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ABSTRACT

INERTIAL SENSOR FUSION FOR 3D CAMERA TRACKING

Nuri Ozer

Electrical and Electronics Engineering

Thesis Advisor: Assoc. Prof. Cigdem Eroglu Erdem

Thesis Co-Advisor: Prof. Dr. A. Tanju Erdem

February 2012, 150 pages

3D motion tracking becomes more important in computer vision with increase of
robotics and augmented reality's (AR) applicable areas such as medical education,
remote robot control, entertainment and cultural heritage. In order to achieve a realistic
feeling of immersion, the rendering of the virtual content has to be in alignment with
real objects in the video and this requires a high-accuracy 3D tracking. The methods
using only camera measurements generally perform well at slow camera motion;
however they become less accurate at high velocities and accelerations due to motion
blur. Inertial sensors on the other hand measure the derivatives of the camera pose and
hence can be employed to improve the tracking performance at high velocities and
accelerations, but cannot perform well at slow motion because of the error drift.
Therefore, we present a high-accuracy 3D camera tracking method using inertial sensors
but not require placing any devices or points on the scene. 3D information of scene
where 3D motion tracking is done is previously known. The method consists of an
Extended Kalman filter (EKF) that fuses the information from visual and inertial
sensors. A hybrid filter combining the Bayesian filter and the direct linear
transformation (DLT) is also used instead of EKF. The biases of the inertial sensors are
also considered during the motion. In addition to performance comparison of these two
filter, the performance of using both or one of accelerometer and gyroscope
measurements as control input is compared to using both or one of accelerometer and
gyroscope measurements as measurement. It is concluded via simulations that using
inertial sensors in 3D camera tracking gives more accurate results and using inertial
sensors as measurement or control input does not affect the performance of 3D camera
tracking, while providing a lower complexity tracker. Also, EKF always performs better
than the hybrid filter in simulations.

Keywords: 3D Motion Tracking, EKF, Visual and Inertial Sensor Fusion, Hybrid
Filter, DLT



OZET

3B KAMERA TAKIBI ICIN EYLEMSIZLIK ALGILAYICILARININ
BIRLESTIRILMESI

Nuri Ozer

Elektrik-Elektronik Miihendisligi

Tez Danismani: Dog. Dr. Cigdem Eroglu Erdem

Tez II. Danismani: Prof. Dr. A. Tanju Erdem

Subat 2012, 150 sayfa

Robotlarin ve eklenmis gerceklik uygulamalarinin tip egitimi, robotlarin uzaktan
kullanimi, eglence ve kiiltiirel miras gibi kullanim alanlarinin artmasi ile birlikte, 3B
(3 boyutlu) takip sistemlerinin Bilgisayarli Gorii alaninda 6nemi biraz daha
artmaktadir. Eklenmis gergeklik uygulamalarinda gergeklik hissinin yiiksek olmasi i¢in
canlandirma sirasinda kullanilan sanal karakterlerin mekan igerisinde dogru bir sekilde
hizalanmasi ¢ok 6nemlidir. Bunun i¢in 3B takip sisteminin dogrulugu artirilmalidir.
Sadece video verisi kullanan 3B takip sistemleri hizli hareketin oldugu durumlarda
goriintii ¢cok degisken olacagindan, yeterince iyi izleme sonuglar1 vermeyebilirler.
Eylemsizlik algilayicilart ise hizli hareket olan durumlarda iyi izleme yapabilirler,
ancak az hareketin oldugu durumlarda ise Ol¢lim hatalarinin birikmesi nedeniyle iyi
calismayabilirler. Bu sebeple, hareket takibinin dogrulugunu artirmak i¢in bu tezde
eylemsizlik algilayicilarinin verilerinden de yararlanilacaktir. Ayn1 zamanda bu takip
sistemi icin mekana herhangi bir cihaz veya isaret yerlestirmeye gerek
duyulmamaktadir. 3B hareket takibi video kameralar ve eylemsizlik algilayicilar
kullanilarak yapilmistir. Hareket takibinin yapilacagi mekanin 3B bilgisi dnceden
cikarilmistir. Kamera verilen gelen verilerle eylemsizlik algilayicilarindan gelen veriler
bir dongiisel Bayes kestirimi ¢ergcevesinde birlestirilmistir. Ayrica, bu tezde 3B hareket
takibi i¢in hareketten yapi ¢ikarma yontemi ile dongiisel Bayes siizge¢leme yontemini
birlestiren karma bir siizgegte gelistirilmistir. Eylemsizlik algilayicilarun sapma
modelleri de hareket takibi sirasinda g6z oniine alinmistir. Donglisel Bayes siizgeg ile
karma siizgecin  performanslarmin  karsilastirilmasinin -~ yaninda  eylemsizlik
algilayicilarindan gelen verilerin Bayes veya karma siizgegte Ol¢lim yerine kontrol
girdisi olrak kullanilmasinin takip performansim1 nasil etkiledigi gozlenmistir.
Simiilasyonlar sonuglarina bakarak eylemsizlik algilayicilarinin 3B hareket takibinde
kullanilmas1 daha dogru sonuglar bulmasini saglamis, eylemsizlik algiyacilarindan
gelen verilerin 6l¢lim veya kontrol girdisi olarak kullanilmasi performansi neredeyse



hi¢ etkilememesine ragmen siizge¢ kullanimdaki karmasikligi azaltarak maliyeti
diistirdiigii gozlemlenmistir. Bununla birlikte dongiisel Bayes siizge¢ kullanmak karma
siizge¢ kullanmaya gore her zaman daha iyi sonuglar verdigi gézlemlenmistir.

Anahtar Kelimeler: 3B Hareket Takibi, Dongiisel Bayes Kestirimi, Gorsel ve

Eylemsizlik Algilayici Verilerinin Birlestirilmesi, Karma Siizgeg, Hareketten Yapi
Olusturma Y 6ntemi

Vi
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1. INTRODUCTION

1.1 MOTIVATION

Augmented reality (AR) is a system which enables users to see real and virtual objects
together in the same place. What distinguishes AR systems from virtual reality (VR)
systems is that the image is created entirely using computer graphics in VR. AR defines
a point between the real world and the virtual reality. Instead of replacing the real world
totally, AR systems require to complete and enrich the real world (Azuma 1997).

AR is applicable to many areas such as medical education, remote control,
entertainment, and cultural heritage (Papagiannakis et al. 2007; Papagiannakis et al.
2005; Azuma et al. 2001; Azuma 1997). In Figure 1.1.1, the examples of the AR that
are the revitalization of historic cultural heritage and the placement of the virtual

furniture in a room can be seen.

Figure 1.1: Examples of AR systems

Source : Papagiannakis et al. 2007; Davison et al. 2007

Head mounted displays (HMDs) are commonly used in AR applications to display the
virtual objects on top of the real world. The rendering of the virtual content must be in
line with the real objects in the video to maintain a realistic feeling of immersion. This
can be done only with accurate tracking of the 3D pose of the user’s head

(Papagiannakis et al. 2005; Azuma 1997). Otherwise, it is hard to convince the human’s



sense of sight to that the real objects and the virtual objects created by computer are

together in the same place.

1.2 SCOPE OF THE THESIS

This thesis aims to develop high-accuracy 3D camera motion tracking algorithm using
the video cameras and inertial sensors but not require placing any devices or points in
the space. The method consists of a Bayesian filter that combines the feature points
coming from video frames, the measurements coming from inertial sensors, and 3D
information of the space. It is assumed that 3D information of the space is known in this

thesis. In Figure 1.2.1, the general structure of the algorithm can be seen.

Figure 1.2: General structure of the algorithm
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In addition to this algorithm, the hybrid algorithm shown in Figure 1.2.2 combines the
Bayesian filtering algorithm and the structure from motion algorithm to track head
motion. What makes this algorithm difficult is that reconstruction from video frames is
impossible without the camera calibration parameter (Luong et al. 2001). The images of
the calibration object or the lines perpendicular to each other in the place can be used to
find the camera calibration parameter (Pentland 1987). Also, there are some auto-
calibration methods that do not need any special process to find the camera calibration

parameters (Fischler et al. 1981).



Figure 1.3: Hybrid algorithm
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Bayesian filter used in this thesis is similar to SLAM (Simultaneous Localization and
Mapping) which is a popular approach in computer vision and robotics. However, in
this thesis, the maps already known in these algorithms consist of the 3D information of
the feature points of the environment, so we have implemented only localization part of
SLAM algorithms, not mapping part. The camera pose and 3D information of
environment form the system state. Some statistics on the state are also shifted
cyclically by a Bayesian filter, and updated by using the measurements of the camera,
and the inertial sensors. At that point, an important observation is that the 3D
information is connected to each other. With the help of this connection, the system
state is converged to real 3D information of the environment, and the camera continues

to track its pose precisely.

Systems using only video frames are successful in slow motion, but in fast motion they
do not give accurate results. Accelerometers and gyroscope are appropriate for fast
motion. They do not work well in slow motion because of the accumulation of the error
and noise. In addition to video frames, the accelerometer and gyroscope measurement
usage is proposed in Bayesian filter (Bleser et al. 2009; Armesto et al. 2007; Corke et
al. 2007; Gemeiner et al. 2007; Kim et al. 2007; Schon et al. 2007). This approach is

used in this thesis as well.



1.3 LITERATURE REVIEW

1.3.1 Tracking Methods Using GPS & GSM

Many methods have been proposed for 3D motion tracking in the literature. The first
method is the tracking method using Global Positioning System (GPS), Global System
for Mobile Communication (GSM) and Universal Mobile Telecommunications System
(UMTS). Especially for outdoors, GPS system, one of the most appropriate methods, is
used for the position tracking algorithm (Papagiannakis et al. 2008; Schmeil et al. 2006;
Azuma et al. 2006). Since GPS needs signals coming from 4 different satellites, this
method is not suitable for indoor applications. Schmeil (2006) used GPS system
combining with angle sensors on the HMD in virtual assistant for outdoors. In this

system, localization precision is related to satellite link and varies from 3m to 10m.

1.3.2 Tracking Methods Using IR & RFID

The second method is the tracking method using infrared (IR) light and radio frequency
(RF). IR light-emitting LEDs emit light in a very narrow band. Thus, by the sensor, they
can easily be detected using an appropriate filter. This method requires placing IR LEDs
in the space (Papagiannakis et al. 2008). Similarly, there are other methods using active
or passive radio wave transmitters (RFID). Steggles (2005) developed a system called
UWB that provides tracking with 15cm accuracy using a network including small
recievers and transmitters. However, according to (Azuma et al. 2001), it is not practical
to place artificial cues on the scene, such as IR light emitters, RFID tags, markers, for

some outdoor and mobile applications.

1.3.3 Tracking Methods Using Inertial Sensors

Because of the disadvantages of the IR light and RF tracking, the methods using the
sensors placed only the HMD have been used in the literature. Gyroscope and
accelerometer, such as inertial sensors, measure the derivatives of the motion and hence

can be employed to boost tracking performance at high velocity and accelerations. Also,



they are not affected by the condition of current space. However, the algorithms using
only head-mounted inertial sensors are similar to open-loop control systems (Azuma
1997). This is because there is no feedback on how well the real and virtual images

coincide.

1.3.4 Tracking Methods Using Vision Data with Visual Markers

There are also tracking algorithms using visual markers placed in the space. In some AR
applications (Cho et al. 1998), the marker placed on previously known locations are
detected by using video processing algorithms and used in alignment process. In these
algorithms, it is assumed that more than one feature points can be seen in all cases. If
this assumption is provided, alignment can be done with one pixel accuracy (Azuma
1997).

1.3.5 Tracking Methods Using Vision Data without Visual Markers

Unlike the previous method, there are tracking algorithms not using visual markers
placed in the space. These algorithms must be designed to overcome many difficulties,
I.e. detecting feature points in the scene, variable lights, shadows, motion blur, overlaps,
and real-time implementation condition, etc. Instead of calculating the camera pose
relatively according to previous frame, estimation of the real pose prevents the error
drift, and also allows the self-correction when the tracking is not working because of
motion blur and overlaps (Papagiannakis et al. 2005).

Davison (2007) proposed a method determining the location of the camera in real time.
The most important requirement of the method is the functionality in high frame rates
(30fps). First of all, a pattern with known shape and location is shown to the camera to
start tracking features and defining the certain depth measurement to system. Also, it
assumed that the camera is moving with constant linear and angular velocity. The
feature points (11x11) located in the room in which camera is moving are detected by
the method implemented by Shi (1994). It is assumed that the feature points are on the

plane and the vector is assigned to each of them. From a new perspective of the camera,



the projection of the feature points on the new perspective are found and used as
templates. Before process of the cross-correlation between image from camera and
feature points templates, the location of the template in the image is predicted. For this
purpose, EKF method using motion model and modeling uncertainty with covariance
matrix is used. Thereby, feature template is searched in the ellipsoidal area in the image.
Advantage of this property is the real time functionality of the method. This technique
performs satisfactorily at the slow motion, however it becomes less accurate at high

velocities and accelerations due to motion blur.

1.3.6 Hybrid Tracking Methods

Using different tracking algorithms together can be useful. For example, combining
video-based tracking with prediction-based tracking algorithms ensure that the system
will continue to work when there is no sufficient and visible feature points (Azuma
1997). In these applications, the algorithms using compass and angular velocity
compass on the HMD are combined with video processing algorithms (You et al. 1999).
Also, the estimated values of perspective can be a good starting point for video-based
tracking algorithms. Thus, delays in the system can be reduced (Azuma et al. 2001). It
Is important to use the right motion model for making an accurate prediction (Akatsuka
& Bekey 1998). Sometimes a choice must be made between several different motion
models (Chai 1999). Davison (2007) obtained a hybrid tracking algorithm by adding the
data coming from accelerometer on the robot in the system.

Another hybrid method is the method where inertial sensors and cameras are used
together (Azuma et al. 2001; Yokokohji et al. 2000). Techniques that use only camera
measurements generally perform satisfactorily at slow head motion, however they
become less accurate at high velocities and accelerations due to motion blur. Inertial
sensors on the other hand measure the derivatives of the head pose and hence can be
employed to boost the tracking performance at high velocities and accelerations.
Therefore, hybrid methods where inertial sensors and cameras are used together have
been proposed (Yokokohji et al. 2000; Newman et al. 2006; DiVerdi & Hollerer 2007).

Yokokohji (2000) proposed a method combining video frames with accelerometers. In



this method, accelerometer data is used to predict head motion, thereby make the
method using video frames more robust, and reduce delays in the system. It is indicated
that this method work with average 6 pixels, maximum 11 pixels error when the head

motion is fast (10 m/s? and 49 rad/s?).

1.3.7 Map Estimation Methods

When the map is not known, structure from motion algorithms can be used to find the
map of space. First of all, the motion of the camera capturing frames must be known to
find the 3D structure. However, 3D structure must be known to find the motion of the
camera. This is the main problem of the structure from motion algorithms. The other
reason making the problem difficult is that the reconstruction from video frames is
impossible without the camera calibration parameter (Luong & Faugeras 2001). The
images of the calibration object or the lines perpendicular to each other in the place can
be used to find the camera calibration parameter (Pentland 1987). Also, there are some
auto-calibration methods that do not need any special process to find the camera

calibration parameters (Fischler & Bolles 1981).

The most common and successful method for structure from motion is BA (Bundle
Adjustment) algorithm (Chekhlov et al. 2006). (BA) is almost invariably used as the last
step of every feature-based multiple view reconstruction vision algorithm to obtain
optimal 3D structure and motion (i.e. camera matrix) parameter estimates. Provided
with initial estimates, BA simultaneously refines motion and structure by minimizing
the reprojection error between the observed and predicted image points. The
minimization is typically carried out with the aid of the LM (Levenberg-Marquardt)
algorithm (http://www.ics.forth.gr/~lourakis/sba/ 2010).

Another mapping algorithm is SLAM in the literature. SLAM is a group of algorithms
developed to make a robot (or apparatus on the head) estimate both the position of itself
and the map of the unknown environment (Durant-Whyte et al. 2006). There are
different advantages and disadvantages of the SLAM and BA algorithms. Due to the
large number of unknowns contributing to the minimized reprojection error, a general

purpose implementation of the LM algorithm incurs high computational and memory



costs. So, the real time implementation of the BA does not seem possible (Pentland
1987). However, SLAM has certain errors for representation of the larger frames
because the dimension of EKF is growing with the actual time. FastSLAM that is
developed to run EKF based SLAM methods faster has the same problem with EKF-
SLAM (Konolige & Agrawal 2008).

FastSLAM algorithm (Konolige & Agrawal 2008) does not use all feature points in
contrast to EKF-SLAM. In FastSLAM, fewer feature points representing the trajectory

are used and passed into smaller EKF. There are two disadvantages of FastSLAM:

1. The number of the feature points to represent the given frame is not obvious.

2. The computation cost is growing with the number of feature points.

EKF-SLAM is more disadvantageous than BA in the calculation of the wide range and
rough land area because of the reasons stated above. FrameSLAM method is developed
to eliminate disadvantages of SLAM method recently (Konolige & Agrawal 2008).
FrameSLAM can be used in wide range and rough area because it chooses only
particular subspaces of the feature points and frames, and works with them only. A
reduction in the number of frame affects the performance less than a reduction in the

number of feature points.

PTAM (Parallel Tracking and Mapping) is developed recently to implement BA
algorithm in real time (Klein & Murray 2007). PTAM implements tracking and
mapping algorithms in parallel. Tracking used in PTAM starts with the estimation of the
camera pose by using new frame in motion model. Then the camera pose is updated by
using the matching of the projection of the feature points found before and placed on
map on current frame and the feature points on current frame. First, the update is made
by using clearer 50 feature points matching, and then more detailed update is made by
using approximately 1000 feature points matching.

In PTAM algorithm, tracking and mapping are not connected to each other, so any
robust tracking method desired can be used. Indeed, data does not need to be shared
between tracking and mapping.



When BA algorithm is compared to EKF-SLAM algorithm to build a map, BA
algorithm gives better results (Konolige and Agrawal 2008; Klein and Murray 2008;
Klein and Murray 2007).

1.4 CONTRIBUTIONS OF THE THESIS

The main contributions of this thesis are:

1. The inertial sensors (accelerometer and gyroscope) data is used to increase the
accuracy of the motion tracking. Using the inertial sensors data with visual data (camera
video frame) in Bayesian filter overcomes the limitations of the only visual based
motion tracking. The biases of the inertial sensors are also tracked in time and the

effects of the biases are minimized.

2. There are a total of eight approaches for fusing gyroscope and accelerometer sensor
data with camera measurements, i.e., both of them used as measurements, both of them
used as control inputs, one is used as control input while the other is used as
measurement, and one is used as control input or measurement while the other is not

used. Only three of these eight cases have been investigated in the literature.

3. The Hybrid method that combines the recursive Bayesian filtering method and the
direct linear transformation (DLT) method for tracking 3D camera motion is developed.
In this method, we design new Bayesian filter which uses the head pose estimated from
DLT instead of using feature points directly.

1.5 OUTLINE OF THE THESIS

To be able to keep track of this thesis report, this chapter contains a simple outline that

gives information about the contents of each chapter.

In the second chapter, background information used in this thesis is given.



In the third chapter, the Extended Kalman Filter (EKF) and Hybrid filter equations are

derived. All equations and their derivation are explained in detail in Appendix.
Chapter four contains the experimental setup and the simulation results.

Chapter five and six give a summary and discussion together with possible future

research directions.
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2. BACKGROUND

2.1 BAYESIAN FILTERING

Bayesian filter is a general probabilistic approach for estimating an unknown
probability density function recursively over time using incoming measurements and a

mathematical process model.

A Bayesian filter is an algorithm used in computer science for calculating the
probabilities of multiple beliefs to allow a robot to infer its position and orientation.
Essntially, Bayesian filters allow robots to continuously update their most likely
position within a coordinate system, based on the most recently acquired sensor data.
This is a recursive algorithm. It consists of two parts: prediction and innovation. If the
variables are linear and normally distributed the Bayesian filter becomes equal to the

Kalman filter.

Bayesian filtering is to update the system state over time recursively by using the
measurements coming from inertial sensors or video frame. Theoretically, it is difficult
to implement the optimal Bayesian equation in computer because it requires the integral
representation of the multi-dimensional distributions (Fox et al. 2005). There are lots of
different Bayesian filter variants of this approach in practice. Kalman filter and
extended Kalman filter (EKF) are the first and most widely used of these filters for
SLAM (Davison et al. 2007; Durrant-Whyte & Bailey 2006; Fox et al. 2005; Guivant &
Nebot 2001). The SLAM algorithms using EKF are called as EKF-SLAM.

Bayesian filter used in this thesis is similar to EKF-SLAM (Simultaneous Localization
and Mapping) which is a popular approach in computer vision and robotics. SLAM is a
group of algorithms developed to make a robot (or apparatus on the head) estimate both
the position of itself and the map of the unknown environment (Durrant-Whyte &
Bailey 2006). The maps in these algorithms consist of the 3D information of the feature
points of the space. The robot pose and 3D information of environment form the system

state. Some statistics on the state also are shifted cyclically by a Bayesian filter, and
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updated by using the measurements of the camera, and the inertial sensors. Here, an
important observation is that the 3D information is connected to each other. Thanks to
this connection, the system state is converged to real 3D information of the
environment, and the robot continues to track its pose precisely (Durrant-Whyte &
Bailey 2006).

2.1.1 Kalman Filter

The Kalman filter is a recursive estimator. This means that only the estimated state from
the previous time step and the current measurement are needed to compute the estimate
for the current state. In order to use the Kalman filter to estimate the internal state of a
process given only a sequence of noisy observations, one must model the process in
accordance with the framework of the Kalman filter. This means specifying the
following matrices: F;, the state-transition model; H;, the observation model; Q,, the
covariance of the process noise; R;, the covariance of the observation noise; and

sometimes B, the control-input model, for each time-step, t, as described below:

X = tht'—T + Btut + V¢ (2.1)

where F; is the state transition model which is applied to the previous state x;_r, B iS
the control input model which is applied to the control vector u; and v; is the process
noise which is assumed to be drawn from a zero mean multivariate normal distribution

with covariance Q;, v;~N (0, Q,).
At time t a measurement y, of the true state x;, is made according to:

Ve = Hexy + ey (2.2)
where H, is the observation model which maps the true state space into the observed

space and e; is the observation noise which is assumed to be zero mean Gaussian white

noise with covariance R;, e,.~N (0, R;).
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The state of the filter is represented by two variables:

Xy ¢ - the a posteriori state estimate at time t given observations up to and including at
time t;

Py - the a posteriori error covariance matrix.

The Kalman filter can be written as a single equation; however it is most often
conceptualized as two distinct phases: "Predict” and "Update". The predict phase uses
the state estimate from the previous time step to produce an estimate of the state at the
current time step. This predicted state estimate is also known as the a priori state
estimate because, although it is an estimate of the state at the current time step, it does
not include observation information from the current time step. In the update phase, the
current a priori prediction is combined with current observation information to refine

the state estimate. This improved estimate is called as posteriori state estimate.

Typically, the two phases alternate, with the prediction advancing the state until the next
scheduled observation, and the update incorporating the observation.

Predict:
Predicted (a priori) state estimate:

Xje-1 = FeXi—rje—1 + Beue (2.3)

Predicted (a priori) estimate covariance:

Pye—r = FePe_pje—rF{ + Q¢ (2.42)
where
Pt|t/ = E[(xt - £t|t/)(xt - 5C\t|tl)] (2.4b)
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Update:

Innovation or measurement residual:

Zt =Yt — Htft|t—T (2.5)
Innovation (or residual) covariance:

S¢ = HtPt|t—THLT + R, (2.6)
Optimal Kalman gain:

K, = Pt|t—THtTSt_1 (2.7)
Updated (a posteriori) state estimate:

J?t|t = J?t|t—T + Kz, (2.8)
Updated (a posteriori) estimate covariance:

Ptlt = Pt|t—T - KthPt|t—T (2.9)
2.1.2 Extended Kalman Filter
The basic Kalman filter is limited to a linear assumption. More complex systems,
however, can be nonlinear. The non-linearity can be associated either with the process
model or with the observation model or with both. The EKF is the nonlinear version of

the Kalman filter that linearizes about an estimate of the current mean and covariance.

For EKF, the nonlinear state-space model is given:

xt = f(xt—T) utl vt) (210&)

ye = h(xs, ep) (2.10b)
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where x; denotes the state vector, u, denotes a known control input, v; and e; are the
process and measurement noises which are both assumed to be zero mean multivariate

Gaussian noises with covariance Q, and R;, respectively.

The function f can be used to compute the predicted state from the previous estimate
and similarly the function h can be used to compute the predicted measurement from the
predicted state. However, f and h cannot be applied to the covariance directly. Instead a

matrix of partial derivatives (the Jacobian) is computed.
At each time step the Jacobian is evaluated with current predicted states. These matrices
can be used in the Kalman filter equations. This process essentially linearizes the non-

linear function around the current estimate (Kleeman 1996).

Predict:

Predicted (a priori) state estimate:

Xeje-r = f(jc\t—ﬂt—T'uti 0) (2.11)

Predicted (a priori) estimate covariance:

Pyt = FtPt—T|t—TFtT + V. Q. V{ (2.12a)
where
Ptlt/ é E[(xt - ftlt,)(xt - ftlt’)] (2.12b)

The state transition matrices are defined to be the following Jacobians:

of
= —= 2.13a
£ox (Ze-rit-T/Ut,0) ( )
_ o
s (2.13b)

(Re—1jt—T/ut,0)
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Update:

Innovation or measurement residual:

Zt =Yt — h(£t|t—Tﬂ 0) (2.14)
Innovation (or residual) covariance:

S¢ = HePye—rH{ + R, (2.15)
Optimal Kalman gain:

K, = Pt|t—THtTSt_1 (2.16)
Updated (a posteriori) state estimate:

Xeje = Xeje-r + Ke 2y (2.17)
Updated (a posteriori) estimate covariance:

Pt|t = Pt|t—T - KthPt|t—T (2.18)
where the observation matrices are defined to be the following Jacobians:

_ohn

0x1(%4¢_7.,0)

t (2.19)

EKF-SLAM algorithms are not robust for the error of the matching feature points, and
run only the maps including small number of feature points since computation cost of
algorithm is high (Jacobians) (Fox et al. 2005).
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2.2 USAGE OF INERTIAL SENSORS IN BAYESIAN FILTER

Systems using only video frames are successful in slow motion, but in fast motion they
do not give accurate results. Accelerometers and gyroscope are appropriate for fast
motion. However; they do not work well in slow motion because of the accumulation of
the error and noise. In SLAM, in addition to video frame, the accelerometer and
gyroscope measurement usage is proposed in Bayesian filter (Bleser & Stricker 2009;
Armesto et al. 2007; Corke et al. 2007; Gemeiner et al. 2007; Kim & Sukkarieh 2007,

Schon et al. 2007). This approach is used in this thesis as well.

Bleser and Stricker (2009) proposed a head motion tracking algorithm that uses inertial
sensors and video frames in Bayesian filter. They combine inertial sensors and video

frames in four models:

1. Combining data from video frame and gyroscope.

2. Combining data from video frame, gyroscope, and accelerometer, but the
accelerometer is used for stabilizing the camera attitude.

3. Combining data from video frame, gyroscope, and accelerometer, using all
information given in the accelerometer measurement.

4. Combining data from video frame, gyroscope, and accelerometer, but accelerometer

and gyroscope information used as not measurement, used as control input.

In their paper, they test all of the four models with slow and fast motion. Their
experiments showed that in fast motion model 3 and 4 give better results. They stated
that there is no significant difference in model 3 and 4 results, but because the
accelerometer and gyroscope are used as control input in model 4, the computation cost
is lower than model 3. They also track the biases of the gyroscope and accelerometer in
addition to pose of head. The case that they track the biases gives better result than the

case that they do not track the biases.
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2.3 INERTIAL SENSORS

Inertial sensors measure the translational and rotational body kinematics. Inertial
sensors are devices that use inertia to perform a measurement. As a practical matter,
when people say “inertial sensor” they are referring to an accelerometer or a gyroscope.
In this thesis, we are using two 2D gyroscopes, and one 3D accelerometer. By using
inertial sensors, we get 3D linear acceleration, 3D angular velocity, and 3D earth

gravitation force. We are using two 2D gyroscopes to get 3D angular velocity.
2.3.1 Gyroscope
A gyroscope is a device used primarily for navigation and measurement of angular

velocity. Current gyroscopes can measure angular velocity in 1, 2, or 3 directions. 3-
axis gyroscopes are often implemented with a 3-axis accelerometer to provide a full 6

degree-of-freedom (DoF) motion tracking system (SensorWiki.org 2009). The 3D
gyroscope measures the angular velocity expressed as wy7 in the sensor frame s. The
direction of the angular velocity is from sensor coordinate system to global coordinate
system (Bleser & Stricker 2009). In the next part, the difference of direction and the
transformation of the coordinate systems can be found. When we stabilize the
gyroscope, the gyroscope still gets some values. These values are called as bias term
and it is not constant. The measured angular velocity from gyroscope includes the
slowly varying bias b, and the zero mean white noise eg’;. The calibrated gyroscope

signal is:

Vst = wgi +bsy +egy (2.20)

In this thesis, we thought that the bias term in this equation is varying and the bias term

must be estimated at each time angular velocity is measured.
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2.3.2 Accelerometer

An accelerometer is an electromechanical device that measures acceleration forces

(SensorWiki.org 2009). These forces may be static, like the constant force of gravity

pulling at your feet, or they could be dynamic - caused by moving or vibrating the
accelerometer. Similarly with gyroscope, when we stabilize the accelerometer, the
accelerometer still gets some values. These values are called as bias term and it is not
constant. The calibrated accelerometer signal y¢, is corrupted by a slowly varying bias

bg': and zero mean white noise eg:
Vst = Ast — gs + bsy + edy (2.21)

Because in the global coordinate system gravity force is constant, the accelerometer

expression can be written in the global coordinate system:

ygt = ng,t(ag,t - gg) + bSa,t + egt (2.22)

where R,,, denotes the rotation matrix from global coordinate system to sensor
coordinate system. This rotation matrix can be found by using angular velocity data
measured by gyroscope. Also, we can use the angular velocity data measured by
gyroscope to calculate linear acceleration and the position of the system (Bleser &
Stricker 2009).

Figure 2.1: The workflow of inertial navigation system
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2.4 COMBINATION OF CAMERA AND INERTIAL SENSORS

Each inertial sensor and the camera have their own spatial and time domain. To
combine the all camera and inertial sensor, we must synchronize them. In the time
domain, the camera used in this thesis has 30 Hz frame rate. The camera is a multicolor
camera and its frame rate can be changed. The inertial sensor frequency is faster than
the camera. Their frequency can be up to 400 Hz. In our simulation, we used 120 Hz
accelerometer and gyroscope. Our system works at 120 Hz, so the camera

measurements are used once time in four periods.

When we look at the spatial domain of the camera and the inertial sensors, they are also
different from each other. The relationship of the coordinate systems of the camera and

the inertial system can be seen in Figure 2.2 (Bleser & Stricker 2009).

3D coordinate systems in Figure 2.4.1 are:

World (w): world frame is fixed to the target scene model
Camera (c): camera frame is fixed to moving camera
Sensor (s): sensor frame is fixed to moving sensors

Global (g): global frame is fixed to earth.

Figure 2.2: Camera-inertial sensor 3D coordinates and relations
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In our system, the sensor coordinate system and the camera coordinate system are fixed
and the relation of each coordinate system is constant. R (rotation matrix from sensor
to camera coordinate system), and c, (distance between camera and sensor origins) are
fixed and does not change in time. So, a point on camera coordinate can be easily
transformed to sensor coordinate system. On the other hand, camera-sensor combination
is moving in time, the coordinate systems of them change according to global
coordinate system. For example, if you want to find the camera pose by using the sensor

pose, We can convert sensor pose to camera pose by using:

Rcw,t = Rcsst,t (2-23)

Cwt = Swit + Rws,tcs (2-24)

A 3D point on world coordinate can be pointed on the camera coordinate by using
Figure 2.3:

m; = Res(Rgy (My, — 53) — C5) (2.25)

2.5 FEATURE POINTS DETECTION

When the camera frame is captured, the specific feature points must be detected and
matched with the feature points on the previous frames. We need these feature points

and their 2D/3D correspondence to use the camera measurements.

To find the feature points, SIFT (Scale-invariant feature transform) can be used. SIFT is
an algorithm in computer vision to detect and describe local features in images (Lowe
2004).

SIFT key points of objects are first extracted from a set of reference images (Lowe
2004) and stored in a database. An object is recognized in a new image by individually
comparing each feature from the new image to this database and finding candidate
matching features based on Euclidean distance of their feature vectors. From the full set

of matches, subsets of key points that agree on the object and its location, scale, and
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orientation in the new image are identified to filter out good matches. The determination
of consistent clusters is performed rapidly by using an efficient hash
table implementation of the generalized Hough transform. Each cluster of 3 or more
features that agrees on an object and its pose is then subject to further detailed model
verification and subsequently outliers are discarded. Finally, the probability that a
particular set of features indicates the presence of an object is computed, given the
accuracy of fit and number of probable false matches. Object matches that pass all these

tests can be identified as correct with high confidence (Lowe 2004).

2.6 CAMERA GEOMETRY

Perspective projection can be defined as in Figure 2.3. The center of projection is at the
origin O of the 3D reference frame of the space. The image planeis parallel to
the (X,y) plane and displaced a distance f (focal length) along the z axis from the origin.
The 3D point P projects to the image pointp. The orthogonal projection
of O onto image plane is the principal point o0, and the Z axis which corresponds to this

projection line is the principal axis.

Figure 2.3: Standard perspective projection
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Let (x., y.) be the 2D coordinates of p and (X,, Y., Z.) the 3D coordinates of P. A direct

application of Thales theorem shows that:
Xe=f—Ye=f (2.26)

We can assume that f = 1 as different values of f just correspond to different scaling of
the image. Below, we will incorporate a full camera calibration into the model. In

homogeneous coordinates, the above equations become:

Xc
-
1

The world coordinate system does not usually coincide with the perspective reference

Xc
Yo
Ze

1 0 0 O
0 1 0 O
0 01 0

Yo

z (2.27)
1

frame, so the 3D coordinates undergo a Euclidean motion described by some matrix M.
M gives the 3D position and pose of the camera and therefore has six degrees of
freedom which represents the exterior (or extrinsic) camera parameters. In a minimal
parameterization, M has the standard 6 degrees of freedom of a rigid motion. The

Euclidean transformation between the camera and world coordinates is:

Xc=RX, +T (2.28)

(2.29)

Transformation from world frame to camera frame can be seen in Figure 2.4:
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Figure 2.4: Transformation from world coordinate to camera coordinate
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In real images, the origin of the image coordinates is not the principal point and the

scaling along each image axis is different, so the image coordinates undergo a further

transformation described by some matrix K.

Figure 2.5: Camera calibration representation
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kyx. =u—ug (2.30)

k,y. =v—1v, (2.31)

where units of k are [pixels/lengthl].

u fku 0 Ug] [*c Xc
Xi = [ l = [ 0 fkv vol [yc =K|Yc (2.32)
1 o o 1llf f

K is independent of the camera position. It contains the interior (or intrinsic) parameters
of the camera. It is usually represented as an upper triangular matrix, called camera

calibration matrix:

a, 0 wug
K=|0 a, vol (2.33)
0 0 1
where a,, = fk,, a, = fk,.
Finally, when we concatenating the three matrices:
u 10 );W
x=|vl=klo 1 [T ] K[R|T] | ™ (2.34)
0 Z,
1 0 0
1
which defines the 3x4 projection matrix from Euclidean 3-space to an image:
_5[X
x—Ph] (2.35)
P = K[R|T] (2.36)
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2.7 DIRECT LINEAR TRANSFORMATIO

N

The equations of the direct liner transformation (DLT) are given below. The matrix

given below consists of the known 3D position of the feature points in world coordinate

system (X, Y, Z) and the 2D position of the feature points on camera image (x, y).

X, Y 7 0 0 0 0
0 0 0 0 X, ¥, 2z 1

[N

Xy Y Zy 1 0 0 0 0
0 0 0 0 Xy Yy Zy 1

—x1X1

-1 X1

—XNXN

—ynXN

—x11

-nh

—xnIN

—InN

—X1Z1

—V1Z1

—XNZN

—YNZN

N >6 (2.37)

P matrix given below is the camera projection matrix. In our simulation, camera matrix

IS assumed to be unit matrix, so the left 3x3 part of the P matrix gives the rotation

matrix of the camera (Q). The right 3x1 vector part of the P matrix gives the 3D

position vector.

k=[x1 Y1 = X2 Yi2]T

k=Axp

p = pinv(4) * k
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P11 P12 P13

Q(qsw) = |P21 P2z Po3 (2.38¢)
P33 P3;  Ps3
Swax P14
[SWy] = —inv(Q(qsw)) * | Poa (2.38f)
SWZ
1

pinv represents Moore-Penrose pseudoinverse matrix. A is not square, then inv(A)

does not exist. In this case, pinv(A) has some of the properties of inv(A).

The 3D position and 3D angle data obtained from above equations are used in the

measurement model of the Hybrid filter.

Vot = Qswe +€d, (2.39)

Vst = Swe T €3¢ (2.39b)
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3. BAYESIAN FILTER DESIGN

In this section, two types of Bayesian filter are examined:

1. Extended Kalman Filter (EKF)
2. Hybrid Filter

3.1 EKF DESIGN

9 different EKF methods using video frames, accelerometer and gyroscope sensors are
analyzed. Video frames are used in all models. In addition to video frames, angular
velocity and linear acceleration data are used as measurement or control input in EKF.
If any data is used as control input, it will be used in prediction part of EKF as a known
control input. It will improve the prediction performance of EKF. On the other hand, if
any data used as measurement, it will be used in correction part of EKF as a
measurement. It will improve the correction performance of EKF. The methods
investigated in this thesis are:

1. Both angular velocity and linear acceleration data used as "measurement”

2. Angular velocity data used as "control input”, linear acceleration data used as
"measurement”

3. Angular velocity data used as "measurement”, linear acceleration data used as
"control input"

Both angular velocity and linear acceleration data used as “control input"

Angular velocity data used as "measurement”

Angular velocity data used as "control input"

Linear acceleration data used as "measurement"

Linear acceleration data used as "control input

© © N o g &

Both angular velocity and linear acceleration data "not™ used
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For each case, EKF equations will be updated according to the usage of inertial sensors.
General EKF equations are given in Section 2.1. Some of them are same for all cases;

whereas some are different for each case.

3.1.1 Both Angular Velocity and Linear Acceleration Data Used As Measurement

In this method; all video frames, angular velocity, and linear acceleration data are used

as measurement. The state vector x, comprises:

" =[s,7 " a, b¢ qu" wT beT] (3.1)

where s, denotes the position of camera, v,, the linear velocity of camera, a,, the linear
acceleration of camera, bd the biases of accelerometer inertial sensor, g, the
orientation quaternion, w, the angular velocity of camera, b® the biases of gyroscope

inertial sensor.

The time model assumes constant linear acceleration and constant angular velocity.
Time model is (Bleser & Stricker 2009):

B TZ T2 -
Swit T _ I“a
wit Swi-1 T TVwe-r + S Qw1 + S e
4 a
wit V-1 + Tay 1 + Tey,
aw,t aW,t—T + S&I,t
a a
— — a b
Xe = st | = bs 1 + €t (3.2a)
T w
Isw,t exp (— 3 (wseor + ss,t)) O Gow,i-t
(Us,t ws,t—T + g;)t
w
_ ) b®
st s s,e-T T Est i
ug =0 (3.2b)
T _ [qa ) pe b
vl = [efe €& ey elf] (3.2¢)
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where & ¢, sé’f, es, and efff denote time independent Gaussian process noise that is

uncorrelated in all components.

Since all data is used as measurement, all of them are in the measurement model. The
measurement model below includes the linear acceleration, angular velocity, and the

position of the feature points on the video frames, respectively:

Vst

Ve = |Vse (3.33)
my

el =lesr et ef] (3.3b)

where yg, denotes the linear acceleration, yg denotes the angular velocity, el,, es,
ext, and ey, denote time independent Gaussian measurement noise. Because the linear

acceleration and gravity acceleration are in world coordinates in time model, they must

be converted to inertial sensor coordinate by using Qg ;.

The other equations of EKF used in this method are provided below. Time model

equations are:

56\t|t—T = f(jc\t—T|t—T! OIOIOIO) (34a)

Pt|t—T = FtPt—T|t—TFtT + VtQtVtT (3.4b)
Measurement model equations are:
z¢ = ¥ — h(R¢)e-1,0,0,0) (3.5)

Since time model and measurement model are both nonlinear, these models must be

linearized in order to use EKF. The linearization of the time model equations are:
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of

) 3.6a

t ox (ft—T|t-T,0,0,0,0) ( )
of

v 3.6b

fov (R¢-11t-1,0,0,0,0) ( )

Q= diag([Zete 2ot Ly Lopy]) (3.60)

The linearization of the measurement model equations are:

oh

"o 3.7a

t ™ ax (%¢)¢-7,0,0,0) ( )

. 2 2 2 2 2 2 2 2
R, = diag ([O-esflx,t O-esay,t O-esflz,t O-esaa)c.t O-egf.t O-esaé.t O-eag.t O-eJC’JfD (3.7b)
3.1.2 Angular Velocity Data Used As Control Input, Linear Acceleration Data
Used As Measurement

In this method; video frames, and linear acceleration data are used as measurement.
However, angular velocity data is used as control input. Thus, the state vector x, does

not include angular velocity:

xT = [SWT vWT a’WT bgT qSWT b;UT] (38)

The angular velocity data is still used, so the biases of the gyroscope are still in the state

vector xT.

As in the previous method, the time model assumes constant linear acceleration and
constant angular velocity. The angular velocity is used as control input in this method,
so the angular velocity is not used in state vector, but it is used in time model. Time

model is:
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2 2

_ _ [ T T° a
Swit Swt-1 F TVwe-r + 5 Qe + e
UW,t vW,t—T + Taw’t_T + Tg‘;l/‘t
Aw,¢ Qe + Epe
xt = == a (3.9&)
a ba + b
st st—T T Esit
T w w w
Asw.t exp (_ 2 ((ys,t - bs,t—T) + 8s,t)) O Gsw -t
b& w
s,t w b
bs,t—T + &t

uf =y& (3.9b)

a w
vl =[eh, ¥ el 2] (3.9¢)

In the measurement model, there is only the data used as measurement. Because of that
angular velocity data is not used in measurement model. The measurement model
includes the linear acceleration, and the position of the feature points on the video

frames, respectively:

ya

y, = [ S’tl (3.10a)
my

el =les: el (3.10b)

The other equations of EKF used in this method are given below. Time model equations

are:

Zee-r = f(Re-rje-1, Y% 0,0,0,0) (3.11a)

Pyt = FePe_rpe—rF{ + ViQuVE 4 Vi Qi (3.11b)
Measurement model equations are:
z = ¥ — h(R¢)e-1,0,0) (3.12)

The linearization of the time model equations are:
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=

B 3.13a
‘ 0x (ft_T“_T,O,O,O,O) ( )
af
=5 3.13b
fov (Zt-T1t-1.51,0,0,0,0) ( )
Qc = diag([2ee et 2ok 2] (3.13¢)
Vo = 535 (3.13d)
Vst (Re—1)t-1:¥6%,0,0,0,0)
QO = o5, (3.13¢)
The linearization of the measurement model equations are:
oh
T ox 3.14a
foox (R¢1t-1,0,0) ( )
. 2 2 2 2 2
Rt = dlag ([O-e_gx,t O-esay,t O-e_gz,t O’e;t O'e;,t]) (314b)

3.1.3 Angular Velocity Data Used As Measurement, Linear Acceleration Data
Used As Control Input

In this method; video frames, and angular velocity data are used as measurement.

However, linear acceleration data is used as control input. Since linear acceleration data

is used as control input, the state vector x, does not include linear acceleration:

x" =[5, 1w," b qu" wT bET] (3.15)

The linear acceleration data is still used, so the biases of the accelerometer are still in

the state vector x7.

As in the previous methods, the time model assumes constant linear acceleration and

constant angular velocity. The linear acceleration is used as control input in this method,
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so the linear acceleration is not used in state vector, but it is used in time model. Time

model is:
3 } - T? T? T? 7
Sw,t Sw,t—T + va,t—T + 7831/,t + ?Qws,t—T(yg,t - g,t—T) + 7gw
Yw,t Vet + Tep: + TQws,t—T(ygt - béft-r) +Tgw
b, b, .. + &b}
X, = = Lo (3.16a)
Aswt exp <_ 2 (ws,t—T + Eg,)t)) O Qsw,t-T
Wst ws,t—T + Eg,)t
w
L bt | b _r + 5?,(;
uf = y8, (3.16b)
T _ a [
vl = e, €0 b €by (3.16¢)

Linear acceleration data is not included in measurement model since measurement
model only consist data used as measurement. The measurement model includes the

angular velocity, and the position of the feature points on the video frames, respectively:

Vs,

y, = [ ”l (3.17a)
m

el =lesr ef] (3.17b)

The other equations of EKF used in this method are given below. Time model equations

are:
Reje-1 = f Re=rie-1, Y8 0,0,0,0) (3.18a)
Pt|t—T = FtPt—T|t—TFtT + VtQtVtT + VQOan (3.18b)
Measurement model equations are:

Zt =Yt — h(fﬂt—T' 0'0) (3.19)
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The linearization of the time model equations are:

=

t — ax (J?t—T|t—T'y?’tr0r0'0'0) (3208.)
of
~ v 3.20b
fov (Zt-11t-1.51,0,0,0,0) ( )
0 = diag([2ete 2ete Zap 2er]) (3.200)
Vi = 3og (3.200)
Yt (%_1)e-1.8,0,0,0,0)
Qm = o, (3.20¢)
The linearization of the measurement model equations are:
oh
He=75 3.21a
foox (%¢)t-1.0,0) ( )
. 2 2 2 2 2
Rt = dlag ([O-e;gc,t O-esajjz,t O-e;;,t O’e;t O'e;,t]) (321b)

3.1.4 Both Angular Velocity and Linear Acceleration Data Used As Control Input

In this method; only video frames are used as measurement. However, linear
acceleration and angular velocity data are used as control input. Since linear
acceleration and angular velocity data are used as control input, the state vector x, does

not include linear acceleration and angular velocity:

x" =[5, v,m b qe," bET] (3.22)

The linear acceleration and angular velocity data are still used, so the biases of the

accelerometer and gyroscope are still in the state vector x7.
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As in the previous methods, the time model assumes constant linear acceleration and
constant angular velocity. The linear acceleration and angular velocity are used as
control input in this method, so the linear acceleration and angular velocity are not used

in state vector, but they are used in time model. Time model is:

_ TZ T2 TZ _

[ Swit 1 |Swi—r ¥ TOW 7 + ?Sﬁz,t + ?Qws,t—T(y;t - béft-r) — 7 9w

Vw,t Vwit-T + Ts\(/lv,t + TQws,t—T(yg,t - bg,t—T) - Tgw
xt = g,t = bgt—T + S?; (3233)

T
qSW,t exp (_E ((ysf-l,)t - bS(“,)t—T) + S;‘ft)) @ qSW,t—T
w

-ost S| b + 32,(:

uf =[yse Vsl (3.23b)
T — ba bw

vl = el €2 €l edi] (3.23¢)

The linear acceleration and angular velocity data are not used in measurement model.

The measurement model includes only the position of the feature points on the video

frames:
Ye =My (3.24a)
el =ef (3.24b)

The other equations of EKF used in this method are given below. Time model equations

are:

Rejeer = [ (Re-1i-1, ¥ ¥$1, 0,0,0,0) (3.25a)

Pyt = FtPt—T|t—TFtT + Ve QeVi + Vi Qi Viry (3.25b)

Measurement model equations are:

Zt =Yt — h(jc\t|t—T’ 0) (3.26)
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The linearization of the time model equations are:

=

- 3.27a
£ ox (Re—T)t-TY£,Y5%:0,0,0,0) ( )
af
~ v 3.27b
fov (Re-11t-1,Y84+Y53,0,0,0,0) ( )
Q; = diag([zs:},,t ng‘ft ZE?,? ng‘;’]) (3.27¢)
Voo = 5 (3.27d)
yS,t (J?t—Tlt—T,)’gt;ygjt,O,O,O,O)
. 2 2
Qm = diag([oes,  %ez]) (3.27¢)
The linearization of the measurement model equations are:
oh
~ ox 3.28a
‘ Ox (J?t|t—'r,0) ( )
R; = diag ([“ez,i,t “ez;,t]) (3.28b)

3.1.5 Angular Velocity Data Used As Measurement
In this method; the video frames and angular velocity data are used as measurement.

However, linear acceleration data is not used in this method, so the state vector x, does

not include linear acceleration:

X = [SWT vWT qSWT wST b;UT] (3'29)

The linear acceleration data are not used, so the biases of the accelerometer are not in

the state vector x7.

Unlike previous methods, the time model assumes constant linear velocity and constant

angular velocity because there is no linear acceleration data. The linear acceleration is
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not used in this method, so the linear acceleration is not used in time model like state

vector. Time model is:

[ SW,t T [ SW,t—T + TUW,t—T + Ten‘t
UW,t vw’t_T + va’t
T
Xe = |9swe| = [exp (_5 (“)s,t—T + 3&)) O Gsw,t- (3.30a)
ws,t (l)s't_T + 8(;,)t
b 1L bsr-r + €2t
ul =0 (3.30b)
T _ p®
CHE A (3.30¢)

where &, . denote time independent Gaussian process noise.

The measurement model includes the angular velocity, and the position of the feature

points on the video frames, respectively:

ya)

y, = l S'tl (3.31a)
m

el =lesy ef] (3.31b)

The other equations of EKF used in this method are provided below. Time model

equations are:

Xeje-r = f(ft—ﬂt—T, 0;0;0) (3.32a)

Pye—r = FePe_qerFf + V. Q V] (3.32b)
Measurement model equations are:

Zt =Yt — h(fﬂt—T' 0'0) (3.33)
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The linearization of the time model equations are:

=

t= o (oo m000) (3.34a)
=2 omn000) (3.34b)
Q; = diag([Zey,. Zeg, L)) (3.34c)

The linearization of the measurement model equations are:
He =12 onaod) (3.352)
R, = diag ([Uezggat Uezg;,t Uez_;;,t Uez,gt Uez;,t]) (3.35b)

3.1.6 Angular Velocity Data Used As Control Input

In this method; only the video frames are used as measurement. However, linear
acceleration data is not used, but angular velocity data is used as control input in this

method, so the state vector x, does not include linear acceleration and angular velocity:

xT = [SWT vWT qSWT bé(“)T] (336)

The angular velocity data is still used, so the biases of the gyroscope are still in the state

vector x”.

Like the method in Section 3.1.5, the time model assumes constant linear velocity and
constant angular velocity because there is no linear acceleration data. The linear
acceleration is not used in this method, so the linear acceleration is not used in time
model like state vector. On the other hand, because angular velocity data is used as

control input, it is not in the state vector but it is in the time model. Time model is:
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[Sw,t 1 Swyt—1 T TOw 1 + Ty,
I Vw,t I Ve + Ent ( )
xt - - T 3378.
quw,t| exp (‘ > ((ysa,)t - b.g,)t—T) + 5?,’t)> O Gsw,t-
bs) b®, _r + eé’;’
ui =y (3.37b)
vl =[ef, & €] (3.37¢)

The measurement model includes only the position of the feature points on the video

frames:
Ye =my (3.383)
eg =ef (3.38b)

The other equations of EKF used in this method are given below. Time model equations

are:

Reje—r = [ (Re—rie-12 Y% 0,0,0) (3.39%)

Pye—r = FePe_qie—rF{ + ViQV{ + Vin Qn Vi (3.39b)
Measurement model equations are:

Zt =Yt — h(fﬂt—T’ 0) (3.40)
The linearization of the time model equations are:

of

B 3.41a
fox (Re-T)t-1,¥$3,0,0,0) ( )
_or
fov (3.41b)

(Re-11t-1:Y$%,0,0,0)
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Q = diag([Zeh,e Zeg, L)) (3.41¢)

o (3.41d)

Vst (Re-T)-T,Y5%,0,0,0)
On = 0e (3.41e)

The linearization of the measurement model equations are:
ah
o 3.42a
t ox (ftlt—T'O) ( )
. 2 2

R =diag (|2, 5. ]) (3.42b)

3.1.7 Linear Acceleration Data Used As Measurement

In this method; the video frames and linear acceleration data are used as measurement.
However, angular velocity data is not used in this method, so the state vector x; does

not include angular velocity:

" =[s,7 w7 a, b qs"] (3.43)

The angular velocity data is not used, so the biases of the gyroscope are not in the state

vector x”.

In this method, the time model assumes constant linear acceleration and constant
angular difference because there is no angular velocity data. The angular velocity is not
used in this method, so the angular velocity is not used in time model like state vector.

Time model is:
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Swe 1 [Sweer + TOwer + gaw,t—T + geﬁz,t_
Vw,t Vit + Ty +TeL,
X =|Qwt | = Ay -1 + &t
gt b?,t—r + 8?;
Gsw,ed | exp G Eg,t) O Gsw,t-1
ul =0

Ut = [E\(/lv,t Egt 5?,:]

where £, denote time independent Gaussian process noise.

(3.444a)

(3.44b)

(3.44c)

The measurement model includes the linear acceleration, and the position of the feature

points on the video frames, respectively:

[ygtl
Ve =
mg

ef =les: ef]

(3.45a)

(3.45b)

The other equations of EKF used in this method are given below. Time model equations

are:

k\tlt—T = f(ft—ﬂt—T: 0»0;0)

Pye—r = FePe_pje—rFF +V,Q V]

The linearization of the time model equations are:

_9f
™ axlrs
9% (£¢-1)¢-1,0,0,0)
_9f
Ve=5y

(%¢-T)¢-7,0,0,0)
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Q: = diag([Zete 2ed, 2e2t]) (3.47¢)

The linearization of the measurement model equations are:

oh
H =— 3.48a
4 ox (ftlt_T,O,O) ( )
R = diag (|0ds, 0la, 0o, ok, o) (3.48b)

3.1.8 Linear Acceleration Data Used As Control Input

In this method; only the video frames are used as measurement. However, angular
velocity data is not used, but linear acceleration data is used as control input in this

method, so the state vector x, does not include linear acceleration and angular velocity:

x" =[5, w7 b¢ qu7] (3.49)

The linear acceleration data is still used, so the biases of the accelerometer are still in
the state vector x7.

Like the method in Section 3.1.7, the time model assumes constant linear acceleration
and constant angular difference because there is no angular velocity data. The angular
velocity is not used in this method, so the angular velocity is not used in time model like
state vector. On the other hand, because linear acceleration data is used as control input,

it is not in the state vector but it is in the time model. Time model is:

— T2 T2 T2 B
[SW’t 1 ISwe-r + Tvy 7+ ) Ewe ) Qws,t—T(ygt - bﬁt-r) — 5 9w
Vw,t Vw t—T + T‘gg/,t + TQws,t—T(ygt - bgt—T) - Tgw
e |= La (3.50a)
st g,t—T + &t
1
Qsw,t i exp (E Egt) O Gsw,t-t i
ul =yd, (3.50b)
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T a 2] be
[EW.t 8S,t gs,t

(3.50c)

The measurement model includes only the position of the feature points on the video

frames:
Xy =My
e,_T = et

(3.51a)

(3.51b)

The other equations of EKF used in this method are given below. Time model equations

are:

J?t|t—T = f(k\t—ﬂt—Tfyg,t: 0:0:0)

Pye—r = FePe_qie—rF{ + ViQV{ + VinQ Vi
Measurement model equations are:

Zt =Vt~ h(fﬂt—T: 0)
The linearization of the time model equations are:

_of
t 7 ax

(Re-T|t-T,Y4,0,0,0)

_9f
t ™ gy

(Z¢-T|e-1,¥5:£,0,0,0)
Q: = diag([Zee Ze2, Zer?])

_ _or
m — ao.Za
e |,
St (Re—1)t-1:Y54:0,0,0)
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(3.52b)

(3.53)

(3.54a)

(3.54b)

(3.54c)

(3.54d)

(3.54e)



The linearization of the measurement model equations are:

__0h
t ™ ax

(3.55a)

(®¢)e-1.0)

R, = diag |95z, o%,|) (3.55b)

.t

3.1.9 Both Angular Velocity and Linear Acceleration Data Not Used

In this method; only the video frames are used as measurement. However, linear
acceleration and angular velocity data are not used, so the state vector x, does not

include linear acceleration and angular velocity:

xT = [SWT va qSWT] (3-56)

In this method, the time model assumes constant linear velocity and constant angular
difference because there is no linear acceleration and angular velocity data. The linear
acceleration and angular velocity are not used in this method, so they are not used in

time model like state vector. Time model is:

Vw,t-1 + Ewe (3.57a)

I ‘ [Swt T+vat T+T€wt]
qsw,t exp __sst>®qswt T

ul =0 (3.57b)

vl = [eh, €8] (3.57¢)

The measurement model includes only the position of the feature points on the video

frames:
el =ef (3.58b)
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The other equations of EKF used in this method are given below. Time model equations

are:

Xejt-r = f(xt—T|t—T' 0;0)

Pt|t—T = FtPt—T|t—TFtT + VtQtVtT
Measurement model equations are:

Zt =Yt — h(fﬂt—T’ 0)

The linearization of the time model equations are:

_of

= —
0x (x¢-T)¢-1.0,0)

v, =Y

==
ov (x¢-1)¢-1.0,0)

Qc = diag([Zes,,  2e2,])
The linearization of the measurement model equations are:

_ohn

t = o/
0x1n(%¢¢-7,0)

R, = diag ([oz;, o2,])

3.2 HYBRID FILTER DESIGN

(3.59a)

(3.59b)

(3.60)

(3.61a)

(3.61b)

(3.61c)

(3.62a)

(3.62b)

9 different Hybrid Filter methods using video frames, accelerometer and gyroscope

sensors are analyzed. Video frames are used in all models. In addition to video frames,

angular velocity and linear acceleration data are used as measurement or control input in

Hybrid Filter. These methods are:
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1. Both angular velocity and linear acceleration data used as "measurement"

2. Angular velocity data used as "control input”, linear acceleration data used as
"measurement"

3. Angular velocity data used as "measurement”, linear acceleration data used as
"control input"

Both angular velocity and linear acceleration data used as "control input"

Angular velocity data used as "measurement”

Angular velocity data used as "control input”

Linear acceleration data used as "measurement"

Linear acceleration data used as "control input"

© © N o 0 &

Both angular velocity and linear acceleration data "not™ used

In hybrid filter, the feature points are not used in EKF filter directly. By using direct
linear transformation, the pose of the camera can be estimated with these feature points.
This estimated pose data is used in EKF with linear acceleration and angular velocity
measurements to enhance the pose estimation. The difference of the hybrid filter design

from EKEF is the usage of the feature points.
3.2.1 Both Angular Velocity and Linear Acceleration Data Used As Measurement

In this method; all video frames, angular velocity, and linear acceleration data are used

as measurement. The state vector x, comprises:

xT = [SWT vWT a’WT bgT qSWT wST b;UT] (363)

where s, denotes the position of camera, v,, the linear velocity of camera, a,, the linear
acceleration of camera, bd the biases of accelerometer inertial sensor, g, the
orientation quaternion, w, the angular velocity of camera, b® the biases of gyroscope
inertial sensor. To simplify the time model, the position s,,, linear velocity v,,, linear
acceleration a,,, and orientation g, of the inertial sensors with respect to the world

frame are estimated in the state vector.
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The time model of this method is same as the EKF design in Section 3.1.1.

The measurement model of the Hybrid filter includes the accelerometer data, gyroscope
data, and the 3D position (pose and angle) data obtained from structure from motion by

using the feature points:

(3.64a)

el =[ed e& el es (3.64b)

where, ys‘ft denotes the quaternion version of the rotation matrix, ys, denotes the pose of

the camera, e/, and e$, denote time independent Gaussian measurement noise.

The other equations of EKF used in this method are same as Section 3.1.1.

The linearization of the measurement model of this method:

_on
t ™ ax

(3.65a)

(®¢/¢-7.0,0,0,0)

2 2 2 2 2 2 2 2 2 2 2 2 2
=di a, a, a, a, a, a, ag g g ag a, a, a,
R = diag ([od,, 0d,, O, O, 0o, O, %, 9. ou o o, o, o) (3.65D)

3.2.2 Angular Velocity Data Used As Control Input, Linear Acceleration Data

Used As Measurement
In this method; video frames, and linear acceleration data are used as measurement.

However, angular velocity data is used as control input. Thus, the state vector x; does

not include angular velocity:
2 =[s," w" @ b ga" b7 (3.66)
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The angular velocity data is still used, so the biases of the gyroscope are still in the state

vector x”.

The time model of this method is same as the EKF design in Section 3.1.2.

The measurement model of the Hybrid filter includes the accelerometer data, and the 3D

position (pose and angle) data obtained from structure from motion by using the feature

points:
yg,t
Ve = |Vt (3.67a)
yss,t
el =[ed el ed] (3.67b)

The other equations of EKF used in this method are same as Section 3.1.2.

The linearization of the measurement model of this method:

_on
t ™ ax

(3.68a)

(%¢1¢-7,0,0,0)

2 2 2 2 2 2
= di O,a O,a O,a o o (o}
R = diag ([ sx,t syt szt esqw,t esqx,t esqy,t

Uezq 025 0'25 02 ]) (368b)

s
szt esxt €sy,t €sz,t

3.2.3 Angular Velocity Data Used As Measurement, Linear Acceleration Data
Used As Control Input

In this method; video frames, and angular velocity data are used as measurement.

However, linear acceleration data is used as control input. Thus, the state vector x, does

not include linear acceleration:

x" =[5, 1,7 b qu" wT bET] (3.69)
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The linear acceleration data is still used, so the biases of the accelerometer are still in

the state vector xT.

The time model of this method is same as the EKF design in Section 3.1.3.

The measurement model of the Hybrid filter includes the gyroscope data, and the 3D

position (pose and angle) data obtained from structure from motion by using the feature

points:
yg,)t
Ve = |Vt (3.70a)
yss,t
el =[ed el ed] (3.70b)

The other equations of EKF used in this method are same as Section 3.1.3.

The linearization of the measurement model of this method:

_on
t ™ ax

(3.71a)

(%¢1¢-7,0,0,0)

. 2 2 2 2 2 2 2 2 2 2
Rt = dlag ([O-esafc,t Oeg O-es“é,t Ueq Oeq aeq aeq Oeg Oes O-e.gz,t]) (371b)

syt Sw,t sx,t Syt szt Esxt Esy,t
3.2.4 Both Angular Velocity and Linear Acceleration Data Used As Control Input
In this method; only video frames are used as measurement. However, linear

acceleration and angular velocity data are used as control input. Thus, the state vector x,

does not include linear acceleration and angular velocity:

" =[s,7 1,7 b¢ qu" beT] (3.72)
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The linear acceleration and angular velocity data are still used, so the biases of the

accelerometer and gyroscope are still in the state vector x7.

The time model of this method is same as the EKF design in Section 3.1.4.

The measurement model of the Hybrid filter includes only the 3D position (pose and

angle) data obtained from structure from motion by using the feature points:

.= [ygtl (3.73a)
Vst
el =[el, ei] (3.73b)
The other equations of EKF used in this method are same as Section 3.1.4.
The linearization of the measurement model of this method:
t = g_: (%10-1.00) (3.74a)
R; = diag ([%Zgw,t Uezgx_t Uezgy,t Uezgz_t 055, “ezsy,t “ezéz,t]) (3.74b)

3.2.5 Angular Velocity Data Used As Measurement
In this method; the video frames and angular velocity data are used as measurement.

However, linear acceleration data is not used in this method, so the state vector x, does

not include linear acceleration:

" =[5, n" g’ T beT] (3.75)

The linear acceleration data is not used, so the biases of the accelerometer are not in the

state vector x7.
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The time model of this method is same as the EKF design in Section 3.1.5.

The measurement model of the Hybrid filter includes the gyroscope data, and the 3D

position (pose and angle) data obtained from structure from motion by using the feature

points:
y;,)t
Ve = |Vsk (3.76a)
yss,t
el =[ed el ed] (3.76b)

The other equations of EKF used in this method are same as Section 3.1.5.

The linearization of the measurement model of this method:

_on
t ™ ax

(3.77a)

(%¢1¢-7,0,0,0)

2 2 2 2 2
= di g g g g o
R =diag (|78, %8, %, %,

2
0 q
Csx.t

2 2 2 2
aesqzlt aﬁ’gx,t O-eéqy,t O.e.gz,t]) (377b)

3.2.6 Angular Velocity Data Used As Control Input

In this method; only the video frames are used as measurement. However, linear
acceleration data is not used, but angular velocity data is used as control input in this

method, so the state vector x, does not include linear acceleration and angular velocity:

" =[s,7 w7 g’ b¢7] (3.78)

The angular velocity data is still used, so the biases of the gyroscope are still in the state

vector xT.

The time model of this method is same as the EKF design in Section 3.1.6.
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The measurement model of the Hybrid filter includes only the 3D position (pose and
angle) data obtained from structure from motion by using the feature points:

q
Y,
y, = l tl (3.79a)
Vst
el =[ed, et (3.79b)

The other equations of EKF used in this method are same as Section 3.1.6.

The linearization of the measurement model of this method:

_on
t ™ ax

(3.80a)

(R¢/¢-1,0,0)

R, = diag ([aezgw O':q o4 % ok o o2 D (3.80b)

sx,t Esyt €szt Esxt Esy,t essz,t
3.2.7 Linear Acceleration Data Used As Measurement

In this method; the video frames and linear acceleration data are used as measurement.
However, angular velocity data is not used in this method, so the state vector x, does

not include angular velocity:

" =[5, w7 a, b qa"] (3.81)

The angular velocity data is not used, so the biases of the gyroscope are not in the state

vector xT.
The time model of this method is same as the EKF design in Section 3.1.7.
The measurement model of the Hybrid filter includes the accelerometer data, and the 3D

position (pose and angle) data obtained from structure from motion by using the feature

points:
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Ve = |Vor (3.822)
yf,s,t
el =ledr el e3] (3.82b)

The other equations of EKF used in this method are same as Section 3.1.7.

The linearization of the measurement model of this method:

__0h
E™ ax

(3.83a)

(%¢/¢-7,0,0,0)

2 2 2 2 2 2 2 2 2 2
=di g o g o o o o o (o) g
Rt = dlag ([ egc,t esay,t esaz,t efw,t egx’t esqy’t esqz,t essx,t essy,t essz,t]) (383b)

3.2.8 Linear Acceleration Data Used As Control Input

In this method; only the video frames are used as measurement. However, angular
velocity data is not used, but linear acceleration data is used as control input in this

method, so the state vector x, does not include linear acceleration and angular velocity:

x"=[s,7 v,” b qe,"] (3.84)

The linear acceleration data is still used, so the biases of the accelerometer are still in

the state vector x7.
The time model of this method is same as the EKF design in Section 3.1.8.

The measurement model of the Hybrid filter includes only the 3D position (pose and
angle) data obtained from structure from motion by using the feature points:

q
Ve = lyss’tl (3.853)
Vst
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el =led, ed (3.85b)
The other equations of EKF used in this method are same as Section 3.1.8.

The linearization of the measurement model of this method:

_on
E™ ax

(3.86a)

(%¢/¢-150,0)

2 2 2 2 2 2 2
— i o o o o g g o
R, = diag ([ . Tt O O Ogs. Ogs egzjt]) (3.86h)

3.2.9 Both Angular Velocity and Linear Acceleration Data Not Used

In this method; only the video frames are used as measurement. However, linear
acceleration and angular velocity data are not used, so the state vector x, does not

include linear acceleration and angular velocity:

v’ qew'] (3.87)

The angular velocity and linear acceleration data are not used, so the biases of both

gyroscope and accelerometer are not in the state vector x”.
The time model of this method is same as the EKF design in Section 3.1.9.

The measurement model of the Hybrid filter includes only the 3D position (pose and

angle) data obtained from structure from motion by using the feature points:

q
o= (3.982)
Vst
el =[ed, et (3.88b)

The other equations of EKF used in this method are same as Section 3.1.9.
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The linearization of the measurement model of this method:

oh
== (3.893a)
oxl(z
(%¢/¢-1,0,0)
2 2 2 2 2 2 2
R; = diag ([Uesqm O-esqx,t o e, aeSqZI Oesee Ted essz,t]) (3.89b)
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4. EXPERIMENTAL SETUP AND RESULTS

4.1 SIMULATION STRUCTURE

In this section, the simulation platform and performance evolution of the algorithms are
provided. We compare the nine different EKF visual-inertial sensor tracking results.
Also, we compare the EKF with mixed filter and pose estimation using only feature

points (no EKF and no mixed filter).

For simulation, we used 3D camera motion including both 3D linear acceleration and
3D angular velocity. We used the edges of two cubes that are on top as the feature
points (totally 12 points). In Figure 4.1, 3D linear camera motion and 3D feature points

can be seen.

Figure 4.1: Translational movement
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The equations of the linear camera motion are:

1
= — \

x ﬁRcos(wt)

y - \;ERCOS(Wt) ( w: Ttranz;ration (frequency) (41)

z = Rsin(wt) J

where Tiransiation deNOtes the translational movement period.

The camera rotational movement can be seen in Figure 4.2.

Figure 4.2: Rotational movement

X

The equations of the rotational camera motion are:

0, = A, sin(wt)
Ay, Ay, Ay max(6,), max(Hy), max(6,)

0, = Aysin(wt)

-~

(4.2)

21

w =
Trotation

6, = A,sin(wt) J
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where Tyoeqtion denotes the rotational movement period, A,, A,, and A, denote the
maximum rotation angle of the camera in x, y, and z direction, respectively. In our

simulation we take:

Ay=A,=4,=— (4.3)

We also examine how the results are affected when the maximum rotation angles of the

camera are changed.

The camera motion used in the experiments is the combination of the translational and
the rotational movements shown in Figure 4.1.1 and Figure 4.1.2, respectively. As a
result, the camera movement chosen for simulation includes both 3D translational and

3D rotational movements.

In the experiments, the camera coordinate system and the sensor coordinate system are
assumed to be same. As stated in previous chapter, the relations of the coordinate

systems of the camera and inertial systems are fixed, so R is idendity matrix:

1 0 O
Rs=[0 1 0 (4.4)
0 0 1

4.2 NOISES

In the simulations, two kinds of noises are used:

1. Measurement Noises
2. Time Model Noises
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4.2.1 Measurement Noises

For the inertial sensor measurement noise, we used the noise value written on the

datasheet of the sensors.

We used LSM303DLH 3-axis accelerometer sensor for 3D linear acceleration and the

linear acceleration noise density is 218 ug/VHz. In the algorithm, the linear

acceleration noise is:

el = /(218x1076)2xf" (4.5)
where f.;* denotes the sampling rate of the accelerometer.

We used LY330ALH yaw-rate gyroscope and LPR430AL dual axis pitch analog
gyroscope for 3D angular velocity. The angular velocity noise density of the two
gyroscopes are 0.014 dps/vVHz and 0.018 dps/vVHz, respectively. In the algorithm, the

angular velocity noise is:

e, = \/ (on.om)2 xf¥ (4.6)

180

where £, denotes the sampling rate of the gyroscope.

The measurement noise of the feature points on the camera frames is related to the
translational and rotational movement of the camera. When the translational movement
or rotational movement increases, the measurement noise of the feature points also
increases (Ercan & Erdem 2011).

ef = J( 2RF )2 + (Ztan(Ax)F)Z +afs (4.7)

c c
Ttranslationfs Trotationfs
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where F denotes the focal length of the camera, R denotes the radius of the translational
movement, f.° denotes the sampling rate of the camera, a depends on the camera

properties as well as external factors.
4.2.2 Time Model Noises

For time model noises of linear acceleration and angular velocity, we used the real 3D
translational and rotational movements. We use the change value of the real 3D
translational and rotational movements at the points where they match the predicted
values from linear model at least. For instance, if the real linear acceleration on x axis
is:

27t

a = sin (T) (4.8)
the time model noise of the linear acceleration is:

Vg = 2?nmax(a)TS (4.9)
where T, denotes the sampling period of the overall system.
4.3 EKF RESULTS

Our experiment results are showing in the following figures. We had 9 different EKF
methods and implemented all of them. The result includes the individual results of these

9 methods, also comparison of them with each other.

The period of the translational movement of the camera in the figures below is 4
seconds, and the period of the rotational movement of the camera is 0.33 seconds.

Measurement noises of the feature points, linear acceleration, and angular velocity are

pixel

1.55x10* 5.71x10~* m/s2, and 4.48x105 "% respectively.
— resp y

focal length’
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4.3.1 Both Angular Velocity and Linear Acceleration Data Used As Measurement

In Figure 4.3, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be seen when all inertial sensor data and camera data are used as measurement.
When both the accelerometer and the gyroscope data are used as measurement,
performance of the camera tracking is good for both rotational and translation motion of
the camera. So, true rotational and translational motion (red lines) and estimated
rotational and translational motion (blue lines) of the camera are very close to each
other in Figure 4.3.

Figure 4.3: Estimated and true motion of the camera when both angular
velocity and linear acceleration data are used as measurement in

EKF
Rotational Moverment
I:I'd T T T T T
Real
= 025 Estimated |7
=
S 0tk i
E \
[
O op2t -
_Dd 1 1 1 1 1
] a0 100 150 200 240 300
Time[sec]
Translational Moverment
2 T T T T T
Real
— 1r i -
£ \/\/\/\/\/ Estimated
[y
=E]e -
3
[m)
(W _-1 | i
2 1 1 1 1 1
] s00 1000 1500 2000 2800 3000

Time[=ec]

62



Depending on the period of the camera motion, tracking performance varies. When the
rotational or translational camera motion velocity increases, RMSE value between the
real and estimated map increases. In Figure 4.4, the changes in RMSE values can be

realized according to translational and rotational period in this case.

Figure 4.4: Change in RMSE of the position and orientation of the camera with
rotational and translational period of the camera when both angular
velocity and linear acceleration data are used as measurement in

EKF
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4.3.2 Angular Velocity Data Used As Control Input, Linear Acceleration Data

Used As Measurement

In Figure 4.5, the comparison of the real and estimated translational and rotational
movement of the camera with 10%¢ s translational period and 107> s rotational period
can be found when the linear acceleration data and camera data are used as
measurement and the angular velocity data is used as control input. When the
accelerometer is used as measurement and the gyroscope is used as control input instead
of measurement does not affect the tracking performance significantly. The camera
tracking performance is still good and the estimated motion of the camera for both

translational and rotational directions is very close to true motion of the camera.

Figure 4.5: Estimated and true motion of the camera when angular velocity data
is used as control input, linear acceleration data is used as
measurement in EKF
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In Figure 4.6, the changes in the RMSE values can be found according to translational

and rotational period in this case. When the rotational or translational camera motion

velocity increases, RMSE value between the real and estimated map increases.

Figure 4.6: Change in RMSE of the position and orientation of the camera with
rotational and translational period of the camera when angular
velocity data is used as control input, linear acceleration data is used
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4.3.3 Angular Velocity Data Used As Measurement, Linear Acceleration Data
Used As Control Input

In Figure 4.7, the comparison of the real and estimated translational and rotational
movement of the camera with 10%¢ s translational period and 107> s rotational period
can be found when the angular velocity data and camera data are used as measurement
and the linear acceleration data is used as control input. Similar to case 4.3.2, when the
accelerometer is used as control input instead of measurement and the gyroscope is used
as measurement does not affect the tracking performance significantly. The camera
tracking performance is still good and the estimated motion of the camera for both

translational and rotational directions is very close to true motion of the camera.

Figure 4.7: Estimated and true motion of the camera when angular velocity data
is used as measurement, linear acceleration data is used as control

input in EKF
Rotational Moverment
I:I'd 1 1 1 1 1
Feal
= 0.2 Estimated |7
=
2 gt i
E \
[
O op2t .
'D-"l 1 1 1 1 1
0 a0 100 180 200 260 200
Time[sec]
Translational Movernent
2 T T T T T
Real
— 1 i .
B8 Estimated
=
=Rt i
3
[}
o At .
iy 1 1 1 1 1
] 500 1000 1500 2000 2600 3000

Time[sec]

66



In Figure 4.8, the changes in the RMSE values can be seen according to the translational

and rotational period in this case. When the rotational or translational camera motion

velocity increases, RMSE value between the real and estimated map increases.

Figure 4.8: Change in RMSE of the position and orientation of the camera with

RWZE

RMSE

rotational and translational period of the camera when angular
velocity data is used as measurement, linear acceleration data is
used as control input in EKF
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4.3.4 Both Angular Velocity and Linear Acceleration Data Used As Control Input

In Figure 4.9, the comparison of the real and the estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when all inertial sensor data is used as control input and only camera data
are used as measurement. When both the accelerometer and gyroscope are used as
control input instead of measurement does not affect the tracking performance
significantly. The camera tracking performance is still good and the estimated motion of
the camera in both translational and rotational directions is very close to true motion of
the camera (Figure 4.9). However, if we compare the results with Figure 4.3, the

rotational motion is more affected than translational motion.

Figure 4.9: Estimated and true motion of the camera when both angular
velocity and linear acceleration data are used as control input in

EKF
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In Figure 4.10, the changes in the RMSE values can be found according to the
translational and rotational period in this case. When the rotational or translational
camera motion velocity increases, RMSE value between the real and estimated map

increases.

Figure 4.10: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when both
angular velocity and linear acceleration data are used as control
input in EKF
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4.3.5 Angular Velocity Data Used As Measurement

In Figure 4.11, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the angular velocity data and the camera data are used as
measurement and the linear acceleration data is not used anymore. When the gyroscope
is used as measurement and accelerometer is not used, the tracking performance of the
camera decreases for both translational and rotational motion of the camera and the
tracking is not good as the case 4.3.1 that both the accelerometer and the gyroscope are
used as measurement (Figure 4.11). Not using accelerometer affects the tracking

performance of the camera moving translational and rotational.

Figure 4.11: Estimated and true motion of the camera when angular velocity
data is used as measurement in EKF

Fotational kMovement

D"q’ T T T T T
Real
= 0.2 Exstimated |
=
2 0tk i
E \
[}
O on2t .
_D_d 1 1 1 1 1
] a0 100 180 200 260 300
Time[sec]
Translational Movernent
2 T T T T T
Feal
— 1r i .
B Estimated
[y
=a]e -
e
[m)
o b i
2 1 1 1 1 1
] 500 1000 1500 2000 2800 3000

Time[sec]

70



In Figure 4.12, the changes in the RMSE values change can be found according to the
translational and rotational period in this case. When the rotational or translational
camera motion velocity increases, RMSE value between the real and estimated map

increases.

Figure 4.12: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when
angular velocity data is used as measurement in EKF
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4.3.6 Angular Velocity Data Used As Control Input

In Figure 4.13, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the angular velocity data is used as control input and the camera data
Is used as measurement and the linear acceleration data is not used anymore. When the
gyroscope is used as control input and accelerometer is not used, the tracking
performance of the camera is very similar to case 4.3.5. Using gyroscope as control

input or measurement without accelerometer does not change the tracking performance.

Figure 4.13: Estimated and true motion of the camera when angular velocity
data is used as control input in EKF
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In Figure 4.14, the changes in the RMSE values can be seen according to translational

and rotational period in this case. When the rotational or translational camera motion

velocity increases, RMSE value between the real and estimated map increases.

Figure 4.14: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when
angular velocity data is used as control input in EKF
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4.3.7 Linear Acceleration Data Used As Measurement

In Figure 4.15, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the linear acceleration data and the camera data are used as
measurement and the angular velocity data is not used anymore. When the
accelerometer is used as measurement and the gyroscope is not used, the camera
tracking performance is affected significantly. Specially, the rotational motion is
affected and the tracking performance in rotational direction is awful (Figure 4.15).
Without gyroscope, accelerometer is not enough to track the camera for rotational
motion. But the translational motion of the camera is better than case 4.3.5. Using

accelerometer improve the tracking performance of the camera in translational motion.

Figure 4.15: Estimated and true motion of the camera when linear acceleration
data is used as measurement in EKF
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In Figure 4.16, the changes in the RMSE values can be seen according to translational

and rotational period in this case. When the rotational or translational camera motion

velocity increases, RMSE value between the real and estimated map increases.

Figure 4.16: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when linear
acceleration data is used as measurement in EKF
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4.3.8 Linear Acceleration Data Used As Control Input

In Figure 4.17, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the linear acceleration data is used as control input, the camera data
Is used as measurement and the angular velocity is not used anymore. When the
accelerometer is used as control and the gyroscope is not used, the camera tracking
performance is very similar to case 4.3.7. Using accelerometer as control input reduces

the translational tracking performance slightly.

Figure 4.17: Estimated and true motion of the camera when linear acceleration
data is used as control input in EKF
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In Figure 4.18, the changes in the RMSE values can be found according to translational

and rotational period in this case. When the rotational or translational camera motion

velocity increases, RMSE value between the real and estimated map increases.

Figure 4.18: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when linear
acceleration data is used as control input in EKF
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4.3.9 Both Angular Velocity and Linear Acceleration Data Not Used

In Figure 4.19, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when only the camera data is used as measurement, the angular velocity
data and linear acceleration data are not used anymore. Tracking with only camera
(without inertial sensors) gives the worst result. Both translational and rotational motion
estimation is poor (Figure 4.19). Using inertial sensors with camera for tracking
improves the performance of tracking. If the frequency of the camera is increased, the

effects of the inertial sensors also will increase.

Figure 4.19: Estimated and true motion of the camera when both angular
velocity and linear acceleration data are not used in EKF
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In Figure 4.20, the changes in the RMSE values can be found according to translational
and rotational period in this case. When the rotational or translational camera motion

velocity increases, RMSE value between the real and estimated map increases.

Figure 4.20: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when both
angular velocity and linear acceleration data are not used in EKF
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4.4 HYBRID FILTER RESULTS
Our experiment results with Hybrid filter can be found in the following figures. We had
9 different Hybrid Filter methods and implemented all of them. The result includes all

results of these 9 cases as well as their comparisons with each other.

The translational and rotational periods are the same as EKF Filter.
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4.4.1 Both Angular Velocity and Linear Acceleration Data Used As Measurement

In Figure 4.21, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when all inertial sensor data and camera data are used as measurement.
When both the accelerometer and the gyroscope data are used as measurement,
performance of the camera is good in both rotational and translation motions of the
camera for hybrid filter. If we compare the results with EKF results, EKF gives better
results than hybrid filter. The case that both the accelerometer and gyroscope are used
as measurement for EKF is given in 4.3 and the results is better than the results given in
Figure 4.21.

Figure 4.21: Estimated and true motion of the camera when both angular
velocity and linear acceleration data are used as measurement in

hybrid filter
Rotational Movement
I:I"q' T T T T T
Feal
= 02h Estimated (7
Oon2t .
_D_d 1 1 1 1 1
] a0 100 180 200 280 300
Time[sec]
Translational Movernent
2 1 1 1 1 1
Feal
— 1F i .
B Estimated
=
2 gl i
&
[}
L ]
2 1 1 1 1 1
0 00 1000 1500 2000 2600 3000

Time[sec]

80



Depending on the period of the camera motion, tracking performance varies. When the
translational or rotational camera motion velocity increases, the RMSE value between
the real map and estimated map increases. In Figure 4.22, the changes in the RMSE

values can be found according to the translational and rotational period in this case.

Figure 4.22: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when both
angular velocity and linear acceleration data are used as
measurement in hybrid filter
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4.4.2 Angular Velocity Data Used As Control Input, Linear Acceleration Data
Used As Measurement

In Figure 4.23, the comparison of the real and estimated translational and rotational
movement of the camera with 10%¢ s translational period and 107> s rotational period
can be seen when the linear acceleration data and camera data are used as measurement
and the angular velocity data is used as control input. Using angular velocity as control
input instead of measurement and accelerometer as measurement reduces the tracking
performance of the camera. As can be seen in Figure 4.23, the difference between the
true and estimated rotational and translational motion of the camera is bigger than the

case both accelerometer and gyroscope are used as measurement.

Figure 4.23: Estimated and true motion of the camera when angular velocity
data is used as control input, linear acceleration data is used as
measurement in hybrid filter
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In Figure 4.24, the RMSE values change can be seen according to translational and
rotational period in this case.

Figure 4.24: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when
angular velocity data is used as control input, linear acceleration
data is used as measurement in hybrid filter
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4.4.3 Angular Velocity Data Used As Measurement, Linear Acceleration Data
Used As Control Input

In Figure 4.25, the comparison of the real and estimated translational and rotational
movement of the camera with 10%¢ s translational period and 107> s rotational period
can be found when the angular velocity data and the camera data are used as
measurement and the linear acceleration data is used as control input. When the angular
velocity is used as measurement and the accelerometer is used as control input, the
tracking performance of the camera does not change so much when compares the
tracking performance of the case that both inertial sensors are used as measurement.

Figure 4.25: Estimated and true motion of the camera when angular velocity
data is used as measurement, linear acceleration data is used as
control input in hybrid filter
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In Figure 4.26, the changes in the RMSE values can be seen according to translational

and rotational period in this case.

Figure 4.26: Change in RMSE of the position and orientation of the camera
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4.4.4 Both Angular Velocity And Linear Acceleration Data Used As Control Input

In Figure 4.27, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when all inertial sensor data is used as control input and only camera data
are used as measurement. When both inertial sensors are used as control input, tracking
performance of the camera in translation decreases, but the tracking performance of the

camera in rotation is not affected significantly.

Figure 4.27: Estimated and true motion of the camera when both angular
velocity and linear acceleration data are used as control input in

hybrid filter
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In Figure 4.28, the changes in the RMSE values can be found according to translational
and rotational period in this case.

Figure 4.28: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when both
angular velocity and linear acceleration data are used as control
input in hybrid filter
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4.4.5 Angular Velocity Data Used As Measurement

In Figure 4.29, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the angular velocity data and the camera data are used as
measurement and the linear acceleration data is not used anymore. When we do not use
accelerometer and use only gyroscope as measurement with camera, tracking

performance in translation poor and tracking performance in rotation is good.

Figure 4.29: Estimated and true motion of the camera when angular velocity
data is used as measurement
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In Figure 4.30, the changes in the RMSE values can be found according to translational
and rotational period in this case.

Figure 4.30: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when
angular velocity data is used as measurement
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4.4.6 Angular Velocity Data Used As Control Input

In Figure 4.31, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the angular velocity data is used as control input and the camera data
Is used as measurement and the linear acceleration data is not used anymore. Using only
angular velocity as control input, tracking performance in translation is bad due to lack
of accelerometer. On the other hand using gyroscope as control input instead of

measurement does not change the tracking performance in rotation.

Figure 4.31: Estimated and true motion of the camera when angular velocity
data is used as control input in hybrid filter
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In Figure 4.32, the changes in the RMSE values can be found according to translational
and rotational period in this case.

Figure 4.32: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when
angular velocity data is used as control input in hybrid filter
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4.4.7 Linear Acceleration Data Used As Measurement

In Figure 4.33, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the linear acceleration data and the camera data are used as
measurement and the angular velocity data is not used anymore. Using only
accelerometer as measurement and not using gyroscope reduces the tracking
performance of the camera in rotation. The tracking performance of the camera in

translation reduces but not significantly.

Figure 4.33: Estimated and true motion of the camera when linear acceleration
data is used as measurement in hybrid filter
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In Figure 4.34, the changes in the RMSE values can be found according to translational
and rotational period in this case.

Figure 4.34: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when linear
acceleration data is used as measurement in hybrid filter
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4.4.8 Linear Acceleration Data Used As Control Input

In Figure 4.35, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the linear acceleration data is used as control input, the camera data
iIs used as measurement and the angular velocity is not used anymore. Using
accelerometer as control input instead of measurement without gyroscope does not
change the tracking performance in translation significantly. However the performance

of the tracking in rotation is still poor due to lack of gyroscope.

Figure 4.35: Estimated and true motion of the camera when linear acceleration
data is used as control input in hybrid filter
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In Figure 4.36, the changes in the RMSE values can be found according to translational
and rotational period in this case.

Figure 4.36: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when linear

acceleration data is used as control input in hybrid filter
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4.4.9 Both Angular Velocity And Linear Acceleration Data Not Used

In Figure 4.37, the comparison of the real and estimated translational and rotational
movement of the camera with 10°¢ s translational period and 10~%° s rotational period
can be found when the only camera data is used as measurement, the angular velocity
data and linear acceleration data are not used anymore. Using only camera for tracking

gives the worst result in both rotation and translation. Difference between the true and
estimated motion is high in Figure 4.37.

Figure 4.37: Estimated and true motion of the camera when both angular
velocity and linear acceleration data are not used in hybrid filter
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In Figure 4.38, the changes in the RMSE values can be found according to translational
and rotational period in this case.
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Figure 4.38: Change in RMSE of the position and orientation of the camera
with rotational and translational period of the camera when both
angular velocity and linear acceleration data are not used in hybrid

filter
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45 COMPARISON OF EKF AND HYBRID FILTER

Both EKF and Hybrid filters are Bayesian filters. The only difference of these two
filters is the usage of the camera measurements. EKF uses the feature points on image
plane in filter directly. On the other hand, Hybrid filter uses the structure (pose and
angle) obtained from structure from motion by using feature points. In Table 4.1, the
difference of two filters, and their RMSE values calculated by using estimated and the

real 3D position and angle data.
Furthermore, the usage of the inertial sensors effects can be found in Table 4.1. In the

table, both pose and angle RMSE values of the each dimension x, y, z are given. Also,

Both EKF and Hybrid filter solutions for 9 different cases are given in Table 4.1.
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Table 4.1: RMSE values from EKF and hybrid filter simulations

filter acc | gyr | cam X y zZ 0, 0y 0,

m | m m | 0.04445 | 0.04523 | 0.02722 | 0.01365 | 0.01393 | 0.01683

ci | m m | 0.04847 | 0.04924 | 0.03024 | 0.01470 | 0.01503 | 0.01692

m | ci m | 0.04473 | 0.04489 | 0.02683 | 0.01295 | 0.01330 | 0.01616

ci | ci m | 0.04896 | 0.04913 | 0.03020 | 0.01477 | 0.01517 | 0.01640

EKF Xx | m | m |0.05516 | 0.05548 | 0.03701 | 0.01609 | 0.01654 | 0.01701

X ci m | 0.05486 | 0.05539 | 0.03710 | 0.01620 | 0.01656 | 0.01652

m X m | 0.04468 | 0.04555 | 0.02829 | 0.01523 | 0.01566 | 0.04697

ci X m | 0.05044 | 0.05021 | 0.04871 | 0.04838 | 0.04855 | 0.04973

X X m | 0.05599 | 0.05578 | 0.05412 | 0.04897 | 0.04908 | 0.04950

m | m m | 0.03564 | 0.03697 | 0.16186 | 0.03062 | 0.03513 | 0.02165

ci | m m | 0.04158 | 0.04102 | 0.24941 | 0.03750 | 0.04668 | 0.02260

m | ci m | 0.03635 | 0.03676 | 0.17335 | 0.02957 | 0.03510 | 0.02161

ci | ci m | 0.04128 | 0.04057 | 0.25836 | 0.03874 | 0.04606 | 0.02283

HYBRID | x | m | m |0.05597 | 0.05503 | 0.34731 | 0.03930 | 0.04653 | 0.02823

X ci m | 0.05710 | 0.05535 | 0.34651 | 0.03737 | 0.04583 | 0.02276

m X m | 0.03975 | 0.03714 | 0.23360 | 0.06484 | 0.07679 | 0.07365

ci X m | 0.04716 | 0.04222 | 0.24839 | 0.15569 | 0.18127 | 0.097457

X X m | 0.05660 | 0.05575 | 0.34727 | 0.15045 | 0.18183 | 0.09344

In the table, acc, gyr, and cam denotes the accelerometer, gyroscope, and camera,
respectively. The expression under these three columns m, ci, and x denotes the data

used as measurement, data used as control input, and data not used, respectively.
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The simulations are run for 300 seconds and 5 times. The amount of noise is changed
randomly each time. So, the standard deviations of these 5 simulations are shown in
Table 4.2.

Table 4.2: Standard deviation values from EKF and hybrid filter simulations

filter acc | gyr | cam X y zZ 0, 0y 0,

m | m m | 0.00104 | 0.00057 | 0.00078 | 0.00010 | 0.00014 | 0.00003

ci | m m | 0.00130 | 0.00134 | 0.00037 | 0.00042 | 0.00062 | 0.00056

m ci m | 0.00152 | 0.00131 | 0.00036 | 0.00034 | 0.00030 | 0.00012

ci ci m | 0.00095 | 0.00095 | 0.00031 | 0.00021 | 0.00021 | 0.00019

EKF X m m | 0.00093 | 0.00094 | 0.00037 | 0.00021 | 0.00019 | 0.00026

X ci m | 0.00057 | 0.00113 | 0.00045 | 0.00018 | 0.00006 | 0.00013

m X m | 0.00052 | 0.00126 | 0.00060 | 0.00026 | 0.00013 | 0.00010

ci X m | 0.00124 | 0.00176 | 0.00025 | 0.00017 | 0.00011 | 0.00011

X X m | 0.00077 | 0.00131 | 0.00034 | 0.00026 | 0.00023 | 0.00008

m | m m | 0.00171 | 0.00200 | 0.01468 | 0.00091 | 0.00050 | 0.00042

ci m m | 0.00245 | 0.00288 | 0.02273 | 0.00070 | 0.00063 | 0.00029

m | ci m | 0.00133 | 0.00228 | 0.00763 | 0.00030 | 0.00098 | 0.00020

ci ci m | 0.00185 | 0.00231 | 0.00688 | 0.00088 | 0.00074 | 0.00041

HYBRID | x | m | m |0.00093 | 0.00258 | 0.01250 | 0.00268 | 0.00177 | 0.00946

X ci m | 0.00196 | 0.00170 | 0.01874 | 0.00031 | 0.00060 | 0.00039

m X m | 0.00115 | 0.00101 | 0.01069 | 0.00376 | 0.00196 | 0.00155

ci X m | 0.00125 | 0.00230 | 0.02130 | 0.00726 | 0.00301 | 0.00560

X X m | 0.00319 | 0.00158 | 0.01129 | 0.00364 | 0.00252 | 0.00340
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Some EKF cases and Hybrid filter comparisons in different periods can be found in the
figures below. In Figure 4.39, RMSE values are calculated by using estimated and the
real 3D position data for Case 1, 2, 3, 5, 7, 9 for EKF and Case 1 for Hybrid filter in

different rotational period.

Figure 4.39: RMSE (position) comparison of different usage of EKF and hybrid
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In Figure 4.40, RMSE values are calculated by using the estimated and real 3D position
data for Case 1, 2, 3, 5, 7, 9 for EKF and Case 1 for Hybrid filter in different rotational

period.
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Figure 4.40: RMSE (orientation) comparison of different usage of EKF and
hybrid

RMSE txyz
07 . .

—&— mmm

Cirmm

RMSE

Rotational Period

Figure 4.39 and 4.40 show that when the period of the camera in rotation is low, using
inertial sensors as control input gives slightly better results, also using inertial sensors
for tracking as measurement or control input improves the tracking performance.
However, when the period increases, the effects of the inertial sensors decrease because
as we said before the camera gives better tracking results in slow motion (blue, red and
green lines). The camera measurement will be enough when the period of the camera
motion. Moreover, hybrid filter does not give good results as EKF at high speed, but
when the motion decreases hybrid filter performance is close to EKF performance
(black line).

In Figure 4.41, RMSE values are calculated by using the estimated and real 3D position

data for Case 1, 2, 3, 5, 7, 9 for EKF and Case 1 for Hybrid filter in different
translational period.
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Figure 4.41: RMSE (position) comparison of different usage of EKF and hybrid
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In Figure 4.42, RMSE values are calculated by using the estimated and real 3D angle
data for Case 1, 2, 3, 5, 7, 9 for EKF and Case 1 for Hybrid filter in different

translational period.
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Figure 4.42: RMSE (orientation) comparison of different usage of EKF and

hybrid
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Figure 4.41 and 4.42 show that when the period of the camera in translation is low,
using inertial sensors as control input gives slightly better results. When the period
increases, the tracking performance does not increase significantly for the cases not
using gyroscope (yellow and cyan lines). Not using accelerometer or using as
measurement or control input to track the rotational motion of the camera does not
affect the tracking performance (pink, green and red lines). Moreover, hybrid filter does
not give good results as EKF at high speed, but when the motion decreases hybrid filter

performance is close to EKF performance (black line).
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4.6 ACTUAL EXPERIMENT SETUP

In this section, the real world simulation platform and the performance evaluation of the
algorithms are provided. For platform, we prepared a setup including a camera, two
gyroscopes, and an accelerometer (Figure 4.43).

Figure 4.43: Simulation setup

With this setup, we moved in the lab and captured a video and sensor data from

accelerometer and gyroscope. There are two cameras on the image, but we use only one
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of them for now. However; theboth of the camera can be used for the next step of the

project.

Camera:

The camera on the setup has 640x480 resolution and capture RGB value image in 30Hz.
To get information about 2D/3D correspondence, 3D map of the lab should be found in
offline. For this purpose, we find the feature points of each frame captured by the
camera using SIFT. Then Bundler Adjustment algorithm is used to find the 3D
information of the feature points. Since SIFT finds many feature points, we eliminated
some of them. Then, we found the 3D map of the lab before starting to track (Figure
4.44).

Figure 4.44: Image sequences used to find 3D map of the scene
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Also, we found the camera intrinsic parameters by using calibration patterns (Figure
4.45).
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Figure 4.45: Camera calibration pattern

Accelerometer:

In this setup, LSM303DHL type 3D accelerometer is used. The measurement noise
obtained from its data sheet. When accelerometer measures the linear acceleration, it
also measures the gravity force on z direction. The gravity force of the space where
camera tracking is made should be found and subtracted from the measurements of the
accelerometer. To calculate the gravity force, we left the accelerometer stable and wait
measurements. Because accelerometer is not moved, the measurement values obtained
from gyroscope is related to gravity force. We made 100 trials and calculate the average
of all measurement and gravity force is calculated. In the lab, we found the gravity force
to be [0.03238 —0.12443 —10.02318].

Gyroscope:
We used two gyroscopes in the setup. LPR430AL type gyroscope obtains x and y
coordinates of the rotational movement. The other gyroscope LY330ALH type

measures the z coordinate of the rotational movement.

The coordinate systems of the camera, gyroscope and accelerometer are found. The
positions of the inertial sensors and camera on the board are found by using metrical

paper (Figure 4.46).
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Figure 4.46: Positions of the inertial sensors and camera on the setup
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The devices, i.e., camera, accelerometer and gyroscope on the board have their own
coordinate system. To find the relationships of the coordinate system, we have to find
their exact position and the difference of their centers from each others. On the
datasheets of the devices, we found their coordinate systems specifications and by using

metric paper to find the distances of the centers (Figure 4.47).
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Figure 4.47: Relations of the inertial sensors’ coordinate systems
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4.7 ACTUAL EXPERIMENT RESULTS

Figure 4.49 shows the matches between the feature points projected from 3D map by
using estimated camera position and orientation matrix (red points) and the feature
points found by using SIFT feature detection algorithms (blue points). We used the
camera, accelerometer and gyroscope as measurement in this experiment. Firstly, we
projected the 3D points in our map on the current image by using the predicted camera
pose, and we found the feature points for current frame by using SIFT. Then, we tried to
match the feature points coming from projection and SIFT. We found the best match of
a feature point from projection in a elliptical region around its position (Figure 4.48).
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Figure 4.48: Feature point search for best match in an ellipse
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Then we updated the camera pose by using accelerometer and gyroscope measurements.
In Figure 4.49, the match can be seen after the 3D points are projected on the image by

using updated camera position and orientation matrix.

Figure 4.49: Projected and detected feature points
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20 o

Frame 111 Frame 191

In this experiment, we used 211 figures to built 3D map by using Bundler adjustment.
We found 888 3D points and we used these 3D points and their projection for camera

measurement.
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5. CONCLUSIONS AND FUTURE WORKS

We investigate the hybrid algorithm using inertial sensor and camera together for 3D
camera tracking. When using only camera without inertial sensors, 3D tracking is hard
when the velocity of the camera is high due to motion blur. When motion blur increases
in an image, finding feature points and matching them becomes difficult. The inertial
sensors are used to track motion when the motion of the camera is fast, because inertial
sensors give more accurate results at high velocities due to their specifications. The data
coming from accelerometer and gyroscope and data coming from camera video are
fused in a Bayesian filter. We use two kinds of Bayesian filter in our algorithm: EKF
and hybrid filter. We compare the performance of two filters. In addition to comparison
of filters, we analyze how the tracking performance changes when the measurements of
inertial sensors, accelerometer and gyroscope, are used as control input instead of
measurements. One of the inertial sensors can also be used as control input, as both of
them can be used as control input. Furthermore, we examine the tracking performance

changes when the rotational and translational motion of the camera varies in time.

Simulation results show that the tracking performance using EKF gives more accurate
results than using hybrid filter for all cases. It is also observed that using inertial sensors
with camera in filter gives more accurate results than using only camera in filter to track
the camera for both filters. Moreover, the results confirms that using accelerometer or
gyroscope as control input in filter does not affect the tracking performance instead of
using accelerometer or gyroscope as measurement. Using inertial sensor as control input

reduce the filter computational complexity; however performance does not decrease.

The simulation results depict that when the period of the camera decreases, the tracking
performance increases. Because the camera measurement will be better due to less
motion blur. It is also observer that using inertial sensors as control input does not
degrade the performance for all periods. Additionally, the hybrid filter performance
converges the EKF performance with the increase of the camera translational period.
The last observation from the figure is that using or not using gyroscope does not affect

the translational performance of the tracking. As we know that gyroscope measure the

111



rotation of the object, so it does not affect the any translational movement. On the other,
using accelerometer does not affect the performance of the camera rotational tracking.
Since accelerometer measure the linear acceleration of the object, using or not using

accelerometer does not affect the performance of rotational camera tracking.
Future research plan is 3D camera tracking in scene whose 3D information is not known

previously. Also previously captured 3D scene information will be refined during the

head tracking.
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Appendix A. CAMERA MEASUREMENTS

2D/3D correspondence equations of the feature points detected on the image plane are

given below:

Dx,t
Pt = Ipy't‘ = ch(st,t(mw,t - Sw,t) - Cs) (A-l)
Dzt

where m,, . denotes the 3D position of the feature point in world coordinate system, s,,,
denotes the camera position in world coordinate system, c, denotes the center difference
between camera and sensor coordinate systems, Q,, . denotes the rotation matrix from
world to sensor coordinate system, Qs, . denotes the rotation matrix from sensor to

camera coordinate system.

Px.t c
Myt E +ex:
mt = = py:t c (A'Z)
my,t — + ey’t

where ey, and ey, denote time independent Gaussian camera measurement noise, m,

and m,, , denote the 2D position of the feature point in image plane.

Using the equations given above in an extended Kalman filter in Section 3.1 requires

the computation of the first derivative (Jacobian) of m, with respect to s, ¢, vy ¢, Ay ¢,

a w
bs,tl Gsw,t) Wst bs,t'

The Jacobian of m; with respect to s,,, . Is:

(A.3)

aSW,t amy‘t amy_t apt

Opt Osw

OMy ¢ Omy;: Opt
omg Osw,t . Opt Oswt
6sw‘t
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where

amx't
op:

6my,t _

op¢

ope
aSW't

[6mx,t Bmx‘t amx‘t]

0Pt aPy,t 0Dzt

[6my,t 6my‘t amz,t]

ODxt aPy,t 0Dzt

0Dyt

OSwxt

0Dyt ODxt "l

aSwy,t OSwzt

= (ch(_st,t)) = Pyt

Oyt 0Pyt
OSwxt aSwy,t OSwzt
0Pzt 0Pzt 0Pzt
OSwx,t aSwy,t OSwzt

The derivations of the above equations are:

and

and

OMmy ¢ _ L Omy ¢ _ Omyt _ __ Pxt
ODxt pz,t’ apy,t ’ 0Dzt Dz,t?
amy,t _ amy‘t _ i amy,t _ Dyt
ODxt Dyt  Pzi  ODzt Pzt?
Omy ¢ — OMyt Pyt Myt 0Dyt Omyt 9pzt — OMyt Pyt Omyr 9Pzt
OSwx,t O0Pxt OSwx,t apy,t OSwx t 0Dzt OSwxt ODxt OSwxt 0Dzt OSwxt
—
0
Oy — OMy,t Opxt Omy: 0Dy Omyt 0Dzt — OMyt ODxt OMyt 0Pzt
OSwy,t ODx,t OSwy,t 0Pyt OSwy,t 0Pzt OSwy,t ODx,t OSwy,t 0Pzt OSwy,t
———
0
Oy — OMyt Opxt Omy: 0Dy, OMyt 0Pzt — OMyt OPxt Omyt 0Dzt
OSwz,t ODx,t OSwzt 0Dyt OSwzt 0Pzt OSwzt ODx,t OSwzt 0Pzt OSwzt
—
0
6my't _ amy‘t apx,t amy't apy't amy't apZ,t _ amy,t apy,t amy,t apz,t
OSwxt  OPxt OSwxt  ODyt OSwxt  OPzt OSwxt  ODyt OSwxt 0Dzt OSwxt
——
0
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6my,t _ 6my,t 0Pyt amy,t 6py,t 6my,t 0Pzt 8my,t apy,t amy,t 0Pzt (A 7b)
aSwy,L' 0Pyt aSwy,i.“ apy,i: aSwy,i.“ 0Dzt aSwy,t apy,i: aSwy,t 0Pzt aSwy,t '
——
0
6my't _ 6my‘t apx,t 6my‘t apy‘t 6my‘t apz,t _ amy_t 6py_t amy_t apz,t (A 7C)
OSwzt ODx,t OSwzt apy,t OSwzt 0Dzt OSwzt apy,t OSwzt 0Dzt OSwzt '
——
0
As a result the final version of the Jacobian is:
Omyr [i 0 — Px,t]( )
5wt = ozt Dz ch( st,t) (A-Sa)
0 L =24 (0u(-0m0)
OSwe = Dot Psi? ch( st,t) (A-Sb)
The Jacobian of m, with respect to v, , is:
OMmy ¢ Omy: Opt
ame _ | Ovwe| | 0Pt Ovwe (A.9)
vy,  |9my,e Imy,: dp; '
Ovw,t Ope vy ¢
where
[ 0Pyt 0Pyt apx,t 'l
0O 0 O Ovyxt O Vwy,t OVyz,¢
ap: apy,i: apy,i: apy,t:
— = A.10
Ovy, ¢ 000 OVwxt OVwyt OVwzt ( )
0 0 O Pzt Pzt Pzt
OVt awa,t Ovyzt
The derivations of the above equations are:
OMy ¢ _ Omyt ODxt Omy ¢ aPy,t Omy: 0Pzt =0 (A 11a)
Ovwxt  ODxt OVwxt  ODyt OVwxt  ODzt OVwxt '
N—— ——— N—— N——
0 0 0 0
Omyt _ OMye Opxt , OMat Opyt | Omyr 0Py —0 (A.11b)

6va,t
0

0Pyt 0 Vwy,t
——

0 0

apy,t ava,t
——— N———

0Pzt ava,t
——
0
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6mx,t

OMmyt 0Pyt

0My,t ODy ¢

0myt Opgt

=0
0Vt 0Pyt OVwat apy,t Myt 0Pzt OVwzt
—— —_— N—\— [——7
0 0 0 0
and
6my,t 6my‘t apx,t amy't apy‘t amy_t apz,t _ 0
OVt ODxt OVwxt apy,t OVt 0Dzt OVwxt
—— N—— N—— N——
0 0 0 0
omy ¢ Omy ¢ 0Dyt omy ¢ 0Dyt omyr Opgr 0
ava,t 0Dyt ava,t apy,i: ava,t opzt ava,t
—— —— ——— ~——
0 0 0 0
amy,t amy‘t apx,t amy‘t 6py,t 6my,t 6pz‘t _ O
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()
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As a result the final version of the Jacobian is:

amx,t
617W,t

amy,t _

a‘l)w't

1

Pzt

0 0
el | LI
0 0
0 0
2o o
0 0

of=[0 0 0]

o[=[0 0 0]

The Jacobian of m, with respect to a,,, ; is:

6mt

avat

Oyt Omy,t Ope
dawe| | 9pe daw;
omy ¢ - omy Opt
Oaw,t Op: O0awy
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where

0Dyt 0Dyt 0Dyt "l
0O 0 O 0awx,t aawy,i: dayzt
op: 0 0 ol= oDyt oDyt 0Pyt
day ¢ - - 0ayyt aawy,t dawzt
0O 0 O Pzt 0Pzt 0Pzt
00wyt Oday y,t 0ayz¢

The derivations of the above equations are:
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As a result the final version of the Jacobian is:
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The Jacobian of m, with respect to b¢, is:

OMy ¢ Omy ¢ Opt
ome | o0& | | "ome op

abgt amy,t amy‘t apt
apt abg’t

obgy

where
[ OPx ¢ OPxt  OPxtT]
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0 0 O Opzt 0Pzt Opzt
[0bgyr  Obgy, Obg,,]

The derivations of the above equations are:
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0 0 0 0
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—— e — N ——
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As a result the final version of the Jacobian is:
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The Jacobian of m, with respect to g, ¢ is:

Omy ¢ Omy: Ope
ame _ |9qswe| | 9pr 9dswe
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(A.25a)
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The derivations of the above equations are:

OMy ¢ _ OMyt ODx ¢ OMy ¢ apy,t OMyt 0Dzt _ OMyt ODxt OMmyt 0Dz ¢
0qw,t ODxt 0qw,t apy,t 0qw,t 0Dzt Oqw,t ODxt 0qw,t 0Dzt 0qw,t
—
0
OMy ¢ _ OMy ¢ ODx ¢ OMy ¢ apy,t OMy ¢t 0Dz ¢ _ O0My t ODx ¢ 0Myt 0Dz ¢
0qxt ODx,t 0qxt apy,t 0qxt 0Dzt 9qxt ODx,t 0qxt 0Dzt 0qxt
———
0
OMy ¢ _ OMy t ODx ¢ OMy ¢ apy,t OMyt 0Dz ¢ _ OMyt ODx ¢ OMyt 0Dz ¢
aqy,t ODxt aQy,t apy,t aQy,t 0Dzt aQy,t ODx t aQy,t 0Dzt acly,t.‘
———
0
Omyr  OMy 0Pyt | OMyr ODyt | OMyr ODzr _ OMy e 0Dyt |, OMyr 0Dz
04zt ODxt 0qzt  ODyt 0dze  ODzt 0qgz: 0Dxt 0qzt 0Dzt 0qz¢
N
0
and
omy ¢ _ 0Myt 0Pyt omy t 0Dyt OMmy 0pz ¢ _ 0Mmyt 0Pyt 0Mmy+ Op, ¢
0qw,t ODxt 0qw,t apy,t 0qw,t 0Dzt 0qw,t ODxt Oqw,e 0Dzt 0qw,t
——
0
omy ¢ _ 0My t 0Pyt 0my ¢+ Opy ¢ Omy + Opz ¢ _ 0My ¢ 0Pyt 0Mmy+ Opz ¢
0qxt O0Pxt Oqux,t apy,i: 0qxt apz,t aCIx,t 0Pxt 0qxt 0Pzt 0qxt
———
0
amy,t _ 6my,t apx't amy,t apy‘t amy,t apZ,t _ amy,t apx‘t 6my,t apz,t
0qyt ODxt 04yt  ODyt 0Qytr  ODzt 0Qyr  ODxt 0Qyt 0Dzt 0qQy:
——
0
amy,t _ 6my,t apx‘t amy,t apy‘t amy,t apZ,t _ 6my,t apx't 6my,t apz,t
04zt ODxt 04zt 0Dyt 0qzr 0Dzt 0qzt 0Pxt 04zt 0Dzt 0zt
——
0

As a result the final version of the Jacobian is:

amx,t
0qw,t

6mny,t

aQW,t

=[pi 0
:[oi

- 2] (s

| (O

st,t(mw,t_sw,t)

Oqsw ¢ )

ast,t(mw.t_sw.t)

BQSW,L‘
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(A.263)

(A.26b)

(A.26c)

(A.26d)

(A.273)

(A.27b)

(A.27c)

(A.27d)

(A.28a)

(A.28b)



The Jacobian of m, with respect to wg, is:

6mt _

a(usyt

where

omy; 9p;

0pt Owgy
omy ¢ Ope

Omy ¢
Jdwst
omy ¢ -
dwst

0ps Owgy

Owsy,t a“‘)sy,t 0wszt

The derivations of the above equations are:

OMy ¢ _ OMyt ODxt OMmy ¢ apy.t OMmy: 0Dzt =0
Owsy,t ODxt OWsx,t apy,t Owsy,t 0Dzt Owsyxt
—— —_— N—— ——
0 0 0 0
Omy ¢ 0Mmy: 0Dyt OMy ¢ apy.t OMmyt 0Dzt =0
a(Jl’sy,t ODxt a(Jl)sy,t apy,t a(Jl’sy,t 0Pzt a‘Jl’sy,tt
N—— —— N—— N—_——
0 0 0 0
Omy ¢ Omyt Opxt Omyt ODy ¢ 0my 0Dzt =0
Owsz ¢ ODxt 0Wsz¢ apy,i: Owsz ¢ 0Pzt Owszt
—— —_— —\— ——
0 0 0 0
and
amy,t amy‘t apx‘t amy,t apy,t amy’t apz‘t _
0Wgsyx t ODxt OWsx ¢ a193/,t 0Wgyx ¢ 0Pzt Owsyt
—— N — —— ——
0 0 0 0
omy, ¢ OMmy ¢ 0Dyt omy ¢ Opyt Omyr Opgr 0
a‘“sy,t ODx t a“’sy,i: apy,t a“’sy,i: 0Dzt a(")sy,t
—— ——— ~——— ——
0 0 0 0
omy ¢ OMmy ¢ 0Pyt omy ¢ 0pyt Omyr 0pze 0

a‘“sz,t

apx,t 0wsz t
—_—— ——
0 0

apy,t: 0wszt
———
0

0pzt a(")sz,ir
——
0
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(A.29)

(A.30)

(A.31a)

(A.31b)

(A.31c)

(A.32a)

(A.32b)

(A.32¢)



As a result the final version of the Jacobian is:

0 0 0]
omy: [ L _ Px,t] _
Owgt R Pzt? 0 0 0]= [O
[0 0 Ol
[0 0 O]
om 1 Dyt
fmpt o L Put] _
Owgt [ Dzt Dz,t? 000 [0
0 0 Ol
The Jacobian of m, with respect to b is:
OMy ¢ Omy ¢ Op:
ome _ | ov&| | 9pe obg;
by, |omy| T |omy. ap;
ob%, dpe 0bY,
where
[ ODx ¢ ODxt ODxt ]
0 0 O obgy, 0bg,, dbgy,
dp apy,t a193/,t a193/,t
— =10 0 0|=|50" 350 2po
abs,t sx,t sy,t sz,t
0O 0 O 0Dzt 0Pzt apz,t
[ 0b ¢ ab_f;;,_t obg, .|
The derivations of the above equations are:
Omyt _ OMuyt OPxt | OMat Opyt | Omy 0Dzt
abg,’m 6px_t abg;c‘t apy_t ab;‘,’c‘t apz‘t ab;j},t
—— —— N — N —
0 0 0 0
Omyt _ OMyt OPxt | OMyt 0Py | Omyr 0Dzt
6b5“;,'t 6px_t ab;‘:)y‘t 6py‘t abs“;,yt 6pz‘t ab;j‘:;/yt
—— —— e — ——
0 0 0 0
Omye _ OMut OPxt | OMut Opyt | Omy Opge
6bs“2t 6px_t 6bs“2t 6py_t 6b§"z‘t
—— —— e —

0

0 0

0Pzt ab;;,t
——
0
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=0

=0

=0

0]

0]

(A.33q)

(A.33b)

(A.34)

(A.35)

(A.362)

(A.36D)

(A.36¢)



and

6my,t _ amy't apx,t amy't apy‘t 6my‘t apz,t _ 0
6b§g’c,t apx‘t Bb;’at pr,t ab;‘,’c't apzlt Bbé‘,’c_t
0 0 0 0
Omyr  Omy; Opyt omy ¢ Opy ¢ Omyt Opgr 0
abs(,‘;,’t apx‘t 6bs“;,’t apy‘t ab;‘;/‘t 6pz‘t 6b§‘;,,t
0 0 0 0
Omyr  OMy:r 0pyt Omy, ¢ 0Dy ¢ Omyt Opzr 0
ab;‘é’t apx‘t 6b§"z‘t apy't ab;‘;’t apz_t abs“éjt
0 0 0 0
As a result the final version of the Jacobian is:
[0 0 O]
omy, [ 1 0 — Px,t] _
abe, — lpze |0 0 0= [0 0 0]
[0 0 Ol
[0 0 O]
omye [ 1 Py,t] _
abg, e pa2l|0 0 05 [0 0 o
[0 0 O
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(A.37b)

(A.37¢)
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Appendix B. BAYESIAN FILTER LINEARIZATION

The time and the measurement model of Bayesian filters used in Section 3 are nonlinear
and they have to be linearized in order to use EKF and Hybrid filters. The open versions

of the linearized equations given in Section 3 are given in this part.
1. Both Angular Velocity and Linear Acceleration Data Used As Measurement

Time Model (EKF & Hybrid Filter):

13 TI3 _13 03x3 03x4- 03x3 03x3
O3x3 13 TI3 03x3 03x4- 03x3 03x3

O3x3 03x3 13 03x3 03x4- 03x3 03x3
_ 9

t™ ox (£4¢-1,0,0,0,0) =103x3 03x3 O3zxz I3 03x4 O3z  Ozys (B.1a)
T
O4x3 04x3 04x3 04x3 A _EB 04x3
O3x3 03x3 03x3 03x3 03x4- 13 03x3
—O3x3 03x3 03x3 O3x3 03x4 O3x3 13 -
_ 9(exp(w)Oq)
A= aq v=—(@s¢-7) (B.1b)
q=qswt-T
_ 9(exp(v)Oq)
B = v U=_§(@s,t—T) (B.1c)
q=qswt-T
T? T
713 O3x3 O3x3 03x3
TI3 O3x3 O3x3 03x3
13 O3x3 O3x3 03x3
_9f _
Y (Re1¢-1,0,0,0,0) = 103x3  Osx3 I3 033 (B.1d)
T
04x3 - E C 04x3 04x3
03x3 13 03x3 03x3
—03x3 03x3 03x3 13 -
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C = d(exp(v)Oq)

v U=—E(&\)S‘t_T)

q=qswit-T

Measurement Model (EKF):

[03x3

03x3

= 6_h = 1 0my;

t dx y
aSW‘t

6my‘t

_aSW‘t

[o] m
D= Q(q)

03x3
03x3

O1x3

O1x3

aq m=aw,:—9w
q=Gsw,t

QSW,t

03x3

01x3

01x3

03x3

O1x3

O1x3

Measurement Model (Hybrid Filter):

[O3x3
oh |03x3
t = —_—= I
0x |04x3
| 1,
D= 9Q(q)m

O3x3
O3x3
O4x3

O3x3

dq |m=dw,t_gw

a=qsw,t

sti
03x3
04x3

03x3

O3x3

O4x3

O3x3

D O3x3 03437
O34 I3 I3
amxt
= 0 0
aqswi 1x3 1x3
aom
LLA| 0
aqswi 1x3 1x3_
D O3x3 03x3]
I
O3xs 13 I3 |
I
Iy O4x3 04x3|
Oses Oz Osys)

(B.1e)

(B.2a)

(B.2b)

(B.3a)

(B.3b)

2. Angular Velocity Data Used As Control Input, Linear Acceleration Data Used

As Measurement

Time Model (EKF & Hybrid Filter):

t =

of

dx (%¢1t7,0,0,0,0) -

_13

03x3
03x3
03x3

O4x3

—O3x3

TI;
I3
0343
0343
O4x3

03x3

%;13 O3x3
773 03x3
13 03x3

03x3 13

04x3 04x3

03x3 O3x3

03x4
03x4
03x4

03x4

03x4

(B.4a)



A= d(exp(v)Oq)

©_Fw B.4
dq v=_§(ys,t_bs,t—T ( b)
q=QSw,t—T
_ 0(exp(v)Oq)
b= v v=_§(y;>t—5;’t_T (B.4c)
q=QSw,t—T
T2 T
713 03x3 03x3 03x3
TI;  O3x3 Osx3 O3y
_of _| B O3x3  Ozxz O3y (B.4d)
t = ~ w = .
1 (2ue-1.75.0.0.00) O3x3  O3y3 I3 0343
T
O4x3 _EC 04x3 04x3
-03x3 03x3 03x3 13 -
_ 9(exp(v)OQq)
C - av v=_§(y£)t_5§:’t—T (B'4e)
a=qsw,t-T
[ 0353 7
O3x3
O3x3
= 5 = (B.4f)
st (£t|t—T!y;:’t!0!0!0!0) O3x3
_Tp
2
- O3x3 .
_ 9(exp(w)OQq)
b= v v=—§(ys‘f’t—5§’,’t-r (B49)
‘I:‘Alsw,t—T
Measurement Model (EKF):
[O3x3 O3x3  Qswyt I3 E 03x3]
amx‘t amx_t
H, = ‘;_’; . P O1x3  O1x3  O1x3 EP— O1x3 (B.5a)
om om
las‘j“: 01x3 01x3 01x3 ﬁ leSJ
9Q(q)m
E =2t — (B.5b)
qzﬁsw,t
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Measurement Model (Hybrid Filter):

(0343
oh
= — = O
t dx 4x3
| I3
E= 2Q(q)m
- dq m=ay, t—9gw

q=qsw,t

03x3 st,t
04x3 04x3
03x3 O3x3

I3 E O3y
04x3 14 04x3

0 3x3 03x4 0 3x3

(B.6a)

(B.6b)

3. Angular Velocity Data Used As Measurement, Linear Acceleration Data Used

As Control Input

Time Model (EKF & Hybrid Filter):

_9f
=2

A = 9Q(q)m

T oox (%¢1t-1.0,0,0,0) B

_13

03x3
03x3
043

03x3

-O3x3

aq |m=(yg,t—5§‘,t—r)

A=qws,t-T

_0q7!
==-

q=qswt-T

_ d(exp(v)Oq)

C 7q

U=—§(@s,t—T)

q=qswt-T

_ d(exp(v)Oq)

D v

U=—§(@s,t—T)

q=qswt-T

Ti3
I3
O3x3
O4x3
033

03x3

T2 T2

- 7 Qws,t—T 7‘43 03x3

_TQws,t—T TAB 03x3

13 03x4 03x3
O3 c -3D
03x3 03x3 13
03x3 03x4 03x3
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03x3

03x3
03x3
043

03x3

(B.7a)

(B.7b)

(B.7¢)

(B.7d)

(B.7¢)



713 0343
773 03x3
=9 _ O3x3  Osx3
t — =
Wl(z &4,0,0,0,0) T
tlt—T’yS,tr I, ——E
O4x3 5
O3x3 I3
-03x3 03x3
£ = 200
v v=_§(as¢—T)
q=qswt-T
T2 _
? Qws,t—T
TQws,t—T
_9r 1 0343
m - a —
2 .
Vst (xt|t—T.yg_t,0,0,0,0) 043
03x3
03x3

Measurement Model (EKF):

[O3x3 O3x3 0O3x3  Ozxs

amxt amxt

oh —= 0 0 —

Ht = ax =1 0swi 1x3 1x3 0qsw,t
lamy‘t O 0 amy,t

aSW,t 1x3 1x3 aqSW,t

Measurement Model (Hybrid Filter):

O3x3 03x3 O3x3 O3x4

oh
Ht=a= Ogx3  Osxs  Ouyxs Iy

13 03x3 O3x3 O3x4
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03x3

03x3

04x3
03x3

03x3

13
01x3

01x3

I3
04x3

03x3

03x3

03x3
03x3
04x3

03x3

13]

O1x3

O1x3J

I3
O4x3

O3x3

(B.7f)

(B.79)

(B.7h)

(B.8)

(B.9)



4. Both Angular Velocity And Linear Acceleration Data Used As Control Input

Time Model (EKF & Hybrid Filter):

I3 TI;
033 I3
_of _
t— a v a w - 03x3 03x3
(xtlt—T'ys,t'ys,trO;O.O.O)
Ogx3  Oaxs
(0353 O3x3
A _ aQ(Q)m| -
aq  |Im=(v¢t—bs¢ 1)
q=Qwst-T
_ 997!
9q q=qswt-T
[ demmoD|
9q v=—>(Vst—bst
a=qsw,t-T
D = d(exp(v)Oq) .
ov v=—(ysr=bst1
q=Q4sw,t-T
_Tz
713 033
TI3 03x3
_of _
€t E o a . - O3x3 03x3
(Rte-TY e, Y$%,0,0,0,0) ,
O4x3 _;E
-O3x3 03x3
g = 00|
ov v=—>(y$4—bst1)
a=qswt-1
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03x3

03x3

04x3

03x3

O3x3

O3x3
O3x3

O4x3

(B.10a)

(B.10b)

(B.10¢)

(B.10d)

(B.10e)

(B.10f)

(B.10g)



_Tz -
7Qws,t—T 03x3
TQwst-1  O3zx3
_ of _
m ™ 3yeel /o a w - 033 0353 (B.10h)
’ (xt|t—T'ys,trYS,t'O'O'OrO) T
04x3 _;F
033 033
_ 9(exp(w)Oq) .
F = — V=—§(J/§‘,’t—5§f’t-r (B.10i1)
q=4sw,t-T
Measurement Model (EKF):
Omy ¢ Omy,¢
—= O1x3 O1x3 7 Oqx3
a w, a Sw
Ho=2= |0 dowt (B.11)
dx my ¢ 0 0 omy ¢ 0
6sw,t 1x3 1x3 aqu,t 1x3
Measurement Model (Hybrid Filter):
Ogxz  Ouxs  Ouys Iy 043
.= Z_h = x x * (B.12)
x I3 Osx3 O3x3 Ozxs  Osys
5. Angular Velocity Data Used As Measurement
Time Model (EKF & Hybrid Filter):
RE Tl3  O3xs Oszxz  0O3x3]
03x3 13 03x4 03x3 03x3
= =1043 O 4 -Ip o B.13
t= 3 (%0-1,0,0.0) =|Usx3 Ugxs > 4x3 (B.13a)
03x3 O3x3 03x4- 13 03x3
—03x3 O3x3 03x4- O3x3 13 -
__ d(exp(v)Oq)
A —_ aq v=—§(&\)s_t_7~) (Bl3b)
qzﬁsw,t—T
_ 0(exp(v)Oq)
B —_ 9 v=—§(&\)s_t_7~) (Bl3C)

q=qswt-T
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[Tl O3x3 0343
I3 O3x3  O3y3
of T
== =10 ——C 0
t = 5y (%110-7.0,00) 4x3 2 4x3
03x3 13 03x3
-03x3 03x3 13
C = d(exp(v)Oq)
v U=—E(a)s,t—T)
q=4sw,t-T
Measurement Model (EKF):
[03x3 O3x3  O3zxs I3
on | amx‘t O amx,t O
H; = o =1 0sw; 1x3 0qsw,t 1x3
x 6my‘t 6my_t
asW,t 01x3 aqSW,t 01x3
Measurement Model (Hybrid Filter):
O3x3 03x3 O3x4 13
oh
Hy = ax O4x3 Oy Iy O4x3
13 03x3 O3x4 O3x3

6. Angular Velocity Data Used As Control Input

Time Model (EKF & Hybrid Filter):

O3x4  O3x3]

r 13 TI3
_or
b ox (xt-1,¥§1,0,0,0) O4x3  Ogns A
O3x3 03x3
_ 9(exp)Oq)

A

_Trw_frw
v=——(y$1—bg -1

a=qsw,t-T

aq
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I3

01x3

I3
04x3

03x3

03x4

|

I [ A

(B.13d)

(B.13¢)

(B.14)

(B.15)

(B.16a)

(B.16b)



_ d(exp(v)Oq)

B T 5
v v=—2(ysr=bst1
q=QSw,t—T
[TI3 0343 03x3]
B af _ | 13 03x3 03x3
t = - T
OVl (x¢_1,9%,0,0,0) [04x3 _;C O4x3j
03x3 03x3 13
C= d(exp(w)Oq) r
v U=—E(Y§f)t—b§?t—T

q=4swt-T

Xije-r = f (-1, ¥%,0,0,0)

[ O3x3 ]
I I
_of _I 0343 I
m — 9 w - T
Ysitl(x,_7,92,0,0,0) |~ ED|
Lo, |
D= d(exp(v)Oq) r
v v=—;(ys‘f’t—5§f’t_-r

a=Gsw,t-T

Measurement Model (EKF):

Omy ¢ 0 Omy ¢ 0
_dh | 05wt 1x3 0qsw,t 1x3
H = ax omy,; 0 omy; 0
OSw¢ 1x3 05w, 1x3

Measurement Model (Hybrid Filter):

oh O4x3 04x3 14 O4x3
t = —_— =
a
x 13 03x3 03x4 O3x3
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(B.16¢)

(B.16d)

(B.16€)

(B.16f)

(B.169)

(B.16h)

(B.17)

(B.18)



7. Linear Acceleration Data Used As Measurement

Time Model (EKF & Hybrid Filter):
TZ
I3 Tl 713 0343
03,3 I3 TI;  Ozys
Fo= _
E 7 oxl(g,r000) O3x3 Ozx3 I3 Osys
O3x3 Ozxz Ozxz I3
1043 Osxz Osxz Ouxs
_Tz -
713 03x3 03;vc3
T3  O3x3 Osys
_9f _
t ™ v (ft|t—T’0’0’0)_ I3 O3x3 Osyxs
O3x3 O3x3 I3
0403 A 043
_94q
- 5 q=QSw,t|t—T
U=Sg_t
Measurement Model (EKF):
[O3x3 O03x3 Qswt I3 B]
amx‘t amx_t
Ht:Z_’;: D 0123 O1x3 Oy Dot
lamy‘t O 0 0 6my,tJ
D5t 1x3 1x3 1x3 qsw,t
aQ(m)
A== Q=Qswe
m=myy,t=Sw,t
a=Gsw,t
Measurement Model (Hybrid Filter):
O3x3 03x3 st,t 13 B
an
Ht=a= 04x3 Ouxz  O4xz  Oyus Iy
13 03x3 03x3 03x3 03x4
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03x4

03x4
03x4

03x4

(B.19a)

(B.19b)

(B.19c¢)

(B.20a)

(B.20b)

(B.21a)



B = 2Q(q)m
- dq m=ay,t—9gw
q=Gsw,t

8. Linear Acceleration Data

Used As Control Input

Time Model (EKF & Hybrid Filter):

_ T2
I3 Tl; — rY Qws,t—T
B 6_f _ 03x3 13 _TQws,t—T
= ) =
5l (20e-r000) 0., 044 ly
4= 6Q(q)m| -
= aq m=(ygt_bgt—7")

q=Qwst-T

a—l
Bp=21"

dq q=Qswit-1

_9r _
== =
WVl(x_1,92,0,0,0)
_9q
~ |9 dswtit-T
U=Sgt
_ _9f
m — 2
ao_eg:t

(x¢-1.¥%4,0,0,0)

T2 .
713 O3x3 03x3 03x3

TI3 O3x3 03x3 03x3

03x3 O3x3 13 03x3

—04x3 C 04x3 04x3—

_Tz .
? Qws,t—T

TQws,t—T

03x3

04x3
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(B.22f)



Measurement Model (EKF):

amx‘t

__0h _ OSw,t
E7 9x — |omy,
Bsw‘t

01x3

01x3

aom t
0 —=
1x3 Oqsw,¢
om t

0 Y,
1x3 Oqsw,t

Measurement Model (Hybrid Filter):

ah O4x3 Osxz Oy Iy

P ==
5}
x I

03x3

03x3 O3x4

9. Both Angular Velocity and Linear Acceleration Data Not Used

Time Model (EKF & Hybrid Filter):

_of
t™ ax

_ d(exp(v)Oq)

A 7q

q=qswt-T

_9f
Y%

B = d(exp(v)Oq)

(%¢)¢-1,0,0)

I3

(®¢)e-7,0,0)

0

v=0

T,

106

U=E€S,t

Measurement Model (EKF):

Omy ¢

__0h _ OSw,t
dx omy ¢
OSw t

L
I
I

01x3

01x3

I3
0

T, 0
I, 0
0 A

0
0
B

90 q=‘7$w,t|t—T

amx,t
aqSW,t
6my‘t

aqSW,t
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(B.24)

(B.25a)

(B.25b)

(B.25¢)

(B.25d)

(B.26)



Measurement Model (Hybrid Filter):

(B.27)

L™ ox

_on I04x3 O4xz Iy l

13 03x3 03x4

Appendix C. QUATERNIONS

Unit quaternion provides a convenient mathematical notation for representing
orientations and rotations of the objects in 3Ds. Compared to Euler angles they are
simpler to compose and avoid problem of gimbal lock. Gimbal lock is the loss of one
degree of freedom in a 3D space that occurs when the axes of two of the three gimbals
are driven into a parallel configuration, “locking” the system into rotation in a

degenerate 2D space. Compared to rotation matrices they are more numerically stable

and may be more efficient. A quaternion q = [qw, Qx Qy» qZ]T is defined as a four-

dimensional vector.

A unit quaternion represents the rotation of the 3D vector around 7 with angle 6.

- 9 -

coS —

2

] )

cos > nysin:

=1, . o]~ 0 (C.1)

nsin— nysin-

2 2

n sing

L"“Z 2

Quaternion Conjugate:
The conjugate q* of quaternion q is defined as:

A [ N (C2)
Quaternion Sum:

The sum of quaternions is the same as the vector sum:
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qw + Pw
dx + Px
= C3

4z t Pz
Quaternion Product:

The product © of two quaternions g and p is:

[pwqw — Px9x — Pyqy — poIz'l
Pwiw — Pv " Qv |pwqx + Dxqw + Dyqz — poIyl
pOq= = B | (C.4)
Pwqv + QuwPy + Py X qy |quy + Pyqw + P2qx px‘lzl
lprIz +p.qw t Pxqy — pyqu

where p,, - q,, denotes the scalar (inner) product and p,, X q,, denotes the cross (outer)

product of two 3D vectors:
Px qx Pyqz — Dzqy
Dy X qy = py X Qy = | Pzq9x — Px4z (C5)
bz qz Pxqy — Pyqx

This can be derived by writing the quaternions in extended complex form and

expanding the product. The quaternion product is not commutative:

pOqg#qOp (C.6)
Matrix representation of quaternion product is:

Qw —Gx —9y —9z
% dw -—qy][

& —9 Qw 4« llpy
iy |

pOq=Q(qQp=|
[ qy —qx qw

} (C.7)
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or equivalently as

Pw —Px ~DPy ~DPz

[px bw —DPz b
p®q=Q(p)q=|py 0 by —p.

[pz —Dy Dx p

[

2O I G Gw G —dy

op [Qy —q; Qw  9x
qz qy —qx dw

Qw —4x —Qqy _QZ'l
I
I

The Jacobian of (C.8) with respect to g:

[pw —Px Dy _pz'l

a(pOQ) _ I Px Pw —Pz Dy I
9q | by Dz Pw D« |

| |

=
N

—Py Px Pw

Quaternion length:

The length of a quaternion is the same as the norm of the corresponding vector:

lgll =vVqOq* =/q% + 2+ 4% +q2

Quaternion Inverse:

The inverse of quaternion g with respect to the quaternion product is given as:

*

-1 _ q
q a2
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(C.9)

(C.10)

(C.11)
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The Jacobian of (C.12) with respect to g:

oq~1
aq

=diag([1 -1 -1 -1D (C.13)

Quaternion Conversion to Rotation Matrix:

A unit quaternion can be converted into equivalent rotation matrix as follows:

l[(quv +a2—q2—aq2)  2(9+qy — 92qw) 2(929x + away) ]I
Q(q) = 2(qx9y + qwq.) (a2 —q2+4d2—aq2)  2(9y9; — Gwax) | (C.14)
| 2(429x — qway) 2(qyqs + qwdx) (a2 — a2 — g% +q2)]

The rotation of a point m:

[(quv +a2—q2—-q2)  2(9x9y — 9.9w) 2(q,9, + qwaqy) ][
Qa@m=| 2(axqy +quwq:) (ah—ai+ag—ai) 2090 —-awa) ||™| (C.19)
| 2(429 — qway) 2(qyqs + awax) (a2 — a2 —q2+q2)llm,

The compact version of (C.15) is:

[(a2 + a2 — a2 — a2)my + 2(qxqy — 929w)My + 2(4,0x + 9wy )m,]
Q@M =(2(qxay + qwaz)my + (a3 — a2 + a2 — a2)my, + 2(9yq, — quwqx)m;, (C.16)

2920z — qway)my + 2(4yq; + quwax)my, + (a5 — g2 — a2 + q2)m,

The Jacobian of (C.16) with respect to g is given by the 3x4 matrix:

dy d, d, ds do = Z(C[me —q,my + Qymz)
dy = Z(mex +qym, + QZmz)
d, = 2(_Qymx +q,my + Qsz)
d; = 2(_CIzmx - qwm,, + quz)

—aQ(q)m= —d; —d, d; dy
d —d3 —do dy

(C.17)
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Quaternions and Angular Velocities:

The time evolution of time varying quaternion with angular velocity is given by the

differential equation:

dqap, 1
=2t =-wil O qapy (C.18)

where w22 is the quaternion defined as the instantaneous angular velocity from

coordinate frame b to coordinate frame a expressed in coordinate frame a:
b b b
wh=[0 w, w, wd] (C.19)

The equation (C.18) can be also written in form:

dqapt _
249t = O (W)qane (C.20)
where
r ab ab ab A
0 “Waxt “Waytr “Wazt
ab ab ab
( ) 1| Wax,t 0 —Wazt Wayt c21
Qlw) = 2|yab wab 0 —wab ( ' )
ay,t az,t ax,t
ab ab ab
[ Wazt —Wayt Wax,t 0

If the angular velocity w2 is time independent constant, then the solution the equation

(C.18) with given initial conditions g, ; can be written as

Qab,t+T = exp(T Q(W))Qab,t (C.22)
where

sin|[we]

exp(T Q(W)) = cos ||W ” I+2——= - Q(w) (C.23)
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The solution (C.22) can be expressed as the quaternion product

Qabt+T7 = exp( Wa, t) O Gan,t (C.24)
where
T
exp(v)T = [cosllvll ﬂsmllvll] (C.25)
Definingv = - Watv the Jacobian of (C.24) with respect to v is given:
d(exp(v)Oq) _ d(exp(v)Oq) dexp(v)
v o dexp(v) v (C.26)
[QW —4x —Ady _QZ] "v"sm(llvll)
dx Adw 4z —Qqy 1 T ey
dy -4z qw dx W[ |1|71:7||2]S”"‘(”v”)+ Tzeosivi
LIZ dy —dx Aqw J
finally
|[qw . _qZ]| vl
qx qw qz —q Sln v
6(expa(;7)®q) — | - yl || [ (C27)
A O | P — Sm(llvll) +2 2COS(IIUII)
o U ||v|| vl
|-qz qy —qx qw J

Quaternion from Euler Angles:
By combining the quaternion representations of the Euler rotations:

cos(p/2)cos(6/2)cos(Y/2) + sin(p/2)sin(6/2)sin(y/2)

_ |SiTL((p/Z)COS(Q/Z)COS(l[J/Z) — cos(<p/2)sin(t9/2)sin(1/)/2)| (C.28)
cos(¢@/2)sin(6/2)cos(P/2) + sin(ep/2)cos(6/2)sin(yp/2)
Los((p/Z)cos(H/Z)sin(t/)/Z) — sin((p/Z)sin(B/Z)cos(t/J/Z)j

Definingv = [ 6 ], the Jacobian of (C.28) with respect to v is given:
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l[Aq) Ag Aﬂl
Z_Z - iiﬁ: i: ip i (C.29)
D, Dy Dyl
with
A, = 1/2 (—sin(p/2)cos(0/2)cos(/2) + cos(p/2)sin(8/2)sin(y/2)) (C.30a)
Ag = 1/2 (—cos(p/2)sin(0/2)cos(p/2) + sin(p/2)cos(8/2)sin(y/2)) (C.30b)
Ay = 1/5 (=cos(p/2)cos(0/2)sin(p/2) + sin(p/2)sin(0/2)cos(/2))  (C.30c)
and
B, = 1/2( cos(p/2)cos(0/2)cos(/2) + sin(p/2)sin(6/2)sin(y/2)) (C.31a)
By = 1/2 (—sin(p/2)sin(0/2)cos(/2) — cos(p/2)cos(8/2)sin(y/2)) (C.31b)
By =1/, (=sin(p/2)cos(6/2)sin(y/2) — cos(p/2)sin(8/2)cos(h/2))  (C.31c)
and
Cp = 1/2 (—sin(@/2)sin(0/2)cos(P/2) + cos(p/2)cos(8/2)sin(y/2)) (C.32a)
Co = 1/2( cos(@p/2)cos(8/2)cos(/2) — sin(p/2)sin(6/2)sin(y/2)) (C.32b)
Cy =1/, (=cos(p/2)sin(8/2)sin(y/2) + sin(p/2)cos(8/2)cos(p/2)) (C.32c)
and

D, = 1/2 (—sin(@/2)cos(0/2)sin(y/2) — cos(p/2)sin(8/2)cos(/2)) (C.33a)
Dg = 1/2 (—cos(@/2)sin(0/2)sin(y/2) — sin(p/2)cos(8/2)cos(/2)) (C.33b)

Dy, = 1/2( cos(p/2)cos(0/2)cos(yp/2) + sin(p/2)sin(6/2)sin(x/2)) (C.33c)
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