 16 multiplexers instead of 8 more comparators. The 

problem with this architecture is the select signal of these multiplexers. If both crossings 

in a single cycle were impossible, as mentioned above, the select signal would be the 

TR state and the output of the comparison between any two samples. This approach 

would not introduce latency while decreasing the total area. However, since both 

crossings are expected in a single cycle, the select signal tied to the multiplexers on S(i) 

would need the output of the AND2 gate on S(i-1). This would increase the critical path 

up to 8 times longer. Thus we did not choose this architecture. However, we offer the 
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user the option to ignore short pulses and synthesize circuit with the architecture shown 

in Figure 4.3.  

 
        Figure 4.4: TR state machine 
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Figure 4.4 shows the state machine for TR. The initial state (or reset) of TR is IDLE 

which means that there is no trigger whatsoever. This is the most likely situation since 

the clock frequency is 200 MHz and the average pulse frequency is 1 MHz. Given the 

fact that dynamic power is consumed when there are transitions in the circuit, this 

control is essential.  

 

When TR is in IDLE state, it waits for samples to cross either thr_h2l or thr_l2h or both. 

If the samples cross thr_h2l first, it means that the pulse is negative. After one of the 

thresholds is crossed, TR waits for the other threshold. When the other threshold is 

crossed, TR outputs the remaining samples until end of pulse is reached. One corner 

case is that the other threshold may not be crossed for a long time and in that case, TR 

waits until the maximum number of samples for the pulse is received and then goes to 

the DONE state. This rare situation indicates the maximum pulse length determined by 

the user is insufficient or there is no pulse at all. GPF treats this corner case as if there is 

a pulse.  
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Another rare occurrence is when the pulse is too short and both thresholds are crossed in 

the same 8-sample window. 

 
    Figure 4.5: TR circular buffer 
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TR stores every valid sample block in a circular buffer shown in Figure 4.5. The sample 

blocks stored in between A and D are output as valid TR sample blocks. The samples 

from A to B, B to C, C to D are the valid samples before the first threshold, after the 

first threshold and before the second, after the second threshold, respectively. The 

amount of samples before the first threshold is determined by the user as pre length and 

the amount of samples after the second threshold is the product of the length between B 

to C and another parameter defined by the user as post factor. 

 

As it can be seen from Figure 4.5, the valid pulse data does not actually start when the 

first threshold is crossed; i.e. there is valid data before TR transits from IDLE to 

WAIT_H2L or WAIT_L2H. The amount of valid data before trigger is determined by 

the user.  If pre length is 16,  the read pointer starts from the previous two locations 

since each memory slot stores 8 samples. From that point on, we write to and read from 

the memory simultaneously at every clock cycle except when the valid signal from 

ADC is low. Here the ADC valid frequency introduces an intriguing problem if we 
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choose to continue reading from the circular buffer even if the data from ADC is not 

valid.  

 

Regardless of the memory size, the read pointer might “catch” the write pointer if the 

pulse length exceeds a certain limit that depends on the valid frequency and the 

maximum allowed pre length parameter set by the user.  

 

PulseLenmax = Pr eLenmax•
Fclk
(Fclk −Fvld)  

 
The equation above is actually derived from a simple “pool” problem. The write pointer 

starts from the point B and the read pointer starts from the point B. Suppose the valid 

pulse data frequency is 7/8 of the clock frequency. Then the distance between the read 

pointer and the write pointer will be decremented in every 8 cycles, leading to the 

constraint above. Given the prelength and the frequencies, the size of the circular buffer 

is modified via code generation using a Perl script. 

 

TR also includes another area optimization trick. After the second threshold is crossed, 

we are at point C of the circular buffer shown in Figure 4.5. At that point, the amount of 

samples we need to read from the circular buffer is postfactor multiplied by the amount 

of samples between B and C. There are two approaches to this problem. The first one is 

the software approach: (1) count the number of samples between B and C, (2) multiply 

this count by the postfactor when point C is reached. However, this would require a 

multiplier which is costly in terms of area and speed. Thus we chose the second 

approach: add postfactor to itself each cycle within the range B and C. The figure below 

is a comparison of these two approaches. 

 

 

 

 

 

 

(4.1) 
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         Figure 4.6: Removal of multiplier 
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As it can be seen from Figure 4.6, a huge multiplier and an incrementer is replaced by a 

single adder. These are the kinds of optimizations that EDA tools can not make. 

  

4.2. PD (Pulse Detect) 
 

       Table 4.2: PD interface 

Name Direction Bitwidth Source/Destination 
clk input 1 ADC 
rst input 1 ADC 

PDdIn input 64 TR 
PDdInTag input 2 TR 
PDdataVld output 1 GP 

PDdOut output 64 GP 
PDparamVld output 1 GP 
PDparamOut output 112 GP 

 
Clock and reset are shown to be coming from ADC since the clock and reset are not 

modified within GPF by any means.  

 

PDdIn and PDdInTag are inputs received from TR as dOut and dOutTag. (see Table 4-

1) This is actually the 64-bit data, i.e. the 8-sample block and the 2-bit handshaking 

signal. 
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     Table 4.3: Tag information 

PDdInTag[1:0] Definition Action 
2‘b00 TR is inactive. No valid data 

for PD 
No action 

2‘b01 Signals the first cycle trigger 
has begun 

timestamp is captured 

2‘b10 TR is sending valid pulse data pulse data is analyzed  
2‘b11 Signals the last valid pulse 

data 
outputs parameters 

regarding pulse 
 

PD module needs to know the beginning and end of the pulse as well as the sample 

blocks in between. That is why we used a 2-bit handshaking system instead of 

implementing the same control inside PD. 

PDdOut is the 64-bit flopped output consisting of the 8 samples received from TR. 

PDparamOut, however, is the collection of parameters that is computed on-the-fly. It 

consists of 112 bits: timestamp(64), dataN(12), offset(12), amplitude(12), Vhalf(12). 

These parameters are required by GP to make the initial guess.  

 

The mathematical explanations behind the operations performed on the sample data are 

beyond the scope of our thesis. From a hardware designer point of view, as it will be 

shown more clearly in the following chapters, the only goal is to implement the given 

algorithm in the most optimal and flexible way.  

 

        Figure 4.7: PD macro architecture 
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The task of PD is to compute the parameters that can be computed on-the-fly. Thus PD 

requires no storage of pulse data whereas TR had to have storage of all valid data from 

ADC and push the data that is included in the pulse towards PD.  

 

The computation of the number of samples is solely based on the tag information 

received from TR. When the tag is equal to 2 or 3 (see Table 4-3), dataN is incremented 

by 8. Adding by 8 is basically the same as adding by 1 in terms of hardware complexity 

since the number 8 is a constant whose only one bit is high. 

 

Offset calculation also depends on the tag information as well as the pulse data because 

offset is defined as the average value of the first 8 samples. Thus when the tag 

information in the previous cycle is 1 and in the current cycle it is 2, the output of the 

summation tree has to be captured as the offset value.  

 
Figure 4.8: Max binary tree 
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The figure above is a low-level description of how PD computes the maximum sample 

of the pulse data on-the-fly. The signal, pulseStart, is actually high only when the tag is 

equal to 1, meaning the 64-bit data is actually equal to the timestamp. This control 
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enables us to reset the maximum to zero (GND) when the new pulse data is introduced. 

Note that the maximum of the 8-sample input in a given cycle is compared to the 

current maximum on the fourth level.  

 

Although not shown in the figures, these kinds of combinatorial paths have been 

pipelined in our RTL. The latency of PD is determined by the user and the number of 

pipeline levels are arranged accordingly. This flexibility is required since the user may 

want to synthesize GPF for lower frequencies to test functionality. 

 

4.3. GP (Guess Parameters) 
 

      Table 4.4: GP interface 

Name Direction Bitwidth Source/Destination 
clk input 1 ADC 
rst input 1 ADC 

i_GPdataVld input 1 PD 
i_GPdata input 64 PD 

i_GPparamVld input 1 PD 
i_GPparam input 112 PD 

o_GPdataVld output 1 DF 
o_GPdata output 64 DF 

o_GPparamVld output 1 DF 
o_GPparam output 144 DF 

 

GP receives its inputs from PD. All parameters are passed through the same data bus. 

The handshaking mechanism is the same as in PD. Whenever the parameters that are 

output by GP are valid, the output o_GPparamVld is high. The parameters of GP 

include: timestamp, dataN, offset, t0, aDivTau, invTau. The data output of GP is the 

untouched version of the pulse’s sample content.  
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  Figure 4.9: GP macro architecture 
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GP consists of three main units: Pulse Store, Pulse Process, PostLude. Figure 3.9 is a 

simplified illustration of the relationship between these units. A bus is defined as the set 

of data and its handshaking signal, i.e. paramBus is a set of parameters and their valid 

signal. All parameters share these same handshaking signal. PostLude does not directly 

receive the sample data since only high-complex arithmetic implementations are 

included in this unit. 

 

        Figure 4.10: Pulse store micro architecture 
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Pulse Store unit has two memory modules : parameter FIFO and pulse FIFO. The 

parameter FIFO stores the parameters that are received from PD: amplitude, offset, 

vHalf, number of samples included in the pulse (dataN) and timestamp. The pulse 

FIFO, on the other hand, stores the 8-sample blocks coming from PD. Why did we have 

to use memory inside GP? The reason is that GP, unlike PD, can not make the guessing 

of the final parameters on-the-fly. In order to find t0, for example, we have to determine 

where the samples cross vHalf which is done in Pulse Process unit. The width for pulse 

FIFO is of course 64 (8-samples each of 8 bits) and for parameter FIFO it is 112. (see 

PD interface for the parameter output width) 

 

How did we determine the depth for these memory modules? Firstly, the pulse FIFO is 

filled with sample values and after one cycle of delay, the parameters regarding the 

pulse is written to parameter FIFO.  This one cycle is the reason why the depth of 

parameter FIFO is 2 instead of 1. During that one-cycle, before we start reading from 

the parameter FIFO, another sample-block regarding the pulse can come from PD. 

Knowing that the maximum pulse length is 256 which makes 32 slots in data FIFO, we 

add another slot for the above mentioned cycle and the depth is chosen to be 33. For all 

practical purposes, these two parameters are also left to the user. 

 

The read logic for these memory modules are also shown in Figure 4.10. If the 

parameter FIFO is not empty and the previous value of rdCnt is zero, the bit range on 

which dataN is held is assigned to rdCnt. After one cycle, we read from the parameter 

FIFO, that is, rdParam is high. The signal rdParam can stay high because the depth of 

the parameter FIFO is maximum 2. Also, the signal rdCnt is decremented by 8 until it 

reaches zero and the read enable for data FIFO is high if it is non-zero. This ensures that 

we read from the data FIFO as many as the number of samples included in the pulse, 

not more. Note that the value of rdCnt can not be assigned to the next pulse’s dataN 

during the cycles where we read from the data FIFO since the condition depends on the 

previous value of rdCnt being zero.   
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     Figure 4.11: Pulse process state machine 
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The purpose of Pulse Process is to find where the crossings of vHalf occur and send 

appropriate values towards PostLude. Thus a state machine is required as shown in 

Figure 4.11. Since we do not know whether the pulse is positive or negative, the first 

crossing of vHalf can be either low-to-high or high-to-low. The state machine is usually 

idle, waiting for a valid set of parameters from Pulse Store. When this set of parameters 

is valid, it transits to waiting for low-to-high and high-to-low. At this state, t_h2l and 

t_l2h values are updated as well as checking for both high-low and low-to-high 

crossings. After any of the crossings occur, the state is transferred to either wait_h2l or 

wait_l2h. At these states, only the values (t_l2h or t_h2l) for the crossing that has not 

yet occurred are updated. In all waiting states, the crossings may not occur until all data 

is processed. This corner case is handled using a discard state. After the crossings occur, 

the remaining data is sent during the send data state. When the receiving of all data is 

finished, the parameters required by Postlude (see parambus in Figure 4.9) is sent and 

the Pulse Process completes its task. 
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    Figure 4.12: Postlude inner modules 
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PostLude can be considered a hardcore arithmetic module. All these arithmetic units 

that are shown in Figure 4.12 is put inside a different module because these 

computations do not need the sample content (no databus) and the latency can be 

changed depending on the operating frequency.  These units depend on each other and 

they are basically the implementation of arithmetic equations taken from SystemC code. 

The RTL for lookup tables are generated using SystemC software which ensures that 

the design is aligned with system model.  

 

4.4. DF (Dispatcher/Fitter) 
 

       Table 4.5: DF interface 

Name Direction Bitwidth Source/Destination 
clk input 1 ADC 
rst input 1 ADC 

i_DataVld input 1 GP 
i_Data input 64 GP 

i_ParamVld input 1 GP 
i_Param input 144 GP 
o_Full output 1 RL 
o_Vld output 64 RL 

o_Param output 144 RL 
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Dispatcher/Fitter has the highest area and complexity amongst all other modules. It 

receives data and parameters from GP and outputs the valid signal and final parameters 

of the curve whose fitting process is finished. There is also another signal to report that 

all fitters are full and DF is unable to accept a new pulse from GP. 

 

         Figure 4.13: DF macro architecture 
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The write logic for both parameter FIFO and data FIFO is simple. Whenever the data 

and parameters from GP are valid, they are written to these FIFOs. We first read from 

the paramFIFO because like in GP, we need to know how many sample blocks are 

going to be read from dataFIFO. As the read count is set to the approprite value stored 

in the paramBus, we read from the dataFIFO decrementing read count by 8 until it is 

zero.  

 

The corner case here occurs when the pulse is discarded. (see Figure 4.11) GP sends the 

data and valid signals while it is trying to find the crossings of vHalf. However, after all 

the data is sent and still there is no crossing, GP does not send any parameter. While GP 

is sending the data, they are stored in the dataFIFO that belongs to DF. Thus we have 

sample-blocks that are useless. How do we handle this situation? One solution would be  

to modify GP such that it sends an extra signal inside its paramBus indicating that the 

data that has been written to the dataFIFO is garbage. In order to make GPF efficient 

from TR to GP, we chose to let DF understand whether the pulse has been discarded or 

not. Since GP does not send any valid parameter if the pulse data is to be discarded, DF 
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waits for as many cycles as the latency of GP and concludes that discard has occurred if 

there is no valid parameter data. When DF reaches that conclusion, the redundant data 

from dataFIFO is read but none of the fitters are enabled. 

 

There is also another essential unit called, “priority encoder”. The runtime for fitters is 

indeterminate; thus we need to have a signal from each fitter stating whether it is busy 

or not. Priority encoder is a pure combinational circuit that receives these signals from 

fitters and outputs the index of the next fitter to be enabled. At this point, we address 

another contribution of our thesis : flexibility. The number of fitters can be changed by 

the user and as the number of fitters vary, the complexity and input/output bit widths of 

the priority encoder also has to vary. This forces us to make the priority encoder 

generated by a Perl script. Our script takes N, the number of fitters, as input and 

generates RTL accordingly. 
 

          Figure 4.14: Fitter macro architecture 
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Fitter is ruled by a global finite state machine. This FSM consists of necessary steps to 

apply the given curve-fitting algorithm that will further be explained. The pulse data has 

to be stored in a certain memory whose size is as much as it can hold the longest pulse 

possible. The reason is that the pulse data is used every time find chi2 is activated. Sort 

Chi2 is a module needed to sort the chi2 values of the given points. LUT coarse is there 



 
 

 
 

37 

to be used during FindChi2 operation. However, LUT 1/x is used both for FindChi2 and 

other operations. It is actually the same generated RTL that is used in PostLude for GP. 

(see Figure 4.12)  Using only one multiplier per fitter was the core challenge of our 

design. The inputs to the multiplier change in every multiplication operation, thus there 

is a long line of cascaded multiplexers and a flip-flop in front of it.  

 

Figure 4.15: Fitter global FSM 

 

IDLE

FIND
RTOL

SORT
CHI2

GET
PSUM

F_CHI2
I

ADD
NN

FIND
NN

CHECK
BREAK

CONDITION

AMOTRY

NMAX
EXCEEDED

FIT
SUCCESS

F_CHI2
II

F_CHI2
III

F_CHI2
IV

    
 

Fitter is usually in the IDLE state. It awaits the valid signal coming from the 

dispatcher’s priority encoder so that it can be activated. The first 5 states after activation 

can be considered as the prelude stage because once these states complete their tasks, 

there is no return.  

 

Firstly, the leading DC part from the pulse data has to be gotten rid of. The amount of 

samples that are going to be discarded is named “nn” that is equal to t0 minus 1. This 

value requires modification of some of the initial guess parameters (t0, timestamp, 

dataN) received from GP. Thus there is another state for that modification. Now we 

have 3 parameters that define our curve which is only a guess, not as good as the final 

parameters we aim to find after the whole fitter process. We start applying the curve 
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fitting algorithm due to Nelder and Mead (1965). Our aim is to find the set of 

parameters that gives us a curve whose chi2 is minimum. Since we have 3 parameters 

(t0, invTau, aDivTau), we first find the chi2 for the initial guess and then for 3 others 

made by adding a constant value to each parameter. That is why we need 4 different 

FIND CHI2 states. We can think of the chi2 values as one point on the centre (initial 

guess) and 3 other points around it. This can actually be considered as the initial shape 

of our amoeba.   

 

Each point of our amoeba actually represents a curve. We compute the sum of each 

parameter in the GET PSUM state. Thus we have 3 different summations. Note that 

initially they are p(i)*3+p(i)+step. These summations are required in the latter stage of 

our algorithm: AMOTRY. After computing these sums, we sort the chi2 values that are 

initially provided by the prelude stage. This is required by the COMPUTE RTOL state. 

The value, “rtol”, can be considered as a quantitative measurement of how well we have 

fit our curve. For this computation, we require both division and multiplication. Since 

division in hardware is too expensive, we use our (1/x) look-up table and do two 

multiplications. Note that at this stage, we can not simultaneously find the chi2 because 

we have only one multiplier per fitter. 

 

Once we have our value to check our curve parameters, we transit to CHECK BREAK 

CONDITION state. At this point, we can either conclude that amongs the four points 

we have, the one with the minimum chi2 (note that we have already sorted them) is our 

final output or we can continue “moving our amoeba” or if we have tried long enough 

we can conclude that we can not fit this curve. This is what makes the runtime of fitter 

indeterminate. Obviously, if the value “rtol” is small enough we transit to FIT 

SUCCESS stage and fitter is done and goes to IDLE. Otherwise we transit to AMOTRY 

stage. The unfortunate situation would be to reach a certain maximum number of find 

chi2 calls and discard this set of pulses. At the NMAX EXCEEDED stage, fitter is 

again done and reverts back to IDLE. The maximum limit is determined by the user. 
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The stage called, “AMOTRY” includes inner states because there are a lot of if-else 

conditions. Briefly, we modify our parameters by scaling down or up and compute the 

new chi2 values. Then we check them against the sorted chi2 values and decide the 

direction of our amoeba. Note that the less we visit this stage the better it is, because 

this is where we call find chi2 at least two times.  

 

The runtime for find chi2 is essential it is executed 22 times in average. We had the 

challenge of implementing a process that uses single multiplier as well as optimizing 

the latency. This is where loop pipelining occurs. It actually consists of 4 prelude stages 

that lasts one cycle each. Then for each sample from the pulse, there are 14 cycles of 

operation. However, we do not have 14 different states for that. If we list these 

operations such as: op0, op1, .. op14; we pipeline such that while we do op0 for s(4), 

for example, at the same cycle we do op8 for s(0). The throughput is 0.5, meaning that 

we finish operating a sample from the pulse in every two cycles. Note that the 

throughput would normally be improved if multiplier were not our bottleneck. We have 

two multiplication operations to be performed for each sample and we can not perform 

two multiplications within a single cycle. 

 

Finally, when fitter is done with the pulse it asserts a valid signal as well as the final set 

of parameters. This is actually the valid output of the whole DF. After this valid signal, 

the busy output is deasserted. In the unfortunate cases where the maximum number of 

find chi2 calls have been reached, the busy output is still deasserted but the valid signal 

is not asserted. 
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5. RESULTS AND CONCLUSION 
 

 
In this section, verification and synthesis results will be provided along with the revisit 

of our contributions as the conclusion.  

 

5.1. RESULTS 
 

We were able to verify and synthesize our design, namely GPF, starting from TR to GP. 

The output of TR and PD were 100 percent match with the output of SystemC for both 

positive and negative pulses. Our sample size includes corner cases such as back-to-

back pulses and very short pulses whose length is as small as 8. GP was more than 99.9 

percent match with the output of SystemC, the shown mismatch occurred on some 

pulses that needed to be discarded any way. Thus we consider GPF to be fully verified 

from TR to GP. Our simulation runs were 8ms with an average pulse rate approximately 

1MHz.   

 

We also synthesized our design using Synplify Premier. Xilinx ISE was used to place 

and route. The type of FPGA we used for mapping was Virtex5 SX95T. The worst slack 

was  0.015 with a target period of 5.0 ns since our target frequency was 200MHz.  

 

Table 5.1 shows the resource usage in GPF according to our synthesis report. Only 4 out 

of 244 block rams, 3 out 640 DSP slices and 2165 LUTs are used in TR to GP which 

consists of less than 2 percent of the available resources in Virtex5 SX95T. Note that 

PCI-e interface and ADC interface is not included in this synthesis report.  
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           Table 5.1: Resource usage report in GPF 

Resource Usage 
DSP48E 3 

FD 600 
FDE 278 
FDR 514 

FDRE 620 
FDRS 8 
FDS 8 

FDSE 8 
GND 39 

MUXCY 31 
MUXCY_L 854 
RAM32M 29 

RAM32X1D 1 
RAMB18 1 
RAMB36 2 

RAMB36SDP 1 
VCC 39 

XORCY 772 
LUT1 355 
LUT2 629 
LUT3 229 
LUT4 232 
LUT5 112 
LUT6 304 

LUT6_E 3 
IBUF 1 

IBUFG 1 
OBUF 210 
BUFG 1 

 
 
5.2. CONCLUSION 
 
 
In this thesis, we proposed an FPGA design for High Energy Physics Experiments. GPF 

allows the experiment makers a very efficient platform. Instead of using specialized 

electronic modules dedicated to calculate a certain parameter, an FPGA card can be 

used along with a computer.  
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The OP-PUB concept introduced by this thesis is essential. By combining the 

functionality of loop pipelining and parallelism, we offer a hardware implementation 

method to optimize iterative algorithms in terms of resource usage and timing. As 

described in Section 3.3, our method is generic enough to be applicable in many other 

implementations. Our design work had the challenge to meet a high frequency, 200 

MHz, as well as utilizing the limited resources in FPGA. 

 

Flexibility provided to the user is  another contribution of our work. The user can alter 

the parameters regarding the algorithm such as threshold values and maximum pulse 

length allowed for each pulse on-the-fly. 

 

Using FPGA instead of CPU was another novel approach proposed by this thesis. The 

implementation of the curve-fitting algorithm on FPGA is almost 1000 times faster than 

a computer, which makes our experiment setup cost less as well as providing significant 

simplicity. 

 

Finally, GPF offers dead-timeless experiment setup. Unlike the electronic modules that 

are currently used in traditional setups, the system does not get locked up while 

processing the pulse.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

42 

REFERENCES 
 
 
Güney V.U., 2010. Triggerless Particle Identification System. Bogazici University Physics 
Dept. Master’s Thesis, pp. 2.  
 
Akdogan T., 1999. Flash ADC Based DAQ System Design for the MIT/Bates Compton 
Polarimeter. Technical Design Report, MIT/Bates - Blast 9907. 
 
Akdogan T.,  2005. Performance Report and Polarization Results of the MIT/Bates Compton 
Polarimeter. Project Report, MIT/Bates - Blast 0505. 
 
Franklin W.A., Akdogan T., Marfuta P., 2000. A Compton polarimeter for the MIT/Bates South 
Hall Ring. Prog. in Particle and Nuclear Physics, 44, 6. 
 
Crawford C.B., Sindile A., Akdogan T., 2007. Measurement of the proton’s electric to magnetic 
form factor ratio from H(e,e’p). Phys. Rev. Lett. 98, 052301.  
 
Hien D.S., Senzaki T., 2001. Development of a fast 12-bit ADC for a nuclear spectroscopy 
system. Nucl. Inst. and Meth. in Physics A, 457, 356. 
 
Bolic M., Drndarevic V., 2002. Digital gamma-ray spectroscopy based on FPGA technology. 
Nucl. Inst. and Meth. in Physics A, 482, 761. 
 
Nicolau C.A., 2006. An FPGA-based readout electronics for neutrino telescope. Nucl. Inst. and 
Meth. in Physics A, 567, 552 
 
Streun M., Brandenburg G., Larue H., Zimmermann E., Zoemons K., Halling H., 2002. A PET 
system with free running ADCs. Nucl. Inst. and Meth. in Physics A, 486, 18. 
 
Giachero A., Guardincerri E., Musico P., Pallavicini M., Ottonello P., 2007. Design and 
performances of a multichannel high resolution simultaneous sampling ADC card with on-
board data elaboration capabilities. Nucl. Inst. and Meth. in Physics A, 572, 365. 
 
Gua J.R., You C., Zhou K., 2005. A 10 GHz 4:1 MUX and 1:4 DEMUX implementted by a 
Gigahertz SiGe FPGA for fast ADC. Integration, the VLSI Journal, 38, 525. 
 
Arcidiacano R., Barberis P.L., Benotto F., Bertolino F., Govi G., Menichetti E., 2000. The 
trigger supervisor of the NA48 experiment at CERN. Nuclear Instruments and Methods in 
Physics Research Section A, vol. 443, pp. 20-26.  

Khomich A., Hinkelbein C., Kugel A., Manner R., Muller M., 2006. Using FPGA coprocessor 
for ATLAS level 2 trigger application. Nucl. Inst. and Meth. in Physics A, 566, 80 
 



 
 

 
 

43 

 
 
Haselman M., DeWitt D., McDougald W., Lewellen T.K., Miyaoka R., S. Hauck S., 2009. 
FPGA-Based Front-End Electronics for Positron Emission Tomography. ACM/SIGDA Symp. 
on Field-Programmable Gate Arrays, pp. 93-102. 

Haselman M., Hauck S., Lewellen T.K., Miyaoka R.S., 2009. FPGA- based pulse parameter 
discovery for positron emission tomography. IEEE Nuclear Science Symp. and Medical 
Imaging Conf., pp. 2956- 2961.  

Koop M.J., Huang W., Panda D.K., 2008. Performance Analysis and Evaluation of PCIe 2.0 
and Quad-Data Rate InfiniBand. High-Performance Interconnects.  

Cuveland J., Rettig F., Angelov V., Lindenstruth V., 2008. An FPGA-based high-speed, low-
latency trigger processor for high- energy physics. Proc. International Conf. on Field 
Programmable Logic and Applications, pp. 293-298.  

Muller H., Pimenta R., Yin Z., 2006. Configurable electronics with low noise and 14-bit 
dynamic range forphotodiode-based photon detectors. Nucl. Inst. and Meth. in Physics A, 565, 
768. 
 
Shimazoe K., Yeol Y.J., Minamikawa Y., 2007. Development of 40 channel waveform sampling 
CMOS ASIC board for Proton Emission Tomography. Nucl. Inst. and Meth. in Physics A, 573, 
99. 
 
Liu M., 2008. ATCA-based computation platform for data acquisition and triggering in particle 
physics experiments. Proc. International Conf. on Field Programmable Logic and Applications, 
pp. 287-292.  

Liu M., Lu Z., Kuhn W., Jantsch A., 2011. FPGA-based particle recognition in the HADES 
experiment. IEEE Design & Test of Computers, vol. 28, pp. 48-57.  

Nelder J.A., Mead R., 1965. A simplex method for function minimization. The Computer 
Journal, vol. 7, no. 4, pp. 308-313.  

Chao L.F., LaPaugh A.S., Sha M., 1997. Rotation scheduling: a loop pipelining algorithm. IEEE 
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 16, pp. 229-239.  

Qu J., Zhao R., Liu T., Zhang, 2010. The research of FPGA-based loop optimization pipeline 
scheduling technology. Computer and Communication Technology in Agriculture Engineering, 
International Conference. 
 
 



 
 

 
 

44 

 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

45 

 
CURRICULUM VITAE 

 
 
 
Full Name:   Ali BAŞARAN 
 
Address:  Hüsrev Gerede Cad. No:18 D:23 Beşiktaş 
 
Birth Place/Year: Istanbul/1986 
 
Foreign Language: English (advanced) 
 
Elementary School: Reşat Nuri Güntekin İlköğretim Okulu (1992-1997) 
 
High School:  VKV Koç Özel Lisesi (1997-2004) 
 
BS:   Istanbul Technical University (2004-2008) 
 
MS:   Bahçeşehir University (2008-2012) 
 
Institute:  Natural and Applied Sciences 
 
Programme:  Embedded Video Systems – Chip Track 
 
Work Experience: November 2010 – ongoing 
   Ericsson Microelectronics Design Centre 
   September 2008 – June 2010 
   Bahçeşehir University 
 
 
 
 
 
 
 


