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ABSTRACT

NOVEL EFFICIENT AND SCALABLE METHODS FOR COMBINING MULTIPIE
CLUSTERINGS

YAGCI, Arif Murat

Computer Engineering

Supervisor: Asst. Prof. Dr. Selim NecdeiMAROGLU

September 2010, 93 Pages

Clustering is a semi- or unsupervised process of groupimgasi objects together. It is
widely used for data understanding and data reduction. @ongbMultiple Clusterings
is an important research trend in clustering that goes lydrat is typically achieved
by a single clustering algorithm. The basic idea is that lkyntg multiple looks at the
same data, one can generate a diverse set of clusteringsorBlyiring these cluster-
Ings, it is possible to obtain laetter Final Clustering or discover some otherwise hidden
aspects of the data set. Multiple clusterings may be pratibgeunning different clus-
tering algorithms with varying input parameters. Domaipexs, proprietary methods,
or a distributed computing environment may provide clusge. Computationally cheap
operations e.g. on random projections or random samplihgsdata set may also pro-
vide multiple clusterings. A range of applications in Bimrmatics, Computer Vision,
and Text Mining, among others, employ algorithms for conmfgmmultiple clusterings.



This thesis provides a literature survey and contribute=ethovel and efficient methods
to Combining Multiple Clusterings research. First, we ms@a novel binary method for
fast computation of an objective function, FastFit, whickasures cluster cohesion and
separation with respect to object co-associations. Thigpewation method is very effi-
cient in terms of both time and space complexity. Secondiy\wel accurate and scalable
consensus method, CLICOM, is proposed to combine multipiterings using graph-
theoretic cligues. CLICOM employs, as well, a novel outpesitive clique finding
algorithm which works on larger graphs and produces outpatshort amount of time.
Finally, a set of parallel algorithms is proposed to caltikn approximate distance ma-
trix of a binary data set. These algorithms compute diswhygautilizing weak clusterings
of randomly hashed objects in shared and distributed megwnputing environments.

Experimental results of the proposed methods are shownmthetyc and real data sets.
The methods are especially suited to large data sets wHerierty and scalability is a
major concern.

Keywords: Clustering, Clustering Ensemble Problem and Consensisteting, Binary
Methods and Graph Theory, Data Mining, Machine LearningRattiern Recognition



OZET

COKLU BOLUMLENMELERIN BIRLESTIRILMESINDE YENI VERIML | VE
OLCEKLENEBILIR YONTEMLER

YAGCI, Arif Murat

Bilgisayar Muhendisligi

Tez Danismani: Yrd. Dog. Dr. Selim NecdetDMAROGLU

Eylul 2010, 93 Sayfa

Bolumlenme, benzer veri nesnelerinin yari denetimliavdgnetimsiz sekilde gruplanmasi
islemidir. Verinin anlasiimasi ve indirgenmesinde,stkallanilir. Coklu boltimlenmelerin
birlestiriimesi, bolumlenme arastirmalarinda otigrir egilim olup, tek bir bolimlenme
algoritmasi ile tipik olarak elde edilenden daha ileriyenggktedir. Temel fikir,
ayni veriden farkh bakis acilariyla degisik bolienmelerin yaratilabilmesidir.
Bu bolumlenmeler birlestirilereldaha iyi bir nihai bolimlenme elde etmek veya
verinin daha evvelden sakli kalmis bazi dzelliklerinstegmek mumkindir. Coklu
bolumlenmeler farkli bolumlenme algoritmalarinin gigken giris parametreleri ile
kosturulmasiyla elde edilebilir. Alaninin uzmanlarzed mulkiyete tabi yontemler veya
dagitik bir hesaplama ortami boliumlenmeler sagldirabVeri kiimesinin rastlantisal
izdustimleri veya verinin orneklemeleri Uzerinde yap az maliyetli hesaplamalar da
bolumlenmeler saglayabilir. Digerleri yaninda diédé Biyobilisim, Bilgisayarli Gorme
ve Metin Madenciligi ¢oklu bolumlenmelerin birlegtimesi  algoritmalarini
kullanmaktadir.

Vi



Bu tez bir literatur taramasi saglamakta ve ¢ yeni veinve yontem ile coklu
boliimlenmelerin birlestirimesi arastirmalarinakda bulunmaktadirilk olarak, boliit
ic uyumu ve ayrihgini veri nesnelerinin bolimlennreleki birlikteliklerine gore olgen bir
hedef fonksiyon, FastFit’ in hizli hesaplanmasi icin yéii bir ydontem onerilmektedir.
Bu hesaplama ydntemi hem zaman hem de yer karmasikigindan verimlidir.ikinci
olarak, cizge kuramindan klikler kullanilarak ¢oklulinlenmelerin birlestiriimesi igin
yeni hassas ve olceklenebilir bir yontem olan CLICOMedimektedir. CLICOM buyuk
cizgeler Uzerinde calisan ve kisa zamanda sonueriigegni ¢ikti duyarli bir klik bulma
algoritmasi da barindirmaktadir. Son olarak, ikili bir ivieimesinin yaklasik uzakhk
matrisini hesaplamak icin bir grup paralel algoritma ineektedir. Bu algoritmalar,
ortak ve dagitik bellekli hesaplama ortamlarinda, rasiéal olarak cirpi fonksiyonun-
dan gecirilmis veri nesnelerinin olusturdugu zayofiohlenmeleri kullanarak uzakliklari
hesaplamaktadir.

Onerilen ydntemlerin deneysel sonuglari sentetik veejeveriler lizerinde godsterilmistir.
Yontemler ozellikle verimlilik ve dlgeklenebilijin baslica endise oldugu buyuk verilere
uygundur.

Anahtar Kelimeler: Bolumlenme, Bolumlenme Toplulugu Problemi ve Konsiesn
Boliimlenme,ikili Yontemler ve Cizge Kurami, Veri Madenciligi, Makie Ogrenmesi
ve Orlintli Tanima
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1. INTRODUCTION

This chapter provides information on clustering and conmgmmultiple clusterings re-
search.

1.1 CLUSTERING: BASIC CONCEPTS AND METHODS

Clustering which is also known aEinsupervised Classificatiois the process of group-
ing similar objects together. In other words, clusteringliganizing objects in an un-
predefined but meaningful manner. The ultimate goal is t@bbjects within a cluster
are similar to each other and different from the objects leotlusters. Clustering is
widely used for exploratory data analysis or hypothesiabgut data. It may also be
used for data reduction by creating an abstraction of dath as data summarization or
data compression.

Clustering is an important research area and it is studitheively in Data Mining, Ma-
chine Learning and Pattern Recognition. It is commonly usatisciplines that involve
analysis of data, therefore it plays an important role in@dewiariety of fields. Natural and
Social Sciences ranging from Physics and Biology to Econsmas well as many emerg-
ing interdisciplinary fields such as Bioinformatics, Infaation Retrieval, and Computer
Vision have important applications of clustering.

The notion of a cluster is not well-defined and the definitidrsimilarity among data
objects poses a challenging issue. Therefore, a clustesubjactive entity that is in the
eye of the beholder and its significance and interpretagqoires domain knowledge Jain
(2010). Figure 1.1 shows that clusters can differ e.g. ipshaize, and density. Many
factors, such as noise significantly affect the accuracyabfistering algorithm.

Although humans are excellent cluster seekers in two arslipgshree dimensions, com-
puter algorithms are needed to cluster sophisticated ajiddimensional data sets where
curse of dimensionality Bellman (2003) is added to the axgstet of issues in clustering.

Yet another problem in clustering is the unknown number wé mmatural clusters for the
given data. Most clustering algorithms take number of eltssas an input parameter.
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Figure 1.1: Left Figure shows input data. Right Figure shows a desinesteting with 7 different
clusters and isolated noise. Clusters differ in shape, sizd density. (Figure taken from Jain
(2010))

More detailed information on clustering can be found in Teal(2005), Han and Kam-
ber (2005), Alpaydin (2010), Jain and Dubes (1988), Jaii @20

1.1.1 Clustering Methods

There is no single clustering algorithm that works well ohtlaé¢ data sets. Kleinberg
(2002) suggests a formal perspective based on three ariteshow impossibility of find-
ing a clustering function which satisfies this formalismnding natural groupings of a
data set is a hard to accomplish task: Thousands of clugtelgorithms in the literature
speak to this nature. This is also due to the fact that there lestclustering algorithm.
Each clustering techniqgue makes some assumptions aboumdeelying data set. If the
assumptions hold, good clusterings can be expected. Bug than often assumptions
about the data set do not hold, which in turn means bad cingsewill be generated.

It is difficult to provide a crisp categorization of clustegimethods, because quite often
these categories overlap, so that a method may have feftomeseveral categories. Han
and Kamber (2005) provide a useful categorization of chirgjemethods. In the follow-
ing, basic clustering concepts and some influential clugjealgorithms are presented.

Partitional vs. Hierarchical Clustering : Partitional clustering methods divide data into
non-overlapping clusters such that each data object isenctuster. On the other hand,
Hierarchical clustering methods permit clusters to haveckisters and therefore form



a tree of nested clusters. Leaf nodes of the tree represtnsdaobjects as singleton
clusters, and the root represents a cluster containingpa@lbbjects. Each intermediate
node (cluster) is the union of its children. A partional ¢krsng can be obtained by
cutting the tree at a particular level.

Exclusive vs. Fuzzy Clustering :A clustering is exclusive or hard if each object is
assigned to a single cluster. An overlapping or non-exetusiustering refers to one, in
which an object can belong to more than one cluster. In Fuzagtéring, clusters are
treated as Fuzzy Sets (see Lee (2004)), where each objeagsdb every cluster with a
membership weight between 0 and 1.

Complete vs. Partial Clustering : In a complete clustering, every object is dutifully
assigned to some cluster. A patrtial clustering algorithmsdaot necessarily do this as-
signment since some objects may not belong to well-definedpg and represent e.g.
noise or outliers.

Different notions of a Cluster : A cluster iswell-separatedf each data object is more
similar to every other object in the cluster than to any ot in the cluster. If a clus-
tering consists of well-separated clusters, then the nistdoetween any two points in
different clusters is larger than the distance between anypoints within a cluster. At
another direction, it is useful to makepaototype-basediefinition of a cluster where a
prototype refers to some statistical representation sacn@entroid or medoid. Repre-
senting data as a graph allogiph-baseahotion of a cluster, where a cluster can be seen
as a connected component based on connectivity of grapleg&rA problem with this
approach may occur when noise is present. Another stroqipgrased approach defines
a cluster as a clique. Chapter 3 uses this approach for camglmnultiple clusterings.
Density-basedpproach defines a cluster as a dense region of objects sdediby a
region of low density. This approach is often employed whendusters are intertwined
or not regular, and noise and outliers are present. Yet analéfinition of a cluster is
a conceptual clustewhich encompasses above mentioned definitions. The speaific
cept of a cluster is needed to be supplied to the clusterggyiéhm. It is a challenging
problem to create the notion of a cluster, as the conceptgetsophisticated.



k-Means

k-Means is a seminal clustering algorithm which firkdgrototype-based clusters (repre-
sented by centroids), wheteis a user-defined input. Each data object is assigned to the
most similar cluster. The basic algorithm is partitionad éime final clustering is exclusive
and complete. There are many variationg&d¥leans in the literature including its fuzzy
version, Fuzzy C-Means. Jain (2010) provides a detailedegurn k-Means clustering.

A similar algorithm,k-Medoids, works with cluster medoids instead of centroids.

Input: D: Data Setk: Number of Clusters
Output: & Clusters
Randomly select points as initial centroids ;

repeat
Formk clusters by assigning each point to the closest centroid ;

Recomputé: new centroids ;
until Centroids do not change

return k Clusters

Algorithm 1: Basick-Means Algorithm

k-Means clustering can also be stated as an optimizationgotvith an objective to
minimize a sum of squared error functiohSE = 7 > dec, distance(c;, d)* where
distance function is based on Euclidean distadcs,a data set object; is a centroid,
and(; is the cluster that centroid represents.

Hierarchical Clustering

Hierarchical Clustering algorithms can be agglomerativéiasive. They generate a hi-
erarchy of nested clusters that can be represented by g ltiiear called alendrogram
Agglomerative hierarchical clustering algorithms staittveach data point as an individ-
ual cluster and merge the most similar pair of clusterstiteely. The dendrogram is cut
at a certain level to obtain meaningful clusters. The bdgiorahm creates an exclusive
and complete clustering.

Definition of cluster similarity differs in various agglomative hierarchical clustering
techniques.Single Linkdefines cluster similarity as the similarity between close®

points that are in different clusters wherga@mplete Linkdefines it as the similarity of
farthest two points in different cluster€&sroup Averagealefines cluster similarity to be
the average pairwise similarities of all pairs of pointsiirdifferent clusters. All these

4



Input: D: Data Set

Output: Dendrogram

Compute similarity matrix ;

Initialize Dendrogram with each data set object being alstng cluster ;

repeat
Merge two most similar clusters ;

Update similarity matrix with the new cluster ;

Update Dendrogram ;
until All clusters are merged

return Dendrogram
Algorithm 2 : Basic Agglomerative Hierarchical Clustering Algorithm

approaches are graph-theoretic. An alternative techniyaed’ s methocassumes that
a cluster is represented by its centroid and measures simiteetween two clusters in
terms of decrease in theS F that results from merging the clusters.

Besides their usefulness, Agglomerative Hierarchicat@ing algorithms are expensive
in terms of their computational and storage requiremergeaally with large data sets.

Once a cluster is formed, there is no going back. It may belpnodtic to decide where to

cut the dendrogram. It is hard to tell the inner structure diater from the dendrogram,

e.g. which object is the medoid of the cluster and which dbjace the borders of the

cluster. These algorithms are sensitive to small pertigbhsin the data.

Other Important Clustering Algorithms

DBSCAN Ester et al. (1996) is an influential density-basestering algorithm. It clas-
sifies a data set object as one of the cores of a cluster, itfjeetthas more thamin Pts
neighbors within ar neighborhood. Clusters are formed by connecting neighaore
objects and non-core objects either serve as the bounddreasters or classified as
noise. Since noise is typically randomly distributed, dignsf a cluster should be sig-
nificantly higher than that of noise. DBSCAN finds arbitrgsshaped clusters and unlike
k-Means or hierarchical methods, it forms partial clusigsisince it may mark some data
set points as noise. DBSCAN can be problematic with clustievarying densities. Find-
ing the propermminPts ande is another issue. High dimensional data causes problems
because it is difficult to recognize densities in such diners A grid-based clustering
technigue CLIQUE Agrawal et al. (1998) and a kernel-baséeise DENCLUE Hin-
neburg and Gabriel (2007) are also examples of densitydbasstering.



Graph-based clustering techniques construct a weightggthgrom data, where weights
represent similarities between data set objects or sonfehlgvel view of data. Mini-
mum Spanning Tree (MST) clustering finds MST of the dissintjaraph and cuts edges
with largest dissimilarity iteratively until singletonudters remain. This is equivalent to
Hierarchical clustering algorithm with Single Link. OPO38 Strehl et al. (2000) and
CHAMELEON Karypis, Han and Kumar (1999) are some of the intgiairgraph-based
technigues. METIS Karypis and Kumar (1998a) is not a clusgealgorithm itself, but

it is often used in graph-based clustering to partition thegh in an efficient way. In
Chapter 3, we give more detail about graph-based clustandgpropose a graph-based
method for combining multiple clusterings.

Prototype-based notion of a cluster is useél-iMeans in a simple but effective way. This
notion is commonly used in Machine Learning and Pattern Beition. Mixture Model
Clustering is more general thdaaMeans, because it deals with various types of statis-
tical distributions. Many real life data sets are indeed rigsult of random processes,
and thus should satisfy the statistical assumptions otthesdels. Mixture models view
data as a set of observations from a mixture of different glodhy distributions. Finding
parameters of each distribution means location of a clugigpectation-Maximization
(EM) algorithm Dempster et al. (1977) is commonly used taweste mixture model pa-
rameters using maximum likelihood principle. In the endasadset object is assigned
to each distribution with some probability. Self-OrgangiMaps (SOM) Kohonen et al.
(2001) can also be considered a prototype-based clustex@hgique from a neural net-
work viewpoint. SOM assigns each data set object to thearlwghose centroid provides
the best approximation of it.

Semi-supervised clustering algorithms Chapelle et aD§2@tilize anyside information
available along with the data set and the similarity matribor example, a must-link
constraint specifies that a pair of data set objects conthdxtehe constraint belong to
the same cluster whereas a cannot-link constraint spettiBaspposite. Such constraints
can be provided by the domain expert or domain ontology.

1.1.2 Cluster Validation

Almost every clustering algorithm will dutifully find clusts, even if the data set has no
natural clusters. Figure 1.2 shows clustering results-bfeans, DBSCAN, and Single
Link Hierarchical Clustering algorithms respectively omata set with uniformly dis-
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Figure 1.2: Clustering 150 uniformly distributed data set objects

So, what is a good clustering? Cluster Validation refers formal evaluation of how

good a clustering is. It is a challenging topic and some evguneathat Cluster Validation
IS unnecessary since clustering is of exploratory natudetlae notion of a cluster differs
from one algorithm to another. Nonetheless, there are misyer validation measures
in the literature. Jain and Dubes (1988), Tan et al. (200&gsify validation measures,
or indices into three types:

Supervised (External) Methodsvalidate a cluster against some a priori external infor-
mation. Often, this information is the true class memb@sltintropyis an information-
theoretic approach for measuring cluster validity. Givetlaga setD and a clustering,
(D) = {C1,Cs, ..., Cy}, entropy of each clustec;, is calculated using the formula
h(C;) = -2 ‘Cf(;fil log, Icfgfi‘ , wherer*(D) = {C},C3,..., Cf.,, } represents the
true class memberships (ground truth). Total entropy (@) is used to evaluate its va-
lidity and calculated using the formuld (7 (D)) = EL’;(?”%}L(Q). Purity, Precision
Recall andF-Measureare some of the other well-known supervised validation wesh




that evaluate the extent to which a cluster contains obg&single class. A group of su-
pervised validation methods, on the other hand, measupdéatavhich two objects that
coexist in the same class also coexist in the same clustsrpdssible to construct two
D x D binary matrices for cluster and class similarities redpelst where 1's represent
coexistence of two data set objec®orrelationbetween these two matrices is used as a
validity measure.Rand IndexHubert and Arabie (1985) and well-knowaccard Index
evaluate cluster validity by looking at a contingency taolenumber of coexistences in
classes/clusters. In Chapter 3, we Asgusted Rand Indeand an entropy-based method
for cluster validation.

Unsupervised (Internal) Methodsmeasure the goodness of a clustering with respect to
the data set itself or the similarity matrix. Some of thesexsuees are based @lus-

ter Cohesiorwhich determines how similar the objects are in a singletelu§Some are
based orCluster Separationvhich measures how isolated or well-separated a cluster is
from the others. There are graph-based and prototype-laggedaches to Cohesion and
Separation Tan et al. (2005). Chapter 2 presents a gragulmdrid approach com-
bining cohesion and separation for validation of combinedtiple clusterings. Another
hybrid method is Silhoutte coefficients Kaufman and Roussg@005) which calculates

a coefficient for each data set object, based on its simjlaiitth all other objects in its
cluster and all other clusters. Apart from cohesion andrsgioa, the similarity matrix
can directly be used to validate a clustering by reordetsgalumns and rows according

to the class labels in the clustering. This matrix must ilydzé a block diagonal structure.
Correlation between ideal and actual matrices can be eealu@ihe method also enables
visual inspection of clusters, but it may be costly for ladg¢a sets.

Relative Methods are not specific methods for cluster validation, but ratleéerrto a
methodology to decide which validity methods are bettettierproblem in some sense.
Any cluster validity measure can be used as a relative meaS8ignificance of different
measures for available clusterings to be validated needs &zsessed. Vendramin et al.
(2009) provide a comparison of relative clustering vajidititeria.

1.2 COMBINING MULTIPLE CLUSTERINGS

Combining Multiple Clusteringswhich is also known a€onsensus Clusteringy Clus-
tering Ensemble problenmefers to combining available information in existing stier-



ings (partitions) of a data set into a new final clusteringe Dhasic idea is that by taking
multiple looks at the same data, one can generate diversiechgs. By combining these
clusterings, it is possible to obtainbetter Final Clustering or discover some otherwise
hidden aspects of the data set.

(D)
ENCONIE

< [0 @ -
\ 7r|H|(D

Data Multiple Consensus Final
Clusterings Function Clustering

Figure 1.3: An abstract view of Combining Multiple Clusterings

The success of ensemble methods in sensor fusion and dassiii(supervised learning)
problems Kittler et al. (1998), Dietterich (2000), Lam (2)0has motivated the develop-
ment of ensemble methods for clustering problems (see Frédain (2005)). Influential
classifier ensemble algorithms like Bagging Breiman (199&) Boosting Freund and
Schapire (1997) can combine classification results frofemdiht classifiers successfully
to obtain more accurate results. However, Clustering Ebg=problem is a harder one,
mainly due to its nature and tlodass correspondengeoblem.

Another motivation comes from an application point of vi@iversity of clustering tech-
nigues motivates creating multiple clusterings of a datasd combine their results for
a better clustering. On the other hand, clustering algosttake some input parameters.
It may be of interest to run a clustering algorithm with vagyinput parameters to obtain
multiple clusterings. Creating multiple clusterings bpadam samplings or random pro-
jections of a data set is used widely. Distributed compudéingbles creation of multiple
clusterings at different sites by using task- or data-pelrain. A combination of clus-
tering results are necessary. Clusterings provided by doexperts, or semi-supervised
clustering algorithms may be introduced in an ensemble alditional clustering. Fi-
nally, either the data set or the clustering methods can bprigtary, and only some
clustering results are made available. Section 1.2.5 gesvieal life applications.

Topchy, Jain and Punch (2004) suggest that Combining Mel@tusterings can go be-
yond a single clustering algorithm in several respects :



e RobustnessBetter average performance across the domains and data sets

e Novelty : Finding a new combined solution which is better or revealaesother-
wise hidden aspects of data

e Stability and Confidencel.ess sensitivity to noise, and outliers. Clustering uncer-
tainty due to cluster overlappings may be resolved.

e Parallelization and Scalability :Ability to integrate solutions from multiple dis-
tributed sources.

Figure 1.3 illustrates an abstract view of Combining Mudéi@lusterings. A set of clus-
terings,II(D), is generated from a data s&t, These clusterings are usually represented
by the cluster memberships of data set objects. In some,dasgsmay be represented
by their cluster prototypes, or such information may be latée as side information as
well. The clusterings are then combined into a new final elusg, 7*(D), using acon-
sensus functign’. Chapters 2 - 4 provide a more detailed view of combining iplalt
clusterings for the specific methods they present.

A variety of consensus functions are defined in the litematuin an influential paper
by Fred and Jain (2005), the consensus functigns based on &o-association mea-
suredefined bycoassoc(d;, d;) = votes;;/|I1(D)|, wherevotes;; is the number of co-
occurrences of data objecfs andd; in a cluster, such that, € D andd; € D. The
co-associations are held inlax D matrix which is used as an input to hierarchical and
graph-based clustering algorithms. This approach opegattebject resolution. Strehl
and Ghosh (2002) propose consensus functions, where tleé sailtiple clusterings,
I1(D), is represented by hAypergraph These solutions typically operate at lower res-
olution, namely cluster level, where hyperedges represiesters. Filkov and Skiena
(2004), Cristofor and Simovici (2002) propose consensuostfans based omedian par-
tition approach. The consensus clustering process is defined asyfendew clustering
(median partition)7*(D), which minimizes the functio® = X" di f f (m;(D), 7*(D))
wheredi f f is a function measuring difference between two clusteriigpe median par-
tition approach is shown to be NP-complete in Barthelemylasuaderc (1995), therefore,

it is commonly used in optimization-based approaches to I@oimg Multiple Cluster-
ings. dif f is defined e.qg. info-theoretically as in Strehl and Ghos®2}0Cristofor and
Simovici (2002) or based on co-associations of objects &ikov and Skiena (2004).
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1.2.1 Methods for Combining Multiple Clusterings

The problem of Combining Multiple Clusterings, is an actigsearch topic in Data Min-
ing, Machine Learning, and Pattern Recognition. In thigisacwe provide an overview
of some notable methods in the literature. Table 1.1 suna@sathese methods. Chapter 3
provides more details about some of the methods used for@aesop with the proposed
method in that chapter. Application-specific solutionsesented in Section 1.2.5.

There are graph-based, prototype-based, and optimizatisaed approaches for combin-
ing multiple clusterings. Some of the methods work on olsjeghereas others work with

higher level representations of data such as clusters. rtumiately most of the proposed
methods do not scale well on large data sets.

Fred and Jain (2005) propose Evidence Accumulation (EAG)dmbining multiple clus-
terings. This method builds a co-association matrix of dataobjects and then applies
hierarchical clustering to this matrix using either Singlek or Group Average as mea-
sures of cluster similarity. There are also other graptethasethods that directly operate
on the co-association matrix. Li et al. (2007) propose aanadical clustering technique
that uses a heuristic called Normalized Edges to merge tmoasiclusters. Strehl and
Ghosh (2002) propose CSPA algorithm which takes this magimput and divides data
into £ partitions by applying METIS partitioning algorithm to ituo et al. (2006) apply
spectral clustering techniques to this matrix.

Some graph-based techniques work on clusters that caedtitet Multiple Clusterings,
rather than data set objects. Strehl and Ghosh (2002) pedpasalgorithms that work
in this manner. HGPA views Multiple Clusterings as a hypapdy, and clusters as hy-
peredges. Note that a hypergraph is a generalization of@hgrehere an (hyper)edge
connects a subset of its vertices. HGPA runs HMETIS Karypggarwal, Kumar and
Shekhar (1999) on the hypergraph to partition it iktalusters. The other algorithm,
MCLA, takes the hypergraph perspective as well and mergpsrieyges irk so-called
metaclusters. Details of both algorithms are provided iagér 3. Hore et al. (2009)
propose Bipartite Merger (BM), and METIS Merger (MM), twoagh-based techniques
that work on cluster prototypes.

Topchy, Jain and Punch (2004) propose a prototype-baseimmimnodel for combin-
ing multiple clusterings. Each data set object is represkby a vector of categorical
variables corresponding to class labels generated by af sSepuat clusterings,II(D).
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These categorical variables are viewed as the outcome ofli@nomial trial. A final
clustering is modeled witth components in a mixture of multinomial distributions and
the Expectation-Maximization algorithm (EM) is used toiopze latent model parame-
ters for each component to decide final cluster labels. Hongj al. (2009) propose a
Bayesian ensemble model and employ EM for combining melighlsterings.

Many solutions treat combining multiple clusterings peohlas an optimization prob-
lem. These solutions try to minimize or maximize some olpjectunction to find the
final clustering. Strehl and Ghosh (2002) see the problentasinatorial optimization
problem and propose an information-theoretic objectiviefion, Normalized Mutual In-
formation, NMI, to find the median partition (final clustegin They also devise a greedy
algorithm which tries to minimize this objective functio@hapter 3 provides details of
this function, since it is commonly used as a cluster validieasure in the literature.
Another information-theoretic objective function, Quatic Mutual Information, QMI,
is proposed by Topchy et al. (2005). Several methods ex@i@tutionary Algorithms.
Cristofor and Simovici (2002) use Genetic Algorithm (seecMilewicz (1996)) to find
the median partition. An entropy-based function is defireedvaluate similarity of two
clusterings. The objective is to minimize sum of dissiniilas between the median par-
tition and all clusterings in the set of multiple clustesnd his corresponds to the fitness
of the median partition. Mohammadi et al. (2008) also usegBelgorithm. Fitness
of a clustering in the population is evaluated by weightedsof total intra cluster sim-
ilarities and pairwise inter cluster similarities whicledrased on object co-associations.
Wolfgang et al. (2000) propose a Hamming-distance baseesgtfunction to evaluate
binary-encoded chromosomes (clusterings). Filkov anér&k{2004) try to find the me-
dian partition using Simulated Annealing (see Kirkpatratial. (1983)) and use a Rand
Index based heuristic to calculate similarities betweasterings. Tumer and Agogino
(2008) also use a Simulated Annealing based approach apdsg@n adaptive version
of NMI. Azimi et al. (2009), Yang et al. (2006) propose methdxsed on Swarm Intelli-
gence (see Abraham et al. (2006)) such as Ant Colony Opttioiza

1.2.2 Factors Affecting Final Clustering Quality

All above-mentioned methods will eventually combine a getaltiple clusterings into
a new final clustering. However, is it for sure that a betteuseful final clustering is
obtained all the time? The answer depends on the followiotpia affecting the Final
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Table 1.1: Some notable methods for Combining Multiple Clusterings

Method Approach Advantages Shortcomings

EAC Hierarchical clus-| All advantages of Hierarchical Performs poorly with large datasets,
tering performed| clustering on the powerful coi anissue arises as to where to cut the
on co-association| association matrix e.g. Single Link dendrogram, no going back onde
matrix finds contiguity-based clusters data set object is clustered

CSPA Graph partition- | METIS works much faster than Hi; Performs poorly with large datasets,
ing  performed| erarchical clustering, it also finds user has to specify number of clus-
on co-association| good quality clusters ters
matrix

HGPA Runs HMETIS | Very fast and scalable Poor accuracy
on a hypergraph
representation
of Multiple
Clusterings

MCLA Merges simi- | Fast and scalable (uses METIS onCluster similarity based on Jaccard
lar clusters in| cluster based representation of datayimilarity, user has to specify numr
meta-clusters ber of clusters

EM-Topchy Models Final | Detects non-spherical  clustgr Computational requirements may
Clustering as a| models, co-association matrix not be high, Fixed number of clusters
mixture and uses needed required in input clusterings and the
EM to estimate Final Clustering
model parameters

Greedy NMI Combinatorial No co-association matrix, proposes Very inefficient in terms of compu-
Optimization a widely used heuristic tation time
to find median
partition

GACEII Genetic Al- | Good or compatible accuracy with Storage of co-association matrix,
gorithm using | most approaches, Automatic detef-costly operations to calculate fitnesgs
weighted intra- | tion of number of clusters
and inter-cluster
similarities

ACO-Azimi Ant Colony Opti- | Automatic detection of number of Storage of co-association matrix,
mization clusters, outlier detection run-time results with large datasets

not shown

Clustering quality;

Quality of Clusterings :A data set can be clustered in many ways depending on the
clustering algorithm employed or how algorithm parametaes set. Such clusterings
constitute a set of multiple clusterings, which is usudily only information available to
obtain a new final clustering. If the clusterings are not gquodlity i.e. the information
they contain are very diverse and noisy, it may be hard to awvgthe final clustering
quality. Problems reveal especially with high-dimensldaaye datasets where obtaining
good single clusterings may be challenging.

Number of Clusterings Recent studies have empirically demonstrated improved-acc
racy of clustering ensembles on a number of artificial antiweald data sets. Unlike
certain multiple supervised classifier systems, convexg@noperties of consensus func-
tions are not well studied. Topchy, Law, Jain and Fred (2@dd3ent formal arguments
on the effectiveness of combining multiple clusteringsrireeveral perspectives. Con-
sensus functions based on stochastic partition geneyagidabeling, voting and, median
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partition approaches are shown to converge to a true undgmtyustering solution as the
number of partitions in the ensemble increases. On the admad, too many clusterings
may cause overfitting.

Choice of Consensus FunctionThis may be important for specific problems. Some
exemplary situations are as follows. Optimization-basddt®n may not converge with
large datasets. Graph-based methods where clusters aesaried by vertices may be
less efficient, if cluster sizes vary a lot.

1.2.3 Final Clustering Validation

Validation of the final clusterings* (D), combined from Multiple Clustering$l(D), can
be important in many applications. Moreover, cluster \atich may even be at the heart
the clustering algorithm (see Strehl and Ghosh (2002), Mwohadi et al. (2008)).

Average NMI (ANMI) is an unsupervised validity measure @g&ed in Strehl and Ghosh
(2002) and used as part of their greedy algorithm explainesieiction 1.2.1. Details of
NMI can be found in Chapter 3. ANMI is defined %ZLE?"NMI(W*(D),wi(D)),
which takes the average of all NMIs between the Final Cliusteand eachr;(D) €
I1(D). Fred and Jain (2005) improve this measure by making it 8eadd number of
clusters in the Final Clustering, relaxing the assumptah the number of clusters in the
Final Clustering are already known.

Chapter 2 defines FastFit which can be used as an unsupevaisdity measure with ap-
propriate parameterization. This measure evaluateseclasparation (inter cluster sim-
ilarity) and cluster cohesion (intra cluster similaritygded on co-association of data set
objects. It should be noted that, separation and cohesioralsa be used as separate
measures of validity.

Fred and Jain (2008) propose another unsupervised vatiggsure. Initially, a proba-
bilistic clustering model is derived from Multiple Clusiegs. The validity corresponds
to a minimum description length for both estimated modeapeeters and the Final Clus-
tering.

A recent paper by Duarteo et al. (2010) propose modified messof three well-known
clustering validity measures for evaluating final clustgrvalidity.
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1.2.4 Combining Weak Clusterings

Topchy et al. (2003) provide the following definitionwaeak clustering algorithnpro-
duces a clustering, which is only slightly better than a mancone. Such algorithms
are usually very simple and computationally inexpensiven&theless, combining their
output clusterings can be more attractive than combiniogtelings obtained by more
sophisticated, but computationally demanding algorithms

Topchy et al. (2005) argue that combining multiple weak teltisgs still achieve compa-
rable or in some cases better performance. The motivatitmaisthe synergy of many
such clusterings will compensate for their weaknessesy phepose two methods for
obtaining such clusterings. The first method is based onoranatojection of a data set
to a subspace of its attributes. An example would be prajgatata on 1-D and applying
k-Means on this projection. Second method splits data rahdoyrhyperplanes. For ex-
ample, a single random hyperplane creates a trivial clugtéry cutting the hypervolume
into two. In addition to some theoretical basis, they alsvjate experimental results with
several data sets using different numbers of input clugisrand projection sizes.

Fern and Brodley (2003) approach the problem from a high dgaal clustering point
of view. Distance-based clustering of high dimensionahgetses a challenging problem,
since in a high dimensional space, data tend to be sparsed@ell2003). They create
multiple clusterings of high dimensional data sets by fisstdom projection and then
also by Principal Component Analysis (PCA). They show erogily, by using different
consensus functions, that multiple clusterings genetatedndom projections yield good
final clusterings.

Minaei-bidgoli et al. (2004) create multiple clusteringsusing subsamples of a given
data set. In their empirical study, they sample a data sétmflacement (bootstrap) and
without replacement, and then create clusterings on theses\of the data set. A mean-
ingful final clustering for the entire set of data points egssr from multiple clusterings

of subsamples. Depending on the consensus function, chgteof subsamples either
update a co-association matrix or provide prototype-bakexiers which are further pro-

cessed to obtain a final clustering.

In Chapter 4, a novel parallel algorithm is introduced, vilhiceates multiple clusterings
based on random projections of a binary data set and theaasub-association matrix
correlates with Hamming distance matrix.
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1.2.5 Applications

This section presents some applications and applicapenHsc approaches to Combin-
ing Multiple Clusterings in the literature that are commarBioinformatics, Computer
Vision, and Text/Document Clustering. A few applicatione seported in Medicine, Fi-
nance, and Weather Prediction. Applications for specifta iamats are also available.

Bioinformatics : Human genome project has created a huge amount of data.efhgst
is extensively used in mining gene expression data setsdarfiportant genetic and bi-
ological information. Obtaining high quality clusterinigsoften very challenging due to
inconsistent results of different clustering algorithms @oisy data. It is a daunting task
for researchers to choose, if available, the best clugtaligorithm and generate the best
clustering results for their data sets. This is exactly wh@ombining Multiple Cluster-
ings come in handy. Hu and Yoo (2004), Hu et al. (2006) progidéustering ensemble
framework, GE-Miner, by adapting several graph-based aoib{ype-based methods for
gene expression data. Yu et al. (2007) propose a graph-lwasegnsus function for
microarray data, in which data is subsampled a number ofstimereate multiple clus-
terings. A co-association matrix is constructed from thepat clusterings which is then
partitioned using the normalized cut algorithm Shi and K&H000) into a final clus-
tering. This process is repeated iteratively and each theere¢sulting final clustering
quality is evaluated by a modified version of Rand Index. kamet al. (2010) propose an
algorithm for larger gene data sets, in which a graph-basstiod work on a clusterwise
similarity matrix. Asur et al. (2007) propose a clusterimgemble framework for clus-
tering protein—protein interaction networks, where thpplg either a recursive-bisection
or hierarchical clustering algorithm on a cluster membigrshatrix representing input
clusterings, whose dimensions are reduced by PCA. Someafttier notable methods
are presented in Avogadri and Valentini (2009), Faceli et24109).

Computer Vision Image segmentation can be considered as a process of iflggie-
els in a digital image to obtain meaningful pixel groupingsmlocate regions or objects.
Segmentation of nontrivial images is one of the most diffitatks in image process-
ing Gonzalez and Woods (2006). A method for discoveringrblasions in medical
images is proposed by Li et al. (2006) in which they combimitrclusterings generated
by a modified DBSCAN algorithm and show that it is superior t@gaosis results of a
single clustering algorithm. Chang-ming et al. (2008) segnultrasound images by cre-
ating a co-association matrix of the various input clusgsiand then applying spectral
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clustering on it. They compare their results with other @rsg methods including the
domain expert’s. In another interesting paper, Gllavatal.ef2006) detect static text in
videos using a fuzzy clustering ensemble technique. Thisnigue does not work on a
single image, but rather takes incremental snapshots ahdlstemporal information in
multiple clusterings. Figure 1.4 illustrates the overddioaithm. Each frame is divided
into blocks, these blocks are clustered by Fuzzy C-meanshendustering results gen-
erate a set of multiple clusterings. Silva and Scharcar2§ki) use Combining Multiple
Clusterings to improve segmentation results in motionkirae A common problem in
satellite imagery is multisource image analysis, wheredht sensors provide images of
the same location. Forestier et al. (2008) propose a methltaticollaborative clustering
which combine results of different clusterings into a finalkstering which represents the
improved segmentation result. Some of the other intergstoplications in computer vi-
sion are given in Kyrgyzov et al. (2007), Zhang, Jiao, Liu,@8a Gong (2008), Ma et al.
(2009), Chang et al. (2008), Elhadary et al. (2007).
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Figure 1.4: Text in video is successfully segmented by combining migtglusterings. (Figure
taken from Gllavata et al. (2006))

Text/Document ClusteringClustering texts and documents is one of the important tasks
in Text Mining. This kind of clustering is quite challengirsince text and document
databases are usually large, high-dimensional, and natussers in such databases over-
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lap. Gonzalez and Turmo (2008) present an empirical cormparmf the effectiveness
of two different strategies for the generation of clustgrensembles. The first one re-
lies on massive randomization of a single EM-based algoriéimd the other one relies
on three different hierarchical, EM-based, and an iteeatéfinement algorithm with an
information-theoretical heuristic. Comparative resalts provided with other document
clustering algorithms. Zhang, Cheng, Zhang, Chen and F20@8) propose a Genetic
Algorithm for document clustering and show the improveditssin the final clustering
over the input clusterings. Other related work is given ineXal. (2008), Sevillano et al.
(2006).

1.3 THESIS OVERVIEW

This thesis proposes three novel efficient and scalableodstfor combining multiple
clusterings. These methods are described in the succeelipgers where accuracy and
efficiency of these methods are also demonstrated.

Chapter 1 provides preliminaries of Clustering and Conmgrivultiple Clusterings, to-
gether with a detailed literature survey, for better un@derding of concepts in the rest of
this thesis.

The following three chapters present the three methodspt€h presents a novel bi-
nary method for fast computation of an objective functiohisTfunction measures total
inter and intra class similarities of a clustering efficlgrib determine its quality based
on object co-associations. Time and space complexity sftésk is conventionally high.
However, the proposed method improves performance of theersus solution by con-
suming incomparably less memory and CPU time.

Chapter 3 presents a novel solution for combining multiplsterings. Our contributions
are a novel method for combining a collection of clusterimgs a final clustering which

is based on cliques, and a novel output-sensitive cliqueniindigorithm which works

on larger graphs and produces output in a short amount of Erensive experimental
studies on real and artificial data sets demonstrate thetiw#faess of our methods.

In chapter 4, a parallel algorithm is proposed to calculpfg@ximate distances of objects
by utilizing randomly obtained weak clusterings in shaned distributed memory parallel
computing environments.
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Finally, chapter 5 summarizes the arguments of this thesisreentions some open issues
in Combining Multiple Clusterings research.
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2. FASTFIT: AN EFFICIENT OBJECTIVE FUNCTION FOR
EVALUATING CLUSTERING QUALITY

In this chapter, we introduce a novel binary method for fashputation of an objective

function. This function measures total inter and intra €lgisnilarities of a clustering ef-

ficiently to determine its quality based on object co-asstomns. Thus, it can be used for
combining multiple clusterings using optimization-basedsensus solutions like evolu-
tionary algorithms. Compared to the conventional techejaquur method improves per-
formance of the consensus solution by consuming incompaleds memory and CPU

time by considerably reducing space and time complexigspectively. Experimental

test results also demonstrate the effectiveness of our resivad.

2.1 INTRODUCTION

Some solutions for combining multiple clusterings are mjation-based. These in-
clude evolutionary algorithms such as in Cristofor and Sircig2002), Mohammadi et al.
(2008), zhang, Cheng, Zhang, Chen and Fang (2008), Sindufataealing as in Filkov
and Skiena (2004), Tumer and Agogino (2008). A greedy, themretical optimization
method is presented in Strehl and Ghosh (2002). And, Azimal.e2009), Yang et al.
(2006) present methods based on Swarm Intelligence sucimtaSdony Optimization.
All these methods operate on an objective function.

In this chapter, we present a novel and efficient method farpdation of a similarity-
based objective function. The chapter is structured asvi@lj Section 2.2 provides pre-
liminary definitions together with some explanations fomtaning multiple clusterings
for clarity. Section 2.3 explains the notion of intra-clrsand inter-cluster similarities.
Section 2.4 presents our new binary method for computing-ciuster and inter-cluster
similarities. Experimental Results section provides carigon of our new method with
the conventional technique for varying size data sets. énfitnal section, we present
conclusions and future work.
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2.2 PRELIMINARIES

Let D be a data set. A clustering (partition) Df 7(D), can be stated as follows;

(D) ={C1, Cs, ..., Clrmy },

where(C; is a cluster (block) ofr(D), 1 < ¢ < |x(D)|, and

Given a set of clusteringdl(D) = {m (D), m(D),..., ) (D)}, the problem of
combining multiple clusterings is defined as finding a newstdting, 7*(D) = {Cf%,
C3, ..., Clre(py 1 Dy using the information provided HY(D). An objective functior,

Vi(o(n"(D)) = ¢(mi(D))), 1 < i < [I(D))] (2.1)

is used for determining quality of the final clustering(D). Exhaustively searching
all the possible clusterings for findirthe bestclustering is not an option, since there
are approximatel% possible clusterings for evety*(D)| and(|7*(D)| < |D|)
corresponding to the Stirling number of the second kind {s&e and Dubes (1988)).

Simply put, aconsensus functiois a function which combines multiple clusterings into
a single clustering in a sophisticated way so that Formulh) (2olds. In Fred and Jain
(2005), proposed consensus function is based on a co-assaaneasure (simultaneous
occurrences) defined by

coassoc(d;, d;) = votes;; /|11(D)], (2.2)

where|II(D)| is the number of clusteringsptes;; is the number co-occurrences of data
objectsd, andd, in a cluster, such that; € D andd; € D. In this approach, the
co-occurrences are held in|®| x |D| co-association matrix. In general, it is costly
to construct, store and populate this matrix for large dats, because of it (|D|?)
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complexity. Besides, searching cluster similarity comtinsly at the object level is a
computationally expensive task.

In Filkov and Skiena (2004) and Cristofor and Simovici (2)0&@nsensus functions
based on median partition approach have been proposed.appisach searches dif-
ferences between the clusterings, by working on a coarsel. I&t another direction,
in Strehl and Ghosh (2002), consensus functions based ardrngphs have been pro-
posed. In this technique, a hyperedge represents a clasteg hypergraph represents a
clustering.

In this chapter, we focus on a specific objective functionchhtan be used by evolu-
tionary consensus solutions and optimize its time and spagplexities. This objective
function is presented in the next section.

2.3 INTER AND INTRA CLUSTER SIMILARITIES

Intra-cluster similarity measures how near the data object in a cluster. For a cluster-

ing, (D) = {C1,Cy, ..., Ciroy }, intra-cluster similarity is measured as follows:
(D) 1
ICS(x(D)) = ) ar > similarity(d, d') (2.3)
i=1 U qaec;

For the same clustering, inter-cluster similarity is dedias follows:

Z similarity(d, d’) (2.4)

i=1 j:i+1‘ Gl deC;,d'eC;

similarity(d,d’") is the number of times that objecfsandd’ are assigned to the same
clusters, which is computed from pre-existing multiplest&rings. Finally, ICS and ECS
measures can be combined to have following fitness function:

H(1(D)) = ky.ICS(m(D)) + k. ECS(m(D)) (2.5)
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Final clustering is expected to have compact, and clos¢erkigherefore for a good clus-
tering Formula (2.3) should provide large values. Simylaskparated (isolated) clusters
are expected in a good clustering, therefore Formula (24l supply small valuesk;,
and k, parameters in Formula (2.5) are user defined values, whit$fys&, > 0 and
ko < 0.

Mohammadi et al. (2008) uses a special case of this objefttihaion to combine multi-
ple clusterings using an evolutionary algorithm and repoccessful results on small data
sets. Inspection of Formula (2.5) reveals that its time dewify is quadratic with respect
to the number of objects in the data sét,|D|?). This complexity is due to pairwise
similarity calculations performed in Formulas (2.3) andHj2For large data sets, holding

a similarity matrix is also prohibitive due to its space coexity. Our aim is to reduce
these complexities, and compute Formula (2.5) faster usmayy methods.

It is important to note that in combining multiple clustegiproblem similarity(d,d’) is
not computed from the data sBt similarity(d,d’) in Formulas (2.3) and (2.4) refer to
number of co-occurrences of objetandd’ in the same cluster (related to Formula (2.2)).
Therefore, it is crucial to utilize the information proviléy the pre-existing multiple
clusterings.

2.4 FAST COMPUTATION OF SIMILARITIES

We represent each cluster with a bit vector. Existence oftg@cbin a cluster is shown
by a 1, similarly absence of an object is captured by a 0. Ehdter representation is
as large as the size of the databd$s, Three clusterings, each having four clusters are
shown in Figure 2.1. An example of a cluster is shown belowsterC,, has data objects
dy, dy, andds.

Cll

In order to compute Formulas (2.3) and (2.4), each clustertdé&e examined for pair-
wise objects, and corresponding entries in the co-assotiatatrix has to be updated.
For example, cluste€,; increments following object pairs in the co-associatioririra

(dy,dy), (dv,d3), (dy,d7), (da,ds), (ds,d7), and(d;,d;). Because of the pairwise in-
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crement nature, this computation has quadratic time coxtpleWe present our novel
method below for reducing the time complexity of this opiemat

Let II(D) be multiple clusterings, and*(D) be a new final clustering for a data et
Following, we define intra-cluster, and inter-cluster $amities of 7*(D). Intra-cluster
similarity of 7*(D) is shown in Formula (2.6)

|7 (D) T |

G 2 2 ('C* , C”') (2.6)

k1|k i=1 j=1

ICSn(m

And, Formula (2.7) shows the inter-cluster similaritynd{ D).

|7*(D)|  |=*(D)] 1] |
) (Cr v c* AC,
ECSn(m*(D)) = Z Z ‘C*H *‘ ZZ ( ]|>
k=1 l=k+1 i=1 j=1
B |CI: N Cij| . |Cl* N CZJ| (2 7)
2 2 .

Finally, the objective function is described as:

or(1*(D)) = ky.IC Sy (7*(D)) + k. EC Sy (n*(D)) (2.8)

ICSh(7*(D)) is computed as follows; every clusterof( D) is logically ANDed with ev-
ery cluster inll in order to find pairwise co-occurrences of the objects irstmae cluster.
Similarly, when computindZC Sy (7* (D)) every cluster pair in* (D) is logically ORed
in order to find all pairs of objects, this resultis ANDed waVery cluster ifl in order to
find pairwise co-occurrences of objects. So far we obtaihegtirwise co-occurrences
of objects in the same clusters and in two different clustBgssubtracting pairwise co-
occurrences of the objects in the same clusters (last twgooents in Formula (2.7)),
we obtain pairwise co-occurrences of objects in differdudters as shown in the formula.
When computed on the same set of input clusteribgsormula (2.6) is equivalent to
Formula (2.3) and Formula (2.7) is equivalent to Formuld).2Although equivalent for-
mulas yield the same result, it is very important to note Batnulas (2.6) and (2.7) are
computed in cluster level, not in object level for each p&@ewobject. Therefore, Formu-
las (2.6) and (2.7) are very efficient when compared to thenkitas (2.3) and (2.4). As a
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result, time complexity of Formula (2.8) is reduced®¢|7*(D)||11|;. + |7*(D)[*|T1;.),
where|II|,. represents total number of clusters|ifi (e.g. |II|;. in Figure 2.1 is 9) and
;. << |D], and|7*(D)|* << |D|. In the next section effectiveness of our new tech-
nigue is demonstrated.

D dy [dy | dg | dg | ds | dg | dy | dg
Ch,|1]1]0]0]0]0]1]o0

m(D) | C|0]0]|1]|1]1]0]0]0
Cs| 0|l0|0]O0]O0]|1]0]1

Cs| 1]0]1]1]0]0]0]0

m2(D) Cyp| O/ 10|02 |1]1]1
Cs;| 1] 1]0]0]0]0]0]0
py|Cs2| 00 1] 1/0|0|0|0
ms(D) Css| O/ O0]O0|O]1|1]0]0
Css|O0]0]0|0]l0]0]1]1

Figure 2.1: Binary representation of multiple clustering$,D)

dy |d2 |ds |dg | ds | de | d7 | ds
cri1|11|1,1]0;0|0|O0
¢sgfoyo0jojoj1,1,1|1
Figure 2.2: Binary representation of* (D)

(D)

Example 2.4.1.Let us compute intra-cluster similarityC' Sy (7*(D)), of 7*(D) of Fig-
ure 2.2 using multiple clusterings shown in Figure 2.1 byngghe Formula (2.6)

ICSy(7*(D)) = % ((3) T @ et @)
()6 ()

In a similar manner, Formula (2.7) can be used for computi#@Sy; (7*(D)).

2.4.1 Generalization of the Method

Formula (2.7) is valid for non-overlapping clusters in astéring. However, it can be
generalized for overlapping clusters as follows:
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[T (D) |7 (D)]

e o) = > e

k=1 I=k+1

T |

ZZ( |(Cr Vv CF) /\C”|> <|(C,j/\C_l*)/\Cij|>
2
=1 j=1
_(|(C_/:/\Cl*)/\0ij|)+(‘(CI:/\CZ*)/\CU‘)
2 2

+([]ICE A ) (2.9)

Above, C} (alsoCy) represents a final cluster;; represents a pre-existing cluster, and
C} represents complement 6f.

It should be noted thafCS(7*(D)) is the same asC'Sy(n*(D)) for non-overlapping
clusters. Therefore, generalized form of the objectivefiom, FastFit, is shown in (2.10).

FastFit(r*(D)) = ky.ZCS(7*(D)) + ks.£CS(r* (D)) (2.10)

Further explanation of (2.9)it is a generalization of (2.7) used for both overlappind an
non-overlapping final clusters. Term 1 referstovilarity(d, d’) for every pair of objects
in a pair of final clustersC};, C7. Term 2 subtracts intra-cluster contribution@f — C7.
Similarly, Term 3 subtracts intra-cluster contribution@f — C. Term 4 adds duality
between pairs in overlapping region : Notice there is anvafrom 1 to 7, and 7 to 1 in
Figure 2.3(c). The last term is needed in order to inclside:larity(d, d) contributions
in overlapping region: See the self loops for objects 1 andtie same figure.

[m (D) = (D)]

ECSu(T* (D) = > Y m

| s

ZZ( (Cr v ) /\Cw\) (|<Cl:/\?)/\0ij|)

21_]1 S\ 7

' v~
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2.5 EXPERIMENTAL RESULTS

Our experimental setup is a PC having 2.0 GHz processor widB 2nain memory. No
parallel processing was done. Our choice of implementddaguage is Java, which
provides built-in support for bit vectors, and operationsod vectors.

We have conducted experiments on varying size syntheticeaidata Sets. Details of
the Data Sets and their Multiple Clusterings are given inl@&bhl where, besides the
convention used in this chaptér®(D)| refers to number of inherent original classes in
a data set|w(D)| refers to number of clusters in each clustering in the set oltiMe
clusterings, andl=*(D)| is the number of clusters in a tested Final Clustering.

IRIS, GLASSIDE, IMAGESEG and SIGNFORM are data sets from tEplository Asun-
cion and Newman (2007). SYNTH1, SYNTH2 and SYNTH3 are sytitafly generated
up to 20,000 data objects. Larger data sets SYN4C100 and SYM4re also synthet-
ically generated with 100K and 1M data objects respectieglgt contain a mixture of
4-Gaussians each.

Table 2.1 displays comparative execution time results éetwFastFit and the conven-
tional matrix operations. In all experiments, FastFit aogly outperforms conventional
method. With large data sets, a comparison is not even pessiécause #D| x |D|
matrix does not fit in the main memory. In Figure 2.4 executiore results of a data
set having 5,000 objects is shown for differéfi{D)|s from 10 to 100. Clearly, FastFit
Is superior to the conventional method. We provided the txie in logarithmic scale,
because our execution time results are very small when cauga the conventional
method. Figures 2.5, and 2.6 represent similar results.
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(c) Pseudograph Showing Similarity of Two Overlap-
ping Clusters

Figure 2.3: Graphical Representation of Cluster Similarities

Table 2.2 compares memory consumption of FastFit with timeeational method. Fast-
Fit uses incomparably low memory, which enables workinghwiery large data sets.
Although shown in the table for completeness, in practids,not possible to apply con-
ventional method to Data Sets with 100K and 1M objects. Mgneonsumption results
are also shown Figure in 2.7.
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Table 2.1: Experimental Setup and Run Times

|D| Avg. Run-Time Avg. Run-Time Matrix
Data set X [we(D)| | || | [7(D)] | |=*(D)] FastFit (ms) Conventional (ms) | Initialization
| Attribs| ICS ECS ICS ECS (ms)
IRIS 150x 4 3 10 2-6 3 0.35 | 0.38 0.78 0.82 2.68
GLASSIDE 214x9 6 10 4-10 6 0.96 2.34 3.06 10.02 7.21
IMAGESEG | 2,310x19 7 10 4-10 7 451 | 32.39 48.25 85.69 209.39
SIGNFORM 5Kx21 3 10 2-6 3 3.33 11.40 109.13 158.86 1,523.50
SYNTH1 5K %20 n/a 10 2-6 4 1.54 2.45 156.12 437.34 1,085.42
SYNTH2 10Kx 20 n/a 10 2-6 4 1.93 4.58 595.18 | 1,764.97| 7,088.23
SYNTH3 20K x 20 n/a 10 2-6 4 2.87 | 9.23 | 2,296.57| 6,986.60| 19,382.31
SYN4C100 100Kx 2 4 10 2-6 4 25.95| 41.66 Out of Memory
SYN4C1M 1IMx2 4 10 2-6 4 45.48 | 97.60 Out of Memory

2.6 CONCLUSIONS AND FUTURE WORK

In this chapter, we presented a novel binary method for caimguntra-cluster and inter-
cluster similarities. By representing each cluster usibg aector, we utilize fast opera-
tions and low memory requirements of binary operations. @ethod is especially useful
as an objective function for optimization-based consessiigions like evolutionary al-
gorithms for combining multiple clusterings.

Execution time of a data set having 5,000 objects

Time (Ms) logarthmic scale

] 3 Conventional Method
Figure 2.4: Execution time on SYNTH1 (5,000 objects)
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Figure 2.5: Execution time on SYNTH2 (10,000 objects)

Figure 2.6: Execution time on SYNTH3 (20,000 objects)

Experimental results on varying size synthetic and real gets, including large data sets,
demonstrate the effectiveness of our method. Our methagbesr®r to the conventional
technique, in that, it is fast and efficient, and it scalestge data sets and uses incompa-
rably less memory.

By using the objective function here, we will investigatesig@ing a novel method for
combining multiple clusterings as a future work. Evoluaonbased techniques can use
our consensus function presented here as a fitness fun@iemeralizing our technique
for broader use will also be a future work.
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Table 2.2: Memory Consumption

Memory Consumption
|D| [} | |=(D)| | FastFit | Conventional
(MB) (MB)
5,000 20 2-6 0.04 100
10,000 20 2-6 0.08 400
20,000 20 2-6 0.16 1,600
40,000 20 2-6 0.32 6,400
100,000 20 2-6 0.80 40,000
1,000,000| 20 2-6 8.00 4M
Memory Consumption = FastFit Method
w Conventional
Method
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1000000
o 100000
T 3
o —
@ et
© 10000
£ 1000
&
(=) Lt
£ 100 s
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Figure 2.7: Comparison of Memory Consumpti@erage|r(D)| = 4)
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3. CLICOM: CLIQUES FOR COMBINING MULTIPLE
CLUSTERINGS

Finding natural groupings of a data set is a hard task agedtey hundreds of clustering
algorithms in the literature. Each clustering techniqué&esasome assumptions about
the underlying data set. If the assumptions hold, good etiggs can be expected. It
is hard, in some cases impossible, to satisfy all the assangpt Therefore, it may be
beneficial to apply different clustering methods on the sdata set, or the same method
with varying input parameters or both. Then, the obtainedterings can be combined
into a final clustering having better overall quality. Ountritbutions are a novel method
for combining a collection of clusterings into a final clustg which is based on cliques,
and a novel output-sensitive clique finding algorithm whiabrks on larger graphs and
produces output in a short amount of time. Extensive expartal studies on real and
artificial data sets demonstrate the effectiveness of otinoads.

3.1 INTRODUCTION

We refer the interested reader to Chapter 1 for an overvidRatd Clustering and Com-
bining Multiple Clusterings research.

In this chapter, we present a graph-based algorithm for aandmultiple clusterings
which is based on the idea ohaximally complete subgrapladgso known ascliques
Cliques form very strong clusters, since in a cliqgue eackexds connected to all other
vertices. In the following sections, we show that utilizitigjues for combining multiple
clusterings is effective and practical. We also presentgorighm for finding a substan-
tial subset of all the cliques quickly, since finding all tHejges in a large graph may be
computationally overwhelming.

The chapter is organized as follows; Section 3.2 introdtlcegreliminaries: problem
definition and important concepts. Related work is presemeéection 3.3. Section 3.4
describes the main algorithm CLICOM. In section 3.5, we uscadvantages and dis-
advantages of CLICOM. Section 3.6 presents a novel ougnsisve clique finding
method, which is integrated in the main algorithm. Expentagevaluations are pre-
sented in Section 3.7. Finally, Section 3.8 concludes tlaptehn.
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3.2 PRELIMINARIES

In this section, combining multiple clusterings, graplséx clustering, and cliques are
explained.

3.2.1 Clusterings and Co-associations

Definitions related to multiple clusterings and object egaxiations have already been
provided in Section 2.2. For completeness of this chapterestate some of the defini-
tions here in brief.

Let D be a data set. A clustering @f is shown as

(D) ={C1,Cs, ..., Clrimy },

where(; is a cluster int(D), 1 < i < |x(D)|, and

Figure 3.1 represents a collection of multiple clusteringdinary format; II(D) =
{m (D), m2(D), ..., mm (D)} with [II(D)| clusterings andIl|;. clusters in total. The
problem of combining multiple clusterings refers to prodgca new clustering™ (D) =
{C1,C5, ..., .y 1> Which has better overall quality and uses the informatiowided
by I1(D). A validity function ¢ is used to measure quality of a clustering.

Vi(¢(r*(D)) = ¢(mi(D))), 1 < i < [II(D)] 3.1)

Many consensus functions, which produce final output ctugje, have been proposed
in the literature such as Fred and Jain (2005), Strehl andsi&(2002). In Fred and
Jain (2005), proposed consensus function is based on ahatdassociation measure in
which similarity of objects irD is based on the number of times they coexist in the same
clusters. An efficient method for calculating inter andantluster similarities of a cluster
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which is based on co-association object pairs is given in &loglu and Yagci (2009).

D dy |dy | ds |ds|ds |de|d7|ds
Ch|1}212|0|]0|]0|010|O0
m(D)|C2| O] O 2|22 0|0]|O0
Cs/ 0] 0]0O|0O]O0O]1 |1 1

72(D) Cxp|1j212}1112]0]0]00
Cypep|O0O]O0O]O0O|O0O]2 |11 1
Cs;;01]12]00]0|]0]0|0

73(D) Cs 2 0] O0O}1212]0|]0]0|0
Csy 300|001 )1 ,0|O0

Cyy O] 0O0O|]O0O]|]O0O]O0O|01 |1

Figure 3.1: A Collection of ClusteringdI(D), |D| = 8, |II(D)| = 3 and|II|; = 9

3.2.2 Graph-based Clustering

Graph-based clustering methods work on a graph representat= (V, £) of a data
set Tan et al. (2005). In graph representation, a verteesepts an object, or some
higher level information of the data such as a cluster or atetucenter. Proximities
between vertices are captured by edges and edge labelh-Gaapd clustering methods
start with creating aV/| x |V/| proximity matrix between each pair of vertices, which
holds edge labels. A sparsification of the graph can be praddifor avoiding noise and
improving cluster quality e.g. by using a threshold or bygkiag onlyk-nearest neighbors
of each vertex. Graph-theoretical techniques are apphigeitition this final graph in a
meaningful way.

3.2.3 Cliques

A cligue is a maximally complete subgraph of an undirecteghgtz = (V, £') Moon and
Moser (1965). A subgraph aF is a graphG’ = (V', E’) whereV’ C V andFE’ C FE.

G’ is complete, if for every,, v € V', (u,v) € E'. The set of vertice¥” forms a clique
if it is maximally complete, i.e. there is no set such thdt C V, V' c V" andV" is

complete.

There can be at most3/V/? cliques Moon and Moser (1965) in a gragh and finding
all the cliques of a graph has exponential time complexitythle literature, several al-
gorithms Akkoyunlu (1973), Bron and Kerbosch (1973), Tanat al. (2006) have been
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proposed to prune the search space without relaxing thénatiglique definition, thus
enabling efficient time and space complexities. Outpusisier techniques by limiting
the output size (number of cliques) achieve better run-tilve present a novel output-
sensitive clique finding algorithm in Section 3.6.

Bron and Kerbosch (1973) propose a family of seminal algoré which consists of two
recursive backtracking algorithms that use branch-andvd¢echnique to prune branches
of recursion tree which cannot lead to a clique. These dlyos and their improved
versions, such as the one proposed by Samudrala and Mof8RB) 1&e used widely. We
use the same implementation as well. In a more recent ancemiad work which is
presented in Tomita et al. (2006), a depth-first search elgoiis proposed which utilizes
pruning methods of Bron and Kerbosch (1973). Worst casdim@-complexity of the
proposed algorithm is reported to b&3!V1/3).

In the following section, we are interested in finding all tigues of a graph. However,
on dense or very large graphs, we have to use our novel osgmsitive clique algorithm

in order to generate good quality final clusterings in prattiun-times. In graph-based
clustering, for our purposes, it is possible to tune the glaty of the graph: In finer
granularity approach each data point is a vertex, in coaysamularity approach each
(input) cluster is a vertex. Finer granularity approachasywarely practical because of
its vertex size and density. On the other hand, coarser natyuapproach is generally
practical due to its small size, i.gIl|,, < |D|. For both cases, required graphs are
obtained by processing a collection of clusterings as showigure 3.1.

Object-wise cliques

An object-wise similarity graph can be represented by assmaation matrix)/ Fred
and Jain (2005)M;; is the number of times that objectsandd; are assigned to the same
cluster. This is also known &vidence Accumulatiofred and Jain (2005) and can easily
be obtained from Figure 3.1 by countiing for each object pair. Our main algorithm,
CLICOM, can also run on this graph which has as many vertis¢®a
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Cluster-wise cliques

In a cluster-wise similarity graph, each vertex represantgput cluster. Cluster-wise
similarities are computed using Formula (3.2) on the inpusterings as shown in Fig-
ure 3.1. Other similarity measures, such as Jaccard sityitzan also be used. It is very
important to note that number of total clusters is much sendllan the data set size, i.e.
IIT];. < |DJ. In most cases, cliques on cluster-wise similarity graph lsa computed
quickly.

3.3 RELATED WORK

In this section, we provide an overview of related and inftigdrwork for combining
multiple clusterings.

CSPA (Cluster-Based Similarity Partitioning Algorithmyhich is introduced in Strehl
and Ghosh (2002), is based on a co-association matrix, and$)&vhich is a software
package for partitioning unstructured graphs Karypis anenkr (1998b,a). CSPA is
shown in Algorithm 3.

Input: II(D): Multiple Clusteringsk: Number of Clusters In the Final Clustering
Output: 7*(D): Final Clustering
ComputeSM, |D| x |D| co-association matrix , usiig(D) ;
(D) = METIS(SM, k) ;
return 7*(D);
Algorithm 3: Cluster-Based Similarity Partitioning Algorith@SPA

HGPA(Hypergraph Partitioning Algorithm) is introduced$trehl and Ghosh (2002) as
well. Multiple clusterings construct a hypergraph whereheabject is a vertex, and each
cluster is a hyperedge. Main idea is to hawenconnected components of the hypergraph
by using HMETIS Karypis, Aggarwal, Kumar and Shekhar (1992)mbining multiple
clusterings problem is formulated as partitioning the hgpgph by cutting a minimal
number of hyperedges. A set of hyperedges are removeé andonnected components
are obtained, which provides the final clustering.

In Meta-Clustering Algorithm (MCLA) Strehl and Ghosh (2Q02ach cluster is repre-
sented by a hyperedge, like in HGPA. MCLA is composed of thieviong steps: 1.Con-
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structing the meta-graph, a regular graph labelled witlcakacsimilarity between a pair
of hyperedges. 2.Partitioning the meta-graph, 3.Compguimster members. These steps
are shown in Algorithm 4.

Input: II(D): Multiple Clusteringsk: Number of Clusters in the Final Clustering
Output: 7*(D): Final Clustering
/ G is a neta-graph, construct it
G=(V.E);
foreachc € II(D) do

Add c as a vertex to V;
foreachv; € V do

foreachv, € V do

if V1 7é V2 then
/'l 1abel edge (v;,v2) using Jaccard simlarity

label(vy, ve) = % ;
(D) = METIS(G, k) ;
foreachobjectd € D do
Il nodify 7*(D) as follows

assignd to its most associated cluster7fi(D)
return 7*(D);

Algorithm 4 : Meta-Clustering AlgorithnMCLA

Evidence Accumulation (EAC) Fred and Jain (2005) accureslétie evidence in each
cluster to form a co-association matri¥\/. Each entry in this matrix5M/;;, is the
number of times that data set objed{sandd,; are assigned to the same clusters. The
similarity matrix is provided as input to an agglomeratilestering algorithm, as shown
in Algorithm 5.

Input: TI(D): Multiple Clusteringsk: Number of Clusters in the Final Clustering
Output: 7*(D): Final Clustering

ComputeSM, |D| x |D| co-association matrix , usiig(D) ;

Run Agglomerative Clustering o$i/ to constructr™(D);

return 7*(D);

Algorithm 5: Evidence AccumulatiokBAC

The data set may be distributed at different sites. In théeca distributed clustering
solution with a final merging of clusters is needed. Hore ef24109) proposes two meth-
ods, Bipartite Merger (BM) and METIS Merger (MM), for comimig distributed clusters.
Using cluster centers (prototypes) instead of clusteraaesi computation and memory
requirements. BM works on several clusterings each haviagsame number,, clus-
ters. It groups the centroids according to their similaaityl merges them to have a final
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clustering withn clusters. MM uses METIS, and it is more flexible: clusteringa have
different number of clusters. Good results of both BM and Migli@ported in Hore et al.
(2009).

Some of the methods for combining multiple clusterings @seld on evolutionary algo-
rithms such as Cristofor and Simovici (2002), Mohammadi.§2808). Some other tech-
niques are based on simulated annealing Filkov and Ski€@{2Tumer and Agogino
(2008). A greedy, info-theoretical optimization methogbissented in Strehl and Ghosh
(2002). All of these methods operate on an objective functio

3.3.1 Shortcomings of Related Work

CSPA, HGPA, MCLA, and EAC require the number of final clusiaradvance. BM and
MM represent clusters as centroids. For this reason, wensiltonsider BM and MM in
the experimental evaluations. EAC requires a lot of contpria, therefore it is slow on
all the data sets. Neither EAC nor CSPA scales well. Althod@PA is very fast, it is
not very accurate. Evolutionary methods usually suffemftzaving long run-times.

3.4 CLICOM

Cliques forcombining multiple clustering CLICOM, is shown in Algorithm €LICOM
starts to work on a weighted graph, where each cluster in afgaput clusterings are
represented by vertices. Pairwise similarities of clissteomputed in line 8, label the
graph edges. Graph sparsification is performed with redpeatthreshold valug], as
shown in line 9. Sparsified graph representatidnjs supplied as input to findCliques
procedure which implements Bron-Kerbosch algorithm asmesd in Samudrala and
Moult (1998). Both the original cluster-wise similarityagph, and its sparsified version
are stored inll|,. x |II|,. matrices:M andA.

Given a set of multiple clusterings in binary formi&tD), we use Formula (3.2) for cal-
culating the similarity between a pair of clusters (interstér similarity as shown in Fig-
ure 3.2)EC Sy (Cy, C), using co-associations of objects, which is based on Migiaro
and Yagci (2009).
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Output: 7*(D): Final Clustering ofD
Initialize allClusters = ;
foreachr; € II(D) do
foreach C; € m;(D) do
allClusters = allClusters U Cj ;
Initialize proximity and adjacency matricek] and A ;
foreach C; in allClusters do
foreach C; in allClusters, i # j do
M;; = ECSH(D)(Cqu) ;
if M;; >=0then A;; =1elseA;; =0;
SC' « findCliques(A);
B < cliquesToClusters(SC, M, allClusters) ;
(D) < majorityVoter(B) ;
return 7*(D)

Input: TI(D): Collection of Clusterings of a Data S&Y, §: Threshold for Sparsificatign

Algorithm 6 : CLICOM

Ch Crz
Figure 3.2: Inter Cluster Similarity of a Cluster Pair i, (D)

- ||
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i=1 j=1

<|(Ck/\@) ACz‘j|) B <|(@/\Cl)/\cij|)+

2
<|(Ck A Cy) A Cy

2

2

) L (ID)|C A Gl (3.2)

We useEC Syy(py similarity measure, since it can find cluster-wise similas based on

co-associations of objects rather than e.g. a ratio of syiotdly matched objects in
the clusters as in Jaccard similarity Tan et al. (2005). Cgpegmental studies show
EC Sty Is superior to other similarity measures: With proper sifiaetion, £C'Siy )
captures cliques as given in Figure 3.3 where Jaccard meeaannot. This figure shows
that when using Jaccard measure, two cliques of e detected (', Cs1, C5,}, and
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Figure 3.4: Cluster Blocks of Figure 3.3(b)

{Ci3, Cs, C34}. On the same data seétC'Sti(p) similarity reveals two cliques of sizé
{C11,C91,Cs1, Cso} and{C}3, Cag, Cs3, Cs4 }.

Cliques returned by the findCliques procedure overlapuekdoClusters procedure puts
clusters into meaningful cluster blocks by reorganizirenthn a non-overlapping manner.
The notion of cluster blocks is shown in Figure 3.4, whichtears two blocksB;, and
B3. Number of cliques in the similarity graph does not deteentire number of clusters in
the final clustering; cliquesToClusters detects the nurabelusters in the final clustering
automatically.

Algorithm 7 begins by ranking cliques using a normalized alative pairwise similarity
CEC Snpy as given in Formula (3.3). Note that this formula rewardgdacompact
cliques, since such cliques form predominant clustergitiBgawith the highest ranking
clique, the algorithm iterates through each clique and@sdéas a cluster block which
can be expanded with other clusters, only if a certain péagenof its members have not
been assigned to any existing block. In experiments, we thisdatio to 90%{ = 10%).

At the end, there may be some vertices that are not assignaalytblock. Each such
vertex(; is appended to a block that contains a vertex which is mostagito C; (see
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Input: SC: Set of Cliques)M: Proximity Matrix, allClusters: Set of All Clustersy :
Overlapping Percentage
Output: B = {Bj, B3, ...,B|*7r*|}: Cluster Blocks
Sort.SC by ranking each cliquelique,, € SC' in decreasing order with respect to
CECSH(@) ;
k< 0;
for m < 1to |SC| do
if lasstoncdbclincul < § then
B} < clique,, — assigned ;
B+ BU{B;};
assigned < assigned U B} ;

k+—k+1;
/| Cluster unclustered clusters
if allClusters — assigned # () then
foreach C; € allClusters — assigned do
/1 Find nost simlar assigned cluster and return its
i ndex
l < maz;(M;;), C; € assigned ;
foreach B € B do
if C; € B then
assigned < assigned U {C;} ;

return B

Algorithm 7 : cliquesToClusters Computes Cluster Blocks
lines 9-15).

‘Cl‘hn‘ ‘Cl‘hn‘

> > ECSuw)(Ci, Cy) (3.3)

(‘dgm‘) i=1 j=i+1

clg,
CEC Sty (clgm) = [clgm|

Figure 3.4 illustrates an example: Largest two cliquesgufé 3.3(bX 11, Ca1, Cs1, Csa }
and {Cy3, Cq9, C33, C34} are picked as blocks, and verték, is appended to the first
block, since it is most similar t6's;.

Final step is to convert the cluster blocks into clustersasabjects, which is carried out
by majorityVoter as shown in Algorithm 8. Using cluster biscand their content, this
algorithm counts the number of occurrences of objects asrsiolines 5-8. Lines 9-11

assign each object to a cluster depending on its frequerniguréd=-3.5 shows the voting
procedure, and Figure 3.6 presents the final clusteringyoexstiby CLICOM on the input

shown in Figure 3.1.
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d, [dy [ ds | da | ds | dg | dr | ds
Ch,/1]1]0|0]|0|0|0O]O
Cp,|O|lO|1|1|1|0|0]|0

s |Caf1l2|1l1]0]0|0]0
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Cp|O|lO|O|lO|1|1|1]|1

B |Cyl0l0j0]o0o|1]1]0]0
CulO|lO|lO|lO|lO|O|1]|1

> 3/3|[3|3|]1]|]0]0]O0
5, 0/0|0|0|2]|3|3]3
(Chi=] [1[1[]1]1[2[]2]2]2]

Figure 3.5: votingM atrixz Computes Class Labels of Objects

Figure 3.6: Final Clusterings*(D)

3.5 DISCUSSION OF CLICOM

3.5.1 Advantages of CLICOM

Efficiency and Scalability

CLICOM works well with large data sets. Experimental resulith data sets up to 40.000
objects are shown. Although CLICOM operates on objectwisagsociations, it does not
require ab x D similarity matrix. CLICOM takes advantage of bitset opamas to find
similarity between a pair of clusters.

42



Input: B: Cluster Blocks
Output: 7*(D): Final Clustering
Initialize | B| x |D| sizeVoting M atriz filled with 0s ;
Initialize 7 (D) = 0 ;
for m < 1to |B| do
Initialize 7%, = 0 ;
foreach cluster blockB; € B do
foreach clusterC; € B do
foreach objectd; € C; do
VotingMatrixy; < VotingMatrizy; +1;
for j «+ 1to |D| do
m = maxy(VotingMatrizy;), k = {1,...,|B|};
Add objectd; to 7}, ;
for m < 1to |B| do
Add 7 to (D) ;
return (D)
Algorithm 8: majorityV oter Places Objects into Final Clusters

Improved accuracy

Strong nature of cliques and a co-association based sityilaeasure improve accuracy
of the consensus function.

Varying Numbers of Clusters and Clusterings

A collection of clusterings]I(D), is the main input to CLICOM. Our algorithm works
well with arbitrary number of clusterings and clusters.

Automatically Computed Number of Final Clusters

Most of the clustering and combining multiple clusteringalithms require the number
of final clusters in advance. However, CLICOM automaticallynputes the number of
clusters in the final clustering with respect to its inputgmaeters. Number of cliques and
their properties, such as ranking and overlapping, affechtumber of clusters in the final
output clustering.
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Termination Condition

The algorithm terminates automatically when all the olg@re assigned to a cluster.

3.5.2 Shortcomings of CLICOM

The principal shortcoming of CLICOM is inherited from cligdinding algorithms. As
mentioned earlier, conventional clique finding algorithpesform poorly on large or
dense graphs. Since CLICOM operates on graphs represehistgr similarities, gener-
ally these graphs tend to be small and sparse. But, in rags @&s may encounter large
or dense graphs. To address this problem, we propose a madplt-sensitive clique
finding algorithm in the next section which can find satisbaghumber cliques in a short
amount of time.

3.6 OUTPUT-SENSITIVE CLIQUE FINDING ALGORITHM

An efficient algorithm which finds all the cliques in a graplstexponential time com-
plexity with respect to number of vertices in the graph. Imifa et al. (2006), Ostergard
(1999), several clique finding algorithms are benchmarkegdrying number of vertices
and densities.

For saving run-time, clique definition may be relaxed to ob&most cliqus or the
number of cliques may be limited. However, our proposal isseehalgorithm which
obeys to clique definition, but saves time by limiting the t&mof cliques tdV/|?. Still,
our aim is to accomplish a good quality final clustering.

Theorem 1. Let A be an adjacency matrix which represents a graph= (V, E). A
cligue matrix K is defined as follows:

I-) Kisal|V]| x |V]| size, symmetric matrix.

II-) Initial state of KC is represented bi°. Middle states aréC', K2, ..., K!VI71,
the final state is represented k"'

lI-) Sequential transitions occur frorg® to !V,
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V-) K°to KVl are computed using Algorithm 9.
VI-) Each entry ofC!V!, which is not empty set, is a clique.

VIl-) There can be at mostl"=!l cliques ink!".

We propose an output-sensitive method in Algorithm 9 forifigdC in an efficient way.
Number of cliques are bounded by the size of cligue matdxwhich implies output-
sensitivity.

Input: A: |V| x |V| Adjacency Matrix
Output: Set of Cliques
/ Build K°
foreach A;; € Ado
if Aij = 1 then
Ky = {vi, v}
else
Ky =0,
/| create neighbors set
for i < 1to|V]do
Neighbors; =0 ;
for j < 1to |V|do
Add v, to Neighbors; ;
/ Sequentially Construct K'...KII
foreach pivot vertexv,, p = 1,2, ..., |V| do
// Initialize K» with ( entries
foreach K2, '1 = 0 do
if lej_l C Neighbors, then
K= K2 u{u,} s

else
lej = lej ;
/| Extract diques
Cliques = () ;

for i < 1to|V]|do
for j < i+ 1to|V|do
if 1V
if ICi; ' # @Vthen
Add Klj 'to Cliques ;
return Cliques

Algorithm 9 : FastCliquer Algorithm
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Theorem 3.6.1.Let K be the clique matrix of a grapfy = (V, E). Entries ofkC!"'! which
are not() are cliques of7.

Proof. We have to show that the entries/of’ | are complete: there exists an edge between
each vertex pair, and maximal: the set of vertices cannoxtemded with another vertex.
Base CaseEntries ofK° are complete. This is immediate from the definitionkdt
Inductive Step Let us assume entries & are complete, for some, 0 < n < |V|.
We show that the entries d&f"*! are also complete. All the neighbors of a verigx
can be represented by a S€tighbors,. If Ki; C Neighbors, holds (line 13), there is
an edge between, and every vertex irkC;;. ThereforekC: can be extended by, i.e.
ICZ.Jrl = K}; U, (line 14). If[Neighbors, N K| = || does not hold, extension does
not take placéC}," = K7 (line 16). In either cas&*'! is complete, thus entries &f" !
are complete.

Conclusion We know that the entries df!V are complete. Following, we show that
entries of IVl are maximal. An entrycly‘ can not be extended with a new vertgx
since line 11 considered every possible V. Thus,lcg./‘ is maximal. As conclusion, we
know that entries ofC!V! are maximal, and complete. Therefore, entriegCdf which
are notf) are cliques of7. O

Theorem 3.6.2.FastCligquer Algorithm is output-sensitive.
Proof. Let KC be the cligue matrix of a grapfi = (V, F'). From Theorem 3.6.1, entries

of KVl which are not) are cliques of3. SinceX!V! is a symmetric matrix, there can be
at mostw cliques. Therefore, FastCliquer Algorithm is output-seves. O

Theorem 3.6.3.Time complexity of FastCliquer Algorithm@(|V/|?).
Proof. Let K be the clique matrix of a grapfi = (V, E). K° has(|V'|* — |V])/2 entries.

In order to obtainkC!V!, all the entries ofC® are possibly updated by all € V, which
makes(|V|*> — |V|?)/2 computations. O

Theorem 3.6.4.Space complexity of FastCliquer Algorithm(g|V/|?).

Proof. Let K be the clique matrix of a grapfi = (V, E). K? has(|V|? — |V])/2 entries,
0 < p < |V|. KP*! can be written oriC?, since we only need final state of the clique
matrix V1. O
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Algorithm 9 performs naive pivot selection; more sophistezl methods for pivot selec-
tion, which may yield larger or better cliques, can be inggdged. Extension as shown in
line 14 is performed with a vertex,, if v,’s neighbors are already in an entry of clique
matrix. Note that this satisfies completeness. This exbersiperformed with every pos-
sible (pivot) vertex, which satisfies maximality. Therefoeach entry iC!V| matrix is a
clique by being maximally complete.

FastCliquer in Algorithm 9 is an eligible substitute for f@iiues method in Algorithm 6.

Extensive experimental studies show that by using Fasi€tionstead of Bron-Kerbosch
implementation, considerable speed gain is achievedewtalintaining good quality final

clusterings.
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Figure 3.7: (a) Adjacency Matrix,A, and (b)X!V! matrix for the graph in Figure 3.3(b). IR,
P ={C11,091,C31,C3}, T = {C13,C22,C33,C34}, R = {C12,Ca1,C32}, S = {C12,C33}

Example 1. FastCliquer is demonstrated in Figure 3.7, which shows thi@e@ency and
cligue matrices for the cluster-wise similarity graph irgbire 3.3(b).

All cliques {C11, Ca1, Cs1,Cs2}, {Chs, Cog, Csz, Caa}y {Cha, Co1, Cso}, {Cia,Cs3} are
successfully reported.
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3.7 EXPERIMENTAL EVALUATIONS

In this section, we present experimental results of CLIC@Mamparison to some other
related methods. We begin with explaining the clusteridglitg measures and the data
sets we have used in our experiments.

3.7.1 Measuring Clustering Validity

Goodness of final clusterings produced by CLICOM can be atetliby cluster validity
measures such as Adjusted Rand Index (ARI) Hubert and A(aB&5), and Normalized
Mutual Information (NMI) Strehl and Ghosh (2002). Thesestduing validity measures
are explained below.

Adjusted Rand Index (ARI)

We use ARI for comparing quality of clusterings obtained By i@OM with the real
class labels. Given a final clustering(D) = {CT, (3, ..., C}. () } and the original set
of classest®(D) = {C7,C5, ..., Clowmy }, WhereCy N CF = B for 1 <4, j < |7*(D)],
andCy N CY = P for 1 <4, j < |7°(D)| with variables in Figure 3.8 referring to;

ARl is formulated as follows:

S () + 5, 09) = (0 () 5, 09)) /6)
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Figure 3.8: Abbreviations for ARI

Class\ Cluster | ¢} €3 ... C) | Sums
010 nyy  Ni2 Caee Nip nq.
Cg No1  MNo2 - Nap No.
cy Nel M2 oen Ny Ny
Sums ni Mo Ny | n.=n

ARI takes its maximum value at 1, which indicates perfectaindéetween two clusterings
(D) andw’(D).

Normalized Mutual Information (NMI)

We use as well an information-theoretic measure, NMI Stegtd Ghosh (2002), in a
supervised manner, by comparing a final clusteringD) with 7°(D) having original
class membership information. This measure computes finafoamation between the
two clusterings and normalize it with their total entropies

MI(z°(D), 7(D))

N DL 0N = e D)

= (O 3O | o o [D]|C;nC?|
DD Dl (e NaYer DU%: (W)

\/(Zl P |C*| log %“) (Z\W"(D \ 1C2| log lT)

NMI is often used in Combining Multiple Clusterings liteua¢. Similar to ARI, NMI
takes its maximum value at 1. We use NMI along with ARI in ortteshow that our
good results are not mere coincidence.
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3.7.2 Data Sets

HALFRING, CURVE, SYNTH10C, SYNTH4C1, SYNTH4C2, and SYNTB4 are syn-
thetic data sets. HALFRING data set contain8 objects and two clusters. CURVE data
set had 92 objects in two clusters. SYNTH10C isl8-cluster data set obtained by using a
Gaussian mixture model by using the software providetbkgroup.org/handl/generatars
SYNTH4C1, SYNTH4C2, and SYNTH4C4 are large data sets eaemdd-clusters
with Gaussian distributions. These data sets are showmuré&B.9.

2D2K and 8D5K data sets are obtained freitrehl.comand used in Strehl and Ghosh
(2002) : 2D2K is synthetically generated and contains 506tpan each of its two Gaus-
sian clusters with means (0.227, 0.077) and (0.095, 0.3&B)lemgonal covariance matri-
ces with 0.1 for all diagonal elements. 8D5K contains 100@tsdrom five multivariate
Gaussian distributions (200 points each) in 8-dimensispate. The clusters all have the
same variance (0.1), but different means. Means were dnawm & uniform distribution
within the unit hypercube. The data sets are illustratedguare 3.10.

Rest of the test data sets are obtained from the UCI's madbameing repository Asun-
cion and Newman (2007), which are multi-dimensional withaas properties. Table 3.1
shows properties of all the test data sets, where the lagteoshows the original number
of clusters. Table 3.2 provides information about clusigsion these data sets that are
used as input by CLICOM and other methods in comparison.

Table 3.1: Properties of Test Data Sets

Data Set | |Objects| | |Attributes| | |Clusters|
HALFRING 118 2 2
CURVES 192 2 2
IRIS 150 4 3
GLASSIDE 214 9 6
2D2K 1000 2 2
8D5K 1000 8 5
IMAGESEG 2310 18 7
SYNTH10C| 3630 2 10
SIGNFORM| 5000 21 3
SYNTH4C1| 10000 3 4
SYNTH4C2| 20000 3 4
SYNTH4C4 | 40000 3 4
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(a) (b)

SYNTH4C

(© (d)
Figure 3.9: HALFRING, CURVE, SYNTH10C Data Sets. Randomly Sampled 5@fjeCts of
SYNTHA4C Family.

(a) (b)
Figure 3.10: 2D2K and 8D5K (projected on 3 Principal Components) Data Set
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Table 3.2: Input Clustering Properties on Data Sets

ARI

Data set | |Clusterings| | |Clusters| | Worst | Best
HALFRING 3 2-5 0.41 | 0.81
CURVES 3 3-6 0.33 | 0.78
IRIS 5 2-6 0.54 | 0.76
GLASSIDE 5 5-7 0.58 | 0.73
2D2K 3 2 0.66 | 0.79
8D5K 5 5 0.55 | 0.74
IMAGESEG 5 7 0.44 | 0.45
SYNTH10C 20 5-14 0.56 | 0.78
SIGNFORM 5 3-5 0.44 | 0.47
SYNTHA4C1 4 3-6 0.73 | 0.82
SYNTHA4C?2 9 3-6 0.57 | 0.93
SYNTH4C4 10 3-6 0.56 | 0.87

3.7.3 Experimental Results

Figure 3.11 demonstrates CLICOM on HALFRING data set. Fegus.11(b)-3.11(d)
show input clusterings and their quality. Using the inpudvided in Figures 3.11(b)-
3.11(d), CLICOM generates a final clustering having a mudteb@verall quality as
shown in Figure 3.11(a).

On IRIS, which is a real data set, CLICOM produces a final eltisg with 100% accu-
racy as shown in Figure 3.12(a) by using the input clusterstgppwn in Figures 3.12(b)-
3.12(f). All the input clusterings are obtained kyMeans withk having values between
2 and 6. Although the clusterings provided byMeans, even with the correct number of
clusters [=3), have notably low quality, CLICOM is able to combine thedusterings
into a final clustering having perfect quality.

On SYNTH10C data set, which ha$ clusters, similar successful results of CLICOM
are shown in Figure 3.13.

For all the data sets, Table 3.3 shows qualities of final elirgjs obtained by using both
Bron-Kerbosch and FastCliquer algorithms. This table destrates two very important
points: (1) CLICOM produces better quality final clustesrifpan the collection of in-
put clusterings (2) FastCliquer is as accurate as Bron&ato implementation for the
purpose of combining multiple clusterings.
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(a) Output of CLICOM with ARI=1.00

(b) |71 (D)|=2 and ARI=0.81 (c) |m2(D)|=3 and ARI =0.75 (d) |m3(D)|=5 and ARI=0.41
Figure 3.11: Result of CLICOM on 3 Input Clusterings on HALFRING

Main advantage of using FastCliquer instead of Bron-Kerthasspeed, which can be ob-
served in Tables 3.4 and 3.5(b). Considerably shorterimastare obtained on especially
data sets having large and dense similarity graphs.

Instead of using cluster-wise similarity graphs, we alsestigated the benefits and short-
comings of providing object-wise similarity graphs to CIO®1. On object-wise similar-
ity graphs, Bron-Kerbosch algorithm is infeasible for angumber of objects, as ex-
pected. FastCliquer algorithm solves this problem by pecadycliques in practical run-
times. Object-wise similarity graphs require a gt®e x |D| similarity matrix generation
and storage, which is a major computational and storagéreggent. Counter-intuitively,
we also observed much less accurate results in our expdeméren using object-wise
similarity graphs. All put together, we do not suggest usihgCOM on objects. Accu-
racy results and run-times are displayed in Table 3.5.
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(a) Output of CLICOM with ARI=1.00

(b) |71 (D)[=3 and ARI=0.75  (c) |m2(D)|=2 and ARI=0.54  (d) |r3(D)|=6 and ARI=0.64

(e) |m4(D)|=3 and ARI=0.74  (f) |m5(D)|=4 and ARI=0.76
Figure 3.12: Result of CLICOM on 5 Input Clusterings on IRIS

Table 3.6 displays test results of the related work. EACHwingle link) and CSPA
methods run out of memory on SYNTH4C2 and SYNTH4C4 data $éise that EAC,
MCLA, CSPA and HGPA all need the number of clusters in the fohaétering as input.
Although providing the input correctly creates an unfavaatage to EAC, MCLA, CSPA
and HGPA, we provided correct number of clusters. On modtefiata sets, CLICOM
generates better quality final clusterings than EAC, MCLAPA and HGPA. Best results

54



4
L]

o
00
o)

el

(<]

v

(b) |72(D)|=7 and ARI=0.61  (c) |mo(D)|=12 and ARI=0.58 (d) |r16(D)|=10 and ARI=0.7

Figure 3.13: Result of CLICOM on 20 Input Clusterings on SYNTH10C, SomautnClusterings
Shown in (b)-(d)

of these algorithms and CLICOM are shown in Figure 3.14,rble@LICOM is superior.
CLICOM obtains these good quality results very fast, whichhown in the same figure.

3.8 CONCLUSIONS AND FUTURE WORK

Providing the best sparsification value automatically té@DM is an open research area,
since good sparsification yields good results. Best valueflapping percentageé)(in
cliquesToClusters needs further investigation. We expentally found that = 10%
produces good results on our test data sets. In FastClidgenitam, ordering pivots in
the best possible way for producing large cliques is alsdwduresearch direction.

In this chapter, we propose a novel algorithm for combiningléection of clusterings into
a final clustering having better overall quality. Our methGICOM, is based on solid
foundations since it utilizes cliques for generating ctustand cliques form very strong
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Table 3.3: CLICOM Validity Results Using Bron-Kerbosch and FastCegulgorithms

Bron-Kerbosch FastCliquer

Dataset | 6 [ [« [ ARI [ NMI | [#*[ [ ARI | NMI
0.03| 1 |0.000 000| 1 |0.00| 0.00

HALFRING | 0.33| 2 |1.00] 1.00| 2 | 1.00| 1.00
0.67| 4 |0.71,077| 3 |0.77] 0.83

0.17| 2 | 098|096 | 2 |0.98| 0.96

CURVE 0.33| 3 |0.76/ 0.80| 3 |0.76| 0.80
040 2 |057]076| 2 |057| 0.76

RIS 0.50| 3 |1.00/1.00f 3 |1.00| 1.00
0.60| 3 |092091| 3 |1.00| 1.00

0.70| 5 | 085|089 4 |0.87]|0.91

0.20| 5 | 092|095 5 |0.92| 0.95

0.26| 6 | 100 1.00| 6 |1.00| 1.00

GLASSIDE 0.40| 6 | 096|095 5 |0.97| 0.97
0.60| 5 | 074/ 066| 2 |0.52| 0.68

2D2K 0.07| 1 |0.000 0.00f 1 |0.00| 0.00
050 2 | 079,069 2 |0.79] 0.69

0.20| 4 |0.76|/ 0.86| 4 |0.76| 0.86

8D5K 0.40| 5 | 096|094 5 |0.96| 0.94
0.60| 6 |0.88| 088 5 |0.96| 0.94

0.30| 7 |0.89|086| 7 |0.89| 0.86
IMAGESEG 0.40| 7 |0.80|079| 7 |0.88| 0.86
0.40| 9 | 079,087 9 |0.79]| 0.87
SYNTH10C | 0.50| 10 | 0.86| 0.90| 10 | 0.86| 0.90
0.60| 12 | 0.75]| 0.84| 11 | 0.68| 0.81

0.26| 3 |0.87|081| 3 |0.87]|0.81
SIGNFORM 0.40| 3 |0.89|083| 3 |0.86]|0.81
SYNTH4C1| 0.25| 4 | 099| 098| 4 | 0.99| 0.98
SYNTH4C2 | 0.60| 4 |0.98| 097 4 | 0.98| 0.97
SYNTH4C4 | 0.75| 4 |0.98| 097 | 4 | 0.98| 0.97

clusters. We study several clique finding algorithms andvigema new clique finding
method that is fast and accurate. CLICOM can be used on firkc@arser granularities
by providing object-wise or cluster-wise similarity grahOn cluster-wise similarity
graphs, CLICOM produces remarkably good quality final @tsgs due to its similarity
measure which is based on object co-associations. Exteasperimental results on real
and artificial data sets show that CLICOM scales very weldl produces output as fast
as the other state-of-the-art methods.
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Table 3.4: CLICOM Run-Time Results Using Bron-Kerbosch and Fast@igdlgorithms

Run-time (ms)
Data set # | Bron-Kerbosch| FastCliquer
HALFRING | 0.33 20 5
CURVE 0.17 35 14
IRIS 0.50 52 25
GLASSIDE | 0.26 85 40
2D2K 0.50 25 8
8D5K 0.40 110 50
IMAGESEG | 0.30 125 70
SYNTH10C | 0.50 2,825 1,650
SIGNFORM| 0.40 100 95
SYNTH4C1 | 0.25 105 45
SYNTH4C2 | 0.60 350 130
SYNTH4C4 | 0.75 760 420

Table 3.5: On Object-wise Similarity Graph, CLICOM (a) Validity Ressi(b) Run-Time Results

Data set 6 | |7 | ARI | NMI

IRIS 0.40| 3 |0.76| 0.77

GLASSIDE | 0.40| 6 | 0.96| 0.95

8D5K 0.20| 5 | 0.95| 0.93
(@)

Run-time (ms)

Data set 6 | Bron-Kerbosch| FastCliquer
IRIS 0.40 13,500 225
GLASSIDE | 0.40 50,250 340
8D5K 0.20 >30min 30,500

(b)
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Table 3.6: Cluster Validity Results of the Related Work (OOM: Out of Meiy)

ARI
Dataset | |r*| [ EAC | MCLA | CSPA| HGPA
2 | 100 | 1.00 | 1.00 | 043

HALFRING | 3 | 080 | 068 | 0.44 | 0.50
2 [ 098 | 098 | 098 | 023

CURVE | 3 | 074 | 075 | 043 | 045
2 | 057 | 044 | 0.44 | 0.37

IRIS 3 | 064 | 088 | 098 | 0.29
4 | 065| 094 | 055 | 0.06

5 | 091 | 093 | 048 | 031

GLASSIDE | 6 | 991 | 0.98 | 051 | 0.30
2 [ 079 | 079 | 1.00 | 0.00

2D2K 3 1076 | 076 | 0.45 | 0.60
5 | 061 | 096 | 0.98 | 0.00

8DSK 6 | 061 | 093 | 0.64 | 055
6 | 000 | 069 | 064 | 023

IMAGESEG | 2 | 900 | 0.88 | 0.85 | 054
9 | 064 | 080 | 067 | 054

SYNTH10C| 10 | 0.64 | 0.76 | 0.60 | 0.52
12 | 067 | 0.81 | 057 | 0.52

2 | 000 | 050 | 0.38 | 0.01
SIGNFORM| 3 | 0.00 | 0.87 | 0.88 | 0.09
4 | 000 | 087 | 051 | 0.00

3 [ 062 080 | 0.70 | 0.23

SYNTHACL! 4 | 099 | 074 | 0.69 | 0.00
3 [OOM| 0.80 | OOM| 0.20

SYNTHAC2\ 4 | oom | 0.98 | 0om | 0.00
3 [OOM| 0.80 | OOM| 0.48
SYNTHAC4! 4 | oom | 0.98 | 0OM | 0.00
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Comparative Cluster Validity Results (ARI)

Comparative Cluster Validity Results (ARI)
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Figure 3.14: Comparison of Validity and Run-time Results
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4. APPROXIMATIVE COMPUTING OF DISTANCES BY
RANDOM HASHING

In this chapter, we propose a technique for approximate ctatipn of inter-object dis-
tances in binary data sets. Our approach is based on Lo&aitgitive Hashing, scales
up well with the number of objects and it is especially uséulparallel computing en-
vironments. We obtain multiple weak clusterings of a datsbgerandomly selecting a
number of projections on its attributes and then groupingab into buckets based on
the common values of these projections. For each pair ottshjeccurrences in the same
bucket are counted and the exact Hamming distance is appated based on the portion
of co-occurrences in the buckets. Next, we parallelize gmputation using mainly two
different schemes. The first assigns each subspace to a piragless calculating its parts
of the co-occurrence matrix and afterwards adds up the cgmpb-occurrence matrix
over all subspaces. The second method exchanges resuliselpetach process during
computation.

4.1 INTRODUCTION

Locality Sensitive Hashing (LSH), introduced in Indyk anatwani (1998) and Andoni
and Indyk (2008), can be used for an approximate calculatfatistances between the
tuples of a table by using randomized hash functions. A clasant of LSH which works
best with the Hamming distance is described in Gionis etl8199).

We propose a method for approximating the distance matribiftary data sets repre-
sented by bit vectors. The core idea is to choesg-dimensional subspaces randomly
and consider a bucket for each possible bit vector in thisgadte. Then, the vectors are
hashed into the matching buckets and, for each pair of abjleetoccurrences in the same
bucket are counted. The exact Hamming distance is approsdrmsed on the portion
of co-occurrences in the: subspaces. We parallelize this computation using differen
schemes.

Our data set is a binary tabfe, having N distinct objects and a sétthat consists of
n distinct attributes. A sef C [ of k attributes, designated aspaobe and chosen
randomly, defines a random hashing functignby assigning to a tuplethe numerical
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binary equivalent of the projection éfon the seti, ¢[K].

Each hashing function produces a partition of the set obsjmach block of this partition
consists of tuples that collide under that hashing function

LSH is used for clustering the Web in Haveliwala et al. (2000)Koga et al. (2007) it is

used to enhance the agglomerative hierarchical clustefitig single link method Sibson
(1973b). Both of these techniques rely on the same ideagedwy LSH: close objects
are likely to collide under a high number of randomly chosashing functions. Both of
these techniques compute the real distances betweenstgsiting in the same blocks.

LSH-Link algorithm Koga et al. (2007) h&3(N?) time complexity as the classical single
link method and it works as follows. DatabaBeis hashed inton partitions by using
randomly generated functions of LSH érattributes. In the first phase of the algorithm
distances between all pairs of tuplas v) residing in the same blocks are computed,
and all the pairs of tuples having distance at moate merged at once. Note that this
pairwise computation takes place on every block of evertitpar. If after the first phase
there is more than one cluster, the algorithm proceeds tse¢bend phase by selecting
a new projection sizé’ such thatt’ < k, and a new distance valuésuch that’ > r.
LSH-Link hashes the whole databaBegain by using the new values ’. It merges the
pair of clusters with respect t6. If there is more than one cluster, the algorithm proceeds
to the next phase by selecting new valuésk” and by repeating all the calculations.
This continues until there is only one cluster. Authors ofj@t al. (2007) point that in a
phase several clusters may be merged as opposed to mergyriggolusters in classical
single link algorithm. Note that if the initial distaneds not chosen carefully the LSH-
Link algorithm may take many phases, therefore yielding yn@dundant hashing and
pairwise distance computations. Furthermore, in the waase this algorithm computes
N? distances.

The clustering algorithms proposed in Haveliwala et alO®0and Koga et al. (2007)
focus on finding the approximate set of near neighddddl(u) of an objectu, followed

by finding real near neighbors afby computing the actual distancégu, v) for all v €
ANN(u). Note that some of the real neighborsuainay be missed because LSH does not
guarantee to put all the close objects in the same blocks.

We aim for a distinct goal, namely an efficient, approximatiemputation of the distance
matrix of the set of objects using LSH, which allows us to useagety of standard
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clustering algorithms.

Parallel and distributed computing techniques are ablelt@$ig and complicated prob-
lems by using a variety of divide-and-conquer techniquashis chapter, we introduce
several parallel data mining programming methodologiasdte applicable in two widely
used architectures: shared disk cluster environment, haced memory architectures
Flynn (1972).

Preliminary results are presented in Mimaroglu and Simd@2@08), and the chapter is
structured as follows. Section 4.2 examines the relatidwéxen randomly generated
hash function collisions and distances. In Section 4.3, vesgnt the algorithms and
implementation guidelines. Experimental environments @st results are presented in
Section 4.4. A final section contains our conclusions andgfar future work.

4.2 COLLISIONS AND DISTANCES

In this section, we examine the relation between randomiegeed hash function colli-
sions and distances between objects.

A binary data collections a sequenc® = (ty,...,ty) of tuples, where; € {0,1}".

Let K = {i1,...,ix} C {1,...,n}. Theprojection of a tupleg € {0,1}" on K is the
tuplet[K] = (¢, ..., ;). The K-projection of the binary data collectidd is the binary
data collectiorD[K| = (t,[K], ..., tn[K]).

Each K -projection of D generates a functiofix : {1,..., N} — N, where fx(r) is
the binary equivalent of the sequerncg«’]. This can be seen in Figure 4.1, where the
function fy;, ;,..5) for the binary data collection shown in Part (a) is given imtR@) of
the figure. f;, ;,.i5) Creates a partition with 8 blocks; 2 of these are empty as shiow
Figure 4.2.

The Hamming distance between two tuples € {0, 1}" is given by

dlu,v) = [{i e {1,....,n} | w; # v},

whereu = (uy, ..., u,) andv = (vy, ..., v,).
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S|
S
>

vl | e | 3 | 14| 15 r| fx(r)
11120011 1 5
2(0(1|1]0]|0 2 2
3/1/]0|1|0]|0 3 6
4,1/1|10(11|0 4 4
5/011|1|1]|1 5 3
6/0/0|1]|1]|1 6 3
71110 1(0]|1 7 7
8/1/1|0|0]|1 8 5
9/0(1|1|1]|0 9 2
(a) (b)

Figure 4.1: A binary collection and the hashing functigin for K = {i1, 13,5 }.

000 | 001 010 || 011
{0 | {F [[{29 | {56
100} 101 110 111
{4y {18 ]| {3} | {7}

Figure 4.2: All the blocks created by for K = {i1, i3, 45 }. Block descriptors, and correspond-
ing row numbers are shown.

Suppose that the set of attribut&sthat defines a probe is chosen at random. There are
such choices if K| = k. A collision takes place between two rowsandyv if the
chosenk attributes are among the — d attributes on whichu andv are equal, where

d = d(u, V) is the Hamming distance betwearandv. There ar " L such choices

for the set/. Therefore, for any two rows, v of D the collision probability forfy, that
is, the probability thafx (u) = fx(v) is

(1)

If m setsK having k elements are chosen at random, thefu, v) the total number
of collisions that occur in this experiment is a binomialigtdbuted variable with the
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distribution B(m, p). Thus, the expected number of collisions is

k
BE(C(u,V)) = m~— 2

if & < n—d, which is typically the case. K > n — d a collision is impossible ang = 0.
It is clear that the smaller the distandg, v), the larger the number of collisions will be.

Using Stirling’s Formula we can write

(7)) e
(n—d)!
k _ Kl(n—d—k)!
n!
n El(n—k)!
k

(n—d)! (n—k)!
n! (n—d-—k)!

(n o d)n—d+0.5(n _ k,)(n—k+0.5)
n(t05) (n — d — f)n—d—k+05
n? — nd — nk + dk """

( n? —nd — nk ) '

<n%;k>d' (Lnik)k'

For moderately large values afthe first two factors are close to Thus, the expected
value of the number of collisions is

E(C(u,v))~m- (1— nik)k

Let c(u,v) = E(C(u,Vv))/m be therelative number of collisionsThen, we estimate the
distance between andv as

i

d(u,v) = (n — k)(1 — c(u,v)*) 4.1)

Assume thatn probes witht attributes are applied, whete< m and1l < k£ < n. Since
we deal with binary data, each attribute may take a valuetb&ei or 1. Therefore, the
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partition that corresponds tokaprobe may contain up t2* blocks.

Letn,,...,nqy be the sizes of the blocks that correspond tefobe. For each block of
the partition we need to update the number of collisions aspd herefore, for a block

of sizen; we need to perforn@") updates of the pair counters. For example, for a block
having three elementfa, b, ¢}, the collision counts of the pairga, b), (a, c), (b, c) are
increased by one. The average size of a block iso the average total time required is

2k 2k
n; 1 9
S(5) = 5|
=1 3
g (MY e (M)
ok ok T 9k+1 9’

The process has to be repeated for eachigirobes and this requires an average time

proportional tom (2,?% — g)

DO | —

4.3 ALGORITHMS AND IMPLEMENTATION GUIDELINES

A clustering, which corresponds to a probe, is represenyesidn a Java or a C++ class
that is parameterized by the projection size. Componeraschistering include its clus-
ters and members of these clusters.

To produce a clustering; attributes are randomly selected and the objects are pedjec
on the selected set of attributes. A clusteconsists of those objects that have the same
projectionp € {0, 1}* on the set of attributes that constitutes the probe. Theevaillit
vectorp is the descriptor of the cluster. The cluster itself is repreed by a bit vector
be € {0,1}Y, where(be); = 1 if and only if the objecu; belongs to the cluste?.

Clusters (blocks) do not overlap. The identifiers of the otgj@re placed into appropriate
clusters according to the descriptors.

The number of clusterings is determined by the user and is passed as an argument to
the implementation. Both the number of clusterings (whigbads the number of probes

m) and the widtht of the probes are set to positive integers by the user. Nateetren

for small values ofk, the probability of selecting the same probe twice is ratmall
because there afg) probes andn is typically much smaller thaf;).
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All clusterings are populated in one scan of the databaselesvEs. Each clustering
may have at mos?* non-empty clusters. First, empty clusterings are init&di, then
each object in the databa®eis passed to all the clusterings. Each clustering projbets t
object on its own randomly selected attributes and theregldee object in the appropriate
cluster according to the cluster descriptors.

Assume a clustering projects on first, fifth, and tenth aitab, then the objed¢)01011010,
is placed in cluster 4 of this clustering. Similarly, if ahet clustering projects on fourth,
sixth, and seventh attributes, then the same ohje&t011010, is placed in cluster 7 of
this clustering. This computation takes place for each dhjiect. In one scan of database
D, m clusterings, each havirZf clusters can be generated efficiently.

We use anV x N matrix referred to as themultaneous occurrence matitix keep track
of the number of collisions of each of the object pairs. Aftetaining the clusterings,
each cluster in every clustering is scanned once and thareoce matrix component
that corresponds to each péir, v) of objects inD that co-occur in the same cluster is
incremented by. Note that there are at masi2* clusters to scan.

For example, assume that we haveabject databas® with n = 4 attributes, the width
of the probes i& = 1, and we haven = 3 clusterings, whose bit vectors are

, and

O R =) = O
O = O = O
O O = O =

The first bit vector indicates that the two buckets that gpoad to the probe consist of
the objects uy, us } and{us, us, us}, respectively; the other bit vectors are constructed in
a similar way. The simultaneous occurrence matrix is shosdovia For example, objects

2 and 4 occur in the same clusters 3 times.
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1121345
1/3/0(2|0|2
203|131
3(2]1|3|1]1
4/0(311(3]|1
5/12|1|1(1|3

Using the simultaneous occurrence matrix, the approximigtance matrix can be com-
puted using Formula (4.1). For the same example, the distasatrix is shown below.
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OINININIFL| O

In a distributed parallel computing environment (in ouregaa Beowulf cluster), each
worker node reads the database file from the shared disk aatksra collection of bit
vectors representing the projected columns. Objects pahie same values on the pro-
jected columns are placed in the same clusters. At each sodaltaneous occurrence
matrix is filled with Os and 1s (representing collision). Baluce the message size be-
tween processors we use the upper right half of SOM, whickfesred as Simultaneous
Occurrence Vector (SOV). Note that the number of simultasemcurrences cannot be
greater than number of nodes in the cluster. Kambadur €2@06) and Tansey and Tile-
vich (2008) offer good solutions for reducing the total naegssize. In order to keep the
SQV size reasonably low we use typear (8 bits). There are 124 nodes in our clus-
ter, therefore in the resulting SOV the largest value may2kdnd this number can be
represented by bits.

Algorithm 10 is for computing SOVs in the cluster environrérhis algorithm is graph-
ically represented in Figure 4.5.

SOVs obtained from each worker node are summed into a res@@V. Instead of sum-
ming all the SOVs sequentially in the master node, we use tlileib MPI function
MPI_Reduce MPI_Reduce is handled in parallel, and in logarithmic time, ¢f@ne it is
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Figure 4.3: In a Cluster Environment Use SOV to Reduce MPI Message Size

Demonstration of MPI_Reduction Operation for Large Vectors

Phase 1 — Summation with Recursive Halving Algorithm (MPI_Reduce-Scatter)
Local SOV Local SOV Local SOV Local SOV

0f1[1]0 0fof1]0 [1[1]0o]0] [0fof1]0]

1 | 1

[ T T ] L Ts] | [ T2] T ] L[ [ [o]

r Ae 2 — Binary Tree (MPI_Gather) /

(] 37 |

Global SOV

Figure 4.4: MPI_Reduce Adding 4 SOVs in Parallel

very advantageous. Full details of the MRéduce depends on the message size and the
MPI implementation. Using Thakur et al. (2005) and Dhilloxdaviodha (2000) a con-
ceptual cost model for MPI collective operations is devetbpnd shown in Figure 4.4.
An alternative idea is to compress each SOV, and decompnesS®Vs at receiving
nodes, then perform summation. For achieving this, alorty sempression functions
MPI_Pack, MPlUnpack routines are used. SOVs gets much smaller when teeyoar-
pressed. However, there is a large overhead to compressS€i¢tat the sender node,
and to decompress each SOV at the receiver side. Note thatténeative approach re-
duces the total message size in the cluster noticeablyt ingtirs overhead for constantly
compressing and decompressing. Experimental resultsexhosthat using MPReduce
with original SOVs yields better performance.
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Input: D: databasek: projection sizem: number of projections
Output: SOV Simultaneous Occurrence Vector
/| There are m worker nodes

foreach worker nodedo
RepresenD vertically by a collection of bit vectors in the main memansfer to thi

bit vector collection aDbv ;
On Dbw, create a random projection of sizdy choosingk columns randomly;
Form a clustering containing2* clusters ;
/'l Some of the clusters in C may be enpty
Place each tuple iwbv into corresponding cluster according to the values in
randomly chosen columns;
Initialize a Simultaneous Occurrence Vector SOV,
foreachclusterK € C do
foreach pair (i, j) € K do
Set value of (i,j) in SOV to 1;
Sum all SOVs in parallel using/Pl_Reduce

Algorithm 10: Parallel Algorithm to Compute Simultaneous Occurrencet®e

U

-
3
=

Parallel Shared Disk I/0 over High Speed Network

Node, (Master) Node, Node, Node

- Replicate DB - Replicate DB - Replicate DB - Replicate DB

- Initialize Global SOV - Initialize local SOV - Initialize local SOV - Initialize local SOV

- Initialize local SOV - Randomly project - Randomly project - Randomly project

- Randomly project over DB and cluster it over DB and cluster it over DB and cluster it
over DB and cluster it - Update local SOV - Update local SOV - Update local SOV

- Update local SOV

\\//

Sum Reduction

Figure 4.5: Computing SOV in Cluster Environment
As the final procedure for computing the Approximate DiseaMatrix, Formula (4.1)

is applied to the resultant SOV as shown in Algorithm 11: daslt of performing this
operation sequentially on one node, we divide SOV imtequal fragments and apply
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Formula (4.1) onm different worker nodes for the corresponding fragmentsaky,
the master node converts it to the Approximate Distanceik@DM) or uses it as is.
Conversion just maps the elements of SOV into ADM, therefbie computationally
cheap. For distributing SOV fragments into worker nodes we use MBScatter; for
collecting the fragments the ME3ather functionality is used in the cluster environment.

Input: SOV Simultaneous Occurrence Vector; number of nodes
Output: ADM: Approximate Distance Matrix

/ Fragment SOV into m contiguous vectors of size n each
n = size(SOV) / m;
Scatter each fragmestOVy, f € {1,..., m} to m worker nodes;

/| Apply distance approximation formnul a
foreach SOV, f € {1,...,m} do

foreachelement e irb OV} do

if e!=0then
e = applyDistanceFormula(e) ;
GatherSOVy, f € {1, ..., m} in the master node to forfiOV;

foreach element e in maste&¥OV do
Map e in ADM,;
Algorithm 11: Parallel Algorithm for Computing Approximate Distance tvia (ADM)

For very large databases we noticed that the total messageshlgorithm 10 becomes
problematic. Therefore, we created an alternative metBahawn in Algorithm 12. In
this algorithm, each node operates dﬁ—%\v—‘ size message, wheneis the total number of
nodes. The algorithm passes each SOV fragment times in a circular motion between
the worker nodes. For achieving this we created a virtualir topology ofm worker
nodes as shown in Figure 4.6. In this setting, each node eeoitthe columns to project
randomly, and creates a fragment of SOV. For exampiele; has the first fragment
containing first@ entries, andVode,, has the Iasﬂ%‘/' entries. After projecting,
each node updates the SOV message it has, then passes thimé&3¥8(ge to its right,
and receives a new SOV message from its left. The circulasagespassing between
nodes is completed im — 1 iterations. This design makes sure that anytime in the gyste
maximum message size|iSOV|, which makes it suitable for very large databases.
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Figure 4.6: Alternative Approach for Computing SOVs in Circular Topgjo

Input: D: databasek: projection sizem: number of projections
Output: SOV: Simultaneous Occurrence Vector
/| There are m worker nodes

foreach worker nodedo
RepresenD vertically by a collection of bit vectors in the main memansfer to thi

bit vector collection aDbv ;

On Dbv, create a random projection of sigdoy choosing: columns randomly;
Form a clustering containing2”* clusters ;

/'l Some of the clusters in C may be enpty

Place each tuple iwbv into corresponding cluster according to the values in
randomly chosen columns;

Initialize a Simultaneous Occurrence Vector SOV fragment;

Update the SOV fragment at hand ;
for 1 to m-1do

U

foreach worker nodedo
Send SOV fragment to the right node ;

Update SOV fragment received from left node ;
Combine all the SOV fragments into a global SOV ;

Algorithm 12: Parallel Algorithm to Compute Simultaneous Occurrencet®ewith
Circular Topology
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4.4 EXPERIMENTAL RESULTS

Our primary testing environment is a Beowulf cluster havigg nodes, with infiniband
connectivity. Each node hassd-bit processor withiGB to 8GB of main memory. The
cluster is equipped with parallel file system, message pgssierface (MPI) Gropp et al.
(1998) Tu et al. (2009), Linux operating system, &ad .0-GHz dual core AMD Opteron
processors.

Our choice of programming language on the cluster is C++.cBaducting experiments
we used MPICH2 Gropp (2002), along with the gcc version 4@mngiler, and Boost
library Karlsson (2005). In the cluster, whose high leveldiogy is given in Figure 4.7,
work load balancing is performed manually.

' Node,  Node, Node, Node _

/mirror Tmirror /mirror /mirror

High Speed Network

Shared disk(s)

Figure 4.7: Topology of the Beowulf Cluster Having 124 Nodes

Since we are interested in implementing our algorithms @tf@ms with a relatively
small number of processors (which are widely available) geduas a secondary exper-
imental environment an Apple - Mac Pro haviaddntel 3.0-GHz Xeon quad-coré4-bit
processors. This server hasores andi6 GB of total main memory. On this shared
memory system, we use Java threads, and these threads aeetedno operating system
native threads by the compiler. We relied on the operatirsgesy (Mac OS X Leopard)
to distribute the work evenly.

Implementation for the Beowulf cluster required more lowestel work compared with
the secondary testing environment. In the Beowulf cluster,relied mostly on MPI
libraries for achieving reliability, and synchronizatidn the shared memory environment
we used locks, and atomic operations (where possible) e sirnilar problems.
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The test data sets we used are randomly generated usingemaisg uniform distribu-
tions for each bit and consisted of bit vectors of lergfilunless otherwise indicated. The
average density of thes is50% in each vector.
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Figure 4.8: Runtime on 10,000 Objects Using Algorithms 10 and 11 in thest@r Environment

Figure 4.8 presents the total execution time for creatiegaiproximate distance matrix
(ADM) on a database having 10,000 objects. Note that in #sisand in all the remaining
tests presented in this section, increasing the number aésxproduces more accurate
ADMs. Results in Figure 4.8 indicate that our implementatrans fully in parallel.
Running the algorithm on 96 nodes and above achieves emtelteuracy relative to
the actual Hamming distance. Also, note that we are physitialited by two factors:
available nodes, and the bandwidth. In Algorithm 10, eaateramputes an SOV, and
then these SOVs are merged into a final SOV in the master nduesiZe of each SOV is
@ where n is the number of objects in the database. For exam@eajatabase with
10, 000 objects, there are around 50 million entries in the SOV (eaxthy is 1 byte long
for saving space). Each node sends the computed SOV thrbadtigh speed infiniband
network as a message. Projection size does not effect toatexetime, but the messages

are reflected as overhead.

Computing the ADMs of databases havitig 000 objects or more by using the Algo-
rithms 10 and 11 is problematic due to the total message Bigere 4.9 shows that for
40,000 objects only32 nodes could be utilized: It was impossible to use more nodes
because of the network bottleneck and memory requireme@dltsarly, for very large
databases we need to use the alternative approach pregeddgarithm 12. Although

this approach is more time consuming, it is less sensitivettd message size and mem-
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Figure 4.9: Runtime on 40,000 Objects Using Algorithms 10 and 11 in thest@r Environment

ory requirements by keeping the network traffic at a constargl as shown in Fig-
ure 4.10.

Approximate Distance Computation for 40,000 Objects
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Figure 4.10: Runtime on 40,000 Objects Using Algorithms 12 and 11 (Cacdbpology) in the
Cluster Environment

To evaluate the accuracy of our approximation we used thberggtic correlation coef-
ficient Sokal and Rohlf (1962). This coefficient takes a vdyeénveen) and 1, where
a higher value implies better correlation. We calculatezl dbphenetic correlation co-
efficient between our approximate distance mattiv M/ , and the Hamming distance
matrix H M. The averages of the matricelsD M and H M are denoted byl and hm,
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respectively. The coefficient is given by

Z(ADM — d)(HM;; — hm)
\/Z ADMy; —d)? S (HMy; — hm)*

In Figure 4.11, we show the cophenetic correlation coefiidier varyingk andm. Note
that the best experimental results are achieved when 2. Higher values ofn pro-
duces better correlations and the coefficient approaches$aioreasonable values of.
Figure 4.12 shows that e.g. fe®, 100, and200 probes, the cophenetic correlation coef-
ficient is0.773, 0.934, and0.972 respectively.200 probes may seem extreme, but each
probe scans onlg attributes out of the total0 attributes. Therefore, each probe scans
10 percent of the database, ap@) probes correspond to a total 26 full scans of the
database. On the other hand, to compute a distance matix@f0 points, around, 000

full scans of the database are required.
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Figure 4.11: Cophenetic Correlation Coefficient on 1,000 Objects Ha@0gAttributes with
Varying k

On our secondary platform (an Apple - Mac Pro) which has éntpdes each clustering
is implemented as a Java thread which is converted to antopgsystem native thread
by the compiler. On a database having 15,000 objects, we at@tppproximate distance
matrices fork = 4 and varying number of nodes (probes). In Figure 4.13 we teaper
total execution time. The results are as expected: tota stays almost stable when
increasing number of nodes.
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Figure 4.14 shows run-time results of approximate distanogputation in comparison to

sequential computation of Hamming distance. We also imptesad a parallel computa-
tion method for Hamming distance. In both implementatiovespuse bit sets and take the
cardinality of XOR operation on bit sets, which is the fasteay to compute Hamming
distance. In the parallel algorithm, only upper half of thankining distance matrix is
computed because the matrix is symmetric. When usingpdes, the matrix is divided
into m equal parts and distributed to nodes for computing. Table 4.1 presents time

complexities of algorithms comparatively.
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Table 4.1: Comparison of Algorithm Complexities
Algorithm Complexity Explanations
Sequential Hamming Distance O(|D|? x |1|) |I] : cardinality of set of at-
tributes
Sequential Approximate Distance m 2‘%‘21 — %) See Section 4.2
Parallel Approximate Distance (Algo. 10 + 11) Q‘Hﬁ — % +axlog|D|? + v with added complexity of MPI
collective operations
Parallel Hamming Distance O(%) + B x log|D|? + A m is O(|D|) and complexity
of MPI collective operations ig
added

4.5 CONCLUSIONS AND FUTURE WORK

Computing the distance matrix of a data set is a fundamentélgm in clustering. We
present an efficient, approximative approach for distaradeutations in dense binary
data sets that relies on randomized hash functions knowmeality Sensitive Hashing
(LSH). Implementation guidelines, and several method€kware suitable for distributed
and shared memory architectures are discussed. Expeahrentilts demonstrate that
our parallel methods are comparably fast and accurate. Wemplate developing new
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parallel clustering ensemble algorithms that will comtseeeral clusterings into a single
superior clustering in an efficient manner.
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5. CONCLUSIONS

Clustering is a major research field in Data Mining, Machireaining, and Pattern
Recognition. An important research trend in clustering @n®ining Multiple Cluster-
ings, which seeks methods of consensus among availablkemchgs of a data set with
the goal to obtain new better final clustering. A detailedriture survey for Combin-
ing Multiple Clusterings is presented in Chapter 1. Thissibientroduces three novel
methods which contribute to clustering research, moreipaty to the area of Com-
bining Multiple Clusterings. These methods are presentédhapters 2, 3, and 4. Our
methods involve efficient and scalable computation teaesgalso with low memory
requirements which enable their application to large dets s

5.1 FASTFIT

FastFit is a novel binary method for fast computation ofartluster and inter-cluster
similarities of a clusteringg*(D). It is based on pairwise object co-associations in a set
of Multiple Clusterings[I(D). Nonetheless, it does not requirél3 x | D| co-association
matrix for this computation. Furthermore, by represengagh cluster using a bit vector,
we utilize fast cluster-wise operations and low memory negments of binary operations.

FastFit can be used as an objective function for optiminatiased consensus solutions
like evolutionary algorithms. As a cluster validity measuFastFit is used to evaluate
cluster cohesion and cluster separation.

Test results with data sets up to 1M data objects demonstateffectiveness of FastFit.
The method is superior to the conventional technique, ity thies fast and efficient, and
it scales to large data sets and uses incomparably less meRastFit is reliable since it
provides a measure of cluster cohesion and separation bas®gect co-associations.

As a future work, we will investigate designing a novel e¥mnoary method for combin-
ing multiple clusterings of a large data set using FastFit.
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5.2 CLICOM

CLICOM is a graph-based consensus solution for combininigipheiclusterings. It finds
maximally complete subgraphs, also known as cliques, implgrepresentation of avail-
able input clusterings. This is a weighted graph where eactex represents a cluster,
and an edge represents the similarity between a pair ofeckisThe basic idea is, since
cliques constitute strong clusters, a good selection qties may yield a good final clus-
tering. CLICOM finds number of clusters in the final clustgrautomatically with respect
to a threshold valug). Similarity of a pair of clusters is evaluated by using a &anity
measuref'C Syi(py, based on object co-associations. Computation of thidaiityiis fast
and does not require || x |D| co-association matrixZC' Sy p) is shown to produce
more accurate results compared to syntactical measugeddicard similarity.

Finding all cliques in large dense graphs is computatignaherwhelming. Although,
CLICOM works with clusters and a threshold,is used to sparsify the similarity graph,
we propose a novel output-sensitive clique finding algaritRastCliquer, which enables
working on larger graphs more efficiently. FastCliquer isedigible substitute for our
purposes, e.g. compared to the widely used Bron-Kerbogdritim for finding cliques.
Extensive experimental studies show that FastCliquereaekiconsiderable speed gain,
while it still finds all or substantial amount of useful clieg

Experimental evaluations on real and synthetic data setpr@vided with benchmark
results of major algorithms for combining multiple clusteys.

As in many graph-based clustering problems, automatigatyiding the best sparsifi-
cation threshold to CLICOM is open to research, since bspiarsification yields better
results. Nonetheless, the algorithm is still very pradtitae to the exploratory nature of
clustering. We plan to further investigate the proposedguare for choosing the best
cliques among others. In FastCliquer algorithm, orderingts in the best possible way
for producing large cliques is also a future research doact
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5.3 APPROXIMATIVE COMPUTING OF DISTANCES BY RANDOM HASH-
ING

Based on an approximation technique by Mimaroglu and Siong2D08), we propose
methods for parallel computation of inter-object distaesgpecially in dense binary data
sets. Our approach is based on Locality Sensitive Hashtatgsup well with the number
of objects and is much faster than "brute-force” computatid these distances using
Hamming distance.

A data setD, hasN distinct objects and a sétwith n distinct attributes. A sek’ C [

of k attributes, designated as a probe and chosen randomlyeslefinrandom hashing
function fx by assigning to a tuple the numerical binary equivalent of the projection of
t on the set. Each hashing function produces a clusteringofEach cluster in this
clustering consists of tuples that collide under the hashinction. The relation between
randomly generated hash function collisions and distabe®gseen objects is explained.

The approximation technique is especially suitable fomajar computation. We take
advantage of several contemporary multiprocessor aathies and show results of dif-
ferent parallel algorithms on distributed- and shared-wgmarchitectures. Experimental
results show that the proposed method is fast and accuraiee wdrk presented in this
chapter provides guidelines for further work on combinirgal clusterings.

5.4 OPEN RESEARCH AREAS

With an emerging need for processing huge and ever-incrgasnounts of diverse data
coming from e.g. the internet, audio, video and image sanaod scientific experiments,
Combining Multiple Clusterings is an important researa@ntr in Data Clustering Jain
(2010). We briefly discuss in Table 5.1, some open areas inb@ong Multiple Cluster-
ings research.
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Table 5.1: Some Open Research Areas

Problem Description
Determining num-| Number of clusterings needed to obtain a good final clugievary
ber of clusterings| with the quality of clusterings. Topchy, Law, Jain and Fr2dQ4) show

[TL(D)]

that consensus functions based on stochastic partitioarggon, re-
labeling, voting and, median partition approaches, caye¢o a true
underlying clustering solution as the number of partitionthe Multi-
ple Clusterings increases.

Determining|7*(D)|

Automatic detection of number of clusters in the Final Gusig is a
desired property, although most consensus functions tagkentumber
as an input parameter.

Combining  Weak

Clusterings

A weak clustering algorithm produces a clustering, whichoigy
slightly better than a random one. Such algorithms are lysuedy sim-
ple and computationally inexpensive. Combining a sufficreumber
of such clusterings yield good clustering results. Topdhgle(2005),
Mimaroglu and Simovici (2008) provide promising resultshis direc-
tion.

Working with large
and very large datg
sets

Most algorithms show their results on very small data setsmkin-
1 ing Multiple Clusterings of large data sets (High dimensiafata with
|D| > 10* data objects) is not well studied.

Cluster Validation

Good and diverse unsupervised validity measures to eeabaditlity of

the Final Clustering is required.
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