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ABSTRACT 

 

 
INERTIAL SENSOR FUSION FOR 3D CAMERA TRACKING 

 

 

Nuri Özer 

 

 

Electrical and Electronics Engineering 

 

 

Thesis Advisor: Assoc. Prof. Çiğdem Eroğlu Erdem 

 

 

Thesis Co-Advisor: Prof. Dr. A. Tanju Erdem 

 

 

February 2012, 150 pages 

 

 

3D motion tracking becomes more important in computer vision with increase of 

robotics and augmented reality's (AR) applicable areas such as medical education, 

remote robot control, entertainment and cultural heritage. In order to achieve a realistic 

feeling of immersion, the rendering of the virtual content has to be in alignment with 

real objects in the video and this requires a high-accuracy 3D tracking. The methods 

using only camera measurements generally perform well at slow camera motion; 

however they become less accurate at high velocities and accelerations due to motion 

blur. Inertial sensors on the other hand measure the derivatives of the camera pose and 

hence can be employed to improve the tracking performance at high velocities and 

accelerations, but cannot perform well at slow motion because of the error drift. 

Therefore, we present a high-accuracy 3D camera tracking method using inertial sensors 

but not require placing any devices or points on the scene. 3D information of scene 

where 3D motion tracking is done is previously known. The method consists of an 

Extended Kalman filter (EKF) that fuses the information from visual and inertial 

sensors. A hybrid filter combining the Bayesian filter and the direct linear 

transformation (DLT) is also used instead of EKF. The biases of the inertial sensors are 

also considered during the motion. In addition to performance comparison of these two 

filter, the performance of using both or one of accelerometer and gyroscope 

measurements as control input is compared to using both or one of accelerometer and 

gyroscope measurements as measurement. It is concluded via simulations that using 

inertial sensors in 3D camera tracking gives more accurate results and using inertial 

sensors as measurement or control input does not affect the performance of 3D camera 

tracking, while providing a lower complexity tracker. Also, EKF always performs better 

than the hybrid filter in simulations. 

 

Keywords: 3D Motion Tracking, EKF, Visual and Inertial Sensor Fusion, Hybrid 

Filter, DLT 
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ÖZET 

 

 
3B KAMERA TAKĠBĠ ĠÇĠN EYLEMSĠZLĠK ALGILAYICILARININ 

BĠRLEġTĠRĠLMESĠ  

 

 

Nuri Özer 

 

 

Elektrik-Elektronik Mühendisliği 

 

 

Tez DanıĢmanı: Doç. Dr. Çiğdem Eroğlu Erdem 

 

 

Tez II. DanıĢmanı: Prof. Dr. A. Tanju Erdem 

 

 

ġubat 2012, 150 sayfa 

 

 

Robotların ve eklenmiĢ gerçeklik uygulamalarının tıp eğitimi, robotların uzaktan 

kullanımı, eğlence ve kültürel miras gibi kullanım alanlarının artması ile birlikte,  3B 

(3 boyutlu) takip sistemlerinin Bilgisayarlı Görü alanında önemi biraz daha 

artmaktadır. EklenmiĢ gerçeklik uygulamalarında gerçeklik hissinin yüksek olması için 

canlandırma sırasında kullanılan sanal karakterlerin mekan içerisinde doğru bir Ģekilde 

hizalanması çok önemlidir. Bunun için 3B takip sisteminin doğruluğu artırılmalıdır. 

Sadece video verisi kullanan 3B takip sistemleri hızlı hareketin olduğu durumlarda 

görüntü çok değiĢken olacağından, yeterince iyi izleme sonuçları vermeyebilirler. 

Eylemsizlik algılayıcıları ise hızlı hareket olan durumlarda iyi izleme yapabilirler, 

ancak az hareketin olduğu durumlarda ise ölçüm hatalarının birikmesi nedeniyle iyi 

çalıĢmayabilirler. Bu sebeple, hareket takibinin doğruluğunu artırmak için bu tezde 

eylemsizlik algılayıcılarının verilerinden de yararlanılacaktır. Aynı zamanda bu takip 

sistemi için mekana herhangi bir cihaz veya iĢaret yerleĢtirmeye gerek 

duyulmamaktadır. 3B hareket takibi video kameralar ve eylemsizlik algılayıcıları 

kullanılarak yapılmıĢtır. Hareket takibinin yapılacağı mekanın 3B bilgisi önceden 

çıkarılmıĢtır. Kamera verilen gelen verilerle eylemsizlik algılayıcılarından gelen veriler 

bir döngüsel Bayes kestirimi çerçevesinde birleĢtirilmiĢtir. Ayrıca, bu tezde 3B hareket 

takibi için hareketten yapı çıkarma yöntemi ile döngüsel Bayes süzgeçleme yöntemini 

birleĢtiren karma bir süzgeçte geliĢtirilmiĢtir. Eylemsizlik algılayıcılarıın sapma 

modelleri de hareket takibi sırasında göz önüne alınmıĢtır. Döngüsel Bayes süzgeç ile 

karma süzgeçin performanslarının karĢılaĢtırılmasının yanında eylemsizlik 

algılayıcılarından gelen verilerin Bayes veya karma süzgeçte ölçüm yerine kontrol 

girdisi olrak kullanılmasının takip performansını nasıl etkilediği gözlenmiĢtir. 

Simülasyonlar sonuçlarına bakarak eylemsizlik algılayıcılarının 3B hareket takibinde 

kullanılması daha doğru sonuçlar bulmasını sağlamıĢ, eylemsizlik algıyacılarından 

gelen verilerin ölçüm veya kontrol girdisi olarak kullanılması performansı neredeyse 
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hiç etkilememesine rağmen süzgeç kullanımdaki karmaĢıklığı azaltarak maliyeti 

düĢürdüğü gözlemlenmiĢtir. Bununla birlikte döngüsel Bayes süzgeç kullanmak karma 

süzgeç kullanmaya göre her zaman daha iyi sonuçlar verdiği gözlemlenmiĢtir. 

 

Anahtar Kelimeler: 3B Hareket Takibi, Döngüsel Bayes Kestirimi, Görsel ve 

Eylemsizlik Algılayıcı Verilerinin BirleĢtirilmesi, Karma Süzgeç, Hareketten Yapı 

OluĢturma Yöntemi  
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1. INTRODUCTION 
 

1.1  MOTIVATION 

 

 

Augmented reality (AR) is a system which enables users to see real and virtual objects 

together in the same place. What distinguishes AR systems from virtual reality (VR) 

systems is that the image is created entirely using computer graphics in VR. AR defines 

a point between the real world and the virtual reality. Instead of replacing the real world 

totally, AR systems require to complete and enrich the real world (Azuma 1997). 

 

AR is applicable to many areas such as medical education, remote control, 

entertainment, and cultural heritage (Papagiannakis et al. 2007; Papagiannakis et al. 

2005; Azuma et al. 2001; Azuma 1997). In Figure 1.1.1, the examples of the AR that 

are the revitalization of historic cultural heritage and the placement of the virtual 

furniture in a room can be seen. 

 

Figure 1.1: Examples of AR systems 

 

      
Source : Papagiannakis et al. 2007; Davison et al. 2007 

 

Head mounted displays (HMDs) are commonly used in AR applications to display the 

virtual objects on top of the real world. The rendering of the virtual content must be in 

line with the real objects in the video to maintain a realistic feeling of immersion. This 

can be done only with accurate tracking of the 3D pose of the user’s head 

(Papagiannakis et al. 2005; Azuma 1997). Otherwise, it is hard to convince the human’s 
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sense of sight to that the real objects and the virtual objects created by computer are 

together in the same place. 

 

1.2  SCOPE OF THE THESIS 

 

 

This thesis aims to develop high-accuracy 3D camera motion tracking algorithm using 

the video cameras and inertial sensors but not require placing any devices or points in 

the space. The method consists of a Bayesian filter that combines the feature points 

coming from video frames, the measurements coming from inertial sensors, and 3D 

information of the space. It is assumed that 3D information of the space is known in this 

thesis. In Figure 1.2.1, the general structure of the algorithm can be seen.  

 

Figure 1.2: General structure of the algorithm 
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In addition to this algorithm, the hybrid algorithm shown in Figure 1.2.2 combines the 

Bayesian filtering algorithm and the structure from motion algorithm to track head 

motion. What makes this algorithm difficult is that reconstruction from video frames is 

impossible without the camera calibration parameter (Luong et al. 2001). The images of 

the calibration object or the lines perpendicular to each other in the place can be used to 

find the camera calibration parameter (Pentland 1987). Also, there are some auto-

calibration methods that do not need any special process to find the camera calibration 

parameters (Fischler et al. 1981).  
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Figure 1.3: Hybrid algorithm 
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Bayesian filter used in this thesis is similar to SLAM (Simultaneous Localization and 

Mapping) which is a popular approach in computer vision and robotics. However, in 

this thesis, the maps already known in these algorithms consist of the 3D information of 

the feature points of the environment, so we have implemented only localization part of 

SLAM algorithms, not mapping part. The camera pose and 3D information of 

environment form the system state. Some statistics on the state are also shifted 

cyclically by a Bayesian filter, and updated by using the measurements of the camera, 

and the inertial sensors. At that point, an important observation is that the 3D 

information is connected to each other. With the help of this connection, the system 

state is converged to real 3D information of the environment, and the camera continues 

to track its pose precisely. 

  

Systems using only video frames are successful in slow motion, but in fast motion they 

do not give accurate results. Accelerometers and gyroscope are appropriate for fast 

motion. They do not work well in slow motion because of the accumulation of the error 

and noise. In addition to video frames, the accelerometer and gyroscope measurement 

usage is proposed in Bayesian filter (Bleser et al. 2009; Armesto et al. 2007; Corke et 

al. 2007; Gemeiner et al. 2007; Kim et al. 2007; Schon et al. 2007). This approach is 

used in this thesis as well. 
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1.3  LITERATURE REVIEW 

 

 

1.3.1  Tracking Methods Using GPS & GSM 

 

 

Many methods have been proposed for 3D motion tracking in the literature. The first 

method is the tracking method using Global Positioning System (GPS), Global System 

for Mobile Communication (GSM) and Universal Mobile Telecommunications System 

(UMTS). Especially for outdoors, GPS system, one of the most appropriate methods, is 

used for the position tracking algorithm (Papagiannakis et al. 2008; Schmeil et al. 2006; 

Azuma et al. 2006). Since GPS needs signals coming from 4 different satellites, this 

method is not suitable for indoor applications. Schmeil (2006) used GPS system 

combining with angle sensors on the HMD in virtual assistant for outdoors. In this 

system, localization precision is related to satellite link and varies from 3m to 10m. 

 

1.3.2  Tracking Methods Using IR & RFID 

 

 

The second method is the tracking method using infrared (IR) light and radio frequency 

(RF). IR light-emitting LEDs emit light in a very narrow band. Thus, by the sensor, they 

can easily be detected using an appropriate filter. This method requires placing IR LEDs 

in the space (Papagiannakis et al. 2008). Similarly, there are other methods using active 

or passive radio wave transmitters (RFID). Steggles (2005) developed a system called 

UWB that provides tracking with 15cm accuracy using a network including small 

recievers and transmitters. However, according to (Azuma et al. 2001), it is not practical 

to place artificial cues on the scene, such as IR light emitters, RFID tags, markers, for 

some outdoor and mobile applications. 

 

1.3.3  Tracking Methods Using Inertial Sensors 

 

 

Because of the disadvantages of the IR light and RF tracking, the methods using the 

sensors placed only the HMD have been used in the literature. Gyroscope and 

accelerometer, such as inertial sensors, measure the derivatives of the motion and hence 

can be employed to boost tracking performance at high velocity and accelerations. Also, 
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they are not affected by the condition of current space. However, the algorithms using 

only head-mounted inertial sensors are similar to open-loop control systems (Azuma 

1997). This is because there is no feedback on how well the real and virtual images 

coincide. 

 

1.3.4  Tracking Methods Using Vision Data with Visual Markers 

 

 

There are also tracking algorithms using visual markers placed in the space. In some AR 

applications (Cho et al. 1998), the marker placed on previously known locations are 

detected by using video processing algorithms and used in alignment process. In these 

algorithms, it is assumed that more than one feature points can be seen in all cases. If 

this assumption is provided, alignment can be done with one pixel accuracy (Azuma 

1997). 

 

1.3.5  Tracking Methods Using Vision Data without Visual Markers 

 

 

Unlike the previous method, there are tracking algorithms not using visual markers 

placed in the space. These algorithms must be designed to overcome many difficulties, 

i.e. detecting feature points in the scene, variable lights, shadows, motion blur, overlaps, 

and real-time implementation condition, etc. Instead of calculating the camera pose 

relatively according to previous frame, estimation of the real pose prevents the error 

drift, and also allows the self-correction when the tracking is not working because of 

motion blur and overlaps (Papagiannakis et al. 2005). 

 

Davison (2007) proposed a method determining the location of the camera in real time. 

The most important requirement of the method is the functionality in high frame rates 

(30fps). First of all, a pattern with known shape and location is shown to the camera to 

start tracking features and defining the certain depth measurement to system. Also, it 

assumed that the camera is moving with constant linear and angular velocity. The 

feature points (11x11) located in the room in which camera is moving are detected by 

the method implemented by Shi (1994).  It is assumed that the feature points are on the 

plane and the vector is assigned to each of them. From a new perspective of the camera, 



6 

 

the projection of the feature points on the new perspective are found and used as 

templates. Before process of the cross-correlation between image from camera and 

feature points templates, the location of the template in the image is predicted. For this 

purpose, EKF method using motion model and modeling uncertainty with covariance 

matrix is used. Thereby, feature template is searched in the ellipsoidal area in the image. 

Advantage of this property is the real time functionality of the method. This technique 

performs satisfactorily at the slow motion, however it becomes less accurate at high 

velocities and accelerations due to motion blur.  

 

1.3.6  Hybrid Tracking Methods 

 

 

Using different tracking algorithms together can be useful. For example, combining 

video-based tracking with prediction-based tracking algorithms ensure that the system 

will continue to work when there is no sufficient and visible feature points (Azuma 

1997). In these applications, the algorithms using compass and angular velocity 

compass on the HMD are combined with video processing algorithms (You et al. 1999). 

Also, the estimated values of perspective can be a good starting point for video-based 

tracking algorithms. Thus, delays in the system can be reduced (Azuma et al. 2001). It 

is important to use the right motion model for making an accurate prediction (Akatsuka 

& Bekey 1998). Sometimes a choice must be made between several different motion 

models (Chai 1999). Davison (2007) obtained a hybrid tracking algorithm by adding the 

data coming from accelerometer on the robot in the system. 

 

Another hybrid method is the method where inertial sensors and cameras are used 

together (Azuma et al. 2001; Yokokohji et al. 2000). Techniques that use only camera 

measurements generally perform satisfactorily at slow head motion, however they 

become less accurate at high velocities and accelerations due to motion blur. Inertial 

sensors on the other hand measure the derivatives of the head pose and hence can be 

employed to boost the tracking performance at high velocities and accelerations. 

Therefore, hybrid methods where inertial sensors and cameras are used together have 

been proposed (Yokokohji et al. 2000; Newman et al. 2006; DiVerdi & Hollerer 2007). 

Yokokohji (2000) proposed a method combining video frames with accelerometers. In 
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this method, accelerometer data is used to predict head motion, thereby make the 

method using video frames more robust, and reduce delays in the system. It is indicated 

that this method work with average 6 pixels, maximum 11 pixels error when the head 

motion is fast (10 m/s
2
 and 49 rad/s

2
).  

 

1.3.7  Map Estimation Methods 

 

 

When the map is not known, structure from motion algorithms can be used to find the 

map of space. First of all, the motion of the camera capturing frames must be known to 

find the 3D structure. However, 3D structure must be known to find the motion of the 

camera. This is the main problem of the structure from motion algorithms. The other 

reason making the problem difficult is that the reconstruction from video frames is 

impossible without the camera calibration parameter (Luong & Faugeras 2001). The 

images of the calibration object or the lines perpendicular to each other in the place can 

be used to find the camera calibration parameter (Pentland 1987). Also, there are some 

auto-calibration methods that do not need any special process to find the camera 

calibration parameters (Fischler & Bolles 1981).  

 

The most common and successful method for structure from motion is BA (Bundle 

Adjustment) algorithm (Chekhlov et al. 2006). (BA) is almost invariably used as the last 

step of every feature-based multiple view reconstruction vision algorithm to obtain 

optimal 3D structure and motion (i.e. camera matrix) parameter estimates. Provided 

with initial estimates, BA simultaneously refines motion and structure by minimizing 

the reprojection error between the observed and predicted image points. The 

minimization is typically carried out with the aid of the LM (Levenberg-Marquardt) 

algorithm (http://www.ics.forth.gr/~lourakis/sba/ 2010). 

Another mapping algorithm is SLAM in the literature. SLAM is a group of algorithms 

developed to make a robot (or apparatus on the head) estimate both the position of itself 

and the map of the unknown environment (Durant-Whyte et al. 2006). There are 

different advantages and disadvantages of the SLAM and BA algorithms. Due to the 

large number of unknowns contributing to the minimized reprojection error, a general 

purpose implementation of the LM algorithm incurs high computational and memory 
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costs. So, the real time implementation of the BA does not seem possible (Pentland 

1987). However, SLAM has certain errors for representation of the larger frames 

because the dimension of EKF is growing with the actual time. FastSLAM that is 

developed to run EKF based SLAM methods faster has the same problem with EKF-

SLAM (Konolige & Agrawal 2008). 

 

FastSLAM algorithm (Konolige & Agrawal 2008) does not use all feature points in 

contrast to EKF-SLAM. In FastSLAM, fewer feature points representing the trajectory 

are used and passed into smaller EKF. There are two disadvantages of FastSLAM: 

 

1. The number of the feature points to represent the given frame  is not obvious. 

2. The computation cost is growing with the number of feature points. 

EKF-SLAM is more disadvantageous than BA in the calculation of the wide range and 

rough land area because of the reasons stated above. FrameSLAM method is developed 

to eliminate disadvantages of SLAM method recently (Konolige & Agrawal 2008). 

FrameSLAM can be used in wide range and rough area because it chooses only 

particular subspaces of the feature points and frames, and works with them only. A 

reduction in the number of frame affects the performance less than a reduction in the 

number of feature points. 

 

PTAM (Parallel Tracking and Mapping) is developed recently to implement BA 

algorithm in real time (Klein & Murray 2007). PTAM implements tracking and 

mapping algorithms in parallel. Tracking used in PTAM starts with the estimation of the 

camera pose by using new frame in motion model. Then the camera pose is updated by 

using the matching of the projection of the feature points found before and placed on 

map on current frame and the feature points on current frame. First, the update is made 

by using clearer 50 feature points matching, and then more detailed update is made by 

using approximately 1000 feature points matching. 

 

In PTAM algorithm, tracking and mapping are not connected to each other, so any 

robust tracking method desired can be used. Indeed, data does not need to be shared 

between tracking and mapping. 
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When BA algorithm is compared to EKF-SLAM algorithm to build a map, BA 

algorithm gives better results (Konolige and Agrawal 2008; Klein and Murray 2008; 

Klein and Murray 2007).  

 

1.4  CONTRIBUTIONS OF THE THESIS 

 

 

The main contributions of this thesis are: 

 

1. The inertial sensors (accelerometer and gyroscope) data is used to increase the 

accuracy of the motion tracking. Using the inertial sensors data with visual data (camera 

video frame) in Bayesian filter overcomes the limitations of the only visual based 

motion tracking. The biases of the inertial sensors are also tracked in time and the 

effects of the biases are minimized.  

 

2. There are a total of eight approaches for fusing gyroscope and accelerometer sensor 

data with camera measurements, i.e., both of them used as measurements, both of them 

used as control inputs, one is used as control input while the other is used as 

measurement, and one is used as control input or measurement while the other is not 

used. Only three of these eight cases have been investigated in the literature. 

 

3. The Hybrid method that combines the recursive Bayesian filtering method and the 

direct linear transformation (DLT) method for tracking 3D camera motion is developed. 

In this method, we design new Bayesian filter which uses the head pose estimated from 

DLT instead of using feature points directly. 

 

1.5  OUTLINE OF THE THESIS 

 

 

To be able to keep track of this thesis report, this chapter contains a simple outline that 

gives information about the contents of each chapter. 

 

In the second chapter, background information used in this thesis is given. 
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In the third chapter, the Extended Kalman Filter (EKF) and Hybrid filter equations are 

derived. All equations and their derivation are explained in detail in Appendix. 

 

Chapter four contains the experimental setup and the simulation results. 

 

Chapter five and six give a summary and discussion together with possible future 

research directions. 
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2. BACKGROUND 
 

2.1  BAYESIAN FILTERING 

 

 

Bayesian filter is a general probabilistic approach for estimating an unknown 

probability density function recursively over time using incoming measurements and a 

mathematical process model. 

 

A Bayesian filter is an algorithm used in computer science for calculating the 

probabilities of multiple beliefs to allow a robot to infer its position and orientation. 

Essntially, Bayesian filters allow robots to continuously update their most likely 

position within a coordinate system, based on the most recently acquired sensor data. 

This is a recursive algorithm. It consists of two parts: prediction and innovation. If the 

variables are linear and normally distributed the Bayesian filter becomes equal to the 

Kalman filter. 

 

Bayesian filtering is to update the system state over time recursively by using the 

measurements coming from inertial sensors or video frame. Theoretically, it is difficult 

to implement the optimal Bayesian equation in computer because it requires the integral 

representation of the multi-dimensional distributions (Fox et al. 2005). There are lots of 

different Bayesian filter variants of this approach in practice. Kalman filter and 

extended Kalman filter (EKF) are the first and most widely used of these filters for 

SLAM (Davison et al. 2007; Durrant-Whyte & Bailey 2006; Fox et al. 2005; Guivant & 

Nebot 2001). The SLAM algorithms using EKF are called as EKF-SLAM. 

 

Bayesian filter used in this thesis is similar to EKF-SLAM (Simultaneous Localization 

and Mapping) which is a popular approach in computer vision and robotics. SLAM is a 

group of algorithms developed to make a robot (or apparatus on the head) estimate both 

the position of itself and the map of the unknown environment (Durrant-Whyte & 

Bailey 2006). The maps in these algorithms consist of the 3D information of the feature 

points of the space. The robot pose and 3D information of environment form the system 

state. Some statistics on the state also are shifted cyclically by a Bayesian filter, and 
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updated by using the measurements of the camera, and the inertial sensors. Here, an 

important observation is that the 3D information is connected to each other. Thanks to 

this connection, the system state is converged to real 3D information of the 

environment, and the robot continues to track its pose precisely (Durrant-Whyte & 

Bailey 2006). 

 

2.1.1  Kalman Filter 

 

 

The Kalman filter is a recursive estimator. This means that only the estimated state from 

the previous time step and the current measurement are needed to compute the estimate 

for the current state. In order to use the Kalman filter to estimate the internal state of a 

process given only a sequence of noisy observations, one must model the process in 

accordance with the framework of the Kalman filter. This means specifying the 

following matrices:   , the state-transition model;   , the observation model;   , the 

covariance of the process noise;   , the covariance of the observation noise; and 

sometimes   , the control-input model, for each time-step,  , as described below: 

 

         
                    (2.1) 

where    is the state transition model which is applied to the previous state     ,    is 

the  control input model which is applied to the control vector    and    is the process 

noise which is assumed to be drawn from a zero mean multivariate normal distribution 

with covariance   ,           . 

 

At time   a measurement    of the true state    is made according to: 

 

                        (2.2) 

where    is the observation model which maps the true state space into the observed 

space and    is the observation noise which is assumed to be zero mean Gaussian white 

noise with covariance   ,           . 
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 The state of the filter is represented by two variables: 

 

      :  the a posteriori state estimate at time t given observations up to and including at 

time t; 

     : the a posteriori error covariance matrix. 

 

The Kalman filter can be written as a single equation; however it is most often 

conceptualized as two distinct phases: "Predict" and "Update". The predict phase uses 

the state estimate from the previous time step to produce an estimate of the state at the 

current time step. This predicted state estimate is also known as the a priori state 

estimate because, although it is an estimate of the state at the current time step, it does 

not include observation information from the current time step. In the update phase, the 

current a priori prediction is combined with current observation information to refine 

the state estimate. This improved estimate is called as posteriori state estimate. 

 

Typically, the two phases alternate, with the prediction advancing the state until the next 

scheduled observation, and the update incorporating the observation. 

 

Predict: 

Predicted (a priori) state estimate: 

 

                                   (2.3) 

Predicted (a priori) estimate covariance: 

 

                   
               (2.4a) 

where 

 

                                                                                                           (2.4b) 
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Update: 

Innovation or measurement residual: 

 

                                                                                                                         (2.5) 

Innovation (or residual) covariance: 

 

             
                                                                                                    (2.6) 

Optimal Kalman gain: 

 

           
   

                                                                                                             (2.7) 

Updated (a posteriori) state estimate: 

 

                                                                                                                          (2.8) 

Updated (a posteriori) estimate covariance: 

 

                                                                                                                  (2.9) 

2.1.2  Extended Kalman Filter 

 

 

The basic Kalman filter is limited to a linear assumption. More complex systems, 

however, can be nonlinear. The non-linearity can be associated either with the process 

model or with the observation model or with both. The EKF is the nonlinear version of 

the Kalman filter that linearizes about an estimate of the current mean and covariance. 

For EKF, the nonlinear state-space model is given:  

 

                                                                                                           (2.10a) 

                        (2.10b) 
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where    denotes the state vector,    denotes a known control input,    and    are the 

process and measurement noises which are both assumed to be zero mean multivariate 

Gaussian noises with covariance    and   , respectively. 

 

The function f can be used to compute the predicted state from the previous estimate 

and similarly the function h can be used to compute the predicted measurement from the 

predicted state. However, f and h cannot be applied to the covariance directly. Instead a 

matrix of partial derivatives (the Jacobian) is computed. 

 

At each time step the Jacobian is evaluated with current predicted states. These matrices 

can be used in the Kalman filter equations. This process essentially linearizes the non-

linear function around the current estimate (Kleeman 1996). 

 

Predict: 

Predicted (a priori) state estimate: 

 

                                  (2.11) 

Predicted (a priori) estimate covariance: 

 

                   
        

       (2.12a) 

where 

 

                                                                                                         (2.12b) 

The state transition matrices are defined to be the following Jacobians: 

 

      

  
 
                

                                                                                                  (2.13a) 

      

  
 
                

         (2.13b) 

http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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Update: 

Innovation or measurement residual: 

 

                                                                                                                    (2.14) 

Innovation (or residual) covariance: 

 

             
                                                                                                 (2.15) 

Optimal Kalman gain: 

 

           
   

                                                                                                           (2.16) 

Updated (a posteriori) state estimate: 

 

                                                                                                                        (2.17) 

Updated (a posteriori) estimate covariance: 

 

                                                                                                                (2.18) 

where the observation matrices are defined to be the following Jacobians: 

 

      

  
 
           

                                                                                                            (2.19) 

EKF-SLAM algorithms are not robust for the error of the matching feature points, and 

run only the maps including small number of feature points since computation cost of 

algorithm is high (Jacobians) (Fox et al. 2005). 
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2.2  USAGE OF INERTIAL SENSORS IN BAYESIAN FILTER 

 

 

Systems using only video frames are successful in slow motion, but in fast motion they 

do not give accurate results. Accelerometers and gyroscope are appropriate for fast 

motion. However; they do not work well in slow motion because of the accumulation of 

the error and noise. In SLAM, in addition to video frame, the accelerometer and 

gyroscope measurement usage is proposed in Bayesian filter (Bleser & Stricker 2009; 

Armesto et al. 2007; Corke et al. 2007; Gemeiner et al. 2007; Kim & Sukkarieh 2007; 

Schon et al. 2007). This approach is used in this thesis as well. 

 

Bleser and Stricker (2009) proposed a head motion tracking algorithm that uses inertial 

sensors and video frames in Bayesian filter. They combine inertial sensors and video 

frames in four models: 

 

1. Combining data from video frame and gyroscope. 

2. Combining data from video frame, gyroscope, and accelerometer, but the 

accelerometer is used for stabilizing the camera attitude. 

3. Combining data from video frame, gyroscope, and accelerometer, using all 

information given in the accelerometer measurement. 

4. Combining data from video frame, gyroscope, and accelerometer, but accelerometer 

and gyroscope information used as not measurement, used as control input. 

 

 
In their paper, they test all of the four models with slow and fast motion. Their 

experiments showed that in fast motion model 3 and 4 give better results. They stated 

that there is no significant difference in model 3 and 4 results, but because the 

accelerometer and gyroscope are used as control input in model 4, the computation cost 

is lower than model 3. They also track the biases of the gyroscope and accelerometer in 

addition to pose of head. The case that they track the biases gives better result than the 

case that they do not track the biases. 
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2.3  INERTIAL SENSORS 

 

 

Inertial sensors measure the translational and rotational body kinematics. Inertial 

sensors are devices that use inertia to perform a measurement. As a practical matter, 

when people say “inertial sensor” they are referring to an accelerometer or a gyroscope. 

In this thesis, we are using two 2D gyroscopes, and one 3D accelerometer. By using 

inertial sensors, we get 3D linear acceleration, 3D angular velocity, and 3D earth 

gravitation force. We are using two 2D gyroscopes to get 3D angular velocity. 

 

2.3.1  Gyroscope 

 

 

A gyroscope is a device used primarily for navigation and measurement of angular 

velocity. Current gyroscopes can measure angular velocity in 1, 2, or 3 directions. 3-

axis gyroscopes are often implemented with a 3-axis accelerometer to provide a full 6 

degree-of-freedom (DoF) motion tracking system (SensorWiki.org 2009). The 3D 

gyroscope measures the angular velocity expressed as     
   in the sensor frame s. The 

direction of the angular velocity is from sensor coordinate system to global coordinate 

system (Bleser & Stricker 2009). In the next part, the difference of direction and the 

transformation of the coordinate systems can be found. When we stabilize the 

gyroscope, the gyroscope still gets some values. These values are called as bias term 

and it is not constant. The measured angular velocity from gyroscope includes the 

slowly varying bias     
  and the zero mean white noise     

 . The calibrated gyroscope 

signal is: 

 

    
      

       
      

                                                                                                (2.20) 

In this thesis, we thought that the bias term in this equation is varying and the bias term 

must be estimated at each time angular velocity is measured. 
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2.3.2  Accelerometer 

 

 

An accelerometer is an electromechanical device that measures acceleration forces 

(SensorWiki.org 2009). These forces may be static, like the constant force of gravity 

pulling at your feet, or they could be dynamic - caused by moving or vibrating the 

accelerometer. Similarly with gyroscope, when we stabilize the accelerometer, the 

accelerometer still gets some values. These values are called as bias term and it is not 

constant. The calibrated accelerometer signal     
  is corrupted by a slowly varying bias 

    
  and zero mean white noise     

 : 

 

    
              

      
                                                                                        (2.21) 

Because in the global coordinate system gravity force is constant, the accelerometer 

expression can be written in the global coordinate system: 

 

    
                     

      
                                                                 (2.22) 

where       denotes the rotation matrix from global coordinate system to sensor 

coordinate system. This rotation matrix can be found by using angular velocity data 

measured by gyroscope. Also, we can use the angular velocity data measured by 

gyroscope to calculate linear acceleration and the position of the system (Bleser & 

Stricker 2009). 

 

Figure 2.1: The workflow of inertial navigation system 
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2.4  COMBINATION OF CAMERA AND INERTIAL SENSORS 

 

 

Each inertial sensor and the camera have their own spatial and time domain. To 

combine the all camera and inertial sensor, we must synchronize them. In the time 

domain, the camera used in this thesis has 30 Hz frame rate. The camera is a multicolor 

camera and its frame rate can be changed. The inertial sensor frequency is faster than 

the camera. Their frequency can be up to 400 Hz. In our simulation, we used 120 Hz 

accelerometer and gyroscope. Our system works at 120 Hz, so the camera 

measurements are used once time in four periods. 

 

When we look at the spatial domain of the camera and the inertial sensors, they are also 

different from each other. The relationship of the coordinate systems of the camera and 

the inertial system can be seen in Figure 2.2 (Bleser & Stricker 2009). 

 

3D coordinate systems in Figure 2.4.1 are:   

World (w): world frame is fixed to the target scene model 

Camera (c): camera frame is fixed to moving camera 

Sensor (s): sensor frame is fixed to moving sensors 

Global (g): global frame is fixed to earth. 

 

Figure 2.2: Camera-inertial sensor 3D coordinates and relations 
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In our system, the sensor coordinate system and the camera coordinate system are fixed 

and the relation of each coordinate system is constant.     (rotation matrix from sensor 

to camera coordinate system), and    (distance between camera and sensor origins) are 

fixed and does not change in time. So, a point on camera coordinate can be easily 

transformed to sensor coordinate system. On the other hand, camera-sensor combination 

is moving in time, the coordinate systems of them change according to global 

coordinate system. For example, if you want to find the camera pose by using the sensor 

pose, we can convert sensor pose to camera pose by using: 

 

                                                                                                                          (2.23) 

                                                                                                                     (2.24) 

A 3D point on world coordinate can be pointed on the camera coordinate by using 

Figure 2.3: 

 

                                                                                                     (2.25) 

2.5  FEATURE POINTS DETECTION 

 

 

When the camera frame is captured, the specific feature points must be detected and 

matched with the feature points on the previous frames. We need these feature points 

and their 2D/3D correspondence to use the camera measurements.  

 

To find the feature points, SIFT (Scale-invariant feature transform) can be used. SIFT is 

an algorithm in computer vision to detect and describe local features in images (Lowe 

2004). 

 

SIFT key points of objects are first extracted from a set of reference images (Lowe 

2004) and stored in a database. An object is recognized in a new image by individually 

comparing each feature from the new image to this database and finding candidate 

matching features based on Euclidean distance of their feature vectors. From the full set 

of matches, subsets of key points that agree on the object and its location, scale, and 
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orientation in the new image are identified to filter out good matches. The determination 

of consistent clusters is performed rapidly by using an efficient hash 

table implementation of the generalized Hough transform. Each cluster of 3 or more 

features that agrees on an object and its pose is then subject to further detailed model 

verification and subsequently outliers are discarded. Finally, the probability that a 

particular set of features indicates the presence of an object is computed, given the 

accuracy of fit and number of probable false matches. Object matches that pass all these 

tests can be identified as correct with high confidence (Lowe 2004). 

 

2.6  CAMERA GEOMETRY 

 

 

Perspective projection can be defined as in Figure 2.3. The center of projection is at the 

origin O of the 3D reference frame of the space. The image plane is parallel to 

the           plane and displaced a distance f (focal length) along the    axis from the origin. 

The 3D point P projects to the image point p. The orthogonal projection 

of O onto image plane is the principal point o, and the    axis which corresponds to this 

projection line is the principal axis. 

 

Figure 2.3: Standard perspective projection 
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Let         be the 2D coordinates of p and            the 3D coordinates of P. A direct 

application of Thales theorem shows that:  

 

    
  

  
     

  

  
                                                                                                   (2.26) 

We can assume that     as different values of   just correspond to different scaling of 

the image. Below, we will incorporate a full camera calibration into the model. In 

homogeneous coordinates, the above equations become:  

 

 
  

  

 
   

  

  

  

   
    
    
    

  

  

  

  

 

                                                                   (2.27) 

The world coordinate system does not usually coincide with the perspective reference 

frame, so the 3D coordinates undergo a Euclidean motion described by some matrix M. 

M gives the 3D position and pose of the camera and therefore has six degrees of 

freedom which represents the exterior (or extrinsic) camera parameters. In a minimal 

parameterization, M has the standard 6 degrees of freedom of a rigid motion. The 

Euclidean transformation between the camera and world coordinates is: 

 

                                                                                                                       (2.28) 

 

 

  

  

  

 

   
  
   

  

  

  

  

 

                                                                                                    (2.29) 

Transformation from world frame to camera frame can be seen in Figure 2.4: 

 

 

 

 

 

 



24 

 

Figure 2.4: Transformation from world coordinate to camera coordinate 
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In real images, the origin of the image coordinates is not the principal point and the 

scaling along each image axis is different, so the image coordinates undergo a further 

transformation described by some matrix K.  

 

Figure 2.5: Camera calibration representation 
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                                                                                                                        (2.30) 

                                                                                                                         (2.31) 

where units of   are [pixels/length].  

 

    
 
 
 
   

      

      

   

  

  

  

 
    

  

  

 
                                                    (2.32) 

K is independent of the camera position. It contains the interior (or intrinsic) parameters 

of the camera. It is usually represented as an upper triangular matrix, called camera 

calibration matrix: 

 

   
     

     

   
                                                                                           (2.33) 

where              . 

 

Finally, when we concatenating the three matrices: 

 

   
 
 
 
    

    
    
    

  
  
   

  

  

  

  

 

         

  

  

  

 

                            (2.34) 

which defines the 3x4 projection matrix from Euclidean 3-space to an image: 

 

    
 
 
                                                                                                             (2.35) 

                                                                                                                            (2.36) 
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2.7  DIRECT LINEAR TRANSFORMATION 

 

 

The equations of the direct liner transformation (DLT) are given below. The matrix 

given below consists of the known 3D position of the feature points in world coordinate 

system         and the 2D position of the feature points on camera image      . 

 

  

 
 
 
 
 
 
 
                          

                          

           

                          

                           
 
 
 
 
 
 

       (2.37) 

P matrix given below is the camera projection matrix. In our simulation, camera matrix 

is assumed to be unit matrix, so the left 3x3 part of the P matrix gives the rotation 

matrix of the camera (Q). The right 3x1 vector part of the P matrix gives the 3D 

position vector. 

 

                                                                        (2.38a) 

    

            

            

          

              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

   

   

   

   

   

   

   

   

   

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (2.38b) 

               (2.38c) 

                    (2.38d) 



27 

 

        

         

         

         

         (2.38e) 

 

   

   

   

                

   

   

 

       (2.38f) 

     represents Moore-Penrose pseudoinverse matrix.   is not square, then        

does not exist. In this case,         has some of the properties of       . 

 

The 3D position and 3D angle data obtained from above equations are used in the 

measurement model of the Hybrid filter. 

 

    
            

 
        (2.39a) 

    
           

         (2.39b) 
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3. BAYESIAN FILTER DESIGN 
 

In this section, two types of Bayesian filter are examined: 

 

1. Extended Kalman Filter (EKF) 

2. Hybrid Filter 

 

3.1  EKF DESIGN 

 

 

9 different EKF methods using video frames, accelerometer and gyroscope sensors are 

analyzed. Video frames are used in all models. In addition to video frames, angular 

velocity and linear acceleration data are used as measurement or control input in EKF. 

If any data is used as control input, it will be used in prediction part of EKF as a known 

control input. It will improve the prediction performance of EKF. On the other hand, if 

any data used as measurement, it will be used in correction part of EKF as a 

measurement. It will improve the correction performance of EKF. The methods 

investigated in this thesis are: 

 

1. Both angular velocity and linear acceleration data used as "measurement" 

2. Angular velocity data used as "control input", linear acceleration data used as   

"measurement" 

3. Angular velocity data used as "measurement", linear acceleration data used as 

"control input" 

4. Both angular velocity and linear acceleration data used as "control input" 

5. Angular velocity data used as "measurement" 

6. Angular velocity data used as "control input" 

7. Linear acceleration data used as "measurement" 

8. Linear acceleration data used as "control input 

9. Both angular velocity and linear acceleration data "not" used 
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For each case, EKF equations will be updated according to the usage of inertial sensors. 

General EKF equations are given in Section 2.1. Some of them are same for all cases; 

whereas some are different for each case.  

 

 

3.1.1  Both Angular Velocity and Linear Acceleration Data Used As Measurement 

 

 

In this method; all video frames, angular velocity, and linear acceleration data are used 

as measurement. The state vector    comprises: 

 

      
   

   
   

     
   

   
                                                 (3.1) 

where    denotes the position of camera,    the linear velocity of camera,    the linear 

acceleration of camera,   
  the biases of accelerometer inertial sensor,     the 

orientation quaternion,    the angular velocity of camera,   
  the biases of gyroscope 

inertial sensor.  

 

The time model assumes constant linear acceleration and constant angular velocity. 

Time model is (Bleser & Stricker 2009): 

 

   

 
 
 
 
 
 
 
 
 
 
    

    

    

    
 

     

    

    
  

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
                

  

 
       

  

 
    
 

                    
 

           
 

      
      

  

     
 

 
            

           

           
 

      
      

  

 
 
 
 
 
 
 
 
 
 
 

                                     (3.2a) 

  
               (3.2b) 

  
       

     
     

  
    

  
          (3.2c) 
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where     
 ,     

  
,     

 , and     
  

 denote time independent Gaussian process noise that is 

uncorrelated in all components.  

 

Since all data is used as measurement, all of them are in the measurement model. The 

measurement model below includes the linear acceleration, angular velocity, and the 

position of the feature points on the video frames, respectively: 

 

    

    
 

    
 

  

                                                                                               (3.3a) 

  
       

     
   

            (3.3b) 

where     
  denotes the linear acceleration,     

  denotes the angular velocity,     
 ,     

 , 

    
 , and     

  denote time independent Gaussian measurement noise. Because the linear 

acceleration and gravity acceleration are in world coordinates in time model, they must 

be converted to inertial sensor coordinate by using      . 

 

The other equations of EKF used in this method are provided below. Time model 

equations are: 

 

                                                                                                                 (3.4a) 

                   
        

                                                                               (3.4b) 

Measurement model equations are: 

 

                                                                                                                 (3.5) 

Since time model and measurement model are both nonlinear, these models must be 

linearized in order to use EKF. The linearization of the time model equations are: 
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                                                                                                 (3.6a) 

      

  
 
                   

                                                            (3.6b) 

              
      

  
    
   

    
                                                                  (3.6c) 

The linearization of the measurement model equations are: 

 

      

  
 
               

            (3.7a) 

               
 

       
 

       
 

       
 

       
 

       
 

      
 

      
 

 
          (3.7b) 

3.1.2  Angular Velocity Data Used As Control Input, Linear Acceleration Data 
 
          Used As Measurement 

 

 

In this method; video frames, and linear acceleration data are used as measurement. 

However, angular velocity data is used as control input. Thus, the state vector    does 

not include angular velocity: 

 

      
   

   
   

     
   

                                                      (3.8) 

The angular velocity data is still used, so the biases of the gyroscope are still in the state 

vector   . 

 

As in the previous method, the time model assumes constant linear acceleration and 

constant angular velocity. The angular velocity is used as control input in this method, 

so the angular velocity is not used in state vector, but it is used in time model. Time 

model is: 
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                         (3.9a) 

  
      

            (3.9b) 

  
       

     
     

  
    
  

          (3.9c) 

In the measurement model, there is only the data used as measurement. Because of that 

angular velocity data is not used in measurement model. The measurement model 

includes the linear acceleration, and the position of the feature points on the video 

frames, respectively: 

 

    
    

 

  

                                                                                                                      (3.10a) 

  
       

   
                     (3.10b) 

The other equations of EKF used in this method are given below. Time model equations 

are: 

 

                        
                                                                                     (3.11a) 

                   
        

        
                                                      (3.11b) 

Measurement model equations are: 

 

                                                                                                                  (3.12) 

The linearization of the time model equations are: 
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                     (3.13a) 

      

  
 
               

          
         (3.13b) 

              
      

  
    
   

    
         (3.13c) 

      

     
  

               
          

                     (3.13d) 

        
 

           (3.13e) 

The linearization of the measurement model equations are: 

 

      

  
 
             

                      (3.14a) 

               
 

       
 

       
 

      
 

      
 

 
       (3.14b) 

3.1.3  Angular Velocity Data Used As Measurement, Linear Acceleration Data  
 
          Used As Control Input 

 

 

In this method; video frames, and angular velocity data are used as measurement. 

However, linear acceleration data is used as control input. Since linear acceleration data 

is used as control input, the state vector    does not include linear acceleration: 

 

      
   

   
     

   
   

                                                     (3.15) 

The linear acceleration data is still used, so the biases of the accelerometer are still in 

the state vector   . 

 

As in the previous methods, the time model assumes constant linear acceleration and 

constant angular velocity. The linear acceleration is used as control input in this method, 
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so the linear acceleration is not used in state vector, but it is used in time model. Time 

model is: 

 

   

 
 
 
 
 
 
 
 
 
    

    

    
 

     

    

    
  

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
                

  

 
    
  

  

 
            

        
   

  

 
  

            
               

        
      

      
      

  

     
 

 
            

           

           
 

      
      

  

 
 
 
 
 
 
 
 
 

 (3.16a) 

  
      

          (3.16b) 

  
       

     
     

  
    
  

        (3.16c) 

Linear acceleration data is not included in measurement model since measurement 

model only consist data used as measurement. The measurement model includes the 

angular velocity, and the position of the feature points on the video frames, respectively: 

 

    
    

 

  

                               (3.17a) 

  
       

   
           (3.17b) 

The other equations of EKF used in this method are given below. Time model equations 

are: 

 

                        
                 (3.18a) 

 
                   

        
        

      (3.18b) 

Measurement model equations are: 

 

                              (3.19) 
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The linearization of the time model equations are: 

 

      

  
 
               

          
                (3.20a) 

      

  
 
               

          
        (3.20b) 

              
      

  
    
   

    
          (3.20c) 

      

     
  

               
          

        (3.20d) 

        
 

                       (3.20e) 

The linearization of the measurement model equations are: 

 

      

  
 
             

         (3.21a) 

               
 

       
 

       
 

      
 

      
 

 
       (3.21b) 

3.1.4  Both Angular Velocity and Linear Acceleration Data Used As Control Input 

 

 

In this method; only video frames are used as measurement. However, linear 

acceleration and angular velocity data are used as control input. Since linear 

acceleration and angular velocity data are used as control input, the state vector    does 

not include linear acceleration and angular velocity: 

 

      
   

   
     

   
           (3.22) 

The linear acceleration and angular velocity data are still used, so the biases of the 

accelerometer and gyroscope are still in the state vector   . 
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As in the previous methods, the time model assumes constant linear acceleration and 

constant angular velocity. The linear acceleration and angular velocity are used as 

control input in this method, so the linear acceleration and angular velocity are not used 

in state vector, but they are used in time model. Time model is: 

 

   

 
 
 
 
 
 
 
    

    

    
 

     

    
  

 
 
 
 
 
 

 

 
 
 
 
 
 
 
                

  

 
    
  

  

 
            

        
   

  

 
  

            
               

        
      

      
      

  

     
 

 
      

        
       

           

      
      

  

 
 
 
 
 
 
 
 

 (3.23a) 

  
       

     
          (3.23b) 

  
       

     
     

  
    
  

        (3.23c) 

The linear acceleration and angular velocity data are not used in measurement model. 

The measurement model includes only the position of the feature points on the video 

frames: 

 

                   (3.24a) 

  
    

             (3.24b) 

The other equations of EKF used in this method are given below. Time model equations 

are: 

 

                        
      

                (3.25a) 

                   
        

        
      (3.25b) 

Measurement model equations are: 

 

                             (3.26) 
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The linearization of the time model equations are: 

 

      

  
 
               

      
          

        (3.27a) 

      

  
 
               

      
          

        (3.27b) 

              
      

  
    
   

    
         (3.27c) 

      

     
 
               

      
          

      (3.27d) 

              
 

      
 

 
         (3.27e) 

The linearization of the measurement model equations are: 

 

      

  
 
           

         (3.28a) 

              
 

      
 

 
          (3.28b) 

3.1.5  Angular Velocity Data Used As Measurement 

 

 

In this method; the video frames and angular velocity data are used as measurement. 

However, linear acceleration data is not used in this method, so the state vector    does 

not include linear acceleration: 

 

      
   

    
   

   
           (3.29) 

The linear acceleration data are not used, so the biases of the accelerometer are not in 

the state vector   . 

 

Unlike previous methods, the time model assumes constant linear velocity and constant 

angular velocity because there is no linear acceleration data. The linear acceleration is 
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not used in this method, so the linear acceleration is not used in time model like state 

vector. Time model is: 

 

   

 
 
 
 
 
 
 
    

    

     

    

    
  

 
 
 
 
 
 

 

 
 
 
 
 
 
 

                    
 

           
 

     
 

 
            

           

           
 

      
      

  

 
 
 
 
 
 
 

    (3.30a) 

  
             (3.30b) 

  
       

     
     

  
        (3.30c) 

where     
  denote time independent Gaussian process noise. 

 

The measurement model includes the angular velocity, and the position of the feature 

points on the video frames, respectively: 

 

    
    

 

  

           (3.31a) 

  
       

   
           (3.31b) 

The other equations of EKF used in this method are provided below. Time model 

equations are: 

 

                                  (3.32a) 

                   
        

        (3.32b) 

Measurement model equations are: 

 

                             (3.33) 
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The linearization of the time model equations are: 

 

      

  
 
                 

         (3.34a) 

      

  
 
                 

         (3.34b) 

              
      

  
    
           (3.34c) 

The linearization of the measurement model equations are: 

 

      

  
 
             

          (3.35a) 

               
 

       
 

       
 

      
 

      
 

 
       (3.35b) 

3.1.6  Angular Velocity Data Used As Control Input 

 

 

In this method; only the video frames are used as measurement. However, linear 

acceleration data is not used, but angular velocity data is used as control input in this 

method, so the state vector    does not include linear acceleration and angular velocity: 

 

      
   

    
   

            (3.36) 

The angular velocity data is still used, so the biases of the gyroscope are still in the state 

vector   . 

 

Like the method in Section 3.1.5, the time model assumes constant linear velocity and 

constant angular velocity because there is no linear acceleration data. The linear 

acceleration is not used in this method, so the linear acceleration is not used in time 

model like state vector. On the other hand, because angular velocity data is used as 

control input, it is not in the state vector but it is in the time model. Time model is: 
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   (3.37a) 

  
      

          (3.37b) 

  
       

     
     

  
        (3.37c) 

The measurement model includes only the position of the feature points on the video 

frames: 

 

               (3.38a) 

  
    

                     (3.38b) 

The other equations of EKF used in this method are given below. Time model equations 

are: 

 

                        
               (3.39a) 

                   
        

        
      (3.39b) 

Measurement model equations are: 

 

                             (3.40) 

The linearization of the time model equations are: 

 

      

  
 
               

        
                  (3.41a) 

      

  
 
               

        
        (3.41b) 
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                       (3.41c) 

      

     
  

               
        

         (3.41d) 

        
 

          (3.41e) 

The linearization of the measurement model equations are: 

 

      

  
 
           

        (3.42a) 

              
 

      
 

 
          (3.42b) 

3.1.7  Linear Acceleration Data Used As Measurement 

 

 

In this method; the video frames and linear acceleration data are used as measurement. 

However, angular velocity data is not used in this method, so the state vector    does 

not include angular velocity: 

 

      
   

   
   

     
          (3.43) 

The angular velocity data is not used, so the biases of the gyroscope are not in the state 

vector   . 

 

In this method, the time model assumes constant linear acceleration and constant 

angular difference because there is no angular velocity data. The angular velocity is not 

used in this method, so the angular velocity is not used in time model like state vector. 

Time model is: 
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                (3.44a) 

  
                       (3.44b) 

  
       

     
     

  
                    (3.44c) 

where     
  denote time independent Gaussian process noise. 

 

The measurement model includes the linear acceleration, and the position of the feature 

points on the video frames, respectively: 

 

    
    

 

  

          (3.45a) 

  
       

   
           (3.45b) 

The other equations of EKF used in this method are given below. Time model equations 

are: 

 

                                  (3.46a) 

                   
        

        (3.46b) 

The linearization of the time model equations are: 

 

      

  
 
                 

         (3.47a) 

      

  
 
                 

         (3.47b) 
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          (3.47c) 

The linearization of the measurement model equations are: 

 

      

  
 
             

          (3.48a) 

               
 

       
 

       
 

      
 

      
 

 
       (3.48b) 

3.1.8  Linear Acceleration Data Used As Control Input 

 

 

In this method; only the video frames are used as measurement. However, angular 

velocity data is not used, but linear acceleration data is used as control input in this 

method, so the state vector    does not include linear acceleration and angular velocity: 

 

      
   

   
     

           (3.49) 

The linear acceleration data is still used, so the biases of the accelerometer are still in 

the state vector   . 

 

Like the method in Section 3.1.7, the time model assumes constant linear acceleration 

and constant angular difference because there is no angular velocity data. The angular 

velocity is not used in this method, so the angular velocity is not used in time model like 

state vector. On the other hand, because linear acceleration data is used as control input, 

it is not in the state vector but it is in the time model. Time model is: 

 

 
 
 
 
 
    

    

    
 

      
 
 
 
 

 

 
 
 
 
 
                

  

 
    
  

  

 
            

        
   

  

 
  

            
               

        
      

      
      

  

    
 

 
    
           

 
 
 
 
 

(3.50a) 

  
      

                      (3.50b) 
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         (3.50c) 

The measurement model includes only the position of the feature points on the video 

frames: 

 

               (3.51a) 

  
    

           (3.51b) 

The other equations of EKF used in this method are given below. Time model equations 

are: 

 

                        
               (3.52a) 

                   
        

        
      (3.52b) 

Measurement model equations are: 

 

                             (3.53) 

The linearization of the time model equations are: 

 

      

  
 
               

        
        (3.54a) 

      

  
 
               

        
        (3.54b) 

              
      

  
    
          (3.54c) 

      

  
    
 

  

               
        

        (3.54d) 

        
 

 
          (3.54e) 
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The linearization of the measurement model equations are: 

 

      

  
 
           

         (3.55a) 

              
 

      
 

 
         (3.55b) 

3.1.9  Both Angular Velocity and Linear Acceleration Data Not Used 

 

 

In this method; only the video frames are used as measurement. However, linear 

acceleration and angular velocity data are not used, so the state vector    does not 

include linear acceleration and angular velocity: 

 

      
   

    
            (3.56) 

In this method, the time model assumes constant linear velocity and constant angular 

difference because there is no linear acceleration and angular velocity data. The linear 

acceleration and angular velocity are not used in this method, so they are not used in 

time model like state vector. Time model is: 

 

    

    

    

     

  

 
 
 
 
                    

 

           
 

     
 

 
    
           

 
 
 

      (3.57a) 

  
                          (3.57b) 

  
       

     
          (3.57c) 

The measurement model includes only the position of the feature points on the video 

frames: 

 

               (3.58a) 

  
    

                     (3.58b) 
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The other equations of EKF used in this method are given below. Time model equations 

are: 

 

                              (3.59a) 

                   
        

       (3.59b) 

Measurement model equations are: 

 

                             (3.60) 

The linearization of the time model equations are: 

 

      

  
 
              

        (3.61a) 

      

  
 
              

        (3.61b) 

              
      

          (3.61c) 

The linearization of the measurement model equations are: 

 

      

  
 
            

        (3.62a) 

              
 

      
 

 
         (3.62b) 

3.2  HYBRID FILTER DESIGN 

 

 

9 different Hybrid Filter methods using video frames, accelerometer and gyroscope 

sensors are analyzed. Video frames are used in all models. In addition to video frames, 

angular velocity and linear acceleration data are used as measurement or control input in 

Hybrid Filter. These methods are: 
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1. Both angular velocity and linear acceleration data used as "measurement" 

2. Angular velocity data used as "control input", linear acceleration data used as   

"measurement" 

3. Angular velocity data used as "measurement", linear acceleration data used as 

"control input" 

4. Both angular velocity and linear acceleration data used as "control input" 

5. Angular velocity data used as "measurement" 

6. Angular velocity data used as "control input" 

7. Linear acceleration data used as "measurement" 

8. Linear acceleration data used as "control input" 

9. Both angular velocity and linear acceleration data "not" used 

 

In hybrid filter, the feature points are not used in EKF filter directly. By using direct 

linear transformation, the pose of the camera can be estimated with these feature points. 

This estimated pose data is used in EKF with linear acceleration and angular velocity 

measurements to enhance the pose estimation. The difference of the hybrid filter design 

from EKF is the usage of the feature points. 

 

3.2.1  Both Angular Velocity and Linear Acceleration Data Used As Measurement 

 

 

In this method; all video frames, angular velocity, and linear acceleration data are used 

as measurement. The state vector    comprises: 

 

      
   

   
   

     
   

   
          (3.63) 

where    denotes the position of camera,    the linear velocity of camera,    the linear 

acceleration of camera,   
  the biases of accelerometer inertial sensor,     the 

orientation quaternion,    the angular velocity of camera,   
  the biases of gyroscope 

inertial sensor. To simplify the time model, the position   , linear velocity   , linear 

acceleration   , and orientation     of the inertial sensors with respect to the world 

frame are estimated in the state vector. 
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The time model of this method is same as the EKF design in Section 3.1.1.  

 

The measurement model of the Hybrid filter includes the accelerometer data, gyroscope 

data, and the 3D position (pose and angle) data obtained from structure from motion by 

using the feature points: 

 

   

 
 
 
 
 
 
    

 

    
 

    
 

    
  

 
 
 
 
 

         (3.64a) 

  
       

     
     

     
         (3.64b) 

where,     
 

 denotes the quaternion version of the rotation matrix,     
  denotes the pose of 

the camera,     
 

, and     
  denote time independent Gaussian measurement noise.  

 

The other equations of EKF used in this method are same as Section 3.1.1. 

 

The linearization of the measurement model of this method: 

 

      

  
 
                 

        (3.65a) 

               
 

       
 

       
 

       
 

       
 

       
 

  
     

 
  

     
 

  
     

 
  

     
 

       
 

       
 

       
 

 
        (3.65b) 

3.2.2  Angular Velocity Data Used As Control Input, Linear Acceleration Data  
 
           Used As Measurement 

 

 

In this method; video frames, and linear acceleration data are used as measurement. 

However, angular velocity data is used as control input. Thus, the state vector    does 

not include angular velocity: 

 

      
   

   
   

     
   

          (3.66) 
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The angular velocity data is still used, so the biases of the gyroscope are still in the state 

vector   . 

 

The time model of this method is same as the EKF design in Section 3.1.2.  

 

The measurement model of the Hybrid filter includes the accelerometer data, and the 3D 

position (pose and angle) data obtained from structure from motion by using the feature 

points: 

 

    

    
 

    
 

    
 

           (3.67a) 

  
       

     
     

          (3.67b) 

The other equations of EKF used in this method are same as Section 3.1.2. 

 

The linearization of the measurement model of this method: 

 

      

  
 
               

         (3.68a) 

               
 

       
 

       
 

  
     

 
  

     
 

  
     

 
  

     
 

       
 

       
 

       
 

 
    (3.68b) 

3.2.3  Angular Velocity Data Used As Measurement, Linear Acceleration Data  
 
          Used As Control Input 

 

 

In this method; video frames, and angular velocity data are used as measurement. 

However, linear acceleration data is used as control input. Thus, the state vector    does 

not include linear acceleration: 

 

      
   

   
     

   
   

            (3.69) 
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The linear acceleration data is still used, so the biases of the accelerometer are still in 

the state vector   . 

 

The time model of this method is same as the EKF design in Section 3.1.3.  

 

The measurement model of the Hybrid filter includes the gyroscope data, and the 3D 

position (pose and angle) data obtained from structure from motion by using the feature 

points: 

 

    

    
 

    
 

    
 

            (3.70a) 

  
       

     
     

          (3.70b) 

The other equations of EKF used in this method are same as Section 3.1.3. 

 

The linearization of the measurement model of this method: 

 

      

  
 
               

        (3.71a) 

               
 

       
 

       
 

  
     

 
  

     
 

  
     

 
  

     
 

       
 

       
 

       
 

 
                 (3.71b) 

3.2.4  Both Angular Velocity and Linear Acceleration Data Used As Control Input 

 

 

In this method; only video frames are used as measurement. However, linear 

acceleration and angular velocity data are used as control input. Thus, the state vector    

does not include linear acceleration and angular velocity: 

 

      
   

   
     

   
           (3.72) 
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The linear acceleration and angular velocity data are still used, so the biases of the 

accelerometer and gyroscope are still in the state vector   . 

 

The time model of this method is same as the EKF design in Section 3.1.4.  

 

The measurement model of the Hybrid filter includes only the 3D position (pose and 

angle) data obtained from structure from motion by using the feature points: 

 

    
    

 

    
 

          (3.73a) 

  
       

     
          (3.73b) 

The other equations of EKF used in this method are same as Section 3.1.4. 

 

The linearization of the measurement model of this method: 

 

      

  
 
             

        (3.74a) 

               
 

  
     

 
  

     
 

  
     

 
       

 
       

 
       

 
 

    (3.74b) 

3.2.5  Angular Velocity Data Used As Measurement 

 

 

In this method; the video frames and angular velocity data are used as measurement. 

However, linear acceleration data is not used in this method, so the state vector    does 

not include linear acceleration: 

 

      
   

    
   

   
          (3.75) 

The linear acceleration data is not used, so the biases of the accelerometer are not in the 

state vector   . 
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The time model of this method is same as the EKF design in Section 3.1.5.  

 

The measurement model of the Hybrid filter includes the gyroscope data, and the 3D 

position (pose and angle) data obtained from structure from motion by using the feature 

points: 

 

    

    
 

    
 

    
 

          (3.76a) 

  
       

     
     

          (3.76b) 

The other equations of EKF used in this method are same as Section 3.1.5. 

 

The linearization of the measurement model of this method: 

 

      

  
 
               

        (3.77a) 

               
 

       
 

       
 

  
     

 
  

     
 

  
     

 
  

     
 

       
 

       
 

       
 

 
    (3.77b) 

3.2.6  Angular Velocity Data Used As Control Input 

 

 

In this method; only the video frames are used as measurement. However, linear 

acceleration data is not used, but angular velocity data is used as control input in this 

method, so the state vector    does not include linear acceleration and angular velocity: 

 

      
   

    
   

            (3.78) 

The angular velocity data is still used, so the biases of the gyroscope are still in the state 

vector   . 

 

The time model of this method is same as the EKF design in Section 3.1.6.  
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The measurement model of the Hybrid filter includes only the 3D position (pose and 

angle) data obtained from structure from motion by using the feature points: 

 

    
    

 

    
 

          (3.79a) 

  
       

     
          (3.79b) 

The other equations of EKF used in this method are same as Section 3.1.6. 

 

The linearization of the measurement model of this method: 

 

      

  
 
             

        (3.80a) 

               
 

  
     

 
  

     
 

  
     

 
       

 
       

 
       

 
 

    (3.80b) 

3.2.7  Linear Acceleration Data Used As Measurement 

 

 

In this method; the video frames and linear acceleration data are used as measurement. 

However, angular velocity data is not used in this method, so the state vector    does 

not include angular velocity: 

 

      
   

   
   

     
          (3.81) 

The angular velocity data is not used, so the biases of the gyroscope are not in the state 

vector   . 

 

The time model of this method is same as the EKF design in Section 3.1.7.  

 

The measurement model of the Hybrid filter includes the accelerometer data, and the 3D 

position (pose and angle) data obtained from structure from motion by using the feature 

points: 
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          (3.82a) 

  
       

     
     

          (3.82b) 

The other equations of EKF used in this method are same as Section 3.1.7. 

 

The linearization of the measurement model of this method: 

 

      

  
 
               

        (3.83a) 

               
 

       
 

       
 

  
     

 
  

     
 

  
     

 
  

     
 

       
 

       
 

       
 

 
   (3.83b) 

3.2.8  Linear Acceleration Data Used As Control Input 

 

 

In this method; only the video frames are used as measurement. However, angular 

velocity data is not used, but linear acceleration data is used as control input in this 

method, so the state vector    does not include linear acceleration and angular velocity: 

 

      
   

   
     

           (3.84) 

The linear acceleration data is still used, so the biases of the accelerometer are still in 

the state vector   . 

 

The time model of this method is same as the EKF design in Section 3.1.8.  

 

The measurement model of the Hybrid filter includes only the 3D position (pose and 

angle) data obtained from structure from motion by using the feature points: 

 

    
    

 

    
 

          (3.85a) 
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          (3.85b) 

The other equations of EKF used in this method are same as Section 3.1.8. 

 

The linearization of the measurement model of this method: 

 

      

  
 
             

        (3.86a) 

               
 

  
     

 
  

     
 

  
     

 
       

 
       

 
       

 
 

    (3.86b) 

3.2.9  Both Angular Velocity and Linear Acceleration Data Not Used 

 

 

In this method; only the video frames are used as measurement. However, linear 

acceleration and angular velocity data are not used, so the state vector    does not 

include linear acceleration and angular velocity: 

 

      
   

    
              (3.87) 

The angular velocity and linear acceleration data are not used, so the biases of both 

gyroscope and accelerometer are not in the state vector   . 

 

The time model of this method is same as the EKF design in Section 3.1.9.  

 

The measurement model of the Hybrid filter includes only the 3D position (pose and 

angle) data obtained from structure from motion by using the feature points: 

 

    
    

 

    
 

          (3.88a) 

  
       

     
          (3.88b) 

The other equations of EKF used in this method are same as Section 3.1.9. 
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The linearization of the measurement model of this method: 

 

      

  
 
             

                  (3.89a) 

               
 

  
     

 
  

     
 

  
     

 
       

 
       

 
       

 
 

             (3.89b) 
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4. EXPERIMENTAL SETUP AND RESULTS 
 

4.1  SIMULATION STRUCTURE 

 

 

In this section, the simulation platform and performance evolution of the algorithms are 

provided. We compare the nine different EKF visual-inertial sensor tracking results. 

Also, we compare the EKF with mixed filter and pose estimation using only feature 

points (no EKF and no mixed filter).  

 

For simulation, we used 3D camera motion including both 3D linear acceleration and 

3D angular velocity. We used the edges of two cubes that are on top as the feature 

points (totally 12 points). In Figure 4.1, 3D linear camera motion and 3D feature points 

can be seen. 

 

Figure 4.1: Translational movement 
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The equations of the linear camera motion are: 

 

 

  
 

  
        

  
 

  
        

           
 
 

 
 

       
  

            
                     (4.1) 

where              denotes the translational movement period. 

 

The camera rotational movement can be seen in Figure 4.2. 

 

Figure 4.2: Rotational movement 
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The equations of the rotational camera motion are: 

 

 

               

               

                
 
 

 
 

     

                                

  
  

         

           (4.2) 
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where           denotes the rotational movement period,   ,   , and    denote the 

maximum rotation angle of the camera in  ,  , and   direction, respectively. In our 

simulation we take: 

 

         
   

   
             (4.3) 

We also examine how the results are affected when the maximum rotation angles of the 

camera are changed. 

 

The camera motion used in the experiments is the combination of the translational and 

the rotational movements shown in Figure 4.1.1 and Figure 4.1.2, respectively. As a 

result, the camera movement chosen for simulation includes both 3D translational and 

3D rotational movements. 

 

In the experiments, the camera coordinate system and the sensor coordinate system are 

assumed to be same. As stated in previous chapter, the relations of the coordinate 

systems of the camera and inertial systems are fixed, so     is idendity matrix:   

 

     

   

   

   

             (4.4) 

4.2  NOISES 

 

 

In the simulations, two kinds of noises are used: 

 

1. Measurement Noises 

2. Time Model Noises 

 

 

 

 



60 

 

4.2.1  Measurement Noises 

 

 

For the inertial sensor measurement noise, we used the noise value written on the 

datasheet of the sensors.  

 

We used LSM303DLH 3-axis accelerometer sensor for 3D linear acceleration and the 

linear acceleration noise density is           . In the algorithm, the linear 

acceleration noise is: 

 

    
                 

            (4.5) 

where   
  denotes the sampling rate of the accelerometer.  

 

We used LY330ALH yaw-rate gyroscope and LPR430AL dual axis pitch analog 

gyroscope for 3D angular velocity. The angular velocity noise density of the two 

gyroscopes are               and              , respectively. In the algorithm, the 

angular velocity noise is: 

 

    
    

 

   
       

 

   
            (4.6) 

where   
  denotes the sampling rate of the gyroscope. 

 

The measurement noise of the feature points on the camera frames is related to the 

translational and rotational movement of the camera. When the translational movement 

or rotational movement increases, the measurement noise of the feature points also 

increases (Ercan & Erdem 2011).  

 

  
    

   

              
  

 

  
         

           
  

 

    
          (4.7) 
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where F denotes the focal length of the camera, R denotes the radius of the translational 

movement,   
  denotes the sampling rate of the camera,   depends on the camera 

properties as well as external factors.   

 

4.2.2  Time Model Noises 

 

 

For time model noises of linear acceleration and angular velocity, we used the real 3D 

translational and rotational movements. We use the change value of the real 3D 

translational and rotational movements at the points where they match the predicted 

values from linear model at least. For instance, if the real linear acceleration on x axis 

is: 

 

       
   

 
              (4.8) 

the time model noise of the linear acceleration is: 

 

    
  

  

 
                    (4.9) 

where    denotes the sampling period of the overall system. 

 

4.3  EKF RESULTS 

 

 

Our experiment results are showing in the following figures. We had 9 different EKF 

methods and implemented all of them. The result includes the individual results of these 

9 methods, also comparison of them with each other. 

 

The period of the translational movement of the camera in the figures below is 4 

seconds, and the period of the rotational movement of the camera is 0.33 seconds. 

Measurement noises of the feature points, linear acceleration, and angular velocity are 

              

            
 ,               , and             

 
, respectively. 
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4.3.1  Both Angular Velocity and Linear Acceleration Data Used As Measurement 

 

 

In Figure 4.3, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be seen when all inertial sensor data and camera data are used as measurement. 

When both the accelerometer and the gyroscope data are used as measurement, 

performance of the camera tracking is good for both rotational and translation motion of 

the camera. So, true rotational and translational motion (red lines) and estimated 

rotational and translational motion (blue lines) of the camera are very close to each 

other in Figure 4.3. 

 

Figure 4.3: Estimated and true motion of the camera when both angular 

velocity and linear acceleration data are used as measurement in 

EKF  
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Depending on the period of the camera motion, tracking performance varies. When the 

rotational or translational camera motion velocity increases, RMSE value between the 

real and estimated map increases. In Figure 4.4, the changes in RMSE values can be 

realized according to translational and rotational period in this case. 

Figure 4.4: Change in RMSE of the position and orientation of the camera with 

rotational and translational period of the camera when both angular   

velocity and linear acceleration data are used as measurement in 

EKF   
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4.3.2  Angular Velocity Data Used As Control Input, Linear Acceleration Data  
 
          Used As Measurement 

 

 

In Figure 4.5, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the linear acceleration data and camera data are used as 

measurement and the angular velocity data is used as control input. When the 

accelerometer is used as measurement and the gyroscope is used as control input instead 

of measurement does not affect the tracking performance significantly. The camera 

tracking performance is still good and the estimated motion of the camera for both 

translational and rotational directions is very close to true motion of the camera. 

Figure 4.5: Estimated and true motion of the camera when angular velocity data 

is used as control input, linear acceleration data is used as 

measurement in EKF 
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In Figure 4.6, the changes in the RMSE values can be found according to translational 

and rotational period in this case. When the rotational or translational camera motion 

velocity increases, RMSE value between the real and estimated map increases. 

Figure 4.6: Change in RMSE of the position and orientation of the camera with 

rotational and translational period of the camera when angular 

velocity data is used as control input, linear acceleration data is used 

as measurement in EKF 
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4.3.3  Angular Velocity Data Used As Measurement, Linear Acceleration Data  
 
          Used As Control Input 

 

 

In Figure 4.7, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the angular velocity data and camera data are used as measurement 

and the linear acceleration data is used as control input. Similar to case 4.3.2, when the 

accelerometer is used as control input instead of measurement and the gyroscope is used 

as measurement does not affect the tracking performance significantly. The camera 

tracking performance is still good and the estimated motion of the camera for both 

translational and rotational directions is very close to true motion of the camera. 

Figure 4.7: Estimated and true motion of the camera when angular velocity data 

is used as measurement, linear acceleration data is used as control 

input in EKF 
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In Figure 4.8, the changes in the RMSE values can be seen according to the translational 

and rotational period in this case. When the rotational or translational camera motion 

velocity increases, RMSE value between the real and estimated map increases. 

Figure 4.8: Change in RMSE of the position and orientation of the camera with 

rotational and translational period of the camera when angular 

velocity data is used as measurement, linear acceleration data is 

used as control input in EKF 
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4.3.4  Both Angular Velocity and Linear Acceleration Data Used As Control Input 

 

 

In Figure 4.9, the comparison of the real and the estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when all inertial sensor data is used as control input and only camera data 

are used as measurement. When both the accelerometer and gyroscope are used as 

control input instead of measurement does not affect the tracking performance 

significantly. The camera tracking performance is still good and the estimated motion of 

the camera in both translational and rotational directions is very close to true motion of 

the camera (Figure 4.9). However, if we compare the results with Figure 4.3, the 

rotational motion is more affected than translational motion.  

Figure 4.9: Estimated and true motion of the camera when both angular 

velocity and linear acceleration data are used as control input in 

EKF 
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In Figure 4.10, the changes in the RMSE values can be found according to the 

translational and rotational period in this case. When the rotational or translational 

camera motion velocity increases, RMSE value between the real and estimated map 

increases. 

Figure 4.10: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when both 

angular velocity and linear acceleration data are used as control 

input in EKF 
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4.3.5  Angular Velocity Data Used As Measurement 

 

 

In Figure 4.11, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the angular velocity data and the camera data are used as 

measurement and the linear acceleration data is not used anymore. When the gyroscope 

is used as measurement and accelerometer is not used, the tracking performance of the 

camera decreases for both translational and rotational motion of the camera and the 

tracking is not good as the case 4.3.1 that both the accelerometer and the gyroscope are 

used as measurement (Figure 4.11). Not using accelerometer affects the tracking 

performance of the camera moving translational and rotational. 

Figure 4.11: Estimated and true motion of the camera when angular velocity 

data is used as measurement in EKF 
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In Figure 4.12, the changes in the RMSE values change can be found according to the 

translational and rotational period in this case. When the rotational or translational 

camera motion velocity increases, RMSE value between the real and estimated map 

increases. 

Figure 4.12: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when 

angular velocity data is used as measurement in EKF 
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4.3.6  Angular Velocity Data Used As Control Input 

 

 

In Figure 4.13, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the angular velocity data is used as control input and the camera data 

is used as measurement and the linear acceleration data is not used anymore. When the 

gyroscope is used as control input and accelerometer is not used, the tracking 

performance of the camera is very similar to case 4.3.5. Using gyroscope as control 

input or measurement without accelerometer does not change the tracking performance. 

Figure 4.13: Estimated and true motion of the camera when angular velocity 

data is used as control input in EKF 
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In Figure 4.14, the changes in the RMSE values can be seen according to translational 

and rotational period in this case. When the rotational or translational camera motion 

velocity increases, RMSE value between the real and estimated map increases. 

Figure 4.14: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when 

angular velocity data is used as control input in EKF 
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4.3.7  Linear Acceleration Data Used As Measurement 

 

 

In Figure 4.15, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the linear acceleration data and the camera data are used as 

measurement and the angular velocity data is not used anymore. When the 

accelerometer is used as measurement and the gyroscope is not used, the camera 

tracking performance is affected significantly. Specially, the rotational motion is 

affected and the tracking performance in rotational direction is awful (Figure 4.15). 

Without gyroscope, accelerometer is not enough to track the camera for rotational 

motion. But the translational motion of the camera is better than case 4.3.5. Using 

accelerometer improve the tracking performance of the camera in translational motion. 

Figure 4.15: Estimated and true motion of the camera when linear acceleration 

data is used as measurement in EKF 
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In Figure 4.16, the changes in the RMSE values can be seen according to translational 

and rotational period in this case. When the rotational or translational camera motion 

velocity increases, RMSE value between the real and estimated map increases. 

Figure 4.16: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when linear 

acceleration data is used as measurement in EKF 
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4.3.8  Linear Acceleration Data Used As Control Input 

 

 

In Figure 4.17, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the linear acceleration data is used as control input, the camera data 

is used as measurement and the angular velocity is not used anymore. When the 

accelerometer is used as control and the gyroscope is not used, the camera tracking 

performance is very similar to case 4.3.7. Using accelerometer as control input reduces 

the translational tracking performance slightly. 

Figure 4.17: Estimated and true motion of the camera when linear acceleration 

data is used as control input in EKF 
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In Figure 4.18, the changes in the RMSE values can be found according to translational 

and rotational period in this case. When the rotational or translational camera motion 

velocity increases, RMSE value between the real and estimated map increases. 

Figure 4.18: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when linear 

acceleration data is used as control input in EKF 
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4.3.9  Both Angular Velocity and Linear Acceleration Data Not Used 

 

 

In Figure 4.19, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when only the camera data is used as measurement, the angular velocity 

data and linear acceleration data are not used anymore. Tracking with only camera 

(without inertial sensors) gives the worst result. Both translational and rotational motion 

estimation is poor (Figure 4.19). Using inertial sensors with camera for tracking 

improves the performance of tracking. If the frequency of the camera is increased, the 

effects of the inertial sensors also will increase.  

Figure 4.19: Estimated and true motion of the camera when both angular 

velocity and linear acceleration data are not used in EKF 
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In Figure 4.20, the changes in the RMSE values can be found according to translational 

and rotational period in this case. When the rotational or translational camera motion 

velocity increases, RMSE value between the real and estimated map increases. 

Figure 4.20: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when both 

angular velocity and linear acceleration data are not used in EKF 

 

 

4.4  HYBRID FILTER RESULTS 

 

 

Our experiment results with Hybrid filter can be found in the following figures. We had 

9 different Hybrid Filter methods and implemented all of them. The result includes all 

results of these 9 cases as well as their comparisons with each other. 

 

The translational and rotational periods are the same as EKF Filter. 
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4.4.1  Both Angular Velocity and Linear Acceleration Data Used As Measurement 

 

 

In Figure 4.21, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when all inertial sensor data and camera data are used as measurement. 

When both the accelerometer and the gyroscope data are used as measurement, 

performance of the camera is good in both rotational and translation motions of the 

camera for hybrid filter. If we compare the results with EKF results, EKF gives better 

results than hybrid filter. The case that both the accelerometer and gyroscope are used 

as measurement for EKF is given in 4.3 and the results is better than the results given in 

Figure 4.21. 

 

Figure 4.21: Estimated and true motion of the camera when both angular 

velocity and linear acceleration data are used as measurement in 

hybrid filter 
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Depending on the period of the camera motion, tracking performance varies. When the 

translational or rotational camera motion velocity increases, the RMSE value between 

the real map and estimated map increases. In Figure 4.22, the changes in the RMSE 

values can be found according to the translational and rotational period in this case. 

Figure 4.22: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when both 

angular velocity and linear acceleration data are used as 

measurement in hybrid filter 
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4.4.2  Angular Velocity Data Used As Control Input, Linear Acceleration Data  
 
          Used As Measurement 

 

 

In Figure 4.23, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be seen when the linear acceleration data and camera data are used as measurement 

and the angular velocity data is used as control input. Using angular velocity as control 

input instead of measurement and accelerometer as measurement reduces the tracking 

performance of the camera. As can be seen in Figure 4.23, the difference between the 

true and estimated rotational and translational motion of the camera is bigger than the 

case both accelerometer and gyroscope are used as measurement. 

Figure 4.23: Estimated and true motion of the camera when angular velocity 

data is used as control input, linear acceleration data is used as 

measurement in hybrid filter 
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In Figure 4.24, the RMSE values change can be seen according to translational and 

rotational period in this case. 

Figure 4.24: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when 

angular velocity data is used as control input, linear acceleration 

data is used as measurement in hybrid filter 
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4.4.3  Angular Velocity Data Used As Measurement, Linear Acceleration Data  
 
          Used As Control Input 

 

 

In Figure 4.25, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the angular velocity data and the camera data are used as 

measurement and the linear acceleration data is used as control input. When the angular 

velocity is used as measurement and the accelerometer is used as control input, the 

tracking performance of the camera does not change so much when compares the 

tracking performance of the case that both inertial sensors are used as measurement.  

Figure 4.25: Estimated and true motion of the camera when angular velocity 

data is used as measurement, linear acceleration data is used as 

control input in hybrid filter 
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In Figure 4.26, the changes in the RMSE values can be seen according to translational 

and rotational period in this case. 

Figure 4.26: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when 

angular velocity data is used as measurement, linear acceleration 

data is used as control input in hybrid filter 
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4.4.4  Both Angular Velocity And Linear Acceleration Data Used As Control Input 

 

 

In Figure 4.27, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when all inertial sensor data is used as control input and only camera data 

are used as measurement. When both inertial sensors are used as control input, tracking 

performance of the camera in translation decreases, but the tracking performance of the 

camera in rotation is not affected significantly. 

Figure 4.27: Estimated and true motion of the camera when both angular 

velocity and linear acceleration data are used as control input in 

hybrid filter 
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In Figure 4.28, the changes in the RMSE values can be found according to translational 

and rotational period in this case. 

Figure 4.28: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when both 

angular velocity and linear acceleration data are used as control 

input in hybrid filter 
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4.4.5  Angular Velocity Data Used As Measurement 

 

 

In Figure 4.29, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the angular velocity data and the camera data are used as 

measurement and the linear acceleration data is not used anymore. When we do not use 

accelerometer and use only gyroscope as measurement with camera, tracking 

performance in translation poor and tracking performance in rotation is good.  

Figure 4.29: Estimated and true motion of the camera when angular velocity 

data is used as measurement 
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In Figure 4.30, the changes in the RMSE values can be found according to translational 

and rotational period in this case. 

Figure 4.30: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when 

angular velocity data is used as measurement 
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4.4.6  Angular Velocity Data Used As Control Input 

 

 

In Figure 4.31, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the angular velocity data is used as control input and the camera data 

is used as measurement and the linear acceleration data is not used anymore. Using only 

angular velocity as control input, tracking performance in translation is bad due to lack 

of accelerometer. On the other hand using gyroscope as control input instead of 

measurement does not change the tracking performance in rotation.  

Figure 4.31: Estimated and true motion of the camera when angular velocity 

data is used as control input in hybrid filter 
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In Figure 4.32, the changes in the RMSE values can be found according to translational 

and rotational period in this case. 

Figure 4.32: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when 

angular velocity data is used as control input in hybrid filter 
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4.4.7  Linear Acceleration Data Used As Measurement 

 

 

In Figure 4.33, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the linear acceleration data and the camera data are used as 

measurement and the angular velocity data is not used anymore. Using only 

accelerometer as measurement and not using gyroscope reduces the tracking 

performance of the camera in rotation. The tracking performance of the camera in 

translation reduces but not significantly. 

Figure 4.33: Estimated and true motion of the camera when linear acceleration 

data is used as measurement in hybrid filter 
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In Figure 4.34, the changes in the RMSE values can be found according to translational 

and rotational period in this case. 

Figure 4.34: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when linear 

acceleration data is used as measurement in hybrid filter 
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4.4.8  Linear Acceleration Data Used As Control Input 

 

 

In Figure 4.35, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the linear acceleration data is used as control input, the camera data 

is used as measurement and the angular velocity is not used anymore. Using 

accelerometer as control input instead of measurement without gyroscope does not 

change the tracking performance in translation significantly. However the performance 

of the tracking in rotation is still poor due to lack of gyroscope. 

Figure 4.35: Estimated and true motion of the camera when linear acceleration 

data is used as control input in hybrid filter 
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In Figure 4.36, the changes in the RMSE values can be found according to translational 

and rotational period in this case. 

Figure 4.36: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when linear 

acceleration data is used as control input in hybrid filter 
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4.4.9  Both Angular Velocity And Linear Acceleration Data Not Used 

 

 

In Figure 4.37, the comparison of the real and estimated translational and rotational 

movement of the camera with       s translational period and        s rotational period 

can be found when the only camera data is used as measurement, the angular velocity 

data and linear acceleration data are not used anymore. Using only camera for tracking 

gives the worst result in both rotation and translation. Difference between the true and 

estimated motion is high in Figure 4.37. 

Figure 4.37: Estimated and true motion of the camera when both angular 

velocity and linear acceleration data are not used in hybrid filter 

 

 

 

In Figure 4.38, the changes in the RMSE values can be found according to translational 

and rotational period in this case. 
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Figure 4.38: Change in RMSE of the position and orientation of the camera 

with rotational and translational period of the camera when both 

angular velocity and linear acceleration data are not used in hybrid 

filter 

 

 

4.5  COMPARISON OF EKF AND HYBRID FILTER 

 

 

Both EKF and Hybrid filters are Bayesian filters. The only difference of these two 

filters is the usage of the camera measurements. EKF uses the feature points on image 

plane in filter directly. On the other hand, Hybrid filter uses the structure (pose and 

angle) obtained from structure from motion by using feature points. In Table 4.1, the 

difference of two filters, and their RMSE values calculated by using estimated and the 

real 3D position and angle data. 

 

Furthermore, the usage of the inertial sensors effects can be found in Table 4.1. In the 

table, both pose and angle RMSE values of the each dimension       are given. Also, 

Both EKF and Hybrid filter solutions for 9 different cases are given in Table 4.1. 
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Table 4.1: RMSE values from EKF and hybrid filter simulations 

 

                                  

    

      0.04445 0.04523 0.02722 0.01365 0.01393 0.01683 

       0.04847 0.04924 0.03024 0.01470 0.01503 0.01692 

       0.04473 0.04489 0.02683 0.01295 0.01330 0.01616 

        0.04896 0.04913 0.03020 0.01477 0.01517 0.01640 

      0.05516 0.05548 0.03701 0.01609 0.01654 0.01701 

       0.05486 0.05539 0.03710 0.01620 0.01656 0.01652 

      0.04468 0.04555 0.02829 0.01523 0.01566 0.04697 

       0.05044 0.05021 0.04871 0.04838 0.04855 0.04973 

      0.05599 0.05578 0.05412 0.04897 0.04908 0.04950 

       

      0.03564 0.03697 0.16186 0.03062 0.03513 0.02165 

       0.04158 0.04102 0.24941 0.03750 0.04668 0.02260 

       0.03635 0.03676 0.17335 0.02957 0.03510 0.02161 

        0.04128 0.04057 0.25836 0.03874 0.04606 0.02283 

      0.05597 0.05503 0.34731 0.03930 0.04653 0.02823 

       0.05710 0.05535 0.34651 0.03737 0.04583 0.02276 

      0.03975 0.03714 0.23360 0.06484 0.07679 0.07365 

       0.04716 0.04222 0.24839 0.15569 0.18127 0.097457 

      0.05660 0.05575 0.34727 0.15045 0.18183 0.09344 

 

In the table,    ,    , and     denotes the accelerometer, gyroscope, and camera, 

respectively. The expression under these three columns  ,   , and   denotes the data 

used as measurement, data used as control input, and data not used, respectively. 
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The simulations are run for 300 seconds and 5 times. The amount of noise is changed 

randomly each time. So, the standard deviations of these 5 simulations are shown in 

Table 4.2. 

 

Table 4.2: Standard deviation values from EKF and hybrid filter simulations 

 

                                  

    

      0.00104 0.00057 0.00078 0.00010 0.00014 0.00003 

       0.00130 0.00134 0.00037 0.00042 0.00062 0.00056 

       0.00152 0.00131 0.00036 0.00034 0.00030 0.00012 

        0.00095 0.00095 0.00031 0.00021 0.00021 0.00019 

      0.00093 0.00094 0.00037 0.00021 0.00019 0.00026 

       0.00057 0.00113 0.00045 0.00018 0.00006 0.00013 

      0.00052 0.00126 0.00060 0.00026 0.00013 0.00010 

       0.00124 0.00176 0.00025 0.00017 0.00011 0.00011 

      0.00077 0.00131 0.00034 0.00026 0.00023 0.00008 

       

      0.00171 0.00200 0.01468 0.00091 0.00050 0.00042 

       0.00245 0.00288 0.02273 0.00070 0.00063 0.00029 

       0.00133 0.00228 0.00763 0.00030 0.00098 0.00020 

        0.00185 0.00231 0.00688 0.00088 0.00074 0.00041 

      0.00093 0.00258 0.01250 0.00268 0.00177 0.00946 

       0.00196 0.00170 0.01874 0.00031 0.00060 0.00039 

      0.00115 0.00101 0.01069 0.00376 0.00196 0.00155 

       0.00125 0.00230 0.02130 0.00726 0.00301 0.00560 

      0.00319 0.00158 0.01129 0.00364 0.00252 0.00340 
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Some EKF cases and Hybrid filter comparisons in different periods can be found in the 

figures below. In Figure 4.39, RMSE values are calculated by using estimated and the 

real 3D position data for Case 1, 2, 3, 5, 7, 9 for EKF and Case 1 for Hybrid filter in 

different rotational period.  

 

Figure 4.39: RMSE (position) comparison of different usage of EKF and hybrid 

 

 

In Figure 4.40, RMSE values are calculated by using the estimated and real 3D position 

data for Case 1, 2, 3, 5, 7, 9 for EKF and Case 1 for Hybrid filter in different rotational 

period.  
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Figure 4.40: RMSE (orientation) comparison of different usage of EKF and 

hybrid 

 

 

Figure 4.39 and 4.40 show that when the period of the camera in rotation is low, using 

inertial sensors as control input gives slightly better results, also using inertial sensors 

for tracking as measurement or control input improves the tracking performance. 

However, when the period increases, the effects of the inertial sensors decrease because 

as we said before the camera gives better tracking results in slow motion (blue, red and 

green lines). The camera measurement will be enough when the period of the camera 

motion. Moreover, hybrid filter does not give good results as EKF at high speed, but 

when the motion decreases hybrid filter performance is close to EKF performance 

(black line). 

 

In Figure 4.41, RMSE values are calculated by using the estimated and real 3D position 

data for Case 1, 2, 3, 5, 7, 9 for EKF and Case 1 for Hybrid filter in different 

translational period.  
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Figure 4.41: RMSE (position) comparison of different usage of EKF and hybrid 

 

 

In Figure 4.42, RMSE values are calculated by using the estimated and real 3D angle 

data for Case 1, 2, 3, 5, 7, 9 for EKF and Case 1 for Hybrid filter in different 

translational period.  
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Figure 4.42: RMSE (orientation) comparison of different usage of EKF and 

hybrid 

 

 

Figure 4.41 and 4.42 show that when the period of the camera in translation is low, 

using inertial sensors as control input gives slightly better results. When the period 

increases, the tracking performance does not increase significantly for the cases not 

using gyroscope (yellow and cyan lines). Not using accelerometer or using as 

measurement or control input to track the rotational motion of the camera does not 

affect the tracking performance (pink, green and red lines). Moreover, hybrid filter does 

not give good results as EKF at high speed, but when the motion decreases hybrid filter 

performance is close to EKF performance (black line). 
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4.6  ACTUAL EXPERIMENT SETUP 

 

 

In this section, the real world simulation platform and the performance evaluation of the 

algorithms are provided. For platform, we prepared a setup including a camera, two  

gyroscopes, and an accelerometer (Figure 4.43). 

 

Figure 4.43: Simulation setup 

 

 

 

With this setup, we moved in the lab and captured a video and sensor data from 

accelerometer and gyroscope. There are two cameras on the image, but we use only one 
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of them for now. However; theboth of the camera can be used for the next step of the 

project. 

 

Camera: 

The camera on the setup has 640x480 resolution and capture RGB value image in 30Hz. 

To get information about 2D/3D correspondence, 3D map of the lab should be found in 

offline. For this purpose, we find the feature points of each frame captured by the 

camera using SIFT. Then Bundler Adjustment algorithm is used to find the 3D 

information of the feature points. Since SIFT finds many feature points, we eliminated 

some of them. Then, we found the 3D map of the lab before starting to track (Figure 

4.44). 

 

Figure 4.44: Image sequences used to find 3D map of the scene  

 

 

 

Also, we found the camera intrinsic parameters by using calibration patterns (Figure 

4.45). 
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Figure 4.45: Camera calibration pattern 

   

 

Accelerometer: 

In this setup, LSM303DHL type 3D accelerometer is used. The measurement noise 

obtained from its data sheet. When accelerometer measures the linear acceleration, it 

also measures the gravity force on   direction. The gravity force of the space where 

camera tracking is made should be found and subtracted from the measurements of the 

accelerometer. To calculate the gravity force, we left the accelerometer stable and wait 

measurements. Because accelerometer is not moved, the measurement values obtained 

from gyroscope is related to gravity force. We made 100 trials and calculate the average 

of all measurement and gravity force is calculated. In the lab, we found the gravity force 

to be                           .   

 

Gyroscope: 

We used two gyroscopes in the setup. LPR430AL type gyroscope obtains   and   

coordinates of the rotational movement. The other gyroscope LY330ALH type 

measures the   coordinate of the rotational movement. 

 

The coordinate systems of the camera, gyroscope and accelerometer are found. The 

positions of the inertial sensors and camera on the board are found by using metrical 

paper (Figure 4.46). 
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Figure 4.46: Positions of the inertial sensors and camera on the setup 

 

 

The devices, i.e., camera, accelerometer and gyroscope on the board have their own 

coordinate system. To find the relationships of the coordinate system, we have to find 

their exact position and the difference of their centers from each others. On the 

datasheets of the devices, we found their coordinate systems specifications and by using 

metric paper to find the distances of the centers (Figure 4.47). 
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Figure 4.47: Relations of the inertial sensors’ coordinate systems 

 

 

 

4.7  ACTUAL EXPERIMENT RESULTS 

 

 

Figure 4.49 shows the matches between the feature points projected from 3D map by 

using estimated camera position and orientation matrix (red points) and the feature 

points found by using SIFT feature detection algorithms (blue points). We used the 

camera, accelerometer and gyroscope as measurement in this experiment. Firstly, we 

projected the 3D points in our map on the current image by using the predicted camera 

pose, and we found the feature points for current frame by using SIFT. Then, we tried to 

match the feature points coming from projection and SIFT. We found the best match of 

a feature point from projection in a elliptical region around its position (Figure 4.48).  
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Figure 4.48: Feature point search for best match in an ellipse  

 

  

 

Then we updated the camera pose by using accelerometer and gyroscope measurements. 

In Figure 4.49, the match can be seen after the 3D points are projected on the image by 

using updated camera position and orientation matrix. 

 

Figure 4.49: Projected and detected feature points 

 

       

Frame 17                                         Frame 45 
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Frame 111                                                     Frame 191 

 

In this experiment, we used 211 figures to built 3D map by using Bundler adjustment. 

We found 888 3D points and we used these 3D points and their projection for camera 

measurement. 
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5. CONCLUSIONS AND FUTURE WORKS 
 

We investigate the hybrid algorithm using inertial sensor and camera together for 3D 

camera tracking. When using only camera without inertial sensors, 3D tracking is hard 

when the velocity of the camera is high due to motion blur. When motion blur increases 

in an image, finding feature points and matching them becomes difficult. The inertial 

sensors are used to track motion when the motion of the camera is fast, because inertial 

sensors give more accurate results at high velocities due to their specifications. The data 

coming from accelerometer and gyroscope and data coming from camera video are 

fused in a Bayesian filter. We use two kinds of Bayesian filter in our algorithm: EKF 

and hybrid filter. We compare the performance of two filters. In addition to comparison 

of filters, we analyze how the tracking performance changes when the measurements of 

inertial sensors, accelerometer and gyroscope, are used as control input instead of 

measurements. One of the inertial sensors can also be used as control input, as both of 

them can be used as control input. Furthermore, we examine the tracking performance 

changes when the rotational and translational motion of the camera varies in time. 

 

Simulation results show that the tracking performance using EKF gives more accurate 

results than using hybrid filter for all cases. It is also observed that using inertial sensors 

with camera in filter gives more accurate results than using only camera in filter to track 

the camera for both filters. Moreover, the results confirms that using accelerometer or 

gyroscope as control input in filter does not affect the tracking performance instead of 

using accelerometer or gyroscope as measurement. Using inertial sensor as control input 

reduce the filter computational complexity; however performance does not decrease. 

 

The simulation results depict that when the period of the camera decreases, the tracking 

performance increases. Because the camera measurement will be better due to less 

motion blur. It is also observer that using inertial sensors as control input does not 

degrade the performance for all periods. Additionally, the hybrid filter performance 

converges the EKF performance with the increase of the camera translational period. 

The last observation from the figure is that using or not using gyroscope does not affect 

the translational performance of the tracking. As we know that gyroscope measure the 
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rotation of the object, so it does not affect the any translational movement. On the other, 

using accelerometer does not affect the performance of the camera rotational tracking. 

Since accelerometer measure the linear acceleration of the object, using or not using 

accelerometer does not affect the performance of rotational camera tracking. 

 

Future research plan is 3D camera tracking in scene whose 3D information is not known 

previously. Also previously captured 3D scene information will be refined during the 

head tracking.  
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Appendix A. CAMERA MEASUREMENTS 

 

 

2D/3D correspondence equations of the feature points detected on the image plane are 

given below: 

 

    

    

    

    

                                                                                     (A.1) 

where      denotes the 3D position of the feature point in world coordinate system,      

denotes the camera position in world coordinate system,    denotes the center difference 

between camera and sensor coordinate systems,       denotes the rotation matrix from 

world to sensor coordinate system,       denotes the rotation matrix from sensor to 

camera coordinate system.  

 

    
    

    
   

    

    
     

 

    

    
     

 
                                                                                          (A.2) 

where     
  and     

  denote time independent Gaussian camera measurement noise,      

and      denote the 2D position of the feature point in image plane. 

 

Using the equations given above in an extended Kalman filter in Section 3.1 requires 

the computation of the first derivative (Jacobian) of    with respect to     ,     ,     , 

    
 ,      ,     ,     

 .  

 

The Jacobian of    with respect to      is: 
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where 
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The derivations of the above equations are: 
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As a result the final version of the Jacobian is:  
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The Jacobian of    with respect to      is: 
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The derivations of the above equations are: 

 

     

      
 

     

     

     

         
 

 
     

      
 

     

         
 

 
     

     

     

         
 

                (A.11a) 

     

      
 

     

     

     

         
 

 
     

      
 

     

         
 

 
     

     

     

         
 

               (A.11b) 
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                (A.11c) 

and 

 

     

      
 

     

      
 

     

         
 

 
     

     

     

         
 

 
     

     

     

         
 

                (A.12a) 

     

      
 

     

      
 

     

         
 

 
     

     

     

         
 

 
     

     

     

         
 

                  (A.12b) 

     

      
 

     

      
 

     

       
 

 
     

     

     

       
 

 
     

     

     

       
 

                (A.12c) 

As a result the final version of the Jacobian is:  

 

     

     
  

 

    
  

    

    
   

   

   

   

                     (A.13a) 

     

     
   

 

    
 

    

    
   

   

   

   

                    (A.13b) 

The Jacobian of    with respect to      is: 

 

   

     
  

     

     

     

     

   

     

   

   

     

     

   

   

     

          (A.14) 
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where 

 

   

     
  

   

   

   

  

 
 
 
 
 
 

     

      

     

      

     

      

     

      

     

      

     

      

     

      

     

      

     

       
 
 
 
 
 

           (A.15) 

The derivations of the above equations are: 

 

     

      
 

     

     

     

         
 

 
     

      
 

     

         
 

 
     

     

     

         
 

                  (A.16a) 

     

      
 

     

     

     

         
 

 
     

      
 

     

         
 

 
     

     

     

         
 

                  (A.16b) 

     

      
 

     

     

     

         
 

 
     

      
 

     

         
 

 
     

     

     

         
 

                  (A.16c) 

and 

 

     

      
 

     

      
 

     

         
 

 
     

     

     

         
 

 
     

     

     

         
 

                  (A.17a) 

     

      
 

     

      
 

     

         
 

 
     

     

     

         
 

 
     

     

     

         
 

                                           (A.17b) 

     

      
 

     

      
 

     

         
 

 
     

     

     

         
 

 
     

     

     

         
 

                                             (A.17c) 

As a result the final version of the Jacobian is:  

 

     

     
  

 

    
  

    

    
   

   

   

   

                     (A.18a) 
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                    (A.18b) 

The Jacobian of    with respect to     
  is: 

 

   

     
   

     

     
 

     

     
 

   

     

   

   

     
 

     

   

   

     
 

          (A.19) 

where 

 

   

     
   

   

   

   

  

 
 
 
 
 
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
  

 
 
 
 
 

      (A.20) 

The derivations of the above equations are: 

 

     

      
  

     

     

     

      
  
 

 
     

      
 

     

      
  
 

 
     

     

     

      
  
 

                (A.21a) 

     

      
  

     

     

     

      
  
 

 
     

      
 

     

      
  
 

 
     

     

     

      
  
 

               (A.21b) 

     

      
  

     

     

     

      
  
 

 
     

      
 

     

      
  
 

 
     

     

     

      
  
 

                (A.21c) 

and 

 

     

      
  

     

      
 

     

      
  
 

 
     

     

     

      
  
 

 
     

     

     

      
  
 

                (A.22a) 



125 

 

     

      
  

     

      
 

     

      
  
 

 
     

     

     

      
  
 

 
     

     

     

      
  
 

               (A.22b) 

     

      
  

     

      
 

     

      
  
 

 
     

     

     

      
  
 

 
     

     

     

      
  
 

                (A.22c) 

As a result the final version of the Jacobian is:  

 

     

     
   

 

    
  

    

    
   

   

   

   

                     (A.23a) 

     

     
    

 

    
 

    

    
   

   

   

   

                    (A.23b) 

The Jacobian of    with respect to       is: 

 

   

      
  

     

      

     

      

   

     

   

   

      

     

   

   

      

         (A.24) 

where 

 

   

      
     

                 

      
  

 
 
 
 
 
 
     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

      
 
 
 
 
 

             (A.25a) 

 

     

  
  

                 

             

             

    

                     

                    

                          

                          

(A.25b) 
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The derivations of the above equations are: 

 

     

     
 

     

     

     

     
 

     

      
 

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
         (A.26a) 

     

     
 

     

     

     

     
 

     

      
 

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
            (A.26b) 

     

     
 

     

     

     

     
 

     

      
 

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
           (A.26c) 

     

     
 

     

     

     

     
 

     

      
 

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
            (A.26d) 

and 

 

     

     
 

     

      
 

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
        (A.27a) 

     

     
 

     

      
 

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
           (A.27b) 

     

     
 

     

      
 

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
           (A.27c) 

     

     
 

     

      
 

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
           (A.27d) 

As a result the final version of the Jacobian is:  

 

     

     
  

 

  
  

  

  
      

                 

      
                 (A.28a) 

      

     
   

 

  
 

  

  
      

                 

      
              (A.28b) 
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The Jacobian of    with respect to      is: 

 

   

     
  

     

     

     

     

   

     

   

   

     

     

   

   

     

                      (A.29) 

where 

 

   

     
  

   

   

   

  

 
 
 
 
 
 

     

      

     

      

     

      

     

      

     

      

     

      

     

      

     

      

     

       
 
 
 
 
 

      (A.30) 

The derivations of the above equations are: 

 

     

      
 

     

     

     

       
 

 
     

      
 

     

       
 

 
     

     

     

       
 

                (A.31a) 

     

      
 

     

     

     

         
 

 
     

      
 

     

         
 

 
     

     

     

         
 

               (A.31b) 

     

      
 

     

     

     

       
 

 
     

      
 

     

       
 

 
     

     

     

       
 

                (A.31c) 

and 

 

     

      
 

     

      
 

     

       
 

 
     

     

     

       
 

 
     

     

     

       
 

                (A.32a) 

     

      
 

     

      
 

     

         
 

 
     

     

     

         
 

 
     

     

     

         
 

               (A.32b) 

     

      
 

     

      
 

     

       
 

 
     

     

     

       
 

 
     

     

     

       
 

                (A.32c) 
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As a result the final version of the Jacobian is:  

 

     

     
  

 

    
  

    

    
   

   

   

   

                      (A.33a) 

     

     
   

 

    
 

    

    
   

   

   

   

                    (A.33b) 

The Jacobian of    with respect to     
  is: 

 

   

     
   

     

     
 

     

     
 

   

     

   

   

     
 

     

   

   

     
 

          (A.34) 

where 

 

   

     
   

   

   

   

  

 
 
 
 
 
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
 

     

      
  

 
 
 
 
 

      (A.35) 

The derivations of the above equations are: 

 

     

      
  

     

     

     

      
  
 

 
     

      
 

     

      
  
 

 
     

     

     

      
  
 

                (A.36a) 

     

      
  

     

     

     

      
  
 

 
     

      
 

     

      
  
 

 
     

     

     

      
  
 

               (A.36b) 

     

      
  

     

     

     

      
  
 

 
     

      
 

     

      
  
 

 
     

     

     

      
  
 

                (A.36c) 
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and 

 

     

      
  

     

      
 

     

      
  
 

 
     

     

     

      
  
 

 
     

     

     

      
  
 

                (A.37a) 

     

      
  

     

      
 

     

      
  
 

 
     

     

     

      
  
 

 
     

     

     

      
  
 

               (A.37b) 

     

      
  

     

      
 

     

      
  
 

 
     

     

     

      
  
 

 
     

     

     

      
  
 

                (A.37c) 

As a result the final version of the Jacobian is:  

 

     

     
   

 

    
  

    

    
   

   

   

   

                     (A.38a) 

     

     
    

 

    
 

    

    
   

   

   

   

                    (A.38b) 
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Appendix B. BAYESIAN FILTER LINEARIZATION 

 

 

The time and the measurement model of Bayesian filters used in Section 3 are nonlinear 

and they have to be linearized in order to use EKF and Hybrid filters. The open versions 

of the linearized equations given in Section 3 are given in this part. 

 

1. Both Angular Velocity and Linear Acceleration Data Used As Measurement 

 

 

Time Model (EKF & Hybrid Filter): 

      

  
 
                 

 

 
 
 
 
 
 
 
 
 
 
      

  

 
                  

                         

                          

                          

                  
 

 
     

                          

                           
 
 
 
 
 
 
 
 
 
 

    (B.1a) 

              

  
 
   

 

 
         

          

                                                                                      (B.1b) 

              

  
 
   

 

 
         

          

                                                                                      (B.1c) 

      

  
 
                 

 

 
 
 
 
 
 
 
 
 
 
 
  

 
              

               

              

              

     
 

 
         

              

               
 
 
 
 
 
 
 
 
 
 

                                          (B.1d) 
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                                                                                       (B.1e) 

Measurement Model (EKF): 

   
  

  
 

 
 
 
 
 
 
                        

                        
     

     
            

     

      
        

     

     
            

     

      
         

 
 
 
 
 

                          (B.2a) 

         

  
           

        

                                                                                                (B.2b) 

Measurement Model (Hybrid Filter): 

   
  

  
 

 
 
 
 
 
 
                        

                        

                          

                           
 
 
 
 
 

   (B.3a) 

         

  
           

        

         (B.3b) 

2. Angular Velocity Data Used As Control Input, Linear Acceleration Data Used  
 
As Measurement 

 

 

Time Model (EKF & Hybrid Filter): 

      

  
 
                 

 

 
 
 
 
 
 
 
 
      

  

 
              

                     

                      

                      

                 
 

 
 

                       
 
 
 
 
 
 
 
 

    (B.4a) 
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        (B.4b) 

              

  
 
   

 

 
     

         
  

          

                                                                                (B.4c) 

      

  
 
             

          
 

 
 
 
 
 
 
 
 
 
  

 
              

               

              

              

     
 

 
         

               
 
 
 
 
 
 
 
 

     (B.4d) 

              

  
 
   

 

 
     

         
  

          

         (B.4e) 

      

     
  

             
          

 

 
 
 
 
 
 
 
 
 
    

    

    

    

 
 

 
 

     
 
 
 
 
 
 
 
 

                    (B.4f) 

              

  
 
   

 

 
     

         
  

          

        (B.4g) 

Measurement Model (EKF): 

   
  

  
 

 
 
 
 
 
                    

     

     
            

     

      
    

     

     
            

     

      
     

 
 
 
 

                  (B.5a) 

         

  
             

        

                      (B.5b) 
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Measurement Model (Hybrid Filter): 

   
  

  
  

                    

                      

                      

      (B.6a) 

         

  
           

        

         (B.6b) 

3. Angular Velocity Data Used As Measurement, Linear Acceleration Data Used  
 
As Control Input 

 

 

Time Model (EKF & Hybrid Filter): 

      

  
 
                 

 

 
 
 
 
 
 
 
 
       

  

 
       

  

 
          

                          

                      

              
 

 
     

                      

                       
 
 
 
 
 
 
 
 

          (B.7a) 

         

  
        

         
  

          

         (B.7b) 

       

  
 
          

           (B.7c) 

              

  
 
   

 

 
         

          

         (B.7d) 

              

  
 
   

 

 
         

          

          (B.7e) 
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      (B.7f) 

              

  
 
   

 

 
         

          

         (B.7g) 

      

     
  

             
          

 

 
 
 
 
 
 
 
 
 
  

 
       

        

    

    

    

     
 
 
 
 
 
 
 
 

       (B.7h) 

Measurement Model (EKF): 

   
  

  
 

 
 
 
 
 
                    
     

     
        

     

      
        

     

     
        

     

      
         

 
 
 
 

        (B.8) 

Measurement Model (Hybrid Filter): 

   
  

  
  

                    

                      

                      

       (B.9) 
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4. Both Angular Velocity And Linear Acceleration Data Used As Control Input 

 

 

Time Model (EKF & Hybrid Filter): 

      

  
 
             

      
          

 

 
 
 
 
 
 
 
       

  

 
       

  

 
      

                      

                  

             
 

 
 

                   
 
 
 
 
 
 
 

 (B.10a) 

         

  
        

         
  

          

                   (B.10b) 

       

  
 
          

                  (B.10c) 

              

  
 
   

 

 
     

         
  

          

                (B.10d) 

              

  
 
   

 

 
     

         
  

          

                (B.10e) 

      

  
 
             

      
          

 

 
 
 
 
 
 
 
 
  

 
              

               

              

     
 

 
         

               
 
 
 
 
 
 
 

              (B.10f) 

              

  
 
   

 

 
     

         
  

          

                (B.10g) 
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              (B.10h) 

              

  
 
   

 

 
     

         
  

          

                  (B.10i) 

Measurement Model (EKF):  

   
  

  
  

     

     
        

     

      
    

     

     
        

     

      
    

       (B.11) 

Measurement Model (Hybrid Filter): 

   
  

  
  

                  

                  

      (B.12) 

5. Angular Velocity Data Used As Measurement 

 

 

Time Model (EKF & Hybrid Filter):  

      

  
 
               

 

 
 
 
 
 
 
 

                 

                  

          
 

 
     

                  

                   
 
 
 
 
 
 

               (B.13a) 

              

  
 
   

 

 
         

          

                   (B.13b) 

              

  
 
   

 

 
         

          

                    (B.13c) 
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                 (B.13d) 

              

  
 
   

 

 
         

          

                    (B.13e) 

Measurement Model (EKF): 

   
  

  
 

 
 
 
 
 
                
     

     
    

     

      
        

     

     
    

     

      
         

 
 
 
 

      (B.14) 

Measurement Model (Hybrid Filter): 

   
  

  
  

                

                  

                  

      (B.15) 

6. Angular Velocity Data Used As Control Input 

 

 

Time Model (EKF & Hybrid Filter): 

      

  
 
          

        
 

 
 
 
 
 
 

             

              

         
 

 
 

               
 
 
 
 
 

              (B.16a) 

              

  
 
   

 

 
     

         
  

          

                (B.16b) 
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                   (B.16c) 

      

  
 
          

        
 

 
 
 
 
 
 
           

          

     
 

 
     

           
 
 
 
 
 

                (B.16d) 

              

  
 
   

 

 
     

         
  

          

                   (B.16e) 

                   
                (B.16f) 

      

     
  

          
        

 

 
 
 
 
 
 
    

    

 
 

 
 

     
 
 
 
 
 

                  (B.16g) 

              

  
 
   

 

 
     

         
  

          

                (B.16h) 

Measurement Model (EKF): 

   
  

  
  

     

     
    

     

      
    

     

     
    

     

      
    

       (B.17) 

Measurement Model (Hybrid Filter): 

   
  

  
  

              

              

      (B.18) 
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7. Linear Acceleration Data Used As Measurement 

 

 

Time Model (EKF & Hybrid Filter): 

      

  
 
               

 

 
 
 
 
 
 
 
      

  

 
          

                 

                  

                  

                   
 
 
 
 
 
 
 

               (B.19a) 

      

  
 
               

 

 
 
 
 
 
 
 
 
  

 
          

           

          

          

          
 
 
 
 
 
 
 

                 (B.19b) 

     

  
             

      
 

                  (B.19c) 

Measurement Model (EKF): 

   
  

  
 

 
 
 
 
 
                
     

     
            

     

      

     

     
            

     

       
 
 
 
 

                (B.20a) 

        

  
        

            

        

                    (B.20b) 

Measurement Model (Hybrid Filter): 

   
  

  
  

                

                  

                  

               (B.21a) 
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                  (B.21b) 

8. Linear Acceleration Data Used As Control Input 

 

 

Time Model (EKF & Hybrid Filter): 

      

  
 
               

 

 
 
 
 
 
       

  

 
       

  

 
  

                  

              

               
 
 
 
 
 

                (B.22a) 

         

  
        

         
  

          

                   (B.22b) 

       

  
 
          

                     (B.22c) 

      

  
 
          

        
 

 
 
 
 
 
 
  

 
              

               

              

              
 
 
 
 
 

                (B.22d) 

     

  
             

      
 

                     (B.22e) 

      

  
    
 

  

          
        

 

 
 
 
 
 
 
  

 
       

        

    

     
 
 
 
 
 

                  (B.22f) 
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Measurement Model (EKF): 

   
  

  
  

     

     
        

     

      

     

     
        

     

      

                     (B.23) 

Measurement Model (Hybrid Filter): 

   
  

  
  

              

              

       (B.24) 

9. Both Angular Velocity and Linear Acceleration Data Not Used 

 

 

Time Model (EKF & Hybrid Filter): 

      

  
 
             

  

      

    

   

                 (B.25a) 

              

  
    
          

                 (B.25b) 

      

  
 
             

  

    

   

  

                 (B.25c) 

              

  
             

  
 

 
    
 

                 (B.25d) 

Measurement Model (EKF): 

   
  

  
  

     

     
    

     

      

     

     
    

     

      

        (B.26) 
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Measurement Model (Hybrid Filter): 

   
  

  
  

          

          

                   (B.27) 

Appendix C. QUATERNIONS 

 

 

Unit quaternion provides a convenient mathematical notation for representing 

orientations and rotations of the objects in 3Ds. Compared to Euler angles they are 

simpler to compose and avoid problem of gimbal lock. Gimbal lock is the loss of one 

degree of freedom in a 3D space that occurs when the axes of two of the three gimbals 

are driven into a parallel configuration, “locking” the system into rotation in a 

degenerate 2D space. Compared to rotation matrices they are more numerically stable 

and may be more efficient. A quaternion                
 
 is defined as a four-

dimensional vector. 

 

A unit quaternion represents the rotation of the 3D vector around    with angle  .   

 

   
   

 

 

      
 

 

  

 
 
 
 
 
 
    

 

 

     
 

 

     
 

 

     
 

  
 
 
 
 
 
 

           (C.1) 

Quaternion Conjugate: 

The conjugate    of quaternion   is defined as: 

                   
 

           (C.2) 

Quaternion Sum: 

The sum of quaternions is the same as the vector sum: 



143 

 

     

     

     

     

     

              (C.3) 

Quaternion Product: 

The product   of two quaternions   and   is: 

     
          

               

  

 
 
 
 
 
                   

                   

                   

                    
 
 
 
 

     (C.4) 

where       denotes the scalar (inner) product and       denotes the cross (outer) 

product of two 3D vectors: 

       

  

  

  

   

  

  

  

   

         

         

         

          (C.5) 

This can be derived by writing the quaternions in extended complex form and 

expanding the product. The quaternion product is not commutative: 

                   (C.6) 

Matrix representation of quaternion product is: 

          

 
 
 
 
 
           

         

         

          
 
 
 
 

 
 
 
 
 
  

  

  

   
 
 
 
 

        (C.7) 
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or equivalently as 

          

 
 
 
 
 
           

         

         

          
 
 
 
 

 
 
 
 
 
  

  

  

   
 
 
 
 

        (C.8) 

The Jacobian of (C.7) with respect to  : 

      

  
 

 
 
 
 
 
           

         

         

          
 
 
 
 

          (C.9) 

The Jacobian of (C.8) with respect to  : 

      

  
 

 
 
 
 
 
           

         

         

          
 
 
 
 

        (C.10) 

Quaternion length: 

The length of a quaternion is the same as the norm of the corresponding vector: 

             
    

    
    

        (C.11) 

Quaternion Inverse: 

The inverse of quaternion   with respect to the quaternion product is given as: 

    
  

               (C.12) 
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The Jacobian of (C.12) with respect to  : 

    

  
                        (C.13) 

 Quaternion Conversion to Rotation Matrix: 

A unit quaternion can be converted into equivalent rotation matrix as follows: 

     

 
 
 
 
   

    
    

    
                          

               
    

    
    

              

                           
    

    
    

   
 
 
 
   (C.14) 

The rotation of a point  : 

      

 
 
 
 
   

    
    

    
                          

               
    

    
    

              

                           
    

    
    

   
 
 
 

 

  

  

  

      (C.15) 

The compact version of (C.15) is: 

      

 
 
 
 
   

    
    

    
                                  

                  
    

    
    

                   

                                 
    

    
    

     
 
 
 

  (C.16) 

The Jacobian of (C.16) with respect to   is given by the 3x4 matrix: 

      

  
  

                 

             

             

    

                     

                    

                          

                          

 (C.17) 
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Quaternions and Angular Velocities: 

The time evolution of time varying quaternion with angular velocity is given by the 

differential equation: 

      

  
 

 

 
    

                  (C.18) 

where     
   is the quaternion defined as the instantaneous angular velocity from 

coordinate frame   to coordinate frame a expressed in coordinate frame  : 

    
          

       
       

   
 

        (C.19) 

The equation (C.18) can be also written in form: 

      

  
                     (C.20) 

where 

     
 

 

 
 
 
 
 
 

       
        

        
  

     
         

       
  

     
       

         
  

     
        

       
    

 
 
 
 
 

      (C.21) 

If the angular velocity     
   is time independent constant, then the solution the equation 

(C.18) with given initial conditions       can be written as  

                                 (C.22) 

where 

                 
 

 
    

     
 

 
 

   
         (C.23) 
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The solution (C.22) can be expressed as the quaternion product 

            
 

 
     

                 (C.24) 

where 

                 
  

   
               (C.25) 

Defining   
 

 
     

  , the Jacobian of (C.24) with respect to   is given: 

           

  
 

           

              

 
 
 
 
 
 
           

         

         

          
 
 
 
 
 

       

     

 
 

  

   
        

 

   
    

   

              
   

            
 

    (C.26) 

finally 

           

  
 

 
 
 
 
 
           

         

         

          
 
 
 
 

 
 

  

   
        

 

   
    

   

    
          

   

            
           (C.27) 

Quaternion from Euler Angles: 

By combining the quaternion representations of the Euler rotations: 

  

 
 
 
 
 
 
                                                 

                                                 

                                                 

                                                  
 
 
 
 
 

     (C.28) 

Defining         , the Jacobian of (C.28) with respect to v is given: 
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          (C.29) 

with 

    
                                                           (C.30a) 

    
                                                           (C.30b) 

    
                                                           (C.30c) 

and 

    
                                                             (C.31a) 

    
                                                           (C.31b) 

    
                                                           (C.31c) 

and 

    
                                                           (C.32a) 

    
                                                             (C.32b) 

    
                                                           (C.32c) 

and 

    
                                                           (C.33a) 

    
                                                           (C.33b) 

    
                                                             (C.33c) 
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