
T. C.
BAHÇEŞEḢIR ÜNİVERṠITEṠI

NOVEL EFFICIENT AND SCALABLE METHODS FOR

COMBINING MULTIPLE CLUSTERINGS

Master of Science Thesis

Arif Murat YA ĞCI

Istanbul, 2010

T. C.
BAHÇEŞEḢIR ÜNİVERṠITEṠI

The Graduate School of Natural and Applied Sciences
Computer Engineering

NOVEL EFFICIENT AND SCALABLE METHODS FOR

COMBINING MULTIPLE CLUSTERINGS

Master of Science Thesis

Arif Murat YA ĞCI

Supervisor: Asst. Prof. Dr. Selim Necdet MİMAROĞLU

Istanbul, 2010

T. C.
BAHÇEŞEḢIR ÜNİVERṠITEṠI

The Graduate School of Natural and Applied Sciences
Computer Engineering

Title of the Master’ s Thesis : NOVEL EFFICIENT AND SCALABLE
METHODS FOR COMBINING MULTIPLE
CLUSTERINGS

Name/Last Name of the Student : Arif Murat YAĞCI
Date of Thesis Defense : 13 September 2010

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

Asst. Prof. Dr. Tunç BOZBURA
Acting Director

This is to certify that we have read this thesis and that we findit fully adequate in scope, quality
and content, as a thesis for the degree of Master of Science.

Examining Commitee Members:

Asst. Prof. Dr. Selim Necdet ṀIMAROĞLU :

Assoc. Prof. Dr. Taşkın KOÇAK :

Asst. Prof. Dr. Olcay KURŞUN :

ACKNOWLEDGMENTS

This thesis is dedicated to all the great people who inspiredme.

I am so very thankful for my advisor, Dr. Selim Necdet Mimaroglu, who has helped

me a lot during my research and also for a future academic research career, which I

always wanted. It was a privilege to work with him. His guidance and support has been

challenging as well as encouraging which has contributed tomy success and well-being.

I thank Dr. Taskin Kocak and Dr. Olcay Kursun for their constructive criticism, time, and

support. I also thank Dr. Tevfik Aytekin and other distinguished members of the BSU

Engineering Faculty for their help when I needed.

People in my research group have provided great support where I gained more insight

into tough problems. I thank other researchers, especiallyM. Emin Aksehirli and Ertunc

Erdil.

iii

ABSTRACT

NOVEL EFFICIENT AND SCALABLE METHODS FOR COMBINING MULTIPLE

CLUSTERINGS

YAĞCI, Arif Murat

Computer Engineering

Supervisor: Asst. Prof. Dr. Selim Necdet MİMAROĞLU

September 2010, 93 Pages

Clustering is a semi- or unsupervised process of grouping similar objects together. It is

widely used for data understanding and data reduction. Combining Multiple Clusterings

is an important research trend in clustering that goes beyond what is typically achieved

by a single clustering algorithm. The basic idea is that by taking multiple looks at the

same data, one can generate a diverse set of clusterings. By combining these cluster-

ings, it is possible to obtain abetterFinal Clustering or discover some otherwise hidden

aspects of the data set. Multiple clusterings may be produced by running different clus-

tering algorithms with varying input parameters. Domain experts, proprietary methods,

or a distributed computing environment may provide clusterings. Computationally cheap

operations e.g. on random projections or random samplings of a data set may also pro-

vide multiple clusterings. A range of applications in Bioinformatics, Computer Vision,

and Text Mining, among others, employ algorithms for combining multiple clusterings.

iv

This thesis provides a literature survey and contributes three novel and efficient methods

to Combining Multiple Clusterings research. First, we propose a novel binary method for

fast computation of an objective function, FastFit, which measures cluster cohesion and

separation with respect to object co-associations. This computation method is very effi-

cient in terms of both time and space complexity. Secondly, anovel accurate and scalable

consensus method, CLICOM, is proposed to combine multiple clusterings using graph-

theoretic cliques. CLICOM employs, as well, a novel output-sensitive clique finding

algorithm which works on larger graphs and produces output in a short amount of time.

Finally, a set of parallel algorithms is proposed to calculate an approximate distance ma-

trix of a binary data set. These algorithms compute distances by utilizing weak clusterings

of randomly hashed objects in shared and distributed memorycomputing environments.

Experimental results of the proposed methods are shown on synthetic and real data sets.

The methods are especially suited to large data sets where efficiency and scalability is a

major concern.

Keywords: Clustering, Clustering Ensemble Problem and Consensus Clustering, Binary

Methods and Graph Theory, Data Mining, Machine Learning andPattern Recognition

v

ÖZET

ÇOKLU BÖLÜMLENMELERİN BİRLEŞṪIRİLMESİNDE YENİ VERİML İ VE

ÖLÇEKLENEḂIL İR YÖNTEMLER

YAĞCI, Arif Murat

Bilgisayar Mühendisliği

Tez Danışmanı: Yrd. Doç. Dr. Selim Necdet MİMAROĞLU

Eylül 2010, 93 Sayfa

Bölümlenme, benzer veri nesnelerinin yarı denetimli veya denetimsiz şekilde gruplanması

işlemidir. Verinin anlaşılması ve indirgenmesinde sıkc¸a kullanılır. Çoklu bölümlenmelerin

birleştirilmesi, bölümlenme araştırmalarında önemli bir eğilim olup, tek bir bölümlenme

algoritması ile tipik olarak elde edilenden daha ileriye gitmektedir. Temel fikir,

aynı veriden farklı bakış açılarıyla değişik bölümlenmelerin yaratılabilmesidir.

Bu bölümlenmeler birleştirilerekdaha iyi bir nihai bölümlenme elde etmek veya

verinin daha evvelden saklı kalmış bazı özelliklerini keşfetmek mümkündür. Çoklu

bölümlenmeler farklı bölümlenme algoritmalarının değişken giriş parametreleri ile

koşturulmasıyla elde edilebilir. Alanının uzmanları, özel mülkiyete tabi yöntemler veya

dağıtık bir hesaplama ortamı bölümlenmeler sağlayabilir. Veri kümesinin rastlantısal

izdüşümleri veya verinin örneklemeleri üzerinde yapılan az maliyetli hesaplamalar da

bölümlenmeler sağlayabilir. Diğerleri yanında özellikle Biyobilişim, Bilgisayarlı Görme

ve Metin Madenciliği çoklu bölümlenmelerin birleştirilmesi algoritmalarını

kullanmaktadır.

vi

Bu tez bir literatür taraması sağlamakta ve üç yeni ve verimli yöntem ile çoklu

bölümlenmelerin birleştirilmesi araştırmalarına katkıda bulunmaktadır.̇Ilk olarak, bölüt

iç uyumu ve ayrılığını veri nesnelerinin bölümlenmelerdeki birlikteliklerine göre ölçen bir

hedef fonksiyon, FastFit’ in hızlı hesaplanması için yeniikili bir yöntem önerilmektedir.

Bu hesaplama yöntemi hem zaman hem de yer karmaşıklığı ac¸ısından verimlidir.İkinci

olarak, çizge kuramından klikler kullanılarak çoklu bölümlenmelerin birleştirilmesi için

yeni hassas ve ölçeklenebilir bir yöntem olan CLICOM önerilmektedir. CLICOM büyük

çizgeler üzerinde çalışan ve kısa zamanda sonuç üreten yeni çıktı duyarlı bir klik bulma

algoritması da barındırmaktadır. Son olarak, ikili bir veri kümesinin yaklaşık uzaklık

matrisini hesaplamak için bir grup paralel algoritma önerilmektedir. Bu algoritmalar,

ortak ve dağıtık bellekli hesaplama ortamlarında, rastlantısal olarak çırpı fonksiyonun-

dan geçirilmiş veri nesnelerinin oluşturduğu zayıf b¨olümlenmeleri kullanarak uzaklıkları

hesaplamaktadır.

Önerilen yöntemlerin deneysel sonuçları sentetik ve gerçek veriler üzerinde gösterilmiştir.

Yöntemler özellikle verimlilik ve ölçeklenebilirli˘gin başlıca endişe olduğu büyük verilere

uygundur.

Anahtar Kelimeler: Bölümlenme, Bölümlenme Topluluğu Problemi ve Konsensüs

Bölümlenme,İkili Yöntemler ve Çizge Kuramı, Veri Madenciliği, Makine Öğrenmesi

veÖrüntü Tanıma

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiii

LIST OF SYMBOLS . xiv

1 INTRODUCTION . 1
1.1 CLUSTERING: BASIC CONCEPTS AND METHODS 1

1.1.1 Clustering Methods . 2
1.1.2 Cluster Validation . 6

1.2 COMBINING MULTIPLE CLUSTERINGS 8
1.2.1 Methods for Combining Multiple Clusterings 11
1.2.2 Factors Affecting Final Clustering Quality 12
1.2.3 Final Clustering Validation .. 14
1.2.4 Combining Weak Clusterings . 15
1.2.5 Applications . 16

1.3 THESIS OVERVIEW . 18

2 FASTFIT: AN EFFICIENT OBJECTIVE FUNCTION FOR EVALUATING
CLUSTERING QUALITY . 20
2.1 INTRODUCTION . 20
2.2 PRELIMINARIES . 21
2.3 INTER AND INTRA CLUSTER SIMILARITIES 22
2.4 FAST COMPUTATION OF SIMILARITIES 23

2.4.1 Generalization of the Method . 25
2.5 EXPERIMENTAL RESULTS . 27
2.6 CONCLUSIONS AND FUTURE WORK 29

3 CLICOM: CLIQUES FOR COMBINING MULTIPLE CLUSTERINGS 32
3.1 INTRODUCTION . 32
3.2 PRELIMINARIES . 33

3.2.1 Clusterings and Co-associations 33
3.2.2 Graph-based Clustering . 34
3.2.3 Cliques . 34

3.3 RELATED WORK . 36
3.3.1 Shortcomings of Related Work 38

3.4 CLICOM . 38
3.5 DISCUSSION OF CLICOM . 42

3.5.1 Advantages of CLICOM . 42

viii

3.5.2 Shortcomings of CLICOM . 44
3.6 OUTPUT-SENSITIVE CLIQUE FINDING ALGORITHM 44
3.7 EXPERIMENTAL EVALUATIONS . 48

3.7.1 Measuring Clustering Validity 48
3.7.2 Data Sets . 50
3.7.3 Experimental Results . 52

3.8 CONCLUSIONS AND FUTURE WORK 55

4 APPROXIMATIVE COMPUTING OF DISTANCES BY RANDOM HASHING 60
4.1 INTRODUCTION . 60
4.2 COLLISIONS AND DISTANCES . 62
4.3 ALGORITHMS AND IMPLEMENTATION GUIDELINES 65
4.4 EXPERIMENTAL RESULTS . 72
4.5 CONCLUSIONS AND FUTURE WORK 77

5 CONCLUSIONS . 79
5.1 FASTFIT . 79
5.2 CLICOM . 80
5.3 APPROXIMATIVE COMPUTING OF DISTANCES BY RANDOM HASH-

ING . 81
5.4 OPEN RESEARCH AREAS . 81

REFERENCES . 83

ix

LIST OF TABLES

Table 1.1 : Methods for Combining Multiple Clusterings 13

Table 2.1 : Experimental Setup and Run Times 29

Table 2.2 : Memory Consumption . 31

Table 3.1 : Properties of Test Data Sets . 51

Table 3.2 : Input Clustering Properties . 51

Table 3.3 : Cluster Validity using Bron-Kerbosch vs FastCliquer 56

Table 3.4 : Run-Time Results using Bron-Kerbosch vs FastCliquer57

Table 3.5 : Object-wise Similarity Graph 57

Table 3.6 : Cluster Validity Results of Related Work 58

Table 4.1 : Comparison of Algorithm Complexities 77

Table 5.1 : Open Research Areas . 82

x

LIST OF FIGURES

Figure 1.1 : Notion of a cluster . 2

Figure 1.2 : Clustering uniformly distributed points 7

Figure 1.3 : Combining Multiple Clusterings 9

Figure 1.4 : Combining Clusterings in Computer Vision 17

Figure 2.1 : Binary representation of multiple clusterings 25

Figure 2.2 : Binary representation of Final Clustering 25

Figure 2.3 : Graphical Representation of Cluster Similarities 28

Figure 2.4 : Execution time on SYNTH1 29

Figure 2.5 : Execution time on SYNTH2 30

Figure 2.6 : Execution time on SYNTH3 30

Figure 2.7 : FastFit Memory Consumption 31

Figure 3.1 : A collection of clusterings . 34

Figure 3.2 : Pairwise Inter Cluster Similarity 39

Figure 3.3 : Jaccard vsECSΠ Similarity 40

Figure 3.4 : Notion of Cluster Blocks . 40

Figure 3.5 : Voting matrix . 42

Figure 3.6 : Final Clustering . 42

Figure 3.7 : Adjacency and Clique Matrix 48

Figure 3.8 : Abbreviations for ARI . 49

Figure 3.9 : Synthetic Data Sets . 52

xi

Figure 3.10 : Gaussian Mixture Data Sets . 52

Figure 3.11 : Results on HALFRING Data Set 53

Figure 3.12 : Results on IRIS Data Set . 54

Figure 3.13 : Results on SYNTH10C Data Set 55

Figure 3.14 : Cluster Validity and Run-Time Results 59

Figure 4.1 : Binary Collection and Hashing Function 63

Figure 4.2 : Blocks created by Hashing Function 63

Figure 4.3 : SOV Representation . 68

Figure 4.4 : MPI Reduce Example . 68

Figure 4.5 : Computing SOV in Cluster Environment 69

Figure 4.6 : Circular Topology . 71

Figure 4.7 : Beowulf Cluster . 72

Figure 4.8 : Runtime on 10,000 Objects . 73

Figure 4.9 : Runtime on 40,000 Objects . 74

Figure 4.10 : Runtime on 40,000 Objects using alternative algorithm 74

Figure 4.11 : Cophenetic Correlation Coefficient 75

Figure 4.12 : Cophenetic Correlation Coefficient on 10,000 data76

Figure 4.13 : Secondary Testing Environment 76

Figure 4.14 : Run-time comparison . 77

xii

LIST OF ABBREVIATIONS

Approximate Distance Matrix : ADM
Adjusted Rand Index : ARI
Evidence Accumulation Algorithm : EAC
Expectation-Maximization Algorithm : EM
Hamming Distance Matrix : HM
Locality Sensitive Hashing : LSH
Message Passing Interface : MPI
Millisecond : ms
Minimum Spanning Tree : MST
Normalized Mutual Information : NMI
Principal Component Analysis : PCA
Serial Graph Partitioning Software : METIS
Simultaneous Occurence Matrix : SOM
Simultaneous Occurence Vector : SOV
Sum of Squared Errors : SSE

xiii

LIST OF SYMBOLS

Clique : clq
Clique Matrix : K
Cluster (i-th) : Ci

Cluster Block : B
Clustering of Data Set : π(D)
Consensus Function : Γ
Cumulative Pairwise Similarity of a Clique : CECSΠ(D)(clq)
Data Set : D

Data Set Object (i-th) : di
Distance between Two Objects : d(u, v)
Entropy ofi-th Cluster : h(Ci)
Final Clustering of Data Set : π⋆(D)
Inter Cluster Similarity : ECS(π(D))
Intra Cluster Similarity : ICS(π(D))
Multiple Clusterings : Π(D)
Mutual Information of Two Clusterings : MI(π1(D), π2(D))
Number of Clusters in Multiple Clusterings : |Π|tc
Number of Clusterings in Multiple Clusterings : |Π(D)|
Number of Collisions between Two Objects : c(u, v)
Objective Function : φ(π(D))
Original Class Information of Data Set : πo(D)
Overlapping Percentage : δ
Pairwise Cluster Similarity : ECSΠ(D)(Ck, Cl)
Random Hashing Function overK : fK
Set of Cliques : SC
Set of Near Neighbors of an Object : ANN(u)
Similarity Threshold : θ
Total Entropy of a Clustering : H(π(D))

xiv

1. INTRODUCTION

This chapter provides information on clustering and combining multiple clusterings re-

search.

1.1 CLUSTERING: BASIC CONCEPTS AND METHODS

Clustering, which is also known asUnsupervised Classification, is the process of group-

ing similar objects together. In other words, clustering isorganizing objects in an un-

predefined but meaningful manner. The ultimate goal is that the objects within a cluster

are similar to each other and different from the objects in other clusters. Clustering is

widely used for exploratory data analysis or hypothesizingabout data. It may also be

used for data reduction by creating an abstraction of data such as data summarization or

data compression.

Clustering is an important research area and it is studied extensively in Data Mining, Ma-

chine Learning and Pattern Recognition. It is commonly usedin disciplines that involve

analysis of data, therefore it plays an important role in a wide variety of fields. Natural and

Social Sciences ranging from Physics and Biology to Economics as well as many emerg-

ing interdisciplinary fields such as Bioinformatics, Information Retrieval, and Computer

Vision have important applications of clustering.

The notion of a cluster is not well-defined and the definition of similarity among data

objects poses a challenging issue. Therefore, a cluster is asubjective entity that is in the

eye of the beholder and its significance and interpretation requires domain knowledge Jain

(2010). Figure 1.1 shows that clusters can differ e.g. in shape, size, and density. Many

factors, such as noise significantly affect the accuracy of aclustering algorithm.

Although humans are excellent cluster seekers in two and possibly three dimensions, com-

puter algorithms are needed to cluster sophisticated and high-dimensional data sets where

curse of dimensionality Bellman (2003) is added to the existing set of issues in clustering.

Yet another problem in clustering is the unknown number of true natural clusters for the

given data. Most clustering algorithms take number of clusters as an input parameter.

1

Figure 1.1: Left Figure shows input data. Right Figure shows a desired clustering with 7 different
clusters and isolated noise. Clusters differ in shape, size, and density. (Figure taken from Jain
(2010))

More detailed information on clustering can be found in Tan et al. (2005), Han and Kam-

ber (2005), Alpaydin (2010), Jain and Dubes (1988), Jain (2010).

1.1.1 Clustering Methods

There is no single clustering algorithm that works well on all the data sets. Kleinberg

(2002) suggests a formal perspective based on three criteria to show impossibility of find-

ing a clustering function which satisfies this formalism. Finding natural groupings of a

data set is a hard to accomplish task: Thousands of clustering algorithms in the literature

speak to this nature. This is also due to the fact that there isno bestclustering algorithm.

Each clustering technique makes some assumptions about theunderlying data set. If the

assumptions hold, good clusterings can be expected. But, more than often assumptions

about the data set do not hold, which in turn means bad clusterings will be generated.

It is difficult to provide a crisp categorization of clustering methods, because quite often

these categories overlap, so that a method may have featuresfrom several categories. Han

and Kamber (2005) provide a useful categorization of clustering methods. In the follow-

ing, basic clustering concepts and some influential clustering algorithms are presented.

Partitional vs. Hierarchical Clustering :Partitional clustering methods divide data into

non-overlapping clusters such that each data object is in one cluster. On the other hand,

Hierarchical clustering methods permit clusters to have subclusters and therefore form

2

a tree of nested clusters. Leaf nodes of the tree represent data set objects as singleton

clusters, and the root represents a cluster containing all the objects. Each intermediate

node (cluster) is the union of its children. A partional clustering can be obtained by

cutting the tree at a particular level.

Exclusive vs. Fuzzy Clustering :A clustering is exclusive or hard if each object is

assigned to a single cluster. An overlapping or non-exclusive clustering refers to one, in

which an object can belong to more than one cluster. In Fuzzy Clustering, clusters are

treated as Fuzzy Sets (see Lee (2004)), where each object belongs to every cluster with a

membership weight between 0 and 1.

Complete vs. Partial Clustering : In a complete clustering, every object is dutifully

assigned to some cluster. A partial clustering algorithm does not necessarily do this as-

signment since some objects may not belong to well-defined groups and represent e.g.

noise or outliers.

Different notions of a Cluster : A cluster iswell-separatedif each data object is more

similar to every other object in the cluster than to any object not in the cluster. If a clus-

tering consists of well-separated clusters, then the distance between any two points in

different clusters is larger than the distance between any two points within a cluster. At

another direction, it is useful to make aprototype-baseddefinition of a cluster where a

prototype refers to some statistical representation such as a centroid or medoid. Repre-

senting data as a graph allowsgraph-basednotion of a cluster, where a cluster can be seen

as a connected component based on connectivity of graph vertices. A problem with this

approach may occur when noise is present. Another strong graph-based approach defines

a cluster as a clique. Chapter 3 uses this approach for combining multiple clusterings.

Density-basedapproach defines a cluster as a dense region of objects surrounded by a

region of low density. This approach is often employed when the clusters are intertwined

or not regular, and noise and outliers are present. Yet another definition of a cluster is

a conceptual clusterwhich encompasses above mentioned definitions. The specificcon-

cept of a cluster is needed to be supplied to the clustering algorithm. It is a challenging

problem to create the notion of a cluster, as the concept getstoo sophisticated.

3

k-Means

k-Means is a seminal clustering algorithm which findsk prototype-based clusters (repre-

sented by centroids), wherek is a user-defined input. Each data object is assigned to the

most similar cluster. The basic algorithm is partitional and the final clustering is exclusive

and complete. There are many variations ofk-Means in the literature including its fuzzy

version, Fuzzy C-Means. Jain (2010) provides a detailed survey onk-Means clustering.

A similar algorithm,k-Medoids, works with cluster medoids instead of centroids.

Input : D: Data Set,k: Number of Clusters
Output : k Clusters
Randomly selectk points as initial centroids ;
repeat

Formk clusters by assigning each point to the closest centroid ;
Recomputek new centroids ;

until Centroids do not change;
return k Clusters;

Algorithm 1 : Basick-Means Algorithm

k-Means clustering can also be stated as an optimization problem with an objective to

minimize a sum of squared error function,SSE =
∑k

i=1

∑

d∈Ci
distance(ci, d)

2 where

distance function is based on Euclidean distance,d is a data set object,ci is a centroid,

andCi is the cluster that centroid represents.

Hierarchical Clustering

Hierarchical Clustering algorithms can be agglomerative or divisive. They generate a hi-

erarchy of nested clusters that can be represented by a binary tree, called adendrogram.

Agglomerative hierarchical clustering algorithms start with each data point as an individ-

ual cluster and merge the most similar pair of clusters iteratively. The dendrogram is cut

at a certain level to obtain meaningful clusters. The basic algorithm creates an exclusive

and complete clustering.

Definition of cluster similarity differs in various agglomerative hierarchical clustering

techniques.Single Linkdefines cluster similarity as the similarity between closest two

points that are in different clusters whereasComplete Linkdefines it as the similarity of

farthest two points in different clusters.Group Averagedefines cluster similarity to be

the average pairwise similarities of all pairs of points from different clusters. All these

4

Input : D: Data Set
Output : Dendrogram
Compute similarity matrix ;
Initialize Dendrogram with each data set object being a singleton cluster ;
repeat

Merge two most similar clusters ;
Update similarity matrix with the new cluster ;
Update Dendrogram ;

until All clusters are merged;
return Dendrogram;

Algorithm 2 : Basic Agglomerative Hierarchical Clustering Algorithm

approaches are graph-theoretic. An alternative technique, Ward’ s methodassumes that

a cluster is represented by its centroid and measures similarity between two clusters in

terms of decrease in theSSE that results from merging the clusters.

Besides their usefulness, Agglomerative Hierarchical Clustering algorithms are expensive

in terms of their computational and storage requirements especially with large data sets.

Once a cluster is formed, there is no going back. It may be problematic to decide where to

cut the dendrogram. It is hard to tell the inner structure of acluster from the dendrogram,

e.g. which object is the medoid of the cluster and which objects are the borders of the

cluster. These algorithms are sensitive to small perturbations in the data.

Other Important Clustering Algorithms

DBSCAN Ester et al. (1996) is an influential density-based clustering algorithm. It clas-

sifies a data set object as one of the cores of a cluster, if the object has more thanminPts

neighbors within anǫ neighborhood. Clusters are formed by connecting neighboring core

objects and non-core objects either serve as the boundariesof clusters or classified as

noise. Since noise is typically randomly distributed, density of a cluster should be sig-

nificantly higher than that of noise. DBSCAN finds arbitrarily-shaped clusters and unlike

k-Means or hierarchical methods, it forms partial clusterings since it may mark some data

set points as noise. DBSCAN can be problematic with clustersof varying densities. Find-

ing the properminPts andǫ is another issue. High dimensional data causes problems

because it is difficult to recognize densities in such dimensions. A grid-based clustering

technique CLIQUE Agrawal et al. (1998) and a kernel-based scheme DENCLUE Hin-

neburg and Gabriel (2007) are also examples of density-based clustering.

5

Graph-based clustering techniques construct a weighted graph from data, where weights

represent similarities between data set objects or some higher level view of data. Mini-

mum Spanning Tree (MST) clustering finds MST of the dissimilarity graph and cuts edges

with largest dissimilarity iteratively until singleton clusters remain. This is equivalent to

Hierarchical clustering algorithm with Single Link. OPOSSUM Strehl et al. (2000) and

CHAMELEON Karypis, Han and Kumar (1999) are some of the important graph-based

techniques. METIS Karypis and Kumar (1998a) is not a clustering algorithm itself, but

it is often used in graph-based clustering to partition the graph in an efficient way. In

Chapter 3, we give more detail about graph-based clusteringand propose a graph-based

method for combining multiple clusterings.

Prototype-based notion of a cluster is used ink-Means in a simple but effective way. This

notion is commonly used in Machine Learning and Pattern Recognition. Mixture Model

Clustering is more general thank-Means, because it deals with various types of statis-

tical distributions. Many real life data sets are indeed theresult of random processes,

and thus should satisfy the statistical assumptions of these models. Mixture models view

data as a set of observations from a mixture of different probability distributions. Finding

parameters of each distribution means location of a cluster. Expectation-Maximization

(EM) algorithm Dempster et al. (1977) is commonly used to estimate mixture model pa-

rameters using maximum likelihood principle. In the end, a data set object is assigned

to each distribution with some probability. Self-Organizing Maps (SOM) Kohonen et al.

(2001) can also be considered a prototype-based clusteringtechnique from a neural net-

work viewpoint. SOM assigns each data set object to the cluster whose centroid provides

the best approximation of it.

Semi-supervised clustering algorithms Chapelle et al. (2006) utilize anyside information

available along with the data set and the similarity matrix.For example, a must-link

constraint specifies that a pair of data set objects connected by the constraint belong to

the same cluster whereas a cannot-link constraint specifiesthe opposite. Such constraints

can be provided by the domain expert or domain ontology.

1.1.2 Cluster Validation

Almost every clustering algorithm will dutifully find clusters, even if the data set has no

natural clusters. Figure 1.2 shows clustering results ofk-Means, DBSCAN, and Single

Link Hierarchical Clustering algorithms respectively on adata set with uniformly dis-

6

tributed data set objects.

Original data k−Means with k=3

Single Link Hierarchical clustering

DBSCAN with minPts=4 eps=0.1

1

2

3

1

2

3

−1

1

2

3

Figure 1.2: Clustering 150 uniformly distributed data set objects

So, what is a good clustering? Cluster Validation refers to aformal evaluation of how

good a clustering is. It is a challenging topic and some even argue that Cluster Validation

is unnecessary since clustering is of exploratory nature and the notion of a cluster differs

from one algorithm to another. Nonetheless, there are many cluster validation measures

in the literature. Jain and Dubes (1988), Tan et al. (2005) classify validation measures,

or indices into three types:

Supervised (External) Methods :validate a cluster against some a priori external infor-

mation. Often, this information is the true class memberships.Entropyis an information-

theoretic approach for measuring cluster validity. Given adata setD and a clustering,

π(D) = {C1, C2, . . . , C|π|}, entropy of each cluster,Ci, is calculated using the formula

h(Ci) = −Σ
|πo(D)|
j=1

|Co
j∩Ci|

|Ci|
log2

|Co
j∩Ci|

|Ci|
, whereπo(D) = {Co

1 , C
o
2 , . . . , C

o
|πo|} represents the

true class memberships (ground truth). Total entropy ofπ(D) is used to evaluate its va-

lidity and calculated using the formulaH(π(D)) = Σ
|π(D)|
i=1

|Ci|
|D|

h(Ci). Purity, Precision,

Recall, andF-Measureare some of the other well-known supervised validation methods

7

that evaluate the extent to which a cluster contains objectsof a single class. A group of su-

pervised validation methods, on the other hand, measure to extent which two objects that

coexist in the same class also coexist in the same cluster. Itis possible to construct two

D ×D binary matrices for cluster and class similarities respectively where 1’s represent

coexistence of two data set objects.Correlationbetween these two matrices is used as a

validity measure.Rand IndexHubert and Arabie (1985) and well-knownJaccard Index

evaluate cluster validity by looking at a contingency tablefor number of coexistences in

classes/clusters. In Chapter 3, we useAdjusted Rand Indexand an entropy-based method

for cluster validation.

Unsupervised (Internal) Methods :measure the goodness of a clustering with respect to

the data set itself or the similarity matrix. Some of these measures are based onClus-

ter Cohesionwhich determines how similar the objects are in a single cluster. Some are

based onCluster Separationwhich measures how isolated or well-separated a cluster is

from the others. There are graph-based and prototype-basedapproaches to Cohesion and

Separation Tan et al. (2005). Chapter 2 presents a graph-based hybrid approach com-

bining cohesion and separation for validation of combined multiple clusterings. Another

hybrid method is Silhoutte coefficients Kaufman and Rousseeuw (2005) which calculates

a coefficient for each data set object, based on its similarity with all other objects in its

cluster and all other clusters. Apart from cohesion and separation, the similarity matrix

can directly be used to validate a clustering by reordering its columns and rows according

to the class labels in the clustering. This matrix must ideally be a block diagonal structure.

Correlation between ideal and actual matrices can be evaluated. The method also enables

visual inspection of clusters, but it may be costly for largedata sets.

Relative Methods :are not specific methods for cluster validation, but rather refer to a

methodology to decide which validity methods are better forthe problem in some sense.

Any cluster validity measure can be used as a relative measure. Significance of different

measures for available clusterings to be validated needs tobe assessed. Vendramin et al.

(2009) provide a comparison of relative clustering validity criteria.

1.2 COMBINING MULTIPLE CLUSTERINGS

Combining Multiple Clusterings, which is also known asConsensus Clusteringor Clus-

tering Ensemble problem, refers to combining available information in existing cluster-

8

ings (partitions) of a data set into a new final clustering. The basic idea is that by taking

multiple looks at the same data, one can generate diverse clusterings. By combining these

clusterings, it is possible to obtain abetterFinal Clustering or discover some otherwise

hidden aspects of the data set.

D

Data Consensus Final
Function Clustering

Multiple
Clusterings

π1(D)

π2(D)

π|Π|(D)

Γ π⋆(D)
b

b

b

Π(D)

Figure 1.3: An abstract view of Combining Multiple Clusterings

The success of ensemble methods in sensor fusion and classification (supervised learning)

problems Kittler et al. (1998), Dietterich (2000), Lam (2000), has motivated the develop-

ment of ensemble methods for clustering problems (see Fred and Jain (2005)). Influential

classifier ensemble algorithms like Bagging Breiman (1996)and Boosting Freund and

Schapire (1997) can combine classification results from different classifiers successfully

to obtain more accurate results. However, Clustering Ensemble problem is a harder one,

mainly due to its nature and theclass correspondenceproblem.

Another motivation comes from an application point of view.Diversity of clustering tech-

niques motivates creating multiple clusterings of a data set and combine their results for

a better clustering. On the other hand, clustering algorithms take some input parameters.

It may be of interest to run a clustering algorithm with varying input parameters to obtain

multiple clusterings. Creating multiple clusterings by random samplings or random pro-

jections of a data set is used widely. Distributed computingenables creation of multiple

clusterings at different sites by using task- or data-parallelism. A combination of clus-

tering results are necessary. Clusterings provided by domain experts, or semi-supervised

clustering algorithms may be introduced in an ensemble as anadditional clustering. Fi-

nally, either the data set or the clustering methods can be proprietary, and only some

clustering results are made available. Section 1.2.5 provides real life applications.

Topchy, Jain and Punch (2004) suggest that Combining Multiple Clusterings can go be-

yond a single clustering algorithm in several respects :

9

• Robustness :Better average performance across the domains and data sets

• Novelty : Finding a new combined solution which is better or reveals some other-

wise hidden aspects of data

• Stability and Confidence :Less sensitivity to noise, and outliers. Clustering uncer-

tainty due to cluster overlappings may be resolved.

• Parallelization and Scalability :Ability to integrate solutions from multiple dis-

tributed sources.

Figure 1.3 illustrates an abstract view of Combining Multiple Clusterings. A set of clus-

terings,Π(D), is generated from a data set,D. These clusterings are usually represented

by the cluster memberships of data set objects. In some cases, they may be represented

by their cluster prototypes, or such information may be available as side information as

well. The clusterings are then combined into a new final clustering,π⋆(D), using acon-

sensus function, Γ. Chapters 2 - 4 provide a more detailed view of combining multiple

clusterings for the specific methods they present.

A variety of consensus functions are defined in the literature. In an influential paper

by Fred and Jain (2005), the consensus function,Γ, is based on aco-association mea-

suredefined bycoassoc(di, dj) = votesij/|Π(D)|, wherevotesij is the number of co-

occurrences of data objectsdi anddj in a cluster, such thatdi ∈ D anddj ∈ D. The

co-associations are held in aD ×D matrix which is used as an input to hierarchical and

graph-based clustering algorithms. This approach operates at object resolution. Strehl

and Ghosh (2002) propose consensus functions, where the setof multiple clusterings,

Π(D), is represented by ahypergraph. These solutions typically operate at lower res-

olution, namely cluster level, where hyperedges representclusters. Filkov and Skiena

(2004), Cristofor and Simovici (2002) propose consensus functions based onmedian par-

tition approach. The consensus clustering process is defined as finding a new clustering

(median partition),π⋆(D), which minimizes the functionΨ = Σ
Π(D)
i=1 diff(πi(D), π⋆(D))

wherediff is a function measuring difference between two clusterings. The median par-

tition approach is shown to be NP-complete in Barthelemy andLeclerc (1995), therefore,

it is commonly used in optimization-based approaches to Combining Multiple Cluster-

ings.diff is defined e.g. info-theoretically as in Strehl and Ghosh (2002), Cristofor and

Simovici (2002) or based on co-associations of objects as inFilkov and Skiena (2004).

10

1.2.1 Methods for Combining Multiple Clusterings

The problem of Combining Multiple Clusterings, is an activeresearch topic in Data Min-

ing, Machine Learning, and Pattern Recognition. In this section, we provide an overview

of some notable methods in the literature. Table 1.1 summarizes these methods. Chapter 3

provides more details about some of the methods used for comparison with the proposed

method in that chapter. Application-specific solutions arepresented in Section 1.2.5.

There are graph-based, prototype-based, and optimization-based approaches for combin-

ing multiple clusterings. Some of the methods work on objects, whereas others work with

higher level representations of data such as clusters. Unfortunately most of the proposed

methods do not scale well on large data sets.

Fred and Jain (2005) propose Evidence Accumulation (EAC) for combining multiple clus-

terings. This method builds a co-association matrix of dataset objects and then applies

hierarchical clustering to this matrix using either SingleLink or Group Average as mea-

sures of cluster similarity. There are also other graph-based methods that directly operate

on the co-association matrix. Li et al. (2007) propose a hierarchical clustering technique

that uses a heuristic called Normalized Edges to merge two similar clusters. Strehl and

Ghosh (2002) propose CSPA algorithm which takes this matrixas input and divides data

into k partitions by applying METIS partitioning algorithm to it.Luo et al. (2006) apply

spectral clustering techniques to this matrix.

Some graph-based techniques work on clusters that constitute the Multiple Clusterings,

rather than data set objects. Strehl and Ghosh (2002) propose two algorithms that work

in this manner. HGPA views Multiple Clusterings as a hypergraph, and clusters as hy-

peredges. Note that a hypergraph is a generalization of a graph, where an (hyper)edge

connects a subset of its vertices. HGPA runs HMETIS Karypis,Aggarwal, Kumar and

Shekhar (1999) on the hypergraph to partition it intok clusters. The other algorithm,

MCLA, takes the hypergraph perspective as well and merges hyperedges ink so-called

metaclusters. Details of both algorithms are provided in Chapter 3. Hore et al. (2009)

propose Bipartite Merger (BM), and METIS Merger (MM), two graph-based techniques

that work on cluster prototypes.

Topchy, Jain and Punch (2004) propose a prototype-based mixture model for combin-

ing multiple clusterings. Each data set object is represented by a vector of categorical

variables corresponding to class labels generated by a set of input clusterings,Π(D).

11

These categorical variables are viewed as the outcome of a multinomial trial. A final

clustering is modeled withk components in a mixture of multinomial distributions and

the Expectation-Maximization algorithm (EM) is used to optimize latent model parame-

ters for each component to decide final cluster labels. Hongjun et al. (2009) propose a

Bayesian ensemble model and employ EM for combining multiple clusterings.

Many solutions treat combining multiple clusterings problem as an optimization prob-

lem. These solutions try to minimize or maximize some objective function to find the

final clustering. Strehl and Ghosh (2002) see the problem as acombinatorial optimization

problem and propose an information-theoretic objective function, Normalized Mutual In-

formation, NMI, to find the median partition (final clustering). They also devise a greedy

algorithm which tries to minimize this objective function.Chapter 3 provides details of

this function, since it is commonly used as a cluster validity measure in the literature.

Another information-theoretic objective function, Quadratic Mutual Information, QMI,

is proposed by Topchy et al. (2005). Several methods exploitEvolutionary Algorithms.

Cristofor and Simovici (2002) use Genetic Algorithm (see Michalewicz (1996)) to find

the median partition. An entropy-based function is defined to evaluate similarity of two

clusterings. The objective is to minimize sum of dissimilarities between the median par-

tition and all clusterings in the set of multiple clusterings. This corresponds to the fitness

of the median partition. Mohammadi et al. (2008) also use Genetic Algorithm. Fitness

of a clustering in the population is evaluated by weighted sums of total intra cluster sim-

ilarities and pairwise inter cluster similarities which are based on object co-associations.

Wolfgang et al. (2000) propose a Hamming-distance based fitness function to evaluate

binary-encoded chromosomes (clusterings). Filkov and Skiena (2004) try to find the me-

dian partition using Simulated Annealing (see Kirkpatricket al. (1983)) and use a Rand

Index based heuristic to calculate similarities between clusterings. Tumer and Agogino

(2008) also use a Simulated Annealing based approach and propose an adaptive version

of NMI. Azimi et al. (2009), Yang et al. (2006) propose methods based on Swarm Intelli-

gence (see Abraham et al. (2006)) such as Ant Colony Optimization.

1.2.2 Factors Affecting Final Clustering Quality

All above-mentioned methods will eventually combine a set of multiple clusterings into

a new final clustering. However, is it for sure that a better oruseful final clustering is

obtained all the time? The answer depends on the following factors affecting the Final

12

Table 1.1: Some notable methods for Combining Multiple Clusterings
Method Approach Advantages Shortcomings
EAC Hierarchical clus-

tering performed
on co-association
matrix

All advantages of Hierarchical
clustering on the powerful co-
association matrix e.g. Single Link
finds contiguity-based clusters

Performs poorly with large datasets,
an issue arises as to where to cut the
dendrogram, no going back once
data set object is clustered

CSPA Graph partition-
ing performed
on co-association
matrix

METIS works much faster than Hi-
erarchical clustering, it also finds
good quality clusters

Performs poorly with large datasets,
user has to specify number of clus-
ters

HGPA Runs HMETIS
on a hypergraph
representation
of Multiple
Clusterings

Very fast and scalable Poor accuracy

MCLA Merges simi-
lar clusters in
meta-clusters

Fast and scalable (uses METIS on
cluster based representation of data)

Cluster similarity based on Jaccard
similarity, user has to specify num-
ber of clusters

EM-Topchy Models Final
Clustering as a
mixture and uses
EM to estimate
model parameters

Detects non-spherical cluster
models, co-association matrix not
needed

Computational requirements may
be high, Fixed number of clusters
required in input clusterings and the
Final Clustering

Greedy NMI Combinatorial
Optimization
to find median
partition

No co-association matrix, proposes
a widely used heuristic

Very inefficient in terms of compu-
tation time

GACEII Genetic Al-
gorithm using
weighted intra-
and inter-cluster
similarities

Good or compatible accuracy with
most approaches, Automatic detec-
tion of number of clusters

Storage of co-association matrix,
costly operations to calculate fitness

ACO-Azimi Ant Colony Opti-
mization

Automatic detection of number of
clusters, outlier detection

Storage of co-association matrix,
run-time results with large datasets
not shown

Clustering quality;

Quality of Clusterings :A data set can be clustered in many ways depending on the

clustering algorithm employed or how algorithm parametersare set. Such clusterings

constitute a set of multiple clusterings, which is usually the only information available to

obtain a new final clustering. If the clusterings are not goodquality i.e. the information

they contain are very diverse and noisy, it may be hard to improve the final clustering

quality. Problems reveal especially with high-dimensional large datasets where obtaining

good single clusterings may be challenging.

Number of Clusterings :Recent studies have empirically demonstrated improved accu-

racy of clustering ensembles on a number of artificial and real-world data sets. Unlike

certain multiple supervised classifier systems, convergence properties of consensus func-

tions are not well studied. Topchy, Law, Jain and Fred (2004)present formal arguments

on the effectiveness of combining multiple clusterings from several perspectives. Con-

sensus functions based on stochastic partition generation, re-labeling, voting and, median

13

partition approaches are shown to converge to a true underlying clustering solution as the

number of partitions in the ensemble increases. On the otherhand, too many clusterings

may cause overfitting.

Choice of Consensus Function :This may be important for specific problems. Some

exemplary situations are as follows. Optimization-based solution may not converge with

large datasets. Graph-based methods where clusters are represented by vertices may be

less efficient, if cluster sizes vary a lot.

1.2.3 Final Clustering Validation

Validation of the final clustering,π⋆(D), combined from Multiple Clusterings,Π(D), can

be important in many applications. Moreover, cluster validation may even be at the heart

the clustering algorithm (see Strehl and Ghosh (2002), Mohammadi et al. (2008)).

Average NMI (ANMI) is an unsupervised validity measure presented in Strehl and Ghosh

(2002) and used as part of their greedy algorithm explained in Section 1.2.1. Details of

NMI can be found in Chapter 3. ANMI is defined as1
|Π(D)|

Σ
|Π(D)|
i=1 NMI(π⋆(D), πi(D)),

which takes the average of all NMIs between the Final Clustering and eachπi(D) ∈

Π(D). Fred and Jain (2005) improve this measure by making it sensitive to number of

clusters in the Final Clustering, relaxing the assumption that the number of clusters in the

Final Clustering are already known.

Chapter 2 defines FastFit which can be used as an unsupervisedvalidity measure with ap-

propriate parameterization. This measure evaluates cluster separation (inter cluster sim-

ilarity) and cluster cohesion (intra cluster similarity) based on co-association of data set

objects. It should be noted that, separation and cohesion can also be used as separate

measures of validity.

Fred and Jain (2008) propose another unsupervised validitymeasure. Initially, a proba-

bilistic clustering model is derived from Multiple Clusterings. The validity corresponds

to a minimum description length for both estimated model parameters and the Final Clus-

tering.

A recent paper by Duarteo et al. (2010) propose modified versions of three well-known

clustering validity measures for evaluating final clustering validity.

14

1.2.4 Combining Weak Clusterings

Topchy et al. (2003) provide the following definition; aweak clustering algorithmpro-

duces a clustering, which is only slightly better than a random one. Such algorithms

are usually very simple and computationally inexpensive. Nonetheless, combining their

output clusterings can be more attractive than combining clusterings obtained by more

sophisticated, but computationally demanding algorithms.

Topchy et al. (2005) argue that combining multiple weak clusterings still achieve compa-

rable or in some cases better performance. The motivation isthat the synergy of many

such clusterings will compensate for their weaknesses. They propose two methods for

obtaining such clusterings. The first method is based on random projection of a data set

to a subspace of its attributes. An example would be projecting data on 1-D and applying

k-Means on this projection. Second method splits data randomly by hyperplanes. For ex-

ample, a single random hyperplane creates a trivial clustering by cutting the hypervolume

into two. In addition to some theoretical basis, they also provide experimental results with

several data sets using different numbers of input clusterings and projection sizes.

Fern and Brodley (2003) approach the problem from a high dimensional clustering point

of view. Distance-based clustering of high dimensional data poses a challenging problem,

since in a high dimensional space, data tend to be sparse Bellman (2003). They create

multiple clusterings of high dimensional data sets by first random projection and then

also by Principal Component Analysis (PCA). They show empirically, by using different

consensus functions, that multiple clusterings generatedby random projections yield good

final clusterings.

Minaei-bidgoli et al. (2004) create multiple clusterings by using subsamples of a given

data set. In their empirical study, they sample a data set with replacement (bootstrap) and

without replacement, and then create clusterings on these views of the data set. A mean-

ingful final clustering for the entire set of data points emerges from multiple clusterings

of subsamples. Depending on the consensus function, clusterings of subsamples either

update a co-association matrix or provide prototype-basedclusters which are further pro-

cessed to obtain a final clustering.

In Chapter 4, a novel parallel algorithm is introduced, which creates multiple clusterings

based on random projections of a binary data set and the resultant co-association matrix

correlates with Hamming distance matrix.

15

1.2.5 Applications

This section presents some applications and application-specific approaches to Combin-

ing Multiple Clusterings in the literature that are common in Bioinformatics, Computer

Vision, and Text/Document Clustering. A few applications are reported in Medicine, Fi-

nance, and Weather Prediction. Applications for specific data formats are also available.

Bioinformatics :Human genome project has created a huge amount of data. Clustering

is extensively used in mining gene expression data sets to find important genetic and bi-

ological information. Obtaining high quality clusteringsis often very challenging due to

inconsistent results of different clustering algorithms and noisy data. It is a daunting task

for researchers to choose, if available, the best clustering algorithm and generate the best

clustering results for their data sets. This is exactly where Combining Multiple Cluster-

ings come in handy. Hu and Yoo (2004), Hu et al. (2006) providea clustering ensemble

framework, GE-Miner, by adapting several graph-based and prototype-based methods for

gene expression data. Yu et al. (2007) propose a graph-basedconsensus function for

microarray data, in which data is subsampled a number of times to create multiple clus-

terings. A co-association matrix is constructed from theseinput clusterings which is then

partitioned using the normalized cut algorithm Shi and Malik (2000) into a final clus-

tering. This process is repeated iteratively and each time the resulting final clustering

quality is evaluated by a modified version of Rand Index. Iam-on et al. (2010) propose an

algorithm for larger gene data sets, in which a graph-based method work on a clusterwise

similarity matrix. Asur et al. (2007) propose a clustering ensemble framework for clus-

tering protein–protein interaction networks, where they apply either a recursive-bisection

or hierarchical clustering algorithm on a cluster membership matrix representing input

clusterings, whose dimensions are reduced by PCA. Some of the other notable methods

are presented in Avogadri and Valentini (2009), Faceli et al. (2009).

Computer Vision :Image segmentation can be considered as a process of clustering pix-

els in a digital image to obtain meaningful pixel groupings or to locate regions or objects.

Segmentation of nontrivial images is one of the most difficult tasks in image process-

ing Gonzalez and Woods (2006). A method for discovering brain lesions in medical

images is proposed by Li et al. (2006) in which they combine input clusterings generated

by a modified DBSCAN algorithm and show that it is superior to diagnosis results of a

single clustering algorithm. Chang-ming et al. (2008) segment ultrasound images by cre-

ating a co-association matrix of the various input clusterings and then applying spectral

16

clustering on it. They compare their results with other clustering methods including the

domain expert’s. In another interesting paper, Gllavata etal. (2006) detect static text in

videos using a fuzzy clustering ensemble technique. This technique does not work on a

single image, but rather takes incremental snapshots and include temporal information in

multiple clusterings. Figure 1.4 illustrates the overall algorithm. Each frame is divided

into blocks, these blocks are clustered by Fuzzy C-means andthe clustering results gen-

erate a set of multiple clusterings. Silva and Scharcanski (2010) use Combining Multiple

Clusterings to improve segmentation results in motion tracking. A common problem in

satellite imagery is multisource image analysis, where different sensors provide images of

the same location. Forestier et al. (2008) propose a method called collaborative clustering

which combine results of different clusterings into a final clustering which represents the

improved segmentation result. Some of the other interesting applications in computer vi-

sion are given in Kyrgyzov et al. (2007), Zhang, Jiao, Liu, Boand Gong (2008), Ma et al.

(2009), Chang et al. (2008), Elhadary et al. (2007).

Figure 1.4: Text in video is successfully segmented by combining multiple clusterings. (Figure
taken from Gllavata et al. (2006))

Text/Document Clustering :Clustering texts and documents is one of the important tasks

in Text Mining. This kind of clustering is quite challengingsince text and document

databases are usually large, high-dimensional, and natural clusters in such databases over-

17

lap. Gonzalez and Turmo (2008) present an empirical comparison of the effectiveness

of two different strategies for the generation of clustering ensembles. The first one re-

lies on massive randomization of a single EM-based algorithm and the other one relies

on three different hierarchical, EM-based, and an iterative refinement algorithm with an

information-theoretical heuristic. Comparative resultsare provided with other document

clustering algorithms. Zhang, Cheng, Zhang, Chen and Fang (2008) propose a Genetic

Algorithm for document clustering and show the improved results in the final clustering

over the input clusterings. Other related work is given in Xuet al. (2008), Sevillano et al.

(2006).

1.3 THESIS OVERVIEW

This thesis proposes three novel efficient and scalable methods for combining multiple

clusterings. These methods are described in the succeedingchapters where accuracy and

efficiency of these methods are also demonstrated.

Chapter 1 provides preliminaries of Clustering and Combining Multiple Clusterings, to-

gether with a detailed literature survey, for better understanding of concepts in the rest of

this thesis.

The following three chapters present the three methods. Chapter 2 presents a novel bi-

nary method for fast computation of an objective function. This function measures total

inter and intra class similarities of a clustering efficiently to determine its quality based

on object co-associations. Time and space complexity of this task is conventionally high.

However, the proposed method improves performance of the consensus solution by con-

suming incomparably less memory and CPU time.

Chapter 3 presents a novel solution for combining multiple clusterings. Our contributions

are a novel method for combining a collection of clusteringsinto a final clustering which

is based on cliques, and a novel output-sensitive clique finding algorithm which works

on larger graphs and produces output in a short amount of time. Extensive experimental

studies on real and artificial data sets demonstrate the effectiveness of our methods.

In chapter 4, a parallel algorithm is proposed to calculate approximate distances of objects

by utilizing randomly obtained weak clusterings in shared and distributed memory parallel

computing environments.

18

Finally, chapter 5 summarizes the arguments of this thesis and mentions some open issues

in Combining Multiple Clusterings research.

19

2. FASTFIT: AN EFFICIENT OBJECTIVE FUNCTION FOR

EVALUATING CLUSTERING QUALITY

In this chapter, we introduce a novel binary method for fast computation of an objective

function. This function measures total inter and intra class similarities of a clustering ef-

ficiently to determine its quality based on object co-associations. Thus, it can be used for

combining multiple clusterings using optimization-basedconsensus solutions like evolu-

tionary algorithms. Compared to the conventional technique, our method improves per-

formance of the consensus solution by consuming incomparably less memory and CPU

time by considerably reducing space and time complexities respectively. Experimental

test results also demonstrate the effectiveness of our new method.

2.1 INTRODUCTION

Some solutions for combining multiple clusterings are optimization-based. These in-

clude evolutionary algorithms such as in Cristofor and Simovici (2002), Mohammadi et al.

(2008), Zhang, Cheng, Zhang, Chen and Fang (2008), Simulated Annealing as in Filkov

and Skiena (2004), Tumer and Agogino (2008). A greedy, info-theoretical optimization

method is presented in Strehl and Ghosh (2002). And, Azimi etal. (2009), Yang et al.

(2006) present methods based on Swarm Intelligence such as Ant Colony Optimization.

All these methods operate on an objective function.

In this chapter, we present a novel and efficient method for computation of a similarity-

based objective function. The chapter is structured as follows; Section 2.2 provides pre-

liminary definitions together with some explanations for combining multiple clusterings

for clarity. Section 2.3 explains the notion of intra-cluster and inter-cluster similarities.

Section 2.4 presents our new binary method for computing intra-cluster and inter-cluster

similarities. Experimental Results section provides comparison of our new method with

the conventional technique for varying size data sets. In the final section, we present

conclusions and future work.

20

2.2 PRELIMINARIES

Let D be a data set. A clustering (partition) ofD, π(D), can be stated as follows;

π(D) = {C1, C2, . . . , C|π(D)|},

whereCi is a cluster (block) ofπ(D), 1 ≤ i ≤ |π(D)|, and

D =

|π(D)|
⋃

i=1

Ci

Given a set of clusterings,Π(D) = {π1(D), π2(D), . . . , π|Π(D)|(D)}, the problem of

combining multiple clusterings is defined as finding a new clustering,π⋆(D) = {C⋆
1 ,

C⋆
2 , . . . , C

⋆
|π⋆(D)|}, by using the information provided byΠ(D). An objective functionφ,

∀i(φ(π⋆(D)) ≥ φ(πi(D))), 1 ≤ i ≤ |Π(D)| (2.1)

is used for determining quality of the final clusteringπ⋆(D). Exhaustively searching

all the possible clusterings for findingthe bestclustering is not an option, since there

are approximately|π
⋆(D)||D|

|π⋆(D)|!
possible clusterings for every|π⋆(D)| and(|π⋆(D)| ≪ |D|)

corresponding to the Stirling number of the second kind (seeJain and Dubes (1988)).

Simply put, aconsensus functionis a function which combines multiple clusterings into

a single clustering in a sophisticated way so that Formula (2.1) holds. In Fred and Jain

(2005), proposed consensus function is based on a co-association measure (simultaneous

occurrences) defined by

coassoc(di, dj) = votesij/|Π(D)|, (2.2)

where|Π(D)| is the number of clusterings,votesij is the number co-occurrences of data

objectsdi and dj in a cluster, such thatdi ∈ D and dj ∈ D. In this approach, the

co-occurrences are held in a|D| × |D| co-association matrix. In general, it is costly

to construct, store and populate this matrix for large data sets, because of itsO(|D|2)

21

complexity. Besides, searching cluster similarity continuously at the object level is a

computationally expensive task.

In Filkov and Skiena (2004) and Cristofor and Simovici (2002), consensus functions

based on median partition approach have been proposed. Thisapproach searches dif-

ferences between the clusterings, by working on a coarser level. At another direction,

in Strehl and Ghosh (2002), consensus functions based on hypergraphs have been pro-

posed. In this technique, a hyperedge represents a cluster,and a hypergraph represents a

clustering.

In this chapter, we focus on a specific objective function which can be used by evolu-

tionary consensus solutions and optimize its time and spacecomplexities. This objective

function is presented in the next section.

2.3 INTER AND INTRA CLUSTER SIMILARITIES

Intra-cluster similarity measures how near the data objects are in a cluster. For a cluster-

ing,π(D) = {C1, C2, . . . , C|π(D)|}, intra-cluster similarity is measured as follows:

ICS(π(D)) =

|π(D)|
∑

i=1

1

|Ci|2

∑

d,d′∈Ci

similarity(d, d′) (2.3)

For the same clustering, inter-cluster similarity is defined as follows:

ECS(π(D)) =

|π(D)|
∑

i=1

|π(D)|
∑

j=i+1

1

|Ci||Cj|

∑

d∈Ci,d′∈Cj

similarity(d, d′) (2.4)

similarity(d, d′) is the number of times that objectsd andd′ are assigned to the same

clusters, which is computed from pre-existing multiple clusterings. Finally, ICS and ECS

measures can be combined to have following fitness function:

φ(π(D)) = k1.ICS(π(D)) + k2.ECS(π(D)) (2.5)

22

Final clustering is expected to have compact, and close clusters, therefore for a good clus-

tering Formula (2.3) should provide large values. Similarly, separated (isolated) clusters

are expected in a good clustering, therefore Formula (2.4) shall supply small values.k1,

andk2 parameters in Formula (2.5) are user defined values, which satisfy k1 > 0 and

k2 < 0.

Mohammadi et al. (2008) uses a special case of this objectivefunction to combine multi-

ple clusterings using an evolutionary algorithm and reportsuccessful results on small data

sets. Inspection of Formula (2.5) reveals that its time complexity is quadratic with respect

to the number of objects in the data set,O(|D|2). This complexity is due to pairwise

similarity calculations performed in Formulas (2.3) and (2.4). For large data sets, holding

a similarity matrix is also prohibitive due to its space complexity. Our aim is to reduce

these complexities, and compute Formula (2.5) faster usingbinary methods.

It is important to note that in combining multiple clustering problem,similarity(d, d′) is

not computed from the data setD. similarity(d, d′) in Formulas (2.3) and (2.4) refer to

number of co-occurrences of objectd, andd′ in the same cluster (related to Formula (2.2)).

Therefore, it is crucial to utilize the information provided by the pre-existing multiple

clusterings.

2.4 FAST COMPUTATION OF SIMILARITIES

We represent each cluster with a bit vector. Existence of an object in a cluster is shown

by a 1, similarly absence of an object is captured by a 0. Each cluster representation is

as large as the size of the database,|D|. Three clusterings, each having four clusters are

shown in Figure 2.1. An example of a cluster is shown below: clusterC11 has data objects

d1, d2, andd7.

C11

1 1 0 0 0 0 1 0

In order to compute Formulas (2.3) and (2.4), each cluster has to be examined for pair-

wise objects, and corresponding entries in the co-association matrix has to be updated.

For example, clusterC11 increments following object pairs in the co-association matrix:

(d1, d1), (d1, d2), (d1, d7), (d2, d2), (d2, d7), and (d7, d7). Because of the pairwise in-

23

crement nature, this computation has quadratic time complexity. We present our novel

method below for reducing the time complexity of this operation.

Let Π(D) be multiple clusterings, andπ⋆(D) be a new final clustering for a data setD.

Following, we define intra-cluster, and inter-cluster similarities of π⋆(D). Intra-cluster

similarity of π⋆(D) is shown in Formula (2.6)

ICSΠ(π
⋆(D)) =

|π⋆(D)|
∑

k=1

1

|C⋆
k |

2

|Π|
∑

i=1

|πi|∑

j=1

(
|C⋆

k ∧ Cij|

2

)

(2.6)

And, Formula (2.7) shows the inter-cluster similarity ofπ⋆(D).

ECSΠ(π
⋆(D)) =

|π⋆(D)|
∑

k=1

|π⋆(D)|
∑

l=k+1

1

|C⋆
k ||C

⋆
l |

|Π|
∑

i=1

|πi|∑

j=1

(
|(C⋆

k ∨ C⋆
l) ∧ Cij|

2

)

−

(
|C⋆

k ∧ Cij|

2

)

−

(
|C⋆

l ∧ Cij |

2

)

(2.7)

Finally, the objective function is described as:

φΠ(π
⋆(D)) = k1.ICSΠ(π

⋆(D)) + k2.ECSΠ(π
⋆(D)) (2.8)

ICSΠ(π
⋆(D)) is computed as follows; every cluster ofπ⋆(D) is logically ANDed with ev-

ery cluster inΠ in order to find pairwise co-occurrences of the objects in thesame cluster.

Similarly, when computingECSΠ(π
⋆(D)) every cluster pair inπ⋆(D) is logically ORed

in order to find all pairs of objects, this result is ANDed withevery cluster inΠ in order to

find pairwise co-occurrences of objects. So far we obtained the pairwise co-occurrences

of objects in the same clusters and in two different clusters. By subtracting pairwise co-

occurrences of the objects in the same clusters (last two components in Formula (2.7)),

we obtain pairwise co-occurrences of objects in different clusters as shown in the formula.

When computed on the same set of input clusterings,Π, Formula (2.6) is equivalent to

Formula (2.3) and Formula (2.7) is equivalent to Formula (2.4). Although equivalent for-

mulas yield the same result, it is very important to note thatFormulas (2.6) and (2.7) are

computed in cluster level, not in object level for each pairwise object. Therefore, Formu-

las (2.6) and (2.7) are very efficient when compared to the Formulas (2.3) and (2.4). As a

24

result, time complexity of Formula (2.8) is reduced toO(|π⋆(D)||Π|tc + |π
⋆(D)|2|Π|tc),

where|Π|tc represents total number of clusters in|Π| (e.g. |Π|tc in Figure 2.1 is 9) and

|Π|tc << |D|, and|π⋆(D)|2 << |D|. In the next section effectiveness of our new tech-

nique is demonstrated.

D d1 d2 d3 d4 d5 d6 d7 d8

π1(D)
C11 1 1 0 0 0 0 1 0
C12 0 0 1 1 1 0 0 0
C13 0 0 0 0 0 1 0 1

π2(D)
C21 1 0 1 1 0 0 0 0
C22 0 1 0 0 1 1 1 1

π3(D)

C31 1 1 0 0 0 0 0 0
C32 0 0 1 1 0 0 0 0
C33 0 0 0 0 1 1 0 0
C34 0 0 0 0 0 0 1 1

Figure 2.1: Binary representation of multiple clusterings,Π(D)

d1 d2 d3 d4 d5 d6 d7 d8

π⋆(D)
C⋆

1 1 1 1 1 0 0 0 0
C⋆

2 0 0 0 0 1 1 1 1
Figure 2.2: Binary representation ofπ⋆(D)

Example 2.4.1.Let us compute intra-cluster similarity,ICSΠ(π
⋆(D)), of π⋆(D) of Fig-

ure 2.2 using multiple clusterings shown in Figure 2.1 by using the Formula (2.6)

ICSΠ(π
⋆(D)) =

1

42

((
2

2

)

+

(
2

2

)

+ . . .+

(
2

2

))

+
1

42

((
1

2

)

+

(
1

2

)

+ . . .+

(
2

2

))

In a similar manner, Formula (2.7) can be used for computingECSΠ(π
⋆(D)).

2.4.1 Generalization of the Method

Formula (2.7) is valid for non-overlapping clusters in a clustering. However, it can be

generalized for overlapping clusters as follows:

25

ECSΠ(π
⋆(D)) =

|π⋆(D)|
∑

k=1

|π⋆(D)|
∑

l=k+1

1

|C⋆
k ||C

⋆
l |

|Π|
∑

i=1

|πi|∑

j=1

(
|(C⋆

k ∨ C⋆
l) ∧ Cij|

2

)

−

(
|(C⋆

k ∧ C⋆
l) ∧ Cij|

2

)

−

(
|(C⋆

k ∧ C⋆
l) ∧ Cij|

2

)

+

(
|(C⋆

k ∧ C⋆
l) ∧ Cij |

2

)

+ (|Π||C⋆
k ∧ C⋆

l |) (2.9)

Above,C⋆
k (alsoC⋆

l) represents a final cluster,Cij represents a pre-existing cluster, and

C⋆
k represents complement ofC⋆

k .

It should be noted thatICS(π⋆(D)) is the same asICSΠ(π
⋆(D)) for non-overlapping

clusters. Therefore, generalized form of the objective function, FastFit, is shown in (2.10).

FastF it(π⋆(D)) = k1.ICS(π
⋆(D)) + k2.ECS(π

⋆(D)) (2.10)

Further explanation of (2.9): It is a generalization of (2.7) used for both overlapping and

non-overlapping final clusters. Term 1 refers tosimilarity(d, d′) for every pair of objects

in a pair of final clusters:C⋆
k , C⋆

l . Term 2 subtracts intra-cluster contribution ofC⋆
k −C⋆

l .

Similarly, Term 3 subtracts intra-cluster contribution ofC⋆
l − C⋆

k . Term 4 adds duality

between pairs in overlapping region : Notice there is an arrow from 1 to 7, and 7 to 1 in

Figure 2.3(c). The last term is needed in order to includesimilarity(d, d) contributions

in overlapping region: See the self loops for objects 1 and 7 in the same figure.

ECSΠ(π
⋆(D)) =

|π⋆(D)|
∑

k=1

|π⋆(D)|
∑

l=k+1

1

|C⋆
k ||C

⋆
l |

|Π|
∑

i=1

|πi|∑

j=1

(
|(C⋆

k ∨ C⋆
l) ∧ Cij |

2

)

︸ ︷︷ ︸

−

(
|(C⋆

k ∧ C⋆
l) ∧ Cij |

2

)

︸ ︷︷ ︸

1 2

26

−

(
|(C⋆

k ∧ C⋆
l) ∧ Cij|

2

)

︸ ︷︷ ︸

+

(
|(C⋆

k ∧ C⋆
l) ∧ Cij|

2

)

︸ ︷︷ ︸

3 4

+ (|Π||C⋆
k ∧ C⋆

l |)
︸ ︷︷ ︸

5

2.5 EXPERIMENTAL RESULTS

Our experimental setup is a PC having 2.0 GHz processor with 2GB main memory. No

parallel processing was done. Our choice of implementationlanguage is Java, which

provides built-in support for bit vectors, and operations on bit vectors.

We have conducted experiments on varying size synthetic andreal Data Sets. Details of

the Data Sets and their Multiple Clusterings are given in Table 2.1 where, besides the

convention used in this chapter,|πo(D)| refers to number of inherent original classes in

a data set,|π(D)| refers to number of clusters in each clustering in the set of Multiple

clusterings, and|π⋆(D)| is the number of clusters in a tested Final Clustering.

IRIS, GLASSIDE, IMAGESEG and SIGNFORM are data sets from UCIrepository Asun-

cion and Newman (2007). SYNTH1, SYNTH2 and SYNTH3 are synthetically generated

up to 20,000 data objects. Larger data sets SYN4C100 and SYN4C1M are also synthet-

ically generated with 100K and 1M data objects respectivelyand contain a mixture of

4-Gaussians each.

Table 2.1 displays comparative execution time results between FastFit and the conven-

tional matrix operations. In all experiments, FastFit obviously outperforms conventional

method. With large data sets, a comparison is not even possible, because a|D| × |D|

matrix does not fit in the main memory. In Figure 2.4 executiontime results of a data

set having 5,000 objects is shown for different|Π(D)|s from 10 to 100. Clearly, FastFit

is superior to the conventional method. We provided the timeaxis in logarithmic scale,

because our execution time results are very small when compared to the conventional

method. Figures 2.5, and 2.6 represent similar results.

27

(a) Intra Cluster Similarity

(b) Graph Showing Similarity of Two Non-Overlapping Clusters

(c) Pseudograph Showing Similarity of Two Overlap-
ping Clusters

Figure 2.3: Graphical Representation of Cluster Similarities

Table 2.2 compares memory consumption of FastFit with the conventional method. Fast-

Fit uses incomparably low memory, which enables working with very large data sets.

Although shown in the table for completeness, in practice, it is not possible to apply con-

ventional method to Data Sets with 100K and 1M objects. Memory consumption results

are also shown Figure in 2.7.

28

Table 2.1: Experimental Setup and Run Times

Data set

|D|

|πo(D)| |Π| |π(D)| |π⋆(D)|

Avg. Run-Time Avg. Run-Time Matrix

× FastFit (ms) Conventional (ms) Initialization

|Attribs| ICS ECS ICS ECS (ms)

IRIS 150×4 3 10 2 - 6 3 0.35 0.38 0.78 0.82 2.68

GLASSIDE 214×9 6 10 4 - 10 6 0.96 2.34 3.06 10.02 7.21

IMAGESEG 2,310×19 7 10 4 - 10 7 4.51 32.39 48.25 85.69 209.39

SIGNFORM 5K×21 3 10 2 - 6 3 3.33 11.40 109.13 158.86 1,523.50

SYNTH1 5K×20 n/a 10 2 - 6 4 1.54 2.45 156.12 437.34 1,085.42

SYNTH2 10K×20 n/a 10 2 - 6 4 1.93 4.58 595.18 1,764.97 7,088.23

SYNTH3 20K×20 n/a 10 2 - 6 4 2.87 9.23 2,296.57 6,986.60 19,382.31

SYN4C100 100K×2 4 10 2 - 6 4 25.95 41.66 Out of Memory

SYN4C1M 1M×2 4 10 2 - 6 4 45.48 97.60 Out of Memory

2.6 CONCLUSIONS AND FUTURE WORK

In this chapter, we presented a novel binary method for computing intra-cluster and inter-

cluster similarities. By representing each cluster using abit vector, we utilize fast opera-

tions and low memory requirements of binary operations. Ourmethod is especially useful

as an objective function for optimization-based consensussolutions like evolutionary al-

gorithms for combining multiple clusterings.

Figure 2.4: Execution time on SYNTH1 (5,000 objects)

29

Figure 2.5: Execution time on SYNTH2 (10,000 objects)

Figure 2.6: Execution time on SYNTH3 (20,000 objects)

Experimental results on varying size synthetic and real data sets, including large data sets,

demonstrate the effectiveness of our method. Our method is superior to the conventional

technique, in that, it is fast and efficient, and it scales to large data sets and uses incompa-

rably less memory.

By using the objective function here, we will investigate designing a novel method for

combining multiple clusterings as a future work. Evolutionary based techniques can use

our consensus function presented here as a fitness function.Generalizing our technique

for broader use will also be a future work.

30

Table 2.2: Memory Consumption

|D| |Π| |π(D)|

Memory Consumption

FastFit Conventional

(MB) (MB)

5,000 20 2 - 6 0.04 100

10,000 20 2 - 6 0.08 400

20,000 20 2 - 6 0.16 1,600

40,000 20 2 - 6 0.32 6,400

100,000 20 2 - 6 0.80 40,000

1,000,000 20 2 - 6 8.00 4M

Figure 2.7: Comparison of Memory Consumption(Average|π(D)| = 4)

31

3. CLICOM: CLIQUES FOR COMBINING MULTIPLE

CLUSTERINGS

Finding natural groupings of a data set is a hard task as attested by hundreds of clustering

algorithms in the literature. Each clustering technique makes some assumptions about

the underlying data set. If the assumptions hold, good clusterings can be expected. It

is hard, in some cases impossible, to satisfy all the assumptions. Therefore, it may be

beneficial to apply different clustering methods on the samedata set, or the same method

with varying input parameters or both. Then, the obtained clusterings can be combined

into a final clustering having better overall quality. Our contributions are a novel method

for combining a collection of clusterings into a final clustering which is based on cliques,

and a novel output-sensitive clique finding algorithm whichworks on larger graphs and

produces output in a short amount of time. Extensive experimental studies on real and

artificial data sets demonstrate the effectiveness of our methods.

3.1 INTRODUCTION

We refer the interested reader to Chapter 1 for an overview ofData Clustering and Com-

bining Multiple Clusterings research.

In this chapter, we present a graph-based algorithm for combining multiple clusterings

which is based on the idea ofmaximally complete subgraphs-also known ascliques.

Cliques form very strong clusters, since in a clique each vertex is connected to all other

vertices. In the following sections, we show that utilizingcliques for combining multiple

clusterings is effective and practical. We also present an algorithm for finding a substan-

tial subset of all the cliques quickly, since finding all the cliques in a large graph may be

computationally overwhelming.

The chapter is organized as follows; Section 3.2 introducesthe preliminaries: problem

definition and important concepts. Related work is presented in Section 3.3. Section 3.4

describes the main algorithm CLICOM. In section 3.5, we discuss advantages and dis-

advantages of CLICOM. Section 3.6 presents a novel output-sensitive clique finding

method, which is integrated in the main algorithm. Experimental evaluations are pre-

sented in Section 3.7. Finally, Section 3.8 concludes the chapter.

32

3.2 PRELIMINARIES

In this section, combining multiple clusterings, graph-based clustering, and cliques are

explained.

3.2.1 Clusterings and Co-associations

Definitions related to multiple clusterings and object co-associations have already been

provided in Section 2.2. For completeness of this chapter, we restate some of the defini-

tions here in brief.

Let D be a data set. A clustering ofD is shown as

π(D) = {C1, C2, . . . , C|π(D)|},

whereCi is a cluster inπ(D), 1 ≤ i ≤ |π(D)|, and

D =

|π(D)|
⋃

i=1

Ci

Figure 3.1 represents a collection of multiple clusteringsin binary format;Π(D) =

{π1(D), π2(D), . . . , π|Π|(D)} with |Π(D)| clusterings and|Π|tc clusters in total. The

problem of combining multiple clusterings refers to producing a new clusteringπ⋆(D) =

{C⋆
1 , C

⋆
2 , . . . , C

⋆
π⋆|(D)|}, which has better overall quality and uses the information provided

byΠ(D). A validity functionφ is used to measure quality of a clustering.

∀i(φ(π⋆(D)) ≥ φ(πi(D))), 1 ≤ i ≤ |Π(D)| (3.1)

Many consensus functions, which produce final output clusterings, have been proposed

in the literature such as Fred and Jain (2005), Strehl and Ghosh (2002). In Fred and

Jain (2005), proposed consensus function is based on a natural co-association measure in

which similarity of objects inD is based on the number of times they coexist in the same

clusters. An efficient method for calculating inter and intra cluster similarities of a cluster

33

which is based on co-association object pairs is given in Mimaroglu and Yagci (2009).

D d1 d2 d3 d4 d5 d6 d7 d8

π1(D)
C11 1 1 0 0 0 0 0 0
C12 0 0 1 1 1 0 0 0
C13 0 0 0 0 0 1 1 1

π2(D)
C21 1 1 1 1 0 0 0 0
C22 0 0 0 0 1 1 1 1

π3(D)

C31 1 1 0 0 0 0 0 0
C32 0 0 1 1 0 0 0 0
C33 0 0 0 0 1 1 0 0
C34 0 0 0 0 0 0 1 1

Figure 3.1: A Collection of ClusteringsΠ(D), |D| = 8, |Π(D)| = 3 and|Π|tc = 9

3.2.2 Graph-based Clustering

Graph-based clustering methods work on a graph representation G = (V,E) of a data

set Tan et al. (2005). In graph representation, a vertex represents an object, or some

higher level information of the data such as a cluster or a cluster center. Proximities

between vertices are captured by edges and edge labels. Graph-based clustering methods

start with creating a|V | × |V | proximity matrix between each pair of vertices, which

holds edge labels. A sparsification of the graph can be performed for avoiding noise and

improving cluster quality e.g. by using a threshold or by keeping onlyk-nearest neighbors

of each vertex. Graph-theoretical techniques are applied to partition this final graph in a

meaningful way.

3.2.3 Cliques

A clique is a maximally complete subgraph of an undirected graphG = (V,E) Moon and

Moser (1965). A subgraph ofG is a graphG′ = (V ′, E ′) whereV ′ ⊆ V andE ′ ⊆ E.

G′ is complete, if for everyu, v ∈ V ′, (u, v) ∈ E ′. The set of verticesV ′ forms a clique

if it is maximally complete, i.e. there is no set such thatV ′′ ⊆ V , V ′ ⊂ V ′′ andV ′′ is

complete.

There can be at mostα.3|V |/3 cliques Moon and Moser (1965) in a graphG, and finding

all the cliques of a graph has exponential time complexity. In the literature, several al-

gorithms Akkoyunlu (1973), Bron and Kerbosch (1973), Tomita et al. (2006) have been

34

proposed to prune the search space without relaxing the original clique definition, thus

enabling efficient time and space complexities. Output-sensitive techniques by limiting

the output size (number of cliques) achieve better run-time. We present a novel output-

sensitive clique finding algorithm in Section 3.6.

Bron and Kerbosch (1973) propose a family of seminal algorithms which consists of two

recursive backtracking algorithms that use branch-and-bound technique to prune branches

of recursion tree which cannot lead to a clique. These algorithms and their improved

versions, such as the one proposed by Samudrala and Moult (1998), are used widely. We

use the same implementation as well. In a more recent and influential work which is

presented in Tomita et al. (2006), a depth-first search algorithm is proposed which utilizes

pruning methods of Bron and Kerbosch (1973). Worst case run-time complexity of the

proposed algorithm is reported to beO(3|V |/3).

In the following section, we are interested in finding all thecliques of a graph. However,

on dense or very large graphs, we have to use our novel output-sensitive clique algorithm

in order to generate good quality final clusterings in practical run-times. In graph-based

clustering, for our purposes, it is possible to tune the granularity of the graph: In finer

granularity approach each data point is a vertex, in coarsergranularity approach each

(input) cluster is a vertex. Finer granularity approach is very rarely practical because of

its vertex size and density. On the other hand, coarser granularity approach is generally

practical due to its small size, i.e.|Π|tc ≪ |D|. For both cases, required graphs are

obtained by processing a collection of clusterings as shownin Figure 3.1.

Object-wise cliques

An object-wise similarity graph can be represented by a co-association matrix,M Fred

and Jain (2005).Mij is the number of times that objectsdi anddj are assigned to the same

cluster. This is also known asEvidence AccumulationFred and Jain (2005) and can easily

be obtained from Figure 3.1 by counting1s for each object pair. Our main algorithm,

CLICOM, can also run on this graph which has as many vertices as |D|.

35

Cluster-wise cliques

In a cluster-wise similarity graph, each vertex representsan input cluster. Cluster-wise

similarities are computed using Formula (3.2) on the input clusterings as shown in Fig-

ure 3.1. Other similarity measures, such as Jaccard similarity can also be used. It is very

important to note that number of total clusters is much smaller than the data set size, i.e.

|Π|tc ≪ |D|. In most cases, cliques on cluster-wise similarity graph can be computed

quickly.

3.3 RELATED WORK

In this section, we provide an overview of related and influential work for combining

multiple clusterings.

CSPA (Cluster-Based Similarity Partitioning Algorithm),which is introduced in Strehl

and Ghosh (2002), is based on a co-association matrix, and METIS, which is a software

package for partitioning unstructured graphs Karypis and Kumar (1998b,a). CSPA is

shown in Algorithm 3.

Input : Π(D): Multiple Clusterings,k: Number of Clusters In the Final Clustering
Output : π∗(D): Final Clustering
ComputeSM , |D| × |D| co-association matrix , usingΠ(D) ;
π∗(D) = METIS(SM, k) ;
return π⋆(D);

Algorithm 3 : Cluster-Based Similarity Partitioning AlgorithmCSPA

HGPA(Hypergraph Partitioning Algorithm) is introduced inStrehl and Ghosh (2002) as

well. Multiple clusterings construct a hypergraph where each object is a vertex, and each

cluster is a hyperedge. Main idea is to havek unconnected components of the hypergraph

by using HMETIS Karypis, Aggarwal, Kumar and Shekhar (1999). Combining multiple

clusterings problem is formulated as partitioning the hypergraph by cutting a minimal

number of hyperedges. A set of hyperedges are removed andk unconnected components

are obtained, which provides the final clustering.

In Meta-Clustering Algorithm (MCLA) Strehl and Ghosh (2002), each cluster is repre-

sented by a hyperedge, like in HGPA. MCLA is composed of the following steps: 1.Con-

36

structing the meta-graph, a regular graph labelled with Jaccard similarity between a pair

of hyperedges. 2.Partitioning the meta-graph, 3.Computing cluster members. These steps

are shown in Algorithm 4.

Input : Π(D): Multiple Clusteringsk: Number of Clusters in the Final Clustering
Output : π∗(D): Final Clustering
// G is a meta-graph, construct it
G = (V,E) ;
foreach c ∈ Π(D) do

Add c as a vertex to V;
foreachv1 ∈ V do

foreach v2 ∈ V do
if v1 6= v2 then

// label edge (v1, v2) using Jaccard similarity

label(v1, v2) =
|v1∩v2|
|v1∪v2|

;
π⋆(D) = METIS(G, k) ;
foreachobjectd ∈ D do

// modify π⋆(D) as follows
assignd to its most associated cluster inπ⋆(D)

return π⋆(D);
Algorithm 4 : Meta-Clustering AlgorithmMCLA

Evidence Accumulation (EAC) Fred and Jain (2005) accumulates the evidence in each

cluster to form a co-association matrix,SM . Each entry in this matrix,SMij , is the

number of times that data set objectsdi anddj are assigned to the same clusters. The

similarity matrix is provided as input to an agglomerative clustering algorithm, as shown

in Algorithm 5.

Input : Π(D): Multiple Clusterings,k: Number of Clusters in the Final Clustering
Output : π∗(D): Final Clustering
ComputeSM , |D| × |D| co-association matrix , usingΠ(D) ;
Run Agglomerative Clustering onSM to constructπ∗(D);
return π⋆(D);

Algorithm 5 : Evidence AccumulationEAC

The data set may be distributed at different sites. In this case, a distributed clustering

solution with a final merging of clusters is needed. Hore et al. (2009) proposes two meth-

ods, Bipartite Merger (BM) and METIS Merger (MM), for combining distributed clusters.

Using cluster centers (prototypes) instead of clusters reduces computation and memory

requirements. BM works on several clusterings each having the same number,n, clus-

ters. It groups the centroids according to their similarityand merges them to have a final

37

clustering withn clusters. MM uses METIS, and it is more flexible: clusteringscan have

different number of clusters. Good results of both BM and MM are reported in Hore et al.

(2009).

Some of the methods for combining multiple clusterings are based on evolutionary algo-

rithms such as Cristofor and Simovici (2002), Mohammadi et al. (2008). Some other tech-

niques are based on simulated annealing Filkov and Skiena (2004), Tumer and Agogino

(2008). A greedy, info-theoretical optimization method ispresented in Strehl and Ghosh

(2002). All of these methods operate on an objective function.

3.3.1 Shortcomings of Related Work

CSPA, HGPA, MCLA, and EAC require the number of final clustersin advance. BM and

MM represent clusters as centroids. For this reason, we willnot consider BM and MM in

the experimental evaluations. EAC requires a lot of computations, therefore it is slow on

all the data sets. Neither EAC nor CSPA scales well. AlthoughHGPA is very fast, it is

not very accurate. Evolutionary methods usually suffer from having long run-times.

3.4 CLICOM

Cliques forcombining multiple clustering CLICOM, is shown in Algorithm 6.CLICOM

starts to work on a weighted graph, where each cluster in a setof input clusterings are

represented by vertices. Pairwise similarities of clusters, computed in line 8, label the

graph edges. Graph sparsification is performed with respectto a threshold value,θ, as

shown in line 9. Sparsified graph representation,A, is supplied as input to findCliques

procedure which implements Bron-Kerbosch algorithm as described in Samudrala and

Moult (1998). Both the original cluster-wise similarity graph, and its sparsified version

are stored in|Π|tc × |Π|tc matrices:M andA.

Given a set of multiple clusterings in binary formatΠ(D), we use Formula (3.2) for cal-

culating the similarity between a pair of clusters (inter cluster similarity as shown in Fig-

ure 3.2)ECSΠ(D)(Ck, Cl), using co-associations of objects, which is based on Mimaroglu

and Yagci (2009).

38

Input : Π(D): Collection of Clusterings of a Data SetD, θ: Threshold for Sparsification
Output : π⋆(D): Final Clustering ofD
Initialize allClusters = ∅ ;
foreachπi ∈ Π(D) do

foreachCj ∈ πi(D) do
allClusters = allClusters ∪ Cj ;

Initialize proximity and adjacency matrices,M andA ;
foreachCi in allClusters do

foreachCj in allClusters, i 6= j do
Mij = ECSΠ(D)(Ci, Cj) ;
if Mij >= θ then Aij = 1 elseAij = 0 ;

SC ← findCliques(A) ;
B ← cliquesToClusters(SC,M, allClusters) ;
π⋆(D)← majorityV oter(B) ;
return π⋆(D)

Algorithm 6 : CLICOM

b

b

b

b

b

d1

d2

d3

d4

d5

C11 C12

Figure 3.2: Inter Cluster Similarity of a Cluster Pair inπ1(D)

ECSΠ(D)(Ck, Cl) =
1

|Π||Ck||Cl|

|Π|
∑

i=1

|πj |∑

j=1

(
|(Ck ∨ Cl) ∧ Cij |

2

)

−

(
|(Ck ∧ Cl) ∧ Cij |

2

)

−

(
|(Ck ∧ Cl) ∧ Cij|

2

)

+

(
|(Ck ∧ Cl) ∧ Cij |

2

)

+ (|Π(D)||Ck ∧ Cl|) (3.2)

We useECSΠ(D) similarity measure, since it can find cluster-wise similarities based on

co-associations of objects rather than e.g. a ratio of syntactically matched objects in

the clusters as in Jaccard similarity Tan et al. (2005). Our experimental studies show

ECSΠ(D) is superior to other similarity measures: With proper sparsification,ECSΠ(D)

captures cliques as given in Figure 3.3 where Jaccard measure cannot. This figure shows

that when using Jaccard measure, two cliques of size3 are detected:{C11, C21, C31}, and

39

b

b

b

C11

C12

C13

C21 C22

C31

C32

C33

C34

(a)

b

b

b

b

b b

b

C11

C12

C13

C21 C22

C31

C32

C33

C34

(b)

b

b

b

b

b

b

b

b

Figure 3.3: Largest Cliques of Figure 3.1 Obtained by (a) Jaccard Similarity (b) ECSΠ Similarity

b

b

b

b b

b

b

b

b

C11

C12

C13

C21 C22

C31

C32

C33

C34

B⋆
1

B⋆
2

Figure 3.4: Cluster Blocks of Figure 3.3(b)

{C13, C22, C34}. On the same data set,ECSΠ(D) similarity reveals two cliques of size4:

{C11, C21, C31, C32} and{C13, C22, C33, C34}.

Cliques returned by the findCliques procedure overlap, cliquesToClusters procedure puts

clusters into meaningful cluster blocks by reorganizing them in a non-overlapping manner.

The notion of cluster blocks is shown in Figure 3.4, which contains two blocksB⋆
1 , and

B⋆
2 . Number of cliques in the similarity graph does not determine the number of clusters in

the final clustering; cliquesToClusters detects the numberof clusters in the final clustering

automatically.

Algorithm 7 begins by ranking cliques using a normalized cumulative pairwise similarity

CECSΠ(D) as given in Formula (3.3). Note that this formula rewards large compact

cliques, since such cliques form predominant clusters. Starting with the highest ranking

clique, the algorithm iterates through each clique and accepts it as a cluster block which

can be expanded with other clusters, only if a certain percentage of its members have not

been assigned to any existing block. In experiments, we fixedthis ratio to 90% (δ = 10%).

At the end, there may be some vertices that are not assigned toany block. Each such

vertexCi is appended to a block that contains a vertex which is most similar to Ci (see

40

Input : SC: Set of Cliques,M : Proximity Matrix,allClusters: Set of All Clusters,δ :
Overlapping Percentage

Output : B = {B⋆
1 , B

⋆
2 , ..., B

⋆
|π⋆|}: Cluster Blocks

SortSC by ranking each cliquecliquem ∈ SC in decreasing order with respect to
CECSΠ(D) ;
k ← 0 ;
for m← 1 to |SC| do

if |assigned∩cliquem|
|cliquem|

≤ δ then
B⋆

k ← cliquem − assigned ;
B ← B ∪ {B⋆

k} ;
assigned← assigned ∪ B⋆

k ;
k ← k + 1 ;

// Cluster unclustered clusters
if allClusters− assigned 6= ∅ then

foreachCi ∈ allClusters− assigned do
// Find most similar assigned cluster and return its

index
l← maxj(Mij), Cj ∈ assigned ;
foreachB⋆

k ∈ B do
if Cl ∈ B⋆

k then
B⋆

k ← B⋆
k ∪ {Ci} ;

assigned← assigned ∪ {Ci} ;
return B

Algorithm 7 : cliquesToClusters Computes Cluster Blocks

lines 9-15).

CECSΠ(D)(clqm) =
|clqm|
(
|clqm|

2

)

|clqm|
∑

i=1

|clqm|
∑

j=i+1

ECSΠ(D)(Ci, Cj) (3.3)

Figure 3.4 illustrates an example: Largest two cliques in Figure 3.3(b){C11, C21, C31, C32}

and {C13, C22, C33, C34} are picked as blocks, and vertexC12 is appended to the first

block, since it is most similar toC21.

Final step is to convert the cluster blocks into clusters of data objects, which is carried out

by majorityVoter as shown in Algorithm 8. Using cluster blocks and their content, this

algorithm counts the number of occurrences of objects as shown in lines 5-8. Lines 9-11

assign each object to a cluster depending on its frequency. Figure 3.5 shows the voting

procedure, and Figure 3.6 presents the final clustering produced by CLICOM on the input

shown in Figure 3.1.

41

d1 d2 d3 d4 d5 d6 d7 d8

B⋆
1

C11 1 1 0 0 0 0 0 0
C12 0 0 1 1 1 0 0 0
C21 1 1 1 1 0 0 0 0
C31 1 1 0 0 0 0 0 0
C32 0 0 1 1 0 0 0 0

B⋆
2

C13 0 0 0 0 0 1 1 1
C22 0 0 0 0 1 1 1 1
C33 0 0 0 0 1 1 0 0
C34 0 0 0 0 0 0 1 1

Σ1 3 3 3 3 1 0 0 0
Σ2 0 0 0 0 2 3 3 3

C
⋆
i
, i = 1 1 1 1 2 2 2 2

Figure 3.5: votingMatrix Computes Class Labels of Objects

b

b

d1

d2

C⋆
2

b

b

d3

d4

b

b

d5

d6

b

b

d7

d8

C⋆
1

Figure 3.6: Final Clustering,π⋆(D)

3.5 DISCUSSION OF CLICOM

3.5.1 Advantages of CLICOM

Efficiency and Scalability

CLICOM works well with large data sets. Experimental results with data sets up to 40.000

objects are shown. Although CLICOM operates on objectwise co-associations, it does not

require aD×D similarity matrix. CLICOM takes advantage of bitset operations to find

similarity between a pair of clusters.

42

Input : B: Cluster Blocks
Output : π⋆(D): Final Clustering
Initialize |B| × |D| sizeV otingMatrix filled with 0s ;
Initialize π⋆(D) = ∅ ;
for m← 1 to |B| do

Initialize π⋆
m = ∅ ;

foreachcluster blockB⋆
k ∈ B do

foreach clusterCi ∈ B⋆
k do

foreachobjectdj ∈ Ci do
V otingMatrixkj ← V otingMatrixkj + 1 ;

for j ← 1 to |D| do
m = maxk(V otingMatrixkj), k = {1, . . . , |B|} ;
Add objectdj to π⋆

m ;
for m← 1 to |B| do

Add π⋆
m to π⋆(D) ;

return π⋆(D)

Algorithm 8 : majorityV oter Places Objects into Final Clusters

Improved accuracy

Strong nature of cliques and a co-association based similarity measure improve accuracy

of the consensus function.

Varying Numbers of Clusters and Clusterings

A collection of clusterings,Π(D), is the main input to CLICOM. Our algorithm works

well with arbitrary number of clusterings and clusters.

Automatically Computed Number of Final Clusters

Most of the clustering and combining multiple clustering algorithms require the number

of final clusters in advance. However, CLICOM automaticallycomputes the number of

clusters in the final clustering with respect to its input parameters. Number of cliques and

their properties, such as ranking and overlapping, affect the number of clusters in the final

output clustering.

43

Termination Condition

The algorithm terminates automatically when all the objects are assigned to a cluster.

3.5.2 Shortcomings of CLICOM

The principal shortcoming of CLICOM is inherited from clique finding algorithms. As

mentioned earlier, conventional clique finding algorithmsperform poorly on large or

dense graphs. Since CLICOM operates on graphs representingcluster similarities, gener-

ally these graphs tend to be small and sparse. But, in rare cases we may encounter large

or dense graphs. To address this problem, we propose a novel,output-sensitive clique

finding algorithm in the next section which can find satisfactory number cliques in a short

amount of time.

3.6 OUTPUT-SENSITIVE CLIQUE FINDING ALGORITHM

An efficient algorithm which finds all the cliques in a graph has exponential time com-

plexity with respect to number of vertices in the graph. In Tomita et al. (2006), Ostergard

(1999), several clique finding algorithms are benchmarked for varying number of vertices

and densities.

For saving run-time, clique definition may be relaxed to obtain almost cliques or the

number of cliques may be limited. However, our proposal is a novel algorithm which

obeys to clique definition, but saves time by limiting the number of cliques to|V |2. Still,

our aim is to accomplish a good quality final clustering.

Theorem 1. Let A be an adjacency matrix which represents a graphG = (V,E). A

clique matrix K is defined as follows:

I-) K is a |V | × |V | size, symmetric matrix.

II-) Initial state ofK is represented byK0. Middle states areK1,K2, ...,K|V |−1,

the final state is represented byK|V |.

III-) Sequential transitions occur fromK0 toK|V |.

44

IV-) K0
ij = {vi, vj} if Aij = 1. K0

ij = ∅ if Aij = 0.

V-) K0 toK|V | are computed using Algorithm 9.

VI-) Each entry ofK|V |, which is not empty set, is a clique.

VII-) There can be at most|V |×|V−1|
2

cliques inK|V |.

We propose an output-sensitive method in Algorithm 9 for findingK in an efficient way.

Number of cliques are bounded by the size of clique matrix,K, which implies output-

sensitivity.

Input : A: |V | × |V | Adjacency Matrix
Output : Set of Cliques
// Build K0

foreachAij ∈ A do
if Aij = 1 then
K0

ij = {vi, vj} ;
else
K0

ij = ∅ ;
// create neighbors set
for i← 1 to |V | do

Neighborsi = ∅ ;
for j ← 1 to |V | do

if Aij = 1 andi 6= j then
Add vj toNeighborsi ;

// Sequentially Construct K1 . . .K|V |

foreachpivot vertexvp, p = 1, 2, ..., |V | do
// Initialize Kp with ∅ entries

foreachKp−1
ij ! = ∅ do

if Kp−1
ij ⊆ Neighborsp then
Kp

ij = K
p−1
ij ∪ {vp} ;

else
Kp

ij = K
p−1
ij ;

// Extract Cliques
Cliques = ∅ ;
for i← 1 to |V | do

for j ← i+ 1 to |V | do
if K|V |

ij 6= ∅ then
AddK|V |

ij toCliques ;
return Cliques

Algorithm 9 : FastCliquer Algorithm

45

Theorem 3.6.1.LetK be the clique matrix of a graphG = (V,E). Entries ofK|V | which

are not∅ are cliques ofG.

Proof. We have to show that the entries ofK|V | are complete: there exists an edge between

each vertex pair, and maximal: the set of vertices cannot be extended with another vertex.

Base Case: Entries ofK0 are complete. This is immediate from the definition ofK0.

Inductive Step: Let us assume entries ofKn are complete, for somen, 0 < n < |V |.

We show that the entries ofKn+1 are also complete. All the neighbors of a vertexvp

can be represented by a setNeighborsp. If Kn
ij ⊆ Neighborsp holds (line 13), there is

an edge betweenvp and every vertex inKn
ij. ThereforeKn

ij can be extended byvp, i.e.

Kn+1
ij = Kn

ij ∪ vp (line 14). If |Neighborsp ∩ K
n
ij | = |K

n
ij| does not hold, extension does

not take placeKn+1
ij = Kn

ij (line 16). In either caseKn+1
ij is complete, thus entries ofKn+1

are complete.

Conclusion: We know that the entries ofK|V | are complete. Following, we show that

entries ofK|V | are maximal. An entryK|V |
ij can not be extended with a new vertexvp,

since line 11 considered every possiblev ∈ V . Thus,K|V |
ij is maximal. As conclusion, we

know that entries ofK|V | are maximal, and complete. Therefore, entries ofK|V | which

are not∅ are cliques ofG.

Theorem 3.6.2.FastCliquer Algorithm is output-sensitive.

Proof. Let K be the clique matrix of a graphG = (V,E). From Theorem 3.6.1, entries

of K|V | which are not∅ are cliques ofG. SinceK|V | is a symmetric matrix, there can be

at most|V |2−|V |
2

cliques. Therefore, FastCliquer Algorithm is output-sensitive.

Theorem 3.6.3.Time complexity of FastCliquer Algorithm isO(|V |3).

Proof. LetK be the clique matrix of a graphG = (V,E). K0 has(|V |2 − |V |)/2 entries.

In order to obtainK|V |, all the entries ofK0 are possibly updated by allv ∈ V , which

makes(|V |3 − |V |2)/2 computations.

Theorem 3.6.4.Space complexity of FastCliquer Algorithm isO(|V |2).

Proof. LetK be the clique matrix of a graphG = (V,E). Kp has(|V |2 − |V |)/2 entries,

0 ≤ p < |V |. Kp+1 can be written onKp, since we only need final state of the clique

matrixK|V |.

46

Algorithm 9 performs naive pivot selection; more sophisticated methods for pivot selec-

tion, which may yield larger or better cliques, can be investigated. Extension as shown in

line 14 is performed with a vertexvp, if vp’s neighbors are already in an entry of clique

matrix. Note that this satisfies completeness. This extension is performed with every pos-

sible (pivot) vertex, which satisfies maximality. Therefore, each entry inK|V | matrix is a

clique by being maximally complete.

FastCliquer in Algorithm 9 is an eligible substitute for findCliques method in Algorithm 6.

Extensive experimental studies show that by using FastCliquer instead of Bron-Kerbosch

implementation, considerable speed gain is achieved, while maintaining good quality final

clusterings.

A C11 C12 C13 C21 C22 C31 C32 C33 C34

C11 0 0 0 1 0 1 1 0 0
C12 0 0 0 1 0 0 1 1 0
C13 0 0 0 0 1 0 0 1 1
C21 1 1 0 0 0 1 1 0 0
C22 0 0 1 0 0 0 0 1 1
C31 1 0 0 1 0 0 1 0 0
C32 1 1 0 1 0 1 0 0 0
C33 0 1 1 0 1 0 0 0 1
C34 0 0 1 0 1 0 0 1 0

(a)

K C11 C12 C13 C21 C22 C31 C32 C33 C34

C11 X ∅ ∅ P ∅ P P ∅ ∅

C12 X ∅ R ∅ ∅ R S ∅
C13 X ∅ T ∅ ∅ T T
C21 X ∅ P P ∅ ∅
C22 X ∅ ∅ T T
C31 X P ∅ ∅
C32 X ∅ ∅
C33 X T
C34 X

(b)

Figure 3.7: (a) Adjacency Matrix,A, and (b)K|V | matrix for the graph in Figure 3.3(b). InK,
P = {C11, C21, C31, C32}, T = {C13, C22, C33, C34}, R = {C12, C21, C32}, S = {C12, C33}

Example 1. FastCliquer is demonstrated in Figure 3.7, which shows the adjacency and

clique matrices for the cluster-wise similarity graph in Figure 3.3(b).

All cliques {C11, C21, C31, C32}, {C13, C22, C33, C34}, {C12, C21, C32}, {C12, C33} are

successfully reported.

47

3.7 EXPERIMENTAL EVALUATIONS

In this section, we present experimental results of CLICOM in comparison to some other

related methods. We begin with explaining the clustering validity measures and the data

sets we have used in our experiments.

3.7.1 Measuring Clustering Validity

Goodness of final clusterings produced by CLICOM can be evaluated by cluster validity

measures such as Adjusted Rand Index (ARI) Hubert and Arabie(1985), and Normalized

Mutual Information (NMI) Strehl and Ghosh (2002). These clustering validity measures

are explained below.

Adjusted Rand Index (ARI)

We use ARI for comparing quality of clusterings obtained by CLICOM with the real

class labels. Given a final clusteringπ⋆(D) = {C⋆
1 , C

⋆
2 , . . . , C

⋆
|π⋆(D)|} and the original set

of classes,πo(D) = {Co
1 , C

o
2 , . . . , C

o
|πo(D)|}, whereC⋆

i ∩ C⋆
j = ∅ for 1 ≤ i, j ≤ |π⋆(D)|,

andCo
i ∩ Co

j = ∅ for 1 ≤ i, j ≤ |πo(D)| with variables in Figure 3.8 referring to;

p = |π⋆(D)|, r = |πo(D)|

nij = |C
o
i ∩ C⋆

j |

ni. =

p
∑

j=1

nij

n.j =
r∑

i=1

nij

ARI is formulated as follows:

∑

i,j

(
nij

2

)
−
(
∑

i

(
ni.

2

)∑

j

(
n.j

2

))

/
(
n
2

)

1
2

(
∑

i

(
ni.

2

)
+
∑

j

(
n.j

2

))

−
(
∑

i

(
ni.

2

)∑

j

(
n.j

2

))

/
(
n
2

)

48

Figure 3.8: Abbreviations for ARI
Class\ Cluster C⋆

1 C⋆
2 . . . C⋆

p Sums
Co

1 n11 n12 . . . n1p n1.

Co
2 n21 n22 . . . n2p n2.
...

...
...

...
Co

r nr1 nr2 . . . nrp nr.

Sums n.1 n.2 n.p n.. = n

ARI takes its maximum value at 1, which indicates perfect match between two clusterings

π⋆(D) andπo(D).

Normalized Mutual Information (NMI)

We use as well an information-theoretic measure, NMI Strehland Ghosh (2002), in a

supervised manner, by comparing a final clusteringπ⋆(D) with πo(D) having original

class membership information. This measure computes mutual information between the

two clusterings and normalize it with their total entropies.

NMI(π⋆(D), πo(D)) =
MI(πo(D), π⋆(D))
√

H(πo(D))H(π⋆(D))

=

∑|π⋆(D)|
i=1

∑|πo(D)|
j=1 |C⋆

i ∩ Co
j | log

(
|D||C⋆

i ∩C
o
j |

|C⋆
i ||C

o
j |

)

√
(
∑|π⋆(D)|

i=1 |C⋆
i | log

|C⋆
i |

|D|

)(
∑|πo(D)|

j=1 |Co
j | log

|Co
j |

|D|

)

NMI is often used in Combining Multiple Clusterings literature. Similar to ARI, NMI

takes its maximum value at 1. We use NMI along with ARI in orderto show that our

good results are not mere coincidence.

49

3.7.2 Data Sets

HALFRING, CURVE, SYNTH10C, SYNTH4C1, SYNTH4C2, and SYNTH4C4 are syn-

thetic data sets. HALFRING data set contains118 objects and two clusters. CURVE data

set has192 objects in two clusters. SYNTH10C is a10-cluster data set obtained by using a

Gaussian mixture model by using the software provided indbkgroup.org/handl/generators.

SYNTH4C1, SYNTH4C2, and SYNTH4C4 are large data sets each having 4-clusters

with Gaussian distributions. These data sets are shown in Figure 3.9.

2D2K and 8D5K data sets are obtained fromstrehl.comand used in Strehl and Ghosh

(2002) : 2D2K is synthetically generated and contains 500 points in each of its two Gaus-

sian clusters with means (0.227, 0.077) and (0.095, 0.323) and diagonal covariance matri-

ces with 0.1 for all diagonal elements. 8D5K contains 1000 points from five multivariate

Gaussian distributions (200 points each) in 8-dimensionalspace. The clusters all have the

same variance (0.1), but different means. Means were drawn from a uniform distribution

within the unit hypercube. The data sets are illustrated in Figure 3.10.

Rest of the test data sets are obtained from the UCI’s machinelearning repository Asun-

cion and Newman (2007), which are multi-dimensional with various properties. Table 3.1

shows properties of all the test data sets, where the last column shows the original number

of clusters. Table 3.2 provides information about clusterings on these data sets that are

used as input by CLICOM and other methods in comparison.

Table 3.1: Properties of Test Data Sets
Data Set |Objects| |Attributes| |Clusters|

HALFRING 118 2 2
CURVES 192 2 2

IRIS 150 4 3
GLASSIDE 214 9 6

2D2K 1000 2 2
8D5K 1000 8 5

IMAGESEG 2310 18 7
SYNTH10C 3630 2 10
SIGNFORM 5000 21 3
SYNTH4C1 10000 3 4
SYNTH4C2 20000 3 4
SYNTH4C4 40000 3 4

50

2

3

4

5

6

7

8

2 4 6 8 10 12

HALFRING

(a)

-2

-1.5

-1

-0.5

0

0.5

1

0 2 4 6 8 10

CURVE

(b)

-20

-15

-10

-5

0

5

10

15

20

-20 -10 0 10 20 30

SYNTH10C

(c)

-10
-5

0
5

10

-5

0

5

10

15-15

-10

-5

0

5

10

SYNTH4C

(d)

Figure 3.9: HALFRING, CURVE, SYNTH10C Data Sets. Randomly Sampled 500 Objects of
SYNTH4C Family.

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

2D2K

(a)

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

8D5K

(b)

Figure 3.10: 2D2K and 8D5K (projected on 3 Principal Components) Data Sets

51

Table 3.2: Input Clustering Properties on Data Sets
ARI

Data set |Clusterings| |Clusters| Worst Best
HALFRING 3 2 - 5 0.41 0.81

CURVES 3 3 - 6 0.33 0.78
IRIS 5 2 - 6 0.54 0.76

GLASSIDE 5 5 - 7 0.58 0.73
2D2K 3 2 0.66 0.79
8D5K 5 5 0.55 0.74

IMAGESEG 5 7 0.44 0.45
SYNTH10C 20 5 - 14 0.56 0.78
SIGNFORM 5 3 - 5 0.44 0.47
SYNTH4C1 4 3 - 6 0.73 0.82
SYNTH4C2 9 3 - 6 0.57 0.93
SYNTH4C4 10 3 - 6 0.56 0.87

3.7.3 Experimental Results

Figure 3.11 demonstrates CLICOM on HALFRING data set. Figures 3.11(b)-3.11(d)

show input clusterings and their quality. Using the input provided in Figures 3.11(b)-

3.11(d), CLICOM generates a final clustering having a much better overall quality as

shown in Figure 3.11(a).

On IRIS, which is a real data set, CLICOM produces a final clustering with100% accu-

racy as shown in Figure 3.12(a) by using the input clusterings shown in Figures 3.12(b)-

3.12(f). All the input clusterings are obtained byk-Means withk having values between

2 and 6. Although the clusterings provided byk-Means, even with the correct number of

clusters (k=3), have notably low quality, CLICOM is able to combine these clusterings

into a final clustering having perfect quality.

On SYNTH10C data set, which has10 clusters, similar successful results of CLICOM

are shown in Figure 3.13.

For all the data sets, Table 3.3 shows qualities of final clusterings obtained by using both

Bron-Kerbosch and FastCliquer algorithms. This table demonstrates two very important

points: (1) CLICOM produces better quality final clusterings than the collection of in-

put clusterings (2) FastCliquer is as accurate as Bron-Kerbosch implementation for the

purpose of combining multiple clusterings.

52

2

3

4

5

6

7

8

2 4 6 8 10 12

(a) Output of CLICOM with ARI=1.00

2

3

4

5

6

7

8

2 4 6 8 10 12

(b) |π1(D)|=2 and ARI=0.81

2

3

4

5

6

7

8

2 4 6 8 10 12

(c) |π2(D)|=3 and ARI = 0.75

2

3

4

5

6

7

8

2 4 6 8 10 12

(d) |π3(D)|=5 and ARI=0.41

Figure 3.11: Result of CLICOM on 3 Input Clusterings on HALFRING

Main advantage of using FastCliquer instead of Bron-Kerbosch is speed, which can be ob-

served in Tables 3.4 and 3.5(b). Considerably shorter run-times are obtained on especially

data sets having large and dense similarity graphs.

Instead of using cluster-wise similarity graphs, we also investigated the benefits and short-

comings of providing object-wise similarity graphs to CLICOM. On object-wise similar-

ity graphs, Bron-Kerbosch algorithm is infeasible for large number of objects, as ex-

pected. FastCliquer algorithm solves this problem by producing cliques in practical run-

times. Object-wise similarity graphs require a size|D| × |D| similarity matrix generation

and storage, which is a major computational and storage requirement. Counter-intuitively,

we also observed much less accurate results in our experiments when using object-wise

similarity graphs. All put together, we do not suggest usingCLICOM on objects. Accu-

racy results and run-times are displayed in Table 3.5.

53

-4 -3
-2 -1

0 1
2 3

4

-1.5

-1

-0.5

0

0.5

1

1.5-1

-0.5

0

0.5

1

(a) Output of CLICOM with ARI=1.00

-4 -3
-2 -1

0 1
2 3

4

-1.5

-1

-0.5

0

0.5

1

1.5-1

-0.5

0

0.5

1

(b) |π1(D)|=3 and ARI=0.75

-4 -3
-2 -1

0 1
2 3

4

-1.5

-1

-0.5

0

0.5

1

1.5-1

-0.5

0

0.5

1

(c) |π2(D)|=2 and ARI=0.54

-4 -3
-2 -1

0 1
2 3

4

-1.5

-1

-0.5

0

0.5

1

1.5-1

-0.5

0

0.5

1

(d) |π3(D)|=6 and ARI=0.64

-4 -3
-2 -1

0 1
2 3

4

-1.5

-1

-0.5

0

0.5

1

1.5-1

-0.5

0

0.5

1

(e) |π4(D)|=3 and ARI=0.74

-4 -3
-2 -1

0 1
2 3

4

-1.5

-1

-0.5

0

0.5

1

1.5-1

-0.5

0

0.5

1

(f) |π5(D)|=4 and ARI=0.76

Figure 3.12: Result of CLICOM on 5 Input Clusterings on IRIS

Table 3.6 displays test results of the related work. EAC (with single link) and CSPA

methods run out of memory on SYNTH4C2 and SYNTH4C4 data sets.Note that EAC,

MCLA, CSPA and HGPA all need the number of clusters in the finalclustering as input.

Although providing the input correctly creates an unfair advantage to EAC, MCLA, CSPA

and HGPA, we provided correct number of clusters. On most of the data sets, CLICOM

generates better quality final clusterings than EAC, MCLA, CSPA and HGPA. Best results

54

-20

-15

-10

-5

0

5

10

15

20

-20 -10 0 10 20 30

(a) Output of CLICOM with ARI = 0.86

-20

-15

-10

-5

0

5

10

15

20

-20 -10 0 10 20 30

(b) |π2(D)|=7 and ARI=0.61

-20

-15

-10

-5

0

5

10

15

20

-20 -10 0 10 20 30

(c) |π9(D)|=12 and ARI=0.58

-20

-15

-10

-5

0

5

10

15

20

-20 -10 0 10 20 30

(d) |π16(D)|=10 and ARI=0.7

Figure 3.13: Result of CLICOM on 20 Input Clusterings on SYNTH10C, Some Input Clusterings
Shown in (b)-(d)

of these algorithms and CLICOM are shown in Figure 3.14, clearly CLICOM is superior.

CLICOM obtains these good quality results very fast, which is shown in the same figure.

3.8 CONCLUSIONS AND FUTURE WORK

Providing the best sparsification value automatically to CLICOM is an open research area,

since good sparsification yields good results. Best value ofoverlapping percentage (δ) in

cliquesToClusters needs further investigation. We experimentally found thatδ = 10%

produces good results on our test data sets. In FastCliquer algorithm, ordering pivots in

the best possible way for producing large cliques is also a future research direction.

In this chapter, we propose a novel algorithm for combining acollection of clusterings into

a final clustering having better overall quality. Our method, CLICOM, is based on solid

foundations since it utilizes cliques for generating clusters, and cliques form very strong

55

Table 3.3: CLICOM Validity Results Using Bron-Kerbosch and FastCliquer Algorithms
Bron-Kerbosch FastCliquer

Data set θ |π⋆| ARI NMI |π⋆| ARI NMI

HALFRING
0.03 1 0.00 0.00 1 0.00 0.00
0.33 2 1.00 1.00 2 1.00 1.00
0.67 4 0.71 0.77 3 0.77 0.83

CURVE
0.17 2 0.98 0.96 2 0.98 0.96
0.33 3 0.76 0.80 3 0.76 0.80

IRIS

0.40 2 0.57 0.76 2 0.57 0.76
0.50 3 1.00 1.00 3 1.00 1.00
0.60 3 0.92 0.91 3 1.00 1.00
0.70 5 0.85 0.89 4 0.87 0.91

GLASSIDE

0.20 5 0.92 0.95 5 0.92 0.95
0.26 6 1.00 1.00 6 1.00 1.00
0.40 6 0.96 0.95 5 0.97 0.97
0.60 5 0.74 0.66 2 0.52 0.68

2D2K
0.07 1 0.00 0.00 1 0.00 0.00
0.50 2 0.79 0.69 2 0.79 0.69

8D5K
0.20 4 0.76 0.86 4 0.76 0.86
0.40 5 0.96 0.94 5 0.96 0.94
0.60 6 0.88 0.88 5 0.96 0.94

IMAGESEG
0.30 7 0.89 0.86 7 0.89 0.86
0.40 7 0.80 0.79 7 0.88 0.86

SYNTH10C
0.40 9 0.79 0.87 9 0.79 0.87
0.50 10 0.86 0.90 10 0.86 0.90
0.60 12 0.75 0.84 11 0.68 0.81

SIGNFORM
0.26 3 0.87 0.81 3 0.87 0.81
0.40 3 0.89 0.83 3 0.86 0.81

SYNTH4C1 0.25 4 0.99 0.98 4 0.99 0.98
SYNTH4C2 0.60 4 0.98 0.97 4 0.98 0.97
SYNTH4C4 0.75 4 0.98 0.97 4 0.98 0.97

clusters. We study several clique finding algorithms and provide a new clique finding

method that is fast and accurate. CLICOM can be used on finer and coarser granularities

by providing object-wise or cluster-wise similarity graphs. On cluster-wise similarity

graphs, CLICOM produces remarkably good quality final clusterings due to its similarity

measure which is based on object co-associations. Extensive experimental results on real

and artificial data sets show that CLICOM scales very well, and produces output as fast

as the other state-of-the-art methods.

56

Table 3.4: CLICOM Run-Time Results Using Bron-Kerbosch and FastCliquer Algorithms
Run-time (ms)

Data set θ Bron-Kerbosch FastCliquer
HALFRING 0.33 20 5

CURVE 0.17 35 14
IRIS 0.50 52 25

GLASSIDE 0.26 85 40
2D2K 0.50 25 8
8D5K 0.40 110 50

IMAGESEG 0.30 125 70
SYNTH10C 0.50 2,825 1,650
SIGNFORM 0.40 100 95
SYNTH4C1 0.25 105 45
SYNTH4C2 0.60 350 130
SYNTH4C4 0.75 760 420

Table 3.5: On Object-wise Similarity Graph, CLICOM (a) Validity Results (b) Run-Time Results
Data set θ |π⋆| ARI NMI

IRIS 0.40 3 0.76 0.77
GLASSIDE 0.40 6 0.96 0.95

8D5K 0.20 5 0.95 0.93
(a)

Run-time (ms)
Data set θ Bron-Kerbosch FastCliquer

IRIS 0.40 13,500 225
GLASSIDE 0.40 50,250 340

8D5K 0.20 >30min 30,500
(b)

57

Table 3.6: Cluster Validity Results of the Related Work (OOM: Out of Memory)
ARI

Data set |π⋆| EAC MCLA CSPA HGPA

HALFRING
2 1.00 1.00 1.00 0.43
3 0.80 0.68 0.44 0.50

CURVE
2 0.98 0.98 0.98 0.23
3 0.74 0.75 0.43 0.45

IRIS
2 0.57 0.44 0.44 0.37
3 0.64 0.88 0.98 0.29
4 0.65 0.94 0.55 0.06

GLASSIDE
5 0.91 0.93 0.48 0.31
6 0.91 0.98 0.51 0.30

2D2K
2 0.79 0.79 1.00 0.00
3 0.76 0.76 0.45 0.60

8D5K
5 0.61 0.96 0.98 0.00
6 0.61 0.93 0.64 0.55

IMAGESEG
6 0.00 0.69 0.64 0.23
7 0.00 0.88 0.85 0.54

SYNTH10C
9 0.64 0.80 0.67 0.54
10 0.64 0.76 0.60 0.52
12 0.67 0.81 0.57 0.52

SIGNFORM
2 0.00 0.50 0.38 0.01
3 0.00 0.87 0.88 0.09
4 0.00 0.87 0.51 0.00

SYNTH4C1
3 0.62 0.80 0.70 0.23
4 0.99 0.74 0.69 0.00

SYNTH4C2
3 OOM 0.80 OOM 0.20
4 OOM 0.98 OOM 0.00

SYNTH4C4
3 OOM 0.80 OOM 0.48
4 OOM 0.98 OOM 0.00

58

Figure 3.14: Comparison of Validity and Run-time Results

59

4. APPROXIMATIVE COMPUTING OF DISTANCES BY

RANDOM HASHING

In this chapter, we propose a technique for approximate computation of inter-object dis-

tances in binary data sets. Our approach is based on LocalitySensitive Hashing, scales

up well with the number of objects and it is especially usefulfor parallel computing en-

vironments. We obtain multiple weak clusterings of a data set by randomly selecting a

number of projections on its attributes and then grouping objects into buckets based on

the common values of these projections. For each pair of objects, occurrences in the same

bucket are counted and the exact Hamming distance is approximated based on the portion

of co-occurrences in the buckets. Next, we parallelize the computation using mainly two

different schemes. The first assigns each subspace to a single process calculating its parts

of the co-occurrence matrix and afterwards adds up the complete co-occurrence matrix

over all subspaces. The second method exchanges results between each process during

computation.

4.1 INTRODUCTION

Locality Sensitive Hashing (LSH), introduced in Indyk and Motwani (1998) and Andoni

and Indyk (2008), can be used for an approximate calculationof distances between the

tuples of a table by using randomized hash functions. A closevariant of LSH which works

best with the Hamming distance is described in Gionis et al. (1999).

We propose a method for approximating the distance matrix for binary data sets repre-

sented by bit vectors. The core idea is to choosem k-dimensional subspaces randomly

and consider a bucket for each possible bit vector in this subspace. Then, the vectors are

hashed into the matching buckets and, for each pair of objects the occurrences in the same

bucket are counted. The exact Hamming distance is approximated based on the portion

of co-occurrences in them subspaces. We parallelize this computation using different

schemes.

Our data set is a binary tableD, havingN distinct objects and a setI that consists of

n distinct attributes. A setK ⊆ I of k attributes, designated as aprobe and chosen

randomly, defines a random hashing functionfK by assigning to a tuplet the numerical

60

binary equivalent of the projection oft on the setK, t[K].

Each hashing function produces a partition of the set of tuples; each block of this partition

consists of tuples that collide under that hashing function.

LSH is used for clustering the Web in Haveliwala et al. (2000). In Koga et al. (2007) it is

used to enhance the agglomerative hierarchical clusteringof the single link method Sibson

(1973b). Both of these techniques rely on the same idea provided by LSH: close objects

are likely to collide under a high number of randomly chosen hashing functions. Both of

these techniques compute the real distances between objects residing in the same blocks.

LSH-Link algorithm Koga et al. (2007) hasO(N2) time complexity as the classical single

link method and it works as follows. DatabaseD is hashed intom partitions by using

randomly generated functions of LSH onk attributes. In the first phase of the algorithm

distances between all pairs of tuples(u, v) residing in the same blocks are computed,

and all the pairs of tuples having distance at mostr are merged at once. Note that this

pairwise computation takes place on every block of every partition. If after the first phase

there is more than one cluster, the algorithm proceeds to thesecond phase by selecting

a new projection sizek′ such thatk′ < k, and a new distance valuer′ such thatr′ > r.

LSH-Link hashes the whole databaseD again by using the new valuesr′, k′. It merges the

pair of clusters with respect tor′. If there is more than one cluster, the algorithm proceeds

to the next phase by selecting new valuesr′′, k′′ and by repeating all the calculations.

This continues until there is only one cluster. Authors of Koga et al. (2007) point that in a

phase several clusters may be merged as opposed to merging only two clusters in classical

single link algorithm. Note that if the initial distancer is not chosen carefully the LSH-

Link algorithm may take many phases, therefore yielding many redundant hashing and

pairwise distance computations. Furthermore, in the worstcase this algorithm computes

N2 distances.

The clustering algorithms proposed in Haveliwala et al. (2000) and Koga et al. (2007)

focus on finding the approximate set of near neighborsANN(u) of an objectu, followed

by finding real near neighbors ofu by computing the actual distancesd(u, v) for all v ∈

ANN(u). Note that some of the real neighbors ofu may be missed because LSH does not

guarantee to put all the close objects in the same blocks.

We aim for a distinct goal, namely an efficient, approximative computation of the distance

matrix of the set of objects using LSH, which allows us to use avariety of standard

61

clustering algorithms.

Parallel and distributed computing techniques are able to solve big and complicated prob-

lems by using a variety of divide-and-conquer techniques. In this chapter, we introduce

several parallel data mining programming methodologies that are applicable in two widely

used architectures: shared disk cluster environment, and shared memory architectures

Flynn (1972).

Preliminary results are presented in Mimaroglu and Simovici (2008), and the chapter is

structured as follows. Section 4.2 examines the relation between randomly generated

hash function collisions and distances. In Section 4.3, we present the algorithms and

implementation guidelines. Experimental environments and test results are presented in

Section 4.4. A final section contains our conclusions and plans for future work.

4.2 COLLISIONS AND DISTANCES

In this section, we examine the relation between randomly generated hash function colli-

sions and distances between objects.

A binary data collectionis a sequenceD = (t1, . . . , tN) of tuples, whereti ∈ {0, 1}n.

Let K = {i1, . . . , ik} ⊆ {1, . . . , n}. Theprojection of a tuplet ∈ {0, 1}n on K is the

tuplet[K] = (ti1 , . . . , tik). TheK-projection of the binary data collectionD is the binary

data collectionD[K] = (t1[K], . . . , tN [K]).

EachK-projection ofD generates a functionfK : {1, . . . , N} −→ N, wherefK(r) is

the binary equivalent of the sequencetr[K]. This can be seen in Figure 4.1, where the

functionf{i1,i3,i5} for the binary data collection shown in Part (a) is given in Part (b) of

the figure. f{i1,i3,i5} creates a partition with 8 blocks; 2 of these are empty as shown in

Figure 4.2.

The Hamming distance between two tuplesu, v ∈ {0, 1}n is given by

d(u, v) = |{i ∈ {1, . . . , n} | ui 6= vi}|,

whereu = (u1, . . . , un) andv = (v1, . . . , vn).

62

D

r i1 i2 i3 i4 i5
1 1 0 0 1 1
2 0 1 1 0 0
3 1 0 1 0 0
4 1 1 0 1 0
5 0 1 1 1 1
6 0 0 1 1 1
7 1 0 1 0 1
8 1 1 0 0 1
9 0 1 1 1 0

D[K]
r fK(r)
1 5
2 2
3 6
4 4
5 3
6 3
7 7
8 5
9 2

(a) (b)
Figure 4.1: A binary collection and the hashing functionfK for K = {i1, i3, i5}.

000 001 010 011
{} {} {2,9} {5,6}

100 101 110 111
{4} {1,8} {3} {7}

Figure 4.2: All the blocks created byfK for K = {i1, i3, i5}. Block descriptors, and correspond-
ing row numbers are shown.

Suppose that the set of attributesK that defines a probe is chosen at random. There are(

n

k

)

such choices if|K| = k. A collision takes place between two rowsu andv if the

chosenk attributes are among then − d attributes on whichu andv are equal, where

d = d(u, v) is the Hamming distance betweenu andv. There are

(

n− d

k

)

such choices

for the setI. Therefore, for any two rowsu, v of D the collision probability forfK , that

is, the probability thatfK(u) = fK(v) is

p =

(

n− d

k

)

(

n

k

) .

If m setsK having k elements are chosen at random, thenC(u, v) the total number

of collisions that occur in this experiment is a binomially distributed variable with the

63

distributionB(m, p). Thus, the expected number of collisions is

E(C(u, v)) = m

(

n− d

k

)

(

n

k

)

if k ≤ n−d, which is typically the case. Ifk > n−d a collision is impossible andp = 0.

It is clear that the smaller the distanced(u, v), the larger the number of collisions will be.

Using Stirling’s Formula we can write

(

n− d

k

)

(

n

k

) =

(n−d)!
k!(n−d−k)!

n!
k!(n−k)!

=
(n− d)!

n!

(n− k)!

(n− d− k)!

≈
(n− d)n−d+0.5(n− k)(n−k+0.5)

n(n+0.5)(n− d− k)n−d−k+0.5

=

(
n2 − nd− nk + dk

n2 − nd− nk

)n+0.5

·

(
n− d− k

n− d

)d

·

(

1−
d

n− k

)k

.

For moderately large values ofn the first two factors are close to1. Thus, the expected

value of the number of collisions is

E(C(u, v)) ≈ m ·

(

1−
d

n− k

)k

Let c(u, v) = E(C(u, v))/m be therelative number of collisions. Then, we estimate the

distance betweenu andv as

d(u, v) ≈ (n− k)(1− c(u, v)
1
k) (4.1)

Assume thatm probes withk attributes are applied, where1 ≤ m and1 ≤ k ≤ n. Since

we deal with binary data, each attribute may take a value of either0 or 1. Therefore, the

64

partition that corresponds to ak-probe may contain up to2k blocks.

Let n1, . . . , n2k be the sizes of the blocks that correspond to ak-probe. For each block of

the partition we need to update the number of collisions of pairs. Therefore, for a block

of sizeni we need to perform
(
ni

2

)
updates of the pair counters. For example, for a block

having three elements{a, b, c}, the collision counts of the pairs:(a, b), (a, c), (b, c) are

increased by one. The average size of a block isn
2k

, so the average total time required is

2k∑

i=1

(
ni

2

)

=
1

2





2k∑

i=1

ni
2 − ni





=
1

2

(

2k
(n

2k

)2

− 2k
(n

2k

))

=
n2

2k+1
−

n

2
.

The process has to be repeated for each ofm probes and this requires an average time

proportional tom
(

n2

2k+1 −
n
2

)

.

4.3 ALGORITHMS AND IMPLEMENTATION GUIDELINES

A clustering, which corresponds to a probe, is represented by e.g. a Java or a C++ class

that is parameterized by the projection size. Components ofa clustering include its clus-

ters and members of these clusters.

To produce a clustering,k attributes are randomly selected and the objects are projected

on the selected set of attributes. A clusterC consists of those objects that have the same

projectionp ∈ {0, 1}k on the set of attributes that constitutes the probe. The value of bit

vectorp is the descriptor of the cluster. The cluster itself is represented by a bit vector

bC ∈ {0, 1}
N , where(bC)i = 1 if and only if the objectui belongs to the clusterC.

Clusters (blocks) do not overlap. The identifiers of the objects are placed into appropriate

clusters according to the descriptors.

The number of clusteringsm is determined by the user and is passed as an argument to

the implementation. Both the number of clusterings (which equals the number of probes

m) and the widthk of the probes are set to positive integers by the user. Note that even

for small values ofk, the probability of selecting the same probe twice is rathersmall

because there are
(
n
k

)
probes andm is typically much smaller than

(
n
k

)
.

65

All clusterings are populated in one scan of the database as follows. Each clustering

may have at most2k non-empty clusters. First, empty clusterings are initialized, then

each object in the databaseD is passed to all the clusterings. Each clustering projects the

object on its own randomly selected attributes and then places the object in the appropriate

cluster according to the cluster descriptors.

Assume a clustering projects on first, fifth, and tenth attributes, then the object1001011010,

is placed in cluster 4 of this clustering. Similarly, if another clustering projects on fourth,

sixth, and seventh attributes, then the same object1001011010, is placed in cluster 7 of

this clustering. This computation takes place for each dataobject. In one scan of database

D, m clusterings, each having2k clusters can be generated efficiently.

We use anN ×N matrix referred to as thesimultaneous occurrence matrixto keep track

of the number of collisions of each of the object pairs. Afterobtaining the clusterings,

each cluster in every clustering is scanned once and the occurrence matrix component

that corresponds to each pair(u, v) of objects inD that co-occur in the same cluster is

incremented by1. Note that there are at mostm2k clusters to scan.

For example, assume that we have a5-object databaseD with n = 4 attributes, the width

of the probes isk = 1, and we havem = 3 clusterings, whose bit vectors are











0

1

1

1

0











,











0

1

0

1

0











, and











1

0

1

0

0











.

The first bit vector indicates that the two buckets that correspond to the probe consist of

the objects{u1, u5} and{u2, u3, u4}, respectively; the other bit vectors are constructed in

a similar way. The simultaneous occurrence matrix is shown below. For example, objects

2 and 4 occur in the same clusters 3 times.

66

1 2 3 4 5

1 3 0 2 0 2

2 0 3 1 3 1

3 2 1 3 1 1

4 0 3 1 3 1

5 2 1 1 1 3

Using the simultaneous occurrence matrix, the approximatedistance matrix can be com-

puted using Formula (4.1). For the same example, the distance matrix is shown below.

1 2 3 4 5

1 0 3 1 3 1

2 3 0 2 0 2

3 1 2 0 2 2

4 3 0 2 0 2

5 1 2 2 2 0

In a distributed parallel computing environment (in our case, a Beowulf cluster), each

worker node reads the database file from the shared disk and creates a collection of bit

vectors representing the projected columns. Objects having the same values on the pro-

jected columns are placed in the same clusters. At each node,simultaneous occurrence

matrix is filled with 0s and 1s (representing collision). To reduce the message size be-

tween processors we use the upper right half of SOM, which is referred as Simultaneous

Occurrence Vector (SOV). Note that the number of simultaneous occurrences cannot be

greater than number of nodes in the cluster. Kambadur et al. (2006) and Tansey and Tile-

vich (2008) offer good solutions for reducing the total message size. In order to keep the

SOV size reasonably low we use typechar (8 bits). There are 124 nodes in our clus-

ter, therefore in the resulting SOV the largest value may be 124 and this number can be

represented by8 bits.

Algorithm 10 is for computing SOVs in the cluster environment. This algorithm is graph-

ically represented in Figure 4.5.

SOVs obtained from each worker node are summed into a resultant SOV. Instead of sum-

ming all the SOVs sequentially in the master node, we use the built-in MPI function

MPI Reduce. MPI Reduce is handled in parallel, and in logarithmic time, therefore it is

67

Figure 4.3: In a Cluster Environment Use SOV to Reduce MPI Message Size

Figure 4.4: MPI Reduce Adding 4 SOVs in Parallel

very advantageous. Full details of the MPIReduce depends on the message size and the

MPI implementation. Using Thakur et al. (2005) and Dhillon and Modha (2000) a con-

ceptual cost model for MPI collective operations is developed and shown in Figure 4.4.

An alternative idea is to compress each SOV, and decompress the SOVs at receiving

nodes, then perform summation. For achieving this, along with compression functions

MPI Pack, MPIUnpack routines are used. SOVs gets much smaller when they are com-

pressed. However, there is a large overhead to compress eachSOV at the sender node,

and to decompress each SOV at the receiver side. Note that thealternative approach re-

duces the total message size in the cluster noticeably, but it incurs overhead for constantly

compressing and decompressing. Experimental results showed us that using MPIReduce

with original SOVs yields better performance.

68

Input : D: database,k: projection size,m: number of projections
Output : SOV : Simultaneous Occurrence Vector
// There are m worker nodes
foreachworker nodedo

RepresentD vertically by a collection of bit vectors in the main memory,refer to this
bit vector collection asDbv ;
OnDbv, create a random projection of sizek by choosingk columns randomly;
Form a clusteringC containing2k clusters ;
// Some of the clusters in C may be empty
Place each tuple inDbv into corresponding cluster according to the values in
randomly chosen columns;
Initialize a Simultaneous Occurrence Vector SOV;
foreach clusterK ∈ C do

foreachpair (i, j) ∈K do
Set value of (i,j) in SOV to 1;

Sum all SOVs in parallel using,MPI Reduce;
Algorithm 10 : Parallel Algorithm to Compute Simultaneous Occurrence Vector

Figure 4.5: Computing SOV in Cluster Environment

As the final procedure for computing the Approximate Distance Matrix, Formula (4.1)

is applied to the resultant SOV as shown in Algorithm 11: Instead of performing this

operation sequentially on one node, we divide SOV intom equal fragments and apply

69

Formula (4.1) onm different worker nodes for the corresponding fragments. Finally,

the master node converts it to the Approximate Distance Matrix (ADM) or uses it as is.

Conversion just maps the elements of SOV into ADM, thereforeit is computationally

cheap. For distributing SOV fragments intom worker nodes we use MPIScatter; for

collecting the fragments the MPIGather functionality is used in the cluster environment.

Input : SOV : Simultaneous Occurrence Vector,m: number of nodes
Output : ADM : Approximate Distance Matrix
// Fragment SOV into m contiguous vectors of size n each
n = size(SOV) / m;
Scatter each fragmentSOVf , f ∈ {1, . . . , m} to m worker nodes;
// Apply distance approximation formula
foreachSOVf , f ∈ {1, . . . , m} do

foreach element e inSOVf do
if e != 0 then

e = applyDistanceFormula(e) ;
GatherSOVf , f ∈ {1, . . . , m} in the master node to formSOV ;
foreachelement e in masterSOV do

Map e in ADM;
Algorithm 11 : Parallel Algorithm for Computing Approximate Distance Matrix (ADM)

For very large databases we noticed that the total message size in Algorithm 10 becomes

problematic. Therefore, we created an alternative method as shown in Algorithm 12. In

this algorithm, each node operates on a|SOV |
m

size message, wherem is the total number of

nodes. The algorithm passes each SOV fragmentm−1 times in a circular motion between

the worker nodes. For achieving this we created a virtual circular topology ofm worker

nodes as shown in Figure 4.6. In this setting, each node decides on the columns to project

randomly, and creates a fragment of SOV. For exampleNode1 has the first fragment

containing first |SOV |
m

entries, andNodem has the last|SOV |
m

entries. After projecting,

each node updates the SOV message it has, then passes this SOVmessage to its right,

and receives a new SOV message from its left. The circular message passing between

nodes is completed inm−1 iterations. This design makes sure that anytime in the system

maximum message size is|SOV |, which makes it suitable for very large databases.

70

Figure 4.6: Alternative Approach for Computing SOVs in Circular Topology

Input : D: database,k: projection size,m: number of projections

Output : SOV : Simultaneous Occurrence Vector

// There are m worker nodes

foreachworker nodedo
RepresentD vertically by a collection of bit vectors in the main memory,refer to this

bit vector collection asDbv ;

OnDbv, create a random projection of sizek by choosingk columns randomly;

Form a clusteringC containing2k clusters ;

// Some of the clusters in C may be empty

Place each tuple inDbv into corresponding cluster according to the values in

randomly chosen columns;

Initialize a Simultaneous Occurrence Vector SOV fragment;

Update the SOV fragment at hand ;
for 1 to m-1do

foreach worker nodedo
Send SOV fragment to the right node ;

Update SOV fragment received from left node ;
Combine all the SOV fragments into a global SOV ;
Algorithm 12 : Parallel Algorithm to Compute Simultaneous Occurrence Vector with

Circular Topology

71

4.4 EXPERIMENTAL RESULTS

Our primary testing environment is a Beowulf cluster having124 nodes, with infiniband

connectivity. Each node has a64-bit processor with4GB to 8GB of main memory. The

cluster is equipped with parallel file system, message passing interface (MPI) Gropp et al.

(1998) Tu et al. (2009), Linux operating system, and62 1.0-GHz dual core AMD Opteron

processors.

Our choice of programming language on the cluster is C++. Forconducting experiments

we used MPICH2 Gropp (2002), along with the gcc version 4.2. compiler, and Boost

library Karlsson (2005). In the cluster, whose high level topology is given in Figure 4.7,

work load balancing is performed manually.

Figure 4.7: Topology of the Beowulf Cluster Having 124 Nodes

Since we are interested in implementing our algorithms on platforms with a relatively

small number of processors (which are widely available) we used as a secondary exper-

imental environment an Apple - Mac Pro having2 Intel 3.0-GHz Xeon quad-core64-bit

processors. This server has8 cores and16 GB of total main memory. On this shared

memory system, we use Java threads, and these threads are converted to operating system

native threads by the compiler. We relied on the operating system (Mac OS X Leopard)

to distribute the work evenly.

Implementation for the Beowulf cluster required more lowerlevel work compared with

the secondary testing environment. In the Beowulf cluster,we relied mostly on MPI

libraries for achieving reliability, and synchronization. In the shared memory environment

we used locks, and atomic operations (where possible) to solve similar problems.

72

The test data sets we used are randomly generated using independent uniform distribu-

tions for each bit and consisted of bit vectors of length20 unless otherwise indicated. The

average density of the1s is50% in each vector.

Figure 4.8: Runtime on 10,000 Objects Using Algorithms 10 and 11 in the Cluster Environment

Figure 4.8 presents the total execution time for creating the approximate distance matrix

(ADM) on a database having 10,000 objects. Note that in this test and in all the remaining

tests presented in this section, increasing the number of nodes produces more accurate

ADMs. Results in Figure 4.8 indicate that our implementation runs fully in parallel.

Running the algorithm on 96 nodes and above achieves excellent accuracy relative to

the actual Hamming distance. Also, note that we are physically limited by two factors:

available nodes, and the bandwidth. In Algorithm 10, each node computes an SOV, and

then these SOVs are merged into a final SOV in the master node. The size of each SOV is
n(n−1)

2
where n is the number of objects in the database. For example,in a database with

10, 000 objects, there are around 50 million entries in the SOV (eachentry is 1 byte long

for saving space). Each node sends the computed SOV through the high speed infiniband

network as a message. Projection size does not effect the execution time, but the messages

are reflected as overhead.

Computing the ADMs of databases having40, 000 objects or more by using the Algo-

rithms 10 and 11 is problematic due to the total message size.Figure 4.9 shows that for

40, 000 objects only32 nodes could be utilized: It was impossible to use more nodes

because of the network bottleneck and memory requirements.Clearly, for very large

databases we need to use the alternative approach presentedin Algorithm 12. Although

this approach is more time consuming, it is less sensitive tototal message size and mem-

73

Figure 4.9: Runtime on 40,000 Objects Using Algorithms 10 and 11 in the Cluster Environment

ory requirements by keeping the network traffic at a constantlevel as shown in Fig-

ure 4.10.

Figure 4.10: Runtime on 40,000 Objects Using Algorithms 12 and 11 (Circular Topology) in the
Cluster Environment

To evaluate the accuracy of our approximation we used the cophenetic correlation coef-

ficient Sokal and Rohlf (1962). This coefficient takes a valuebetween0 and1, where

a higher value implies better correlation. We calculated the cophenetic correlation co-

efficient between our approximate distance matrixADM , and the Hamming distance

matrix HM . The averages of the matricesADM andHM are denoted byd andhm,

74

respectively. The coefficient is given by

c =

∑

(ADMij − d)(HMij − hm)
√∑

(ADMij − d)2
∑

(HMij − hm)2
.

In Figure 4.11, we show the cophenetic correlation coefficient for varyingk andm. Note

that the best experimental results are achieved whenk = 2. Higher values ofm pro-

duces better correlations and the coefficient approaches to1 for reasonable values ofm.

Figure 4.12 shows that e.g. for20, 100, and200 probes, the cophenetic correlation coef-

ficient is0.773, 0.934, and0.972 respectively.200 probes may seem extreme, but each

probe scans only2 attributes out of the total20 attributes. Therefore, each probe scans

10 percent of the database, and200 probes correspond to a total of20 full scans of the

database. On the other hand, to compute a distance matrix of10, 000 points, around5, 000

full scans of the database are required.

Figure 4.11: Cophenetic Correlation Coefficient on 1,000 Objects Having20 Attributes with
Varyingk

On our secondary platform (an Apple - Mac Pro) which has only8 nodes each clustering

is implemented as a Java thread which is converted to an operating system native thread

by the compiler. On a database having 15,000 objects, we computed approximate distance

matrices fork = 4 and varying number of nodes (probes). In Figure 4.13 we report the

total execution time. The results are as expected: total time stays almost stable when

increasing number of nodes.

75

Figure 4.12: Cophenetic Correlation Coefficient on 10,000 Objects Having 20 and 50 Attributes
with k = 2 and Varying Values ofm (nodes)

Nodes Total Time (sec)
2 2.2
3 2.1
4 2.1
5 2.3
6 2.3
7 2.4
8 2.5

Figure 4.13: Runtime on 15,000 Objects in the Secondary Testing Environment

Figure 4.14 shows run-time results of approximate distancecomputation in comparison to

sequential computation of Hamming distance. We also implemented a parallel computa-

tion method for Hamming distance. In both implementations,we use bit sets and take the

cardinality of XOR operation on bit sets, which is the fastest way to compute Hamming

distance. In the parallel algorithm, only upper half of the Hamming distance matrix is

computed because the matrix is symmetric. When usingm nodes, the matrix is divided

into m equal parts and distributed tom nodes for computing. Table 4.1 presents time

complexities of algorithms comparatively.

76

Figure 4.14: Comparing Run-time Results

Table 4.1: Comparison of Algorithm Complexities

Algorithm Complexity Explanations

Sequential Hamming Distance O(|D|2 × |I|) |I| : cardinality of set of at-
tributes

Sequential Approximate Distance m(|D|2

2k+1 − |D|
2

) See Section 4.2

Parallel Approximate Distance (Algo. 10 + 11) |D|2

2k+1 − |D|
2

+ α× log |D|2 + γ with added complexity of MPI
collective operations

Parallel Hamming Distance O(|D|2×|I|
m

) + β × log |D|2 + λ m is O(|D|) and complexity
of MPI collective operations is
added

4.5 CONCLUSIONS AND FUTURE WORK

Computing the distance matrix of a data set is a fundamental problem in clustering. We

present an efficient, approximative approach for distance calculations in dense binary

data sets that relies on randomized hash functions known as Locality Sensitive Hashing

(LSH). Implementation guidelines, and several methods which are suitable for distributed

and shared memory architectures are discussed. Experimental results demonstrate that

our parallel methods are comparably fast and accurate. We contemplate developing new

77

parallel clustering ensemble algorithms that will combineseveral clusterings into a single

superior clustering in an efficient manner.

78

5. CONCLUSIONS

Clustering is a major research field in Data Mining, Machine Learning, and Pattern

Recognition. An important research trend in clustering is Combining Multiple Cluster-

ings, which seeks methods of consensus among available clusterings of a data set with

the goal to obtain new better final clustering. A detailed literature survey for Combin-

ing Multiple Clusterings is presented in Chapter 1. This thesis introduces three novel

methods which contribute to clustering research, more specifically to the area of Com-

bining Multiple Clusterings. These methods are presented in Chapters 2, 3, and 4. Our

methods involve efficient and scalable computation techniques, also with low memory

requirements which enable their application to large data sets.

5.1 FASTFIT

FastFit is a novel binary method for fast computation of intra-cluster and inter-cluster

similarities of a clustering,π⋆(D). It is based on pairwise object co-associations in a set

of Multiple Clusterings,Π(D). Nonetheless, it does not require a|D|×|D| co-association

matrix for this computation. Furthermore, by representingeach cluster using a bit vector,

we utilize fast cluster-wise operations and low memory requirements of binary operations.

FastFit can be used as an objective function for optimization-based consensus solutions

like evolutionary algorithms. As a cluster validity measure, FastFit is used to evaluate

cluster cohesion and cluster separation.

Test results with data sets up to 1M data objects demonstratethe effectiveness of FastFit.

The method is superior to the conventional technique, in that, it is fast and efficient, and

it scales to large data sets and uses incomparably less memory. FastFit is reliable since it

provides a measure of cluster cohesion and separation basedon object co-associations.

As a future work, we will investigate designing a novel evolutionary method for combin-

ing multiple clusterings of a large data set using FastFit.

79

5.2 CLICOM

CLICOM is a graph-based consensus solution for combining multiple clusterings. It finds

maximally complete subgraphs, also known as cliques, in a graph representation of avail-

able input clusterings. This is a weighted graph where each vertex represents a cluster,

and an edge represents the similarity between a pair of clusters. The basic idea is, since

cliques constitute strong clusters, a good selection of cliques may yield a good final clus-

tering. CLICOM finds number of clusters in the final clustering automatically with respect

to a threshold value,θ. Similarity of a pair of clusters is evaluated by using a similarity

measure,ECSΠ(D), based on object co-associations. Computation of this similarity is fast

and does not require a|D| × |D| co-association matrix.ECSΠ(D) is shown to produce

more accurate results compared to syntactical measures like Jaccard similarity.

Finding all cliques in large dense graphs is computationally overwhelming. Although,

CLICOM works with clusters and a threshold,θ, is used to sparsify the similarity graph,

we propose a novel output-sensitive clique finding algorithm, FastCliquer, which enables

working on larger graphs more efficiently. FastCliquer is aneligible substitute for our

purposes, e.g. compared to the widely used Bron-Kerbosch algorithm for finding cliques.

Extensive experimental studies show that FastCliquer achieves considerable speed gain,

while it still finds all or substantial amount of useful cliques.

Experimental evaluations on real and synthetic data sets are provided with benchmark

results of major algorithms for combining multiple clusterings.

As in many graph-based clustering problems, automaticallyproviding the best sparsifi-

cation threshold to CLICOM is open to research, since bettersparsification yields better

results. Nonetheless, the algorithm is still very practical due to the exploratory nature of

clustering. We plan to further investigate the proposed procedure for choosing the best

cliques among others. In FastCliquer algorithm, ordering pivots in the best possible way

for producing large cliques is also a future research direction.

80

5.3 APPROXIMATIVE COMPUTING OF DISTANCES BY RANDOM HASH-

ING

Based on an approximation technique by Mimaroglu and Simovici (2008), we propose

methods for parallel computation of inter-object distances especially in dense binary data

sets. Our approach is based on Locality Sensitive Hashing, scales up well with the number

of objects and is much faster than ”brute-force” computation of these distances using

Hamming distance.

A data set,D, hasN distinct objects and a setI with n distinct attributes. A setK ⊆ I

of k attributes, designated as a probe and chosen randomly, defines a random hashing

functionfK by assigning to a tuplet, the numerical binary equivalent of the projection of

t on the setK. Each hashing function produces a clustering ofD. Each cluster in this

clustering consists of tuples that collide under the hashing function. The relation between

randomly generated hash function collisions and distancesbetween objects is explained.

The approximation technique is especially suitable for parallel computation. We take

advantage of several contemporary multiprocessor architectures and show results of dif-

ferent parallel algorithms on distributed- and shared-memory architectures. Experimental

results show that the proposed method is fast and accurate. The work presented in this

chapter provides guidelines for further work on combining weak clusterings.

5.4 OPEN RESEARCH AREAS

With an emerging need for processing huge and ever-increasing amounts of diverse data

coming from e.g. the internet, audio, video and image sensors, and scientific experiments,

Combining Multiple Clusterings is an important research trend in Data Clustering Jain

(2010). We briefly discuss in Table 5.1, some open areas in Combining Multiple Cluster-

ings research.

81

Table 5.1: Some Open Research Areas
Problem Description
Determining num-
ber of clusterings,
|Π(D)|

Number of clusterings needed to obtain a good final clustering vary
with the quality of clusterings. Topchy, Law, Jain and Fred (2004) show
that consensus functions based on stochastic partition generation, re-
labeling, voting and, median partition approaches, converge to a true
underlying clustering solution as the number of partitionsin the Multi-
ple Clusterings increases.

Determining|π⋆(D)| Automatic detection of number of clusters in the Final Clustering is a
desired property, although most consensus functions take this number
as an input parameter.

Combining Weak
Clusterings

A weak clustering algorithm produces a clustering, which isonly
slightly better than a random one. Such algorithms are usually very sim-
ple and computationally inexpensive. Combining a sufficient number
of such clusterings yield good clustering results. Topchy et al. (2005),
Mimaroglu and Simovici (2008) provide promising results inthis direc-
tion.

Working with large
and very large data
sets

Most algorithms show their results on very small data sets. Combin-
ing Multiple Clusterings of large data sets (High dimensional data with
|D| ≥ 104 data objects) is not well studied.

Cluster Validation Good and diverse unsupervised validity measures to evaluate validity of
the Final Clustering is required.

82

REFERENCES

Books

Abraham, A., Grosan, C. and Ramos, V. (eds): 2006,Swarm Intelligence in Data Mining,

Vol. 34 of Studies in Computational Intelligence, Springer.

Alpaydin, E.: 2010,Introduction to Machine Learning, MIT Press, Cambridge, MA.

Chapelle, O., Scholkopf, B. and Zien, A. (eds): 2006,Semi-Supervised Learning (Adap-

tive Computation and Machine Learning), The MIT Press.

Gonzalez, R. C. and Woods, R. E.: 2006,Digital Image Processing (3rd Edition),

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W. and

Snir, M.: 1998, Mpi—the complete reference: Volume 2, the mpi-2 extensions.

Han, J. and Kamber, M.: 2005,Data Mining: Concepts and Techniques, Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA.

Jain, A. K. and Dubes, R. C.: 1988,Algorithms for clustering data, Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA.

Karlsson, B.: 2005,Beyond the C++ standard library, Addison-Wesley Professional.

Kaufman, L. and Rousseeuw, P. J. (eds): 2005,Finding Groups in Data: An Introduction

to Cluster Analysis, Wiley.

Kohonen, T., Schroeder, M. R. and Huang, T. S. (eds): 2001,Self-Organizing Maps,

Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Lee, K. H.: 2004,First Course On Fuzzy Theory And Applications., SpringerVerlag.

Michalewicz, Z.: 1996,Genetic algorithms + data structures = evolution programs (3rd

ed.), Springer-Verlag, London, UK.

Tan, P.-N., Steinbach, M. and Kumar, V.: 2005,Introduction to Data Mining, (First Edi-

tion), Addison-Wesley Longman Publishing, Boston, MA, USA.

83

Periodicals

Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan, P.: 1998, Automatic subspace

clustering of high dimensional data for data mining applications,ACM-SIGMOD Inter-

national Conference on Management of Data, ACM Press, pp. 94–105.

Akkoyunlu, E.: 1973, The enumeration of maximal cliques of large graphs,SIAM Journal

on Computing2(1), 1–6.

Andoni, A. and Indyk, P.: 2008, Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions,Communications of the ACM51(1), 117–122.

Asur, S., Ucar, D. and Parthasarathy, S.: 2007, An ensemble framework for clustering

protein protein interaction networks,Bioinformatics23(13), i29–40.

Avogadri, R. and Valentini, G.: 2009, Fuzzy ensemble clustering based on random pro-

jections for dna microarray data analysis,Journal of Artificial Intelligence in Medicine

45(2-3), 173–183.

Azimi, J., Cull, P. and Fern, X.: 2009, Clustering EnsemblesUsing Ants Algorithm,

Proceedings of the 3rd International Work-Conference on The Interplay Between Nat-

ural and Artificial Computation: Part I: Methods and Models in Artificial and Natural

Computation. A Homage to Professor Mira’s Scientific Legacy, Springer, p. 304.

Barthelemy, J.-P. and Leclerc, B.: 1995, The median procedure for partition,in I. J. Cox,

P. Hansen and B. Julesz (eds),Partitioning Data Sets, Vol. 19 of AMS DIMACS Series

in Discrete Mathematics, AMS, pp. 3–34.

Bellman, R. E.: 2003,Dynamic Programming (Republished), Dover Publications, Incor-

porated.

Breiman, L.: 1996, Bagging predictors,Machine Learning24(2), 123–140.

Bron, C. and Kerbosch, J.: 1973, Algorithm 457: finding all cliques of an undirected

graph,Commun. ACM16(9), 575–577.

Chang-ming, Z., Guo-chang, G., Hai-bo, L., Jing, S. and Hualong, Y.: 2008, Segmenta-

tion of ultrasound image based on cluster ensemble, pp. 418 –421.

84

Chang, Y., Lee, D.-J., Hong, Y. and Archibald, J.: 2008, Unsupervised video shot seg-

mentation using global color and texture information,ISVC ’08: Proceedings of the 4th

International Symposium on Advances in Visual Computing, Springer-Verlag, Berlin,

Heidelberg, pp. 460–467.

Cristofor, D. and Simovici, D.: 2002, Finding median partitions using information-

theoretical-based genetic algorithms,Journal of Universal Computer Science8, 153–

172.

Dempster, A. P., Laird, N. M. and Rubin, D. B.: 1977, Maximum likelihood from in-

complete data via the em algorithm,Journal of the Royal Statistical Society, Series B

39(1), 1–38.

Dhillon, I. and Modha, D. S.: 2000, A data-clustering algorithm on distributed memory

multiprocessors,Lecture Notes in Computer Science1759, 245–260.

Dietterich, T. G.: 2000, Ensemble methods in machine learning, MCS ’00: Proceedings

of the First International Workshop on Multiple Classifier Systems, Springer-Verlag,

London, UK, pp. 1–15.

Duarteo, J., Jorge, F., Duarte, F., Lourenco, A. and Fred, A.: 2010, On consensus clus-

tering validation,S+SSPR International Workshops on Structural and Syntactic Pat-

tern Recognition (SSPR 2010) and Statistical Techniques inPattern Recognition (SPR

2010).

Elhadary, R., Tolba, A., Elsharkawy, M. and Karam, O.: 2007,An efficient and robust

combined clustering technique for mining in large spatial databases, pp. 439 –445.

Ester, M., Kriegel, H.-P., Jörg, S. and Xu, X.: 1996, A density-based algorithm for dis-

covering clusters in large spatial databases with noise,Proceedings of the Second In-

ternational Conference on Knowledge Discovery and Data Mining (KDD-96), AAAI

Press, pp. 226–231.

Faceli, K., de Souto, M. C. P., de Araujo, D. S. A. and de Carvalho, A. C. P. L. F.: 2009,

Multi-objective clustering ensemble for gene expression data analysis,Neurocomput.

72(13-15), 2763–2774.

Fern, X. and Brodley, C.: 2003, Random projection for high dimensional data cluster-

ing: A cluster ensemble approach,Proc. 20th International Conference on Machine

Learning (ICML’03), Washington.

85

Filkov, V. and Skiena, S.: 2004, Heterogeneous data integration with the consensus

clustering formalism,Proceedings of Data Integration in the Life Sciences, Springer,

pp. 110–123.

Flynn, M.: 1972, Some computer organizations and their effectiveness,IEEE Transac-

tions on Computers21(9), 948–960.

Forestier, G., Wemmert, C. and Gancharski, P.: 2008, Multisource images analysis using

collaborative clustering,EURASIP J. Adv. Signal Process2008, 1–11.

Fred, A. and Jain, A.: 2008, Cluster validation using a probabilistic attributed graph,

Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, pp. 1 –4.

Fred, A. L. N. and Jain, A. K.: 2005, Combining multiple clusterings using evidence ac-

cumulation,IEEE Transaction on Pattern Analysis and Machine Intelligence27, 835–

850.

Freund, Y. and Schapire, R. E.: 1997, A decision-theoretic generalization of on-line

learning and an application to boosting,,Journal of Computer and System Sciences

55(1), 119 – 139.

Gionis, A., Indyk, P. and Motwani, R.: 1999, Similarity search in high dimensions via

hashing,Proceedings of the 25th International Conference on Very Large Data Bases

pp. 518–529.

Gllavata, J., Qeli, E. and Freisleben, B.: 2006, Detecting text in videos using fuzzy clus-

tering ensembles, pp. 283 –290.

Gonzalez, E. and Turmo, J.: 2008, Comparing non-parametricensemble methods for

document clustering,NLDB ’08: Proceedings of the 13th international conference

on Natural Language and Information Systems, Springer-Verlag, Berlin, Heidelberg,

pp. 245–256.

Gropp, W.: 2002, Mpich2: A new start for mpi implementations, Lecture Notes in Com-

puter Sciencepp. 7–27.

Haveliwala, T., Gionis, A. and Indyk, P.: 2000, Scalable techniques for clustering the

web,WebDB (Informal Proceedings), Vol. 129, p. 134.

Hinneburg, A. and Gabriel, H.-H.: 2007, Denclue 2.0: Fast clustering based on kernel

density estimation,In Proc. of 7th International Symposium on Intelligent DataAnaly-

sis, pp. 70–80.

86

Hongjun, W., Hanhuai, S. and Arindam, B.: 2009, Bayesian cluster ensembles,Proceed-

ings of the Ninth SIAM International Conference on Data Mining, SIAM.

Hore, P., Hall, L. O. and Goldgof, D. B.: 2009, A scalable framework for cluster ensem-

bles,Pattern Recognition42(5), 676–688.

Hu, X. and Yoo, I.: 2004, Cluster ensemble and its applications in gene expression anal-

ysis,APBC ’04: Proceedings of the second conference on Asia-Pacific bioinformatics,

Australian Computer Society, Inc., Darlinghurst, Australia, Australia, pp. 297–302.

Hu, X., Zhang, X. and Zhou, X.: 2006, Integration of cluster ensemble and em based text

mining for microarray gene cluster identification and annotation,CIKM ’06: Proceed-

ings of the 15th ACM international conference on Information and knowledge manage-

ment, ACM, New York, NY, USA, pp. 824–825.

Hubert, L. and Arabie, P.: 1985, Comparing partitions,Journal of Classification2, 193–

218.

Iam-on, N., Boongoen, T. and Garrett, S.: 2010, LCE: a link-based cluster ensemble

method for improved gene expression data analysis,Bioinformatics26(12), 1513–

1519.

Indyk, P. and Motwani, R.: 1998, Approximate nearest neighbors: towards removing the

curse of dimensionality,Proceedings of the thirtieth annual ACM symposium on Theory

of computingpp. 604–613.

Jain, A. K.: 2010, Data clustering: 50 years beyond k-means,Pattern Recognition Letters

31(8-18), 651 – 666. Award winning papers from the 19th International Conference

on Pattern Recognition (ICPR), 19th International Conference in Pattern Recognition

(ICPR).

Kambadur, P., Gregor, D., Lumsdaine, A. and Dharurkar, A.: 2006, Modernizing the c++

interface to mpi,Lecture Notes in Computer Science4192, 266.

Karypis, G., Aggarwal, R., Kumar, V. and Shekhar, S.: 1999, Multilevel hypergraph

partitioning: Applications in vlsi domain,IEEE transactions on very large scale inte-

gration(VLSI) systems7(1), 69–79.

Karypis, G., Han, E.-H. and Kumar, V.: 1999, Chameleon: hierarchical clustering using

dynamic modeling,Computer32(8), 68 –75.

87

Karypis, G. and Kumar, V.: 1998a, A fast and high quality multilevel scheme for parti-

tioning irregular graphs,SIAM Journal of Scientific Computing20(1), 359–392.

Karypis, G. and Kumar, V.: 1998b, Multilevel algorithms formulti-constraint graph par-

titioning, Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on Su-

percomputing (CDROM), IEEE Computer Society, Washington, DC, USA, pp. 1–13.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P.: 1983, Optimization by simulated anneal-

ing, Science220, 671–680.

Kittler, J., Hatef, M., Duin, R. P. and Matas, J.: 1998, On combining classifiers,IEEE

Transactions on Pattern Analysis and Machine Intelligence20, 226–239.

Kleinberg, J.: 2002, An impossibility theorem for clustering, in S. Becker, S. Thrun and

K. Obermayer (eds),Neural Information Processing Systems 14, MIT Press, pp. 446–

453.

Koga, H., Ishibashi, T. and Watanabe, T.: 2007, Fast agglomerative hierarchical clus-

tering algorithm using locality-sensitive hashing,Knowledge and Information Systems

12(1), 25–53.

Kyrgyzov, I. O., Maitre, H. and Campedel, M.: 2007, A method of clustering combination

applied to satellite image analysis,ICIAP ’07: Proceedings of the 14th International

Conference on Image Analysis and Processing, IEEE Computer Society, Washington,

DC, USA, pp. 81–86.

Lam, L.: 2000, Classifier combinations: Implementations and theoretical issues,MCS

’00: Proceedings of the First International Workshop on Multiple Classifier Systems,

Springer-Verlag, London, UK, pp. 77–86.

Li, H., Wang, H., Chen, M. and Wang, T.: 2006, Clustering ensemble technique applied in

the discovery and diagnosis of brain lesions,ISDA ’06: Proceedings of the Sixth Inter-

national Conference on Intelligent Systems Design and Applications, IEEE Computer

Society, Washington, DC, USA, pp. 512–520.

Li, Y., Yu, J., Hao, P. and Li, Z.: 2007, Clustering ensemblesbased on normalized edges,

PAKDD’07: Proceedings of the 11th Pacific-Asia conference on Advances in knowl-

edge discovery and data mining, Springer-Verlag, Berlin, Heidelberg, pp. 664–671.

88

Luo, H., Kong, F. and Li, Y.: 2006, Clustering mixed data based on evidence accumula-

tion, in X. Li, O. Zaı̈ane and Z. Li (eds),Advanced Data Mining and Applications, Vol.

4093 ofLecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 348–355.

Ma, X., Wan, W. and Jiao, L.: 2009, Spectral clustering ensemble for image segmentation,

GEC ’09: Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary

Computation, ACM, New York, NY, USA, pp. 415–420.

Mimaroglu, S. and Simovici, D. A.: 2008, Approximate computation of object distances

by locality-sensitive hashing,DMIN, pp. 714–718.

Mimaroglu, S. and Yagci, A. M.: 2009, A binary method for fastcomputation of inter and

intra cluster similarities for combining multiple clusterings, ICIS ’09: Proceedings of

the 2nd International Conference on Interaction Sciences, ACM, New York, NY, USA,

pp. 452–456.

Minaei-bidgoli, B., Topchy, A. and Punch, W. F.: 2004, A comparison of resampling

methods for clustering ensembles,In IC-AI, pp. 939–945.

Mohammadi, M., Nikanjam, A. and Rahmani, A.: 2008, An evolutionary approach to

clustering ensemble,ICNC ’08: Proceedings of the 2008 Fourth International Confer-

ence on Natural Computation, IEEE Computer Society, Washington, DC, USA, pp. 77–

82.

Moon, J. and Moser, L.: 1965, On cliques in graphs,Is. Journal of Mathematics3(1), 23–

28.

Ostergard, P. R. J.: 1999, A new algorithm for the maximum-weight clique problem,

Electronic Notes in Discrete Mathematics3, 153–156. 6th Twente Workshop on Graphs

and Combinatorial Optimization.

Samudrala, R. and Moult, J.: 1998, A graph-theoretic algorithm for comparative modeling

of protein structure,Journal of Molecular Biology279(1), 287–302.

Sevillano, X., Cobo, G., Alias, F. and Socoro, J. C.: 2006, Robust document clustering by

exploiting feature diversity in cluster ensembles,Procesamiento del Lenguaje Natural,

Vol. 37, Sociedad Espanola para el Procesamiento del Lenguaje Natural, pp. 169–178.

Shi, J. and Malik, J.: 2000, Normalized cuts and image segmentation,Pattern Analysis

and Machine Intelligence, IEEE Transactions on22(8), 888 –905.

89

Sibson, R.: 1973b, Slink: An optimally efficient algorithm for the single-link cluster

method,The Computer Journal16(1), 30–34.

Silva, L. S. and Scharcanski, J.: 2010, Video segmentation based on motion coherence of

particles in a video sequence,Trans. Img. Proc.19(4), 1036–1049.

Sokal, R. and Rohlf, F.: 1962, The comparison of dendrogramsby objective methods,

Taxon11(1), 30–40.

Strehl, A. and Ghosh, J.: 2002, Cluster ensembles - a knowledge reuse framework for

combining multiple partitions,Journal of Machine Learning Research3, 583–617.

Strehl, A., Strehl, E. and Ghosh, J.: 2000, A scalable approach to balanced, high-

dimensional clustering of market-baskets,In Proceedings of HiPC, Springer, pp. 525–

536.

Tansey, W. and Tilevich, E.: 2008, Efficient automated marshaling of c++ data structures

for mpi applications.,IPDPS, IEEE, pp. 1–12.

Thakur, R., Rabenseifner, R. and Gropp, W.: 2005, Optimization of collective commu-

nication operations in mpich,International Journal of High Performance Computing

Applications19(1), 49.

Tomita, E., Tanaka, A. and Takahashi, H.: 2006, The worst-case time complexity for

generating all maximal cliques and computational experiments,Theoretical Computer

Science363(1), 28–42.

Topchy, A., Jain, A. K. and Punch, W.: 2003, Combining multiple weak clusterings,Third

IEEE International Conference on Data Mining, 2003. ICDM 2003, pp. 331–338.

Topchy, A., Jain, A. K. and Punch, W.: 2005, Clustering ensembles: Models of consensus

and weak partitions,IEEE Transactions on Pattern Analysis and Machine Intelligence

27, 1866–1881.

Topchy, A., Jain, A. and Punch, W.: 2004, A mixture model for clustering ensembles,

Proceedings of the 2004 SIAM International Conference on Data Mining, SIAM.

Topchy, A., Law, M., Jain, A. and Fred, A.: 2004, Analysis of consensus partition in clus-

ter ensemble,Data Mining, 2004. ICDM ’04. Fourth IEEE International Conference

on, pp. 225 – 232.

90

Tu, B., Fan, J., Zhan, J. and Zhao, X.: 2009, Performance analysis and optimization of

mpi collective operations on multi-core clusters,The Journal of Supercomputingpp. 1–

22.

Tumer, K. and Agogino, A. K.: 2008, Ensemble clustering withvoting active clusters,

Pattern Recognition Letters29(14), 1947–1953.

Vendramin, L., Campello, R. J. G. B. and Hruschka, E. R.: 2009, On the comparison of

relative clustering validity criteria,SDM, pp. 733–744.

Wolfgang, v. d. G., Koeppen, M. and Dimitriadou, E.: 2000, Robust clustering by evolu-

tionary computation,Proc. 5th Online World Conference on Soft Computing in Indus-

trial Applications (WSC5).

Xu, S., Lu, Z. and Gu, G.: 2008, An efficient spectral method for document cluster en-

semble, pp. 808 –813.

Yang, Y., Kamel, M. and Jin, F.: 2006, Clustering ensemble using ant and art,Swarm

Intelligence in Data Mining, Springer, pp. 243–264.

Yu, Z., Wong, H.-S. and Wang, H.: 2007, Graph-based consensus clustering for class

discovery from gene expression data,Bioinformatics23(21), 2888–2896.

Zhang, X., Jiao, L., Liu, F., Bo, L. and Gong, M.: 2008, Spectral clustering ensemble ap-

plied to sar image segmentation,Geoscience and Remote Sensing, IEEE Transactions

on 46(7), 2126 –2136.

Zhang, Z., Cheng, H., Zhang, S., Chen, W. and Fang, Q.: 2008, Clustering aggregation

based on genetic algorithm for documents clustering, pp. 3156 –3161.

91

Other References

Asuncion, A. and Newman, D.: 2007, Uci machine learning repository.

92

SHORT CV

Name Surname : Arif Murat YA ĞCI

Address : Bahçeşehir̈Universitesi Mühendislik Fakültesi
Çırağan Caddesi 34353 Beşiktaş / ISTANBUL

Languages : Turkish (native), English (fluent), German (intermediate)

B.S. : Istanbul Technical University (ITU)

M.S. : Bahcesehir University

Institute : The Graduate School of Natural and Applied Sciences

Program : Computer Engineering

Publications : S. Mimaroglu, M. Yagci, 2010, CLICOM: Cliques for
Combining Multiple Clusterings,Journal, submitted.
S. Mimaroglu, M. Yagci, 2010, Efficient Fitness Func-
tion for Combining Multiple Clusterings by Evolution-
ary Methods,Journal, submitted.
S. Mimaroglu, M. Yagci, D.A. Simovici, 2010, Ap-
proximate Computing of Distances by Random Hashing,
Journal, submitted.
S. Mimaroglu, A. M. Yagci, 2009, A Binary Method for
Fast Computation of Inter and Intra Cluster Similarities
for Combining Multiple Clusterings,in Proc. ACM, IC-
CIT, Korea.

Work Experience : Bahcesehir University Computer Engineering Depart-
ment Research and Teaching Assistant(Istanbul, 2008
- today)
IndustryResearch and Development Engineer, Systems
Engineer, Software Developer(Turkey, CIS, China, 2001
- 2008)

93

