
 

 

T.C. 
BAHÇEŞEHİR UNIVERSITY 

 
 

The Graduate School of Natural and Applied Sciences 
Computer Engineering Graduate Program 

 
 
 
 
 
 
 
 

 

SMARTCARD PERSONALIZATION WITH CRYPTO ALGORITHMS in EMV 
STANDARD 

 
 
 

Master Thesis 
 
 
 
 
 
 
 
 
 

Mehmet Murat TANDOĞAN 
 
 
 
 
 
 

Assoc.Prof.Dr.Adem KARAHOCA 
ISTANBUL, JUNE, 2010 

 1



 2

T.C. 
BAHÇEŞEHİR ÜNİVERSİTESİ 

Graduate School of Natural and Applied Sciences 

Computer Engineering Graduate Program 
 
 
Name of the thesis: Smartcard Personalization with Crypto Algorithms in EMV 

Standard. 

 
 
 

Name/Last Name of the Student: Mehmet Murat TANDOĞAN 

Date of Thesis Defense: 
 
 

The thesis has been approved by the Institute of Graduate School in Sciences. 

        Asst. Prof. F. Tunç BOZBURA 

  Director 
 
 

             Signature 

 

 
I certify that this thesis meets all the requirements as a thesis for the degree of Master of 

Science.   

        Head of Department 

 
 
 
This is to certify that we have read this thesis and that we find it fully adequate in scope, 

quality and content, as a thesis for the degree of Master of Science. 

 Examining Committee Members    
 

Assoc. Prof. Adem KARAHOCA (Supervisor) 
 
Prof. Dr. Nizamettin AYDIN 
 
Asst. Prof. Yalçın ÇEKİÇ 

 



 3

 

ACKNOWLEDGEMENTS 

 

 

 
Firstly, I want to thank to Assoc.Prof.Dr.Adem KARAHOCA for their continuous encoura-

gement. 

 

I also want to thank my girlfriend, Sebla ÜNLÜDERE for her infinite moral supports. 

 

Last but, not least, I wish to thank to my family for their love and unlimited support in e-

very stage of my life. 

 

 

 

 

 JUNE, 2010 

 Mehmet Murat TANDOĞAN 

 



 4

Table of Contents 

ACKNOWLEDGEMENTS ................................................................................................... 3 

LIST OF FIGURES ............................................................................................................... 8 

ÖZET ..................................................................................................................................... 9 

ABSTRACT ......................................................................................................................... 10 

LIST OF SYMBOLS / ABBREVIATIONS ........................................................................ 11 

1.  INTRODUCTION TO SMARTCARD TECHNOLOGY ........................................... 14 
1.1.  PROBLEM SCOPE............................................................................................... 14 
1.2.  OVERVIEW & BACKGROUND ........................................................................ 14 

1.2.1.  What is a Smart Card? ................................................................................... 16 
1.2.2.  CARD CLASSIFICATION ............................................................................... 17 
1.2.3.  TYPES OF CHIP CARDS ................................................................................ 18 

1.2.3.1.  Memory-Only Integrated Circuit Chip Cards ............................................ 19 
1.2.3.2.  Wired Logic Integrated Circuit Card ......................................................... 19 
1.2.3.3.  Secure Microcontroller Integrated Circuit Chip Cards .............................. 20 
1.2.4.  Contact Smartcards ........................................................................................ 20 
1.2.5.  Contactless Smartcards .................................................................................. 20 
1.2.6.  Combination Cards ........................................................................................ 21 

1.3.  CARD FORMATS ................................................................................................ 21 
1.4.  CARD ELEMENTS .............................................................................................. 23 

1.4.1.  Printing and Labeling ..................................................................................... 23 
1.4.2.  Embossing ...................................................................................................... 23 
1.4.3.  Hologram ....................................................................................................... 23 
1.4.4.  Signature Panel .............................................................................................. 24 
1.4.5.  Magnetic Stripe .............................................................................................. 24 
1.4.6.  Chip Module .................................................................................................. 25 
1.4.7.  Antenna .......................................................................................................... 25 

1.5.  SMARTCARD MICROCONTROLLERS ........................................................... 26 
1.5.1.  Processor ........................................................................................................ 28 
1.5.2.  Memory .......................................................................................................... 28 

2.  SMART CARD STANDARDS ................................................................................... 29 
2.1.  ISO (International Standards Organization) .......................................................... 29 

2.1.1.  ISO 7816 Summary ........................................................................................ 29 
2.1.1.1.  ISO 7816-1 ............................................................................................. 29 
2.1.1.2.  ISO 7816-2 ............................................................................................. 29 
2.1.1.3.  ISO 7816-3 ............................................................................................. 30 
2.1.1.4.  ISO 7816-4 ............................................................................................. 30 
2.1.1.5.  ISO 7816-5 ............................................................................................. 30 
2.1.1.6.  ISO 7816-6 ............................................................................................. 30 
2.1.1.7.  ISO 7816-7 ............................................................................................. 30 
2.1.1.8.  ISO 7816-8 (commands for security operations) ................................... 31 
2.1.1.9.  ISO 7816-9 (commands for card management) ..................................... 31 



 5

2.1.1.10.  ISO 7816-10 (electronic signals and answer to reset for syncronous 
cards) 31 
2.1.1.11.  ISO 7816-11 (personel verification through biometric methods) .......... 31 
2.1.1.12.  ISO 7816-12 (cards with contacts) ......................................................... 31 
2.1.1.13.  ISO 7816-13 (application management in multi-application 
environment) ............................................................................................................ 32 
2.1.1.14.  ISO 7816-15 (Cryptographic information application) .......................... 32 

2.2.  FIPS (Federal Information Processing Standards) ................................................ 33 
2.2.1.  FIPS 140 (1-3)................................................................................................ 33 
2.2.2.  FIPS 201......................................................................................................... 33 

2.3.  EMV (EuroCard/EuroPay, MasterCard, Visa) ...................................................... 33 
2.3.1.  Differences and Benefits of EMV .................................................................. 34 
2.3.2.  Control of the EMV Standard ........................................................................ 35 

2.4.  PC / SC .................................................................................................................. 36 
2.5.  CEN (Comite’ Europe’ en De Normalisation) ...................................................... 36 
2.6.  HIPAA ................................................................................................................... 37 
2.7.  IC Communication Standards ............................................................................... 37 
2.8.  SmartCard Standards ............................................................................................. 37 

2.8.1.  Standarts for Card Bodies .............................................................................. 37 
2.8.2.  Standarts for Operating Systems .................................................................... 37 

2.9.  File Management ................................................................................................... 38 
2.9.1.  File Types....................................................................................................... 38 
2.9.2.  File Names ..................................................................................................... 41 
2.9.3.  File Structures ................................................................................................ 42 
2.9.4.  File Attributes ................................................................................................ 43 
2.9.5.  File Selection ................................................................................................. 44 
2.9.6.  Access Conditions .......................................................................................... 45 

2.9.6.1.  State-Based Access Conditions .............................................................. 46 
2.9.6.2.  Rule-Based Access Conditions ............................................................... 46 

2.9.7.  File Life Cycle ............................................................................................... 47 
2.10.  EMV Commands ............................................................................................... 48 

2.10.1.  EMV Administration Commands (commands for file operations) ............ 49 
2.10.1.1.  Commands for Data Objects .................................................................. 49 
2.10.1.2.  Commands for Security Functions ......................................................... 49 

2.10.2.  EMV Payment Commands (for file management) ..................................... 49 
2.10.3.  EMV Commands & Descriptions .............................................................. 50 
2.10.4.  Return & Error Codes Meanings (Status Codes) ....................................... 53 

2.11.  Data Transmission ............................................................................................. 54 
2.11.1.  Answer to Reset (ATR) .............................................................................. 55 
2.11.2.  Transmission Protocols .............................................................................. 55 

2.11.2.1.  T=0 Transmission Protocol for Contact Cards ....................................... 57 
2.11.2.2.  T=1 Transmission Protocol for Contact Cards ....................................... 57 
2.11.2.3.  USB Transmission Protocol for Contact Cards ...................................... 58 
2.11.2.4.  Contactless Transmission Protocol ........................................................ 58 

2.11.3.  Secure Messaging ....................................................................................... 58 
2.12.  Special Operating System Functions ................................................................. 59 

2.12.1.  Cryptographic Functions ............................................................................ 59 



 6

2.13.  Data Implementation ......................................................................................... 60 
2.14.  Implementation of Files ..................................................................................... 61 

2.14.1.  Access Conditions ...................................................................................... 61 
2.14.2.  File Names .................................................................................................. 65 

2.15.  PIN Management ............................................................................................... 65 
2.16.  Key Management ............................................................................................... 66 

3.  MATERIAL & METHODS ........................................................................................ 68 
3.1.  System Analysis .................................................................................................... 68 

3.1.1.  Requirements Analysis .................................................................................. 68 
3.1.2.  Design ............................................................................................................ 77 
3.1.3.  Development .................................................................................................. 80 
3.1.4.  Implementation .............................................................................................. 82 

4.  TEST RESULTS & FINDINGS .................................................................................. 91 

5.  CONCLUSION & FUTURE WORKS ........................................................................ 92 

REFERENCES .................................................................................................................... 93 

APPENDICES ................................................................................................................... 100 
Appendix I – Creating User Files & Read/Write string data to EMV smart card. ........ 100 
Appendix II – Formatting smart card with DES/3DES and Mutual Authentication to 
EMV smart card. ............................................................................................................ 124 

 



 7

LIST OF TABLES 
 
Table 1.1. Summary of typical card formats. ...................................................................... 22 
Table 2.1. Possible file names as specified by ISO/IEC 7816-4. ........................................ 41 
Table 2.2  File Structures and File Sizes ............................................................................. 43 
Table 2.3. Administration commands ................................................................................. 50 
Table 2.4  Payment commands ........................................................................................... 52 
Table 2.5 Error Codes ......................................................................................................... 53 
Table 2.6 Logical sequence of transactions during smartcard startup. ............................... 54 
Table 2.7 Types of Crypto Algorithms ............................................................................... 60 
Table 2.8 Data elements for a typical access control card and the associated read and write 

conditions for the administrative and operational phases. ........................................... 60 
Table 2.9 Assignment of the data elements to files according to the specified read and 

write privileges............................................................................................................. 62 
Table 2.10 Example of the typical content of an EFARR file for a system........................... 63 
Table 4.1 Test Values Table (ms) ....................................................................................... 91 
 



 8

LIST OF FIGURES 
 
Figure 1.1 Classification of cards with and without chips .................................................. 17 
Figure 1.2 Classification of cards with chips ...................................................................... 18 
Figure 1.3 Relative sizes of commonly used card formats. ................................................ 22 
Figure 1.4 Magstripe Card .................................................................................................. 24 
Figure 1.5 Contact assignments of a smartcard module. .................................................... 25 
Figure 1.6 Block diagram of a memory chip for a smartcard with a contact interface. ...... 26 
Figure 1.7 Block diagram of a microcontroller for a smartcard with a contact interface. .. 27 
Figure 2.1 The two possible forms of file-based applications in smartcards. ..................... 39 
Figure 2.2.MPCOS-EMV File Hierarchy. .......................................................................... 40 
Figure 2.3.The five possible structures of data files (EFs) used in smartcards. .................. 43 
Figure 2.4 File selection options for smartcards ................................................................. 45 
Figure 2.5 Operating principle of using an EFARR to manage rule-based access 

conditions. .................................................................................................................... 47 
Figure 2.6 States and associated state transitions during the entire life cycle of a file ....... 48 
Figure 2.7 The possible states of a smartcard operating system for transmitting and 

receiving data ............................................................................................................... 55 
Figure 2.8 The four different cases of command APDUs and the two different variants of 

response APDUs. ......................................................................................................... 57 
Figure 2.9 Key hierarchy of an elaborate key management system ................................... 67 
Figure 3.1 Requirements. ......................................................... Error! Bookmark not defined. 
Figure 3.2 Smartcard elements. ................................................ Error! Bookmark not defined. 
Figure 3.3 Using read record with select file. .......................... Error! Bookmark not defined. 
Figure 3.4 Using write record with select file. ......................... Error! Bookmark not defined. 
Figure 3.5 Key storage 1 DES. ................................................ Error! Bookmark not defined. 
Figure 3.6 Key storage 3 DES. ................................................ Error! Bookmark not defined. 
Figure 3.7 Secret  code. .......................................................... 7Error! Bookmark not defined. 
Figure 3.8 Change PIN code. ................................................... Error! Bookmark not defined. 
Figure 3.9 Software screenshot 1. ............................................ Error! Bookmark not defined. 
Figure 3.10  Reading and writing EMV microprocessor card. Error! Bookmark not defined. 
Figure 3.11 Software screenshot 2. .......................................... Error! Bookmark not defined. 
Figure 3.12 Mutual Authentication EMV Standard. ................ Error! Bookmark not defined. 
Figure 3.13 Software screenshot 3. .......................................... Error! Bookmark not defined. 
Figure 3.14 Account transaction processes. ............................. Error! Bookmark not defined. 
Figure 4.1 Test values table. .................................................... Error! Bookmark not defined. 
 
 
 
 
 
 
 
 
 
 



 9

ÖZET 
 

KRİPTO ALGORİTMALARI KULLANARAK, EMV STANDARTLARINA UYGUN 
MİKRO İŞLEMCİLİ AKILLI KART KİŞİSELLEŞTİRME 

 
Mehmet Murat TANDOĞAN 

Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı 
 

Tez Danışmanı 
Doç.Dr.Adem KARAHOCA 
İSTANBUL, Haziran, 2010 

 
Akıllı kart, kredi kartı boyutunda, mikro işlemci içeren bir plastik karttır. Bu mikro işlem-

ciler RFID (temassız) ve temaslı olarak ikiye ayrılmaktadırlar. Gömülü mikro işlemci sa-

yesinde, akıllı kartlar, çok miktarda veriyi, yüksek güvenlik tedbirleri altında sakla-

yabilirler. Yüksek hafıza ihtiyacını ve işlemci kapasitesini, bilgi güvenliği ile birleştiren 

akıllı kartlar “akıllı”dır, çünkü taşıdığı bilgiye erişimi sınırlandırırlar. Bu sınırlandırma iş-

lemi, çeşitli kripto algoritmalarının yanısıra, kart üreticisinin işlemciye fabrikasyon olarak 

verdiği bir takım yetkiler ve erişim standartları ile doğru orantılıdır. 

 

Akıllı kartlara; EMV standartlarına uyularak, kişi ile ilgili özel bilgilerin kripto algo-

ritmaları kullanılarak yüklenmesine kart kişiselleştirme denir. Teknolojinin ilerlemesi ve a-

kıllı kartların vageçilmez hale gelmesi ile birlikte, akıllı kartların güvenlik problemleri or-

taya çıkmakta ve EMV standardının güvenlik önlemleri günden güne arttırılmaktadır. Akıl-

lı kartlar güvenlik, kullanım kolaylığı gibi sağladıkları avantajlarla çipli, manyetik bantlı 

veya bantsız olarak günümüzde telekomünikasyon, bankacılık, toplu taşıma, sağlık gibi 

farklı sektörlerde müşteri kartı, kimlik kartı, telefon kartı, tanıtım kartı, müşteri kartı, 

promosyon gibi uygulamalar için yaygın olarak kullanılmaktadır. 

 

Bu tezin amacı; kripto algoritmaları kullanarak, çalışır vaziyette örnek bir program yazılıp; 

çeşitli kripto algoritmaları ile (DES, 3DES) akıllı kartlara EMV standartlarına uygun olarak 

çeşitli bilgilerin yüklenmesi, karta erişimin test edilmesi ve akıllı kartların PIN numarasını 

kırma işleminin araştırılmasıdır. Projede 2 adet ACOS 2 işletim sistemli kontak akıllı kart 

ve kart okuyucusu ve yazılım dilleri olarak Microsoft .NET C#, Microsoft Visual Basic 6.0 

kullanılmıştır.  

 



 10

 

ABSTRACT 
 

SMART CARD PERSONALIZATION WITH CRYPTO ALGORITHMS IN EMV 
STANDARD 

 
Mehmet Murat TANDOĞAN 

Institute of Sciences, Computer Engineering Graduate Program 
 

Supervisor 
Assoc. Prof. Dr. Adem KARAHOCA 

İSTANBUL, Haziran, 2010 
 
Smart card is a credit card sized plastic card embodying a microprocessor. These micropro-

cessors are dividen into two groups as RFID (contactless) and contact. Smart cards can 

keep a big amount of data under high security steps by the agency of embedded micropro-

cessor. The cards those integrate high memory need and microprocessor capacity to infor-

mation safety are smart cards, because they limit access to the information theya re car-

rying.  

 

Loading the personal informations in accordance with EMV standards and by using crypto 

algorithms to the smart cards is called personalization. In conjunktion with improvement of 

the technology and becoming irrevocable of the smart cards, problems with the smart card 

security occures and security measures of EMV standards are being improved day by day. 

Nowadays smart cards are widely being used in telecommunication, banking, public 

transportation and health sectors by its advantages such as security and usage easyness as 

customer card, phone card, personalization card, advertising card and promotions. 

 

The aim of this thesis is developing a sample program working by using crypto algorithms 

and loading of various informations according to the EMV standards, testing of card access 

and investigation of the process of breaking the PIN numbers of the smart cards. In this 

project, two contact smart cards with ACOS2 operating system, a card reader, Microsoft 

.NET, C# and Visual Basic 6.0 as software languages. 



 11

LIST OF SYMBOLS / ABBREVIATIONS 

 
3DES    Triple DES (data encryption standard) 
3GPP    3rd Generation Partnership Project 
ADK    Additional decryption key 
ADN    abbreviated dialling number 
AES    Advanced Encryption Standard 
AID    application identifier 
API    application programming interface 
ARM    Advanced RISC Machine 
ARR    access rule reference 
ASCII    American Standard Code for Information Interchange 
ASN.1    Abstract Syntax Notation One 
AT    attention 
ATR    answer to reset 
AUX1, AUX2   Auxiliary 1, Auxiliary 2 
BAFA    Bundesamt f¨ur Wirtschaft und Ausfuhrkontrolle 

(German Federal Office of Economics and Export Control) 
 
BCD    binary coded digit 
BNA    Bundesnetzagentur (German Federal Network Agency) 
BSI    Bundesamt f¨ur Sicherheit in der Informationstechnik 

(German Federal Office for Information Security) 
 
CCS    cryptographic checksum 
CDMA    code division multiple access 
CEN  Comit´e Europ´een de Normalisation (European Committee for 

Standardization) 
 
CHV    card holder verification information 
CICC    contactless integrated chip card 
CLA    class 
CLK    clock 
CPU    central processing unit 
CRC    cyclic redundancy code 
DES    Data Encryption Standard 
DF    dedicated file 
DO    data object 
DPA    differential power analysis 
DSA    digital signature algorithm 
DSS    Digital Signature Standard 
EC    elliptic curve crypto algorithm 
ECC    elliptic curve cryptosystem 
ECC    error correction code 
ECDSA   elliptic curve digital signature algorithm (DSA) 
EDC    error detection code 
EEPROM   electrical erasable program read-only memory 
EF    elementary file 
EMV    Europay MasterCard Visa 
ETSI    European Telecommunications Standards Institute 



 12

Etu    elementary time unit 
GND    ground (electrical) 
GNU    GNU is not UNIX 
GPL    GNU General Public License 
GUI    graphical user interface 
HMAC    keyed-hash message authentication code (MAC) 
HTML    hypertext markup language 
I/O    input/output 
IBE    identity-based encryption 
ICAO    International Civil Aviation Organization 
ICC    integrated chip card 
ID    identifier 
IEC    International Electrotechnical Commission 
IFD    interface device 
IMSI    international mobile subscriber identity 
INS    instruction 
IPR    intellectual property rights 
ISO    International Organization for Standardization 
ITU    International Telecommunications Union 
JC    Java Card 
JCP    Java Community Process 
JCRE    Java Card runtime environment 
JIT    just in time 
JSR    Java specification request 
Lc    length command 
Le    length expected 
MAC    message authentication code 
MD5    Message Digest Algorithm 5 
MF    master file 
MIPS    microprocessor without interlocked pipeline stages 
NOP    no operation 
NPU    numeric processing unit 
NVM    nonvolatile memory 
OCF    open card framework 
OCR    optical character recognition 
P1, P2, P3   Parameter 1, Parameter 2, Parameter 3 
PC/SC    Personal Computer/Smartcard 
PCD    proximity coupling device 
PGP    Pretty Good Privacy 
PIN    personal identification number 
PIX    proprietary application identifier extension 
PKI    public key infrastructure 
PPS    Protocol Parameter Selection 
PUK    personal unblocking number 
RACE  Research and Development in Advanced Communications Technologies in 

Europe 
 
RAM    random access memory 
Reg TP   Regulierungsbeh¨orde f¨ur Telekommunikation und Post 

(German regulatory agencies for telecommunication and postal services) 
 
RF    radio frequency 



 13

RFC    Request For Comment 
RFID    radio frequency identifier 
RFU    reserved for future use 
RID    registered application provider identifier 
RIPEMD RACE  Integrity Primitives Evaluation Message Digest 
RISC    reduced instruction set computer 
RMI    remote method invocation 
RND    random number 
ROM    read-only memory 
RSA    Rivest, Shamir and Adleman cryptographic algorithm 
RST    reset 
SAT SIM   Application Toolkit 
SATSA   Security and Trust Services API 
SECCOS   Secure Chip Card Operating System 
SFI    short file identifier 
SIM    subscriber identity module 
SMS    short message service 
SPA    simple power analysis 
SPU    standard or proprietary use 
SSC    send sequence counter 
TDES    Triple DES (data encryption standard) 
TETRA   Trans-European Trunked Radio 
TLV    tag length value 
TSCS    The Smartcard Simulator 
UART    universal asynchronous receiver transmitter 
UCS    universal character set 
UICC    universal integrated chip card 
UML    unified modelling language 
UMTS    Universal Mobile Telecommunication System 
USB    Universal Serial Bus 
USIM    universal subscriber identity module 
Vcc    supply voltage 
VM    virtual machine 
XML    extensible markup language 
XOR    logical exclusive OR operation 
 



 14

1. INTRODUCTION TO SMARTCARD TECHNOLOGY 

1.1. PROBLEM SCOPE 
 
The scope of this study is developing a sample program working by using crypto 

algorithms and loading/writing of various data (informations) according to the EMV 

standards, testing of card access and investigation of the process of breaking the PIN 

numbers of the smart cards. In this project, two contact smart cards with ACOS2 operating 

system, a card reader, Microsoft.NET, C# and Visual Basic 6.0 as software languages. 

 

Primary needs to develop our application; 

• A smart card with microprocessor (with operating system e.g.ACOS2) 

• A Smart Card Specification from manufacturer 

• Information about operating system and file system 

• Information about smart card key management 

• Information about EMV standards. (From EMV Books - EMVCo Ltd.) 

• 3DES, DES Crypto Algorithms 

• Universal smart card commands and functions 

• Information about PC/AC protocols 

• A smart card reader 

 

It is not possible to personalize smart cards in EMV standards without having information 

and knowledge on any of these steps. After these steps, developing of the method of 

cracking the pin code of smart cards in EMV standards is done by focusing on security 

loosies of smart cards. 

1.2. OVERVIEW & BACKGROUND 
 
A smartcard is a credit card-sized device that contains one or more integrated circuits 

(ICCs) and also may employ one or more of the following machine-readable technologies: 

magnetic stripe, bar code (linear or two-dimensional), contactless radio frequency 

transmitters, biometric information, encryption and authentication, or photo identification. 

The integrated circuit chip (ICC) embedded in the smartcard can act as a microcontroller or 



 15

                                                

computer. Data are stored in the chip’s memory and can be accessed to complete various 

processing applications. The memory also contains the microcontroller chip operating 

system (COS), communications software, and can also contain encryption algorithms to 

make the application software and data unreadable. When used in conjunction with the 

appropriate applications, smartcards can provide enhanced security and the ability to 

record, store, and update data. When implemented properly, they can provide 

interoperability across services or agencies, and enable multiple applications or uses with a 

single card.  

 

Smartcard technology can enable an organization to become more secure, efficient, and 

interoperable while delivering strong authentication and security, identity management, 

data management, customer support, and communications. The ICC, the technology on a 

card that makes it a “smartcard,” provides a number of functions. Smartcard technology is 

commercially active and therefore provides additional benefits through commercial off-the-

shelf (COTS) products and well-established technology standards.  

 

Smartcard technology can address issues surrounding identity management and can also 

provide the means to eventually re-engineer inefficient processes with a high return on 

investment (ROI). In the identification of inefficient processes, outdated business practices, 

and low ROI programs, an organization can eliminate deficiencies, unnecessary costs, and 

under-used resources through the implementation of smartcard technology. The 

combination of smartcard technology with web-based applications, electronic commerce, 

and other business uses of the Internet can improve the quality of life for citizens and 

employees.1 

 

 
1  Catherine Allen, “Smart Cards Part of U.S. Effort in Move to Electronic Banking,” in Smart Card Technology International: The 
Global Journal of Advanced Card Technology, ed. Robin Townsend (London: Global Projects Group, 1995), 193-194. 



 16

1.2.1. What is a Smart Card? 

 

A smartcard is a small, tamperproof computer. The smartcard itself contains a CPU and 

some non-volatile storage. In most cards, some of the storage is tamperproof while the rest 

is accessible to any application that can talk to the card. This capability makes it possible 

for the card to keep some secrets, such as the private keys associated with any certificates it 

holds. The card itself actually performs its own cryptographic operations. 

 

Smartcards currently come in two forms, contact and contactless: 

Contact cards require a reader to facilitate the bidirectional connection. The card must be 

inserted into a device that touches the contact points on the card, which facilitate 

communication with the card’s chip. Contact cards come in 3-volt and 5-volt models, as do 

current desktop CPUs. Contact card readers are commonly built into company or 

vendorowned buildings and assets, cellular phones, handheld devices, stand-alone devices 

that connect to a computer desktop’ s serial or Universal Serial Bus (USB) port, laptop card 

slots, and keyboards. 

 

Contactless cards use proximity couplers to get information to and from the card’s chip. An 

antenna is wound around the circumference of the card and activated when the card is 

radiated in a specific distance from the coupler. The configuration of the card’s antenna and 

the coupler facilitate connected states from a couple of centimeters to a couple of feet. The 

bidirectional transmission is encoded and can be encrypted by using a combination of a 

card vendor’s hard-coded chip algorithms; randomly generated session numbers; and the 

card holder’s certificate, secret key, or personal identification number (PIN). The 

sophistication of the connection can facilitate separate and discrete connections with 

multiple cards should they be within range of the coupler. Because contactless cards don’t 

require physical contact with a reader, the usability range is expanded tremendously. 

 

International standards govern the physical characteristics of smartcards. For example, the 

size of a card is covered by International Organization for Standardization (ISO) 7810. ISO 

7816 and subsequent standards cover manufacturing parameters, physical and electrical 



characteristics, location of the contact points, communication protocols, data storage, and 

more. Data layout and format, however, can vary from vendor to vendor2. 

1.2.2. CARD CLASSIFICATION 
 
If you were to classify smartcards in the same manner as living beings in biology, you 

would obtain a tree chart similar to what is shown in Figure 1.1. The top level includes all 

types of cards, which can have various formats. 

 

 
 

Figure 1.1 Classification of cards with and without chips3 
 

 

Cards can be divided into two groups as, cards without chips and cards with chips in Figure 

1.2. Logically enough, the latter type are called chip cards, which are also commonly 

known as smartcards. The chip, which is the essential distinguishing element, can be either 

a memory chip, in which case the card is called a memory card, or a microcontroller chip, 

in which case the card is called a processor card. Processor cards can be further subdivided 

into processor cards with or without coprocessors for executing asymmetric cryptographic 

algorithms such as RSA (Rivest, Shamir and Adleman) or ECC (elliptic curve 

cryptosystems). 

 

                                                 
2 Microsoft TechNet - http://www.microsoft.com/technet/security/guidance/identitymanagement/scard.mspx 

 17
3 Advanced Card Systems Ltd. – China (Brochure) 



This classification provides an adequate overview of the most widely used types of cards. 

However, it can also be extended to include devices that use smartcard technology. The 

best-known examples of such devices are ‘super smartcards’ and tokens. A super smartcard 

has a direct user interface to the smartcard microcontroller, in the form of additional card 

elements such as a display and buttons. A token has a different form that is better suited to 

its intended use than the usual card format. Typical examples include tokens in the form of 

USB plugs that can be connected directly to a PC. However, the underlying technology is 

still the same as that of smartcards, with only the appearance being different. 

1.2.3. TYPES OF CHIP CARDS 
 

Often the terms “chip card,” “integrated circuit card” and “smartcard” are used 

interchangeably, but they can mean different things. Cards are distinguished both by the 

type of chip that they contain and by the type of interface that they use to communicate 

with the reader. 4 

 
Figure 1.2 Classification of cards with chips5 

                                                 
4 Jack M. Kaplan, Smart Cards: The Global Information Passport (New York: International Thomson Computer Press, 1996), 69-75. 

 18
5 Smartcard Basics - http://www.smartcardbasics.com/images/typesofcards.gif 



 19

                                                

There are three different types of chips that can be associated with these cards: memory 

only, which includes serial-protected memory, wired logic and microcontroller. The terms 

“memory only,” “wired logic” and “microcontroller” refer to the functionality that the chip 

provides. The following further discusses the types of chip cards.6 

1.2.3.1. Memory-Only Integrated Circuit Chip Cards 

 
Memory-only cards are “electronic magnetic stripes,” and provide little more security than 

a magnetic stripe card. The two advantages they have over magnetic stripe cards are:  

a) They have a higher data capacity (up to 16 kilobits (Kbits) compared with 80 

bytes per track),  

b) The read/write device is much less expensive. The memory-only chip cards do 

not contain logic or perform calculations; they simply store data. Serial-protected 

memory chip cards have a security feature not found in the memory-only chip card; 

they can contain a hardwired memory that cannot be overwritten.  

Early versions of memory-only cards were read-only, low capacity (maximum of 160 units 

of value), prepaid disposable cards with little security. New versions include prepaid 

disposable cards that use read/write memory and binary counting schemes that allow the 

cards to carry more than 20,000 units of value. Many of these cards also have advanced 

logic-based authentication schemes built into the chip. Other memory-only cards have been 

developed for re-loadable stored value applications. The cards contain a purse, which can 

be protected through the use of a personal identification number (PIN) and counters, which 

limit the number of times the purse can be reloaded6. 

1.2.3.2. Wired Logic Integrated Circuit Card 
 

A wired logic chip card contains a logic-based state machine that provides encryption and 

authenticated access to the memory and its contents. Wired logic cards provide a static file 

system supporting multiple applications, with optional encrypted access to memory 

contents. Their file systems and command set can only be changed by redesigning the logic 

of the IC. Wired logic-integrated chip cards include contactless variations such as I-Class 

or MIFARE6.  

 
6  Jose Luis Zoreda and Jose Manuel Oton, Smart Cards (Boston: Artech House, Inc., 1994), 5-6. 



 20

1.2.3.3. Secure Microcontroller Integrated Circuit Chip Cards 
 

Microcontroller cards contain a microcontroller, an operating system, and read/write 

memory that can be updated many times. The secure microcontroller chip card contains 

and executes logic and calculations and stores data in accordance with its operating system. 

The microcontroller card is like a miniature PC one can carry in a wallet. All it needs to 

operate is power and a communication terminal. Contact, contactless and dual-interface 

microcontroller ICs are available.  

 

There are two primary types of chip card interfaces. These are contact and contactless. The 

terms “contact” and “contactless” describe the means by which electrical power is supplied 

to the ICC and by which data is transferred from the ICC to an interface (or card 

acceptance) device (reader). Cards may offer both contact and contactless interfaces by 

using two separate chips (sometimes called hybrid cards) or by using a dual-interface chip 

(sometimes called “combi” cards). Jose Luis Zoreda and Jose Manuel Oton, Smart Cards (Boston: Artech House, Inc., 

1994), 5-6. 

1.2.4. Contact Smartcards 
 

A contact smartcard requires insertion into a smartcard reader with a direct connection to a 

conductive micromodule on the surface of the card.  
A Software Implementation of AES for a Multos Smartcard-Yiannakis loannou pg.24 

1.2.5. Contactless Smartcards 
 

Contactless smartcards must only be in near proximity to the reader (generally within 10 

centimeters or 3.94 inches) for data exchange to take place. The contactless data exchange 

takes place over radio frequency (RF) waves. The device that facilitates communication 

between the card and the reader are RF antennae internal to both the card and the reader.  

 

These are smartcards that employ a radio frequency (RFID) between card and reader 

without physical insertion of the card. Instead the card is passed along the exterior of the 

reader and read. Types include proximity cards which are implemented as a read-only 

technology for building access. These cards function with a limited memory and 



 21

                                                

communicate at 125 MHz. True read & write contactless cards were first used in 

transportation for quick decrementing and re-loading of fare values where their lower 

security was not an issue. They communicate at 13.56 MHz, and conform to the ISO14443 

standard. These cards are often straight memory types. They are also gaining popularity in 

retail stored value, since they can speed-up transactions and not lower transaction 

processing revenues (i.e. VISA and Mastercard), like traditional smartcards. 

 

Variations of the ISO14443 specification include A, B, and C, which specify chips from 

either specific or various manufacturers. A = Philips B = everybody else and C = Sony 

chips. (A Software Implementation of AES for a Multos Smartcard-Yiannakis loannou) 

1.2.6. Combination Cards 
 
These are hybrids that employ both contact and contactless technology in one card. Combi-

cards can also contain two different types of chips in contrast to a Dual-Interface card 

where a single chip manages both functions7. 

 

• Hybrid Smartcards: A hybrid card contains two chips on the card, one supporting 

a contact interface and one supporting a contactless interface. The chips contained 

on the card are generally not connected to each other7.  

 

• Dual-Interface Chip Smartcards: A dual-interface chip card contains a single 

chip that supports both contact and contactless interfaces. These dual-interface 

cards provide the functionality of both contact and contactless cards in a single form 

factor, with designs able to allow the same information to be accessed via contact or 

contactless readers.7 

1.3. CARD FORMATS 
 

The most common types of cards in current use have one feature in common, which is a 

thickness of 0.76 mm. As illustrated in Figure 1.3, all other dimensions can differ. These 

formats are not arbitrary. Instead, they are specified by international standards or by 

 
7 SmartCard Basics - http://www.smartcardbasics.com/cardtypes.html 



specifications stipulated by major card issuers. This is also important, since at least in case 

of contact cards they must be able to fit into corresponding terminals or readers. 

 

 
Figure 1.3. Relative sizes of commonly used card formats8. 

 

Typical smartcard formats are summarised in Table 1.1. The most commonly used card 

format, which is also undoubtedly the best known format, is ID-1. The reason it is so 

widely used is that practically all credit cards and other forms of payment cards are made in 

this format. Another name for this format is ID-000. This has become the standard format 

for cards used in mobile telephones. 

 

The recently defined mini-UICC format is also available for the mobile 

telecommunications sector.9 
 

Table 1.1 - Summary of typical card formats. All stated dimensions are exclusive of tolerances9.  

 
Card Format Width (mm) Height (mm) Use 
ID-1  85.6  54  Well known standard format 

ID-00  66  33  Standardized for telecommunications, but not used. 

Visa Mini 65.6  40  Payment Systems 

Plug-in, ID-000 25  15  Telecommunications 

Mini-UICC 15  12  Telecommunications 

                                                 
8 GSA U.S.General Services Administration – Goverment SmartCard Handbook 

 22
9   Jose Luis Zoreda and Jose Manuel Oton, Smartcards (Boston: Artech House, Inc., 1994), 56-60. 



 23

                                                

1.4. CARD ELEMENTS 
 

The card body is usually more than just a carrier for the chip module. It also includes 

information for the user and card accepters and of course security elements for protection 

against forgery. Furthermore, the card body is an excellent advertising medium. The card 

issuers must coordinate all these functions, some of which are mutually contradictory, with 

their own specific wishes. The ultimate result is the issued card.10 

1.4.1. Printing and Labeling 
 

A rather wide variety of processes are available for printing and labelling cards. Text 

elements that are common to all cards of a series are normally applied using offset printing 

or silkscreen printing. Lasering is widely used for printing individual cards. This consists of 

using a laser beam to darken the surface of the plastic card body. This process produces 

irreversible card labelling, but it requires a certain amount of investment in technology. A 

more economical alternative is thermal transfer printing, which can also be used for colour 

printing. Digital printing processes for high-quality printing of individual cards are a 

relatively new development10. 

1.4.2. Embossing 
 

The main advantage of embossing, which is commonly used with credit cards, is that the 

labelling can be transferred to paper using a simple stamping machine. The embossed 

section of the card can be restored to its original state by heating the card to a relatively 

high temperature. For this reason, the check digits at the end of the embossing usually 

extend into the hologram area. As the hologram will be visibly damaged if the card is 

heated, this makes it relatively easy to detect manipulation of the embossing10. 

1.4.3. Hologram 
 
Technically sophisticated equipment is necessary to produce the white-light reflection 

holograms used on cards. As forgers usually do not have access to such equipment, 

holograms are commonly used on smartcards as security features. Some other reasons for 

 
10  Jack M. Kaplan, Smartcards: The Global Information Passport (New York: International Thomson Computer Press, 1996), 72-75. 



using holograms are that they are inexpensive in large quantities, they can be checked 

directly by users, and the hologram cannot be removed from the smartcard without 

destroying it. Unfortunately, there is no link between the hologram and the microcontroller, 

which reduces its advantages from the perspective of the chip.11 

1.4.4. Signature Panel 
 

The signature panel is located on the rear of the card. It must be erasure-proof so that the 

signature on the panel cannot be removed without it being noticed. A coloured pattern is 

often printed on the signature strip, so any attempt to manipulate the signature will cause 

visible damage to the pattern11. 

1.4.5. Magnetic Stripe 
 

With many types of cards, the only reason to retain the magnetic stripe (with its data 

storage capacity of a few hundred bytes) is compatibility with a widely distributed terminal 

infrastructure. However, it will still take a long time before magnetic-stripecards are fully 

replaced by smartcards, since they are significantly cheaper11. 

 

 
 

Figure 1.4 Magstripe Card 
 

                                                 

 24
11  Jack M. Kaplan, Smartcards: The Global Information Passport (New York: International Thomson Computer Press, 1996), 72-75. 



1.4.6. Chip Module 
 
The chip module is a protective housing for the microcontroller chip, which is fitted to the 

rear of the module. The module can have six or eight visible contacts on its external 

surface, although modern smartcards need only five contacts. The other contacts are 

reserved for future applications. Figure 1.5 shows the signal assignment of the contacts of a 

chip module. 

 

 
(http://www.smartcardbasics.com/images/basicmodule.gif) 

 
Figure 1.5. Contact assignments of a smartcard module. Abbreviations; 
 Vcc = Supply voltage, RST = Reset, CLK = Clock, AUX1 = Auxiliary 1,  

GND = Ground, SPU = Standard or Proprietary Use, I/O = Input/Output, AUX2 = Auxiliary 2 

1.4.7. Antenna 
 
Smartcards that communicate without using contacts must have an integrated antenna in 

the card body. The antenna is a sort of coil consisting of several turns along the outer edge 

of the entire card. Various methods can be used to produce the antenna. Methods that are 

used in practice include a coil of thin copper wire embedded in the card body, etched 

copper tracks, and printed coils.12 

                                                 

 25
12  Jack M. Kaplan, Smartcards: The Global Information Passport (New York: International Thomson Computer Press, 1996), 72-75. 



1.5. SMARTCARD MICROCONTROLLERS 
 
The characteristics of a smartcard are largely determined by its microcontroller. Single chip 

microcontrollers are normally used. A single-chip microcontroller consists of a small 

silicon chip equipped with all the functions necessary for its intended use. Smartcard 

microcontrollers are not standard microcontrollers such as those used in coffee machines 

and toasters, but are instead chips specially adapted for use in smartcards.  

 

Besides all these functional parameters, there is another essential item: security functions. 

Smartcard microcontrollers are especially hardened against attacks. This includes detecting 

undervoltage and overvoltage conditions and detecting clock frequencies outside the 

specified range. These microcontrollers also incorporate light and temperature sensors to 

enable them to recognize attacks via these routes and respond accordingly. 

 

Besides technologically advanced smartcard microcontrollers, there are also memory chips 

which are essentially intended to be used as simple data storage devices with fixed logic 

circuitry designed by the semiconductor manufacturer. Figure 1.5 shows the basic 

functional groups present on the chip. The ROM (read-only memory) contains data about 

the chip type. The EEPROM (electrically erasable programmable read-only memory) 

provides the storage area for a unique chip identification number and data stored in 

read/write memory. A terminal can store several hundred bytes to a few thousand bytes of 

data here. 

 
Figure 1.6 Block diagram of a memory chip for a smartcard with a contact interface.13 

                                                 

 26
13  Smartcard Applications: Design Models for using and programming smartcards W. Rankl 2007 Ltd. 



The security logic, which varies according to the chip type, monitors access to the data. 

For instance, successful verification of a PIN (personal identification number) in the 

memory chip may be necessary before write access is possible. 

 

Microcontrollers for smartcards have significantly more functionality than simple memory 

chips, as can be seen from Figure 1.6 on the facing page. The CPU (central processing unit) 

is a freely programmable control unit that executes the machine instructions of the 

operating system, which is located in the ROM. The CPU is assisted by a numerical 

coprocessor (NPU – numeric processing unit) for numerical calculations, particularly those 

dealing with cryptography. These special processors combine extremely high performance 

with low power consumption. Operating system extensions and the actual applications and 

associated data are stored in the EEPROM. Just as in a PC, the RAM (random-access 

memory) serves as working memory to hold data during operation. 

 

Additional interfaces are integrated into smartcard microcontrollers to expand their range 

of potential uses. For instance, the commonly used half-duplex bit-serial port can be 

augmented by a USB interface or a wireless communication interface. Semiconductor 

manufacturers usually base such developments on existing smartcard microcontrollers, 

which are upgraded to support the additional interfaces. The result is thus a single-chip 

microcontroller that can communicate with the outside world via additional interfaces. 

 
Figure 1.7 Block diagram of a microcontroller for a smartcard with a contact interface.14 

 
 

                                                 

 27
14 Programming smartcards W. Rankl 2007 Ltd 



 28

1.5.1. Processor 
 
If you analyse the sales volumes of currently used smartcard microcontrollers, you will find 

that most of them still have an 8-bit CPU. This is usually a simple 8051 CPU, which has 

proved itself over the last two decades, along with a few extensions. The processing power 

of such a CPU is sufficient for all operating systems that do not include an interpreter. 

However, if the operating system must provide a Java interpreter, there is a distinct 

preference for microcontrollers with 16-bit processors. Some of these processors are also 

based on a modified 8051 architecture. 

 

There are also a few smartcard microcontrollers that are based on well-known 32-bit 

processor families such as ARM 7 or MIPS. The limiting factor for using such 

highperformance processors is the chip area. There is a more or less direct relationship 

between chip area and price, and a 32-bit processor occupies a significantly larger area than 

an 8-bit processor. It is often more economical to invest in optimizing the speed of the 

software than to use a processor that needs more chip area. This is ultimately a 

consequence of the fact that smartcards have to be low-cost, mass-production items. 

1.5.2. Memory 
 
In addition to a processor, every microcontroller needs several types of memory with 

differing characteristics. The main type of nonvolatile memory used in smartcard 

microcontrollers is ROM. If the data located in memory must be modified in operation, 

electrically erasable memory (EEPROM) is used. 
 
 
 
 
 
 
 



 29

                                                

 

2. SMART CARD STANDARDS 
 

Smartcard standards govern physical properties, communication characteristics, and 

application identifiers of the embedded chip and data. Almost all standards refer to the ISO 

7816-1, ISO 7816-2, and ISO 7816-3 as a base reference. 

2.1. ISO (International Standards Organization) 
 

This organization facilitates the creation of voluntary standards through a process that is 

open to all parties. ISO 7816 is the international standard for integrated-circuit cards 

(commonly known as smartcards) that use electrical contacts on the card, as well as cards 

that communicate with readers and terminals without contacts, as with radio frequency 

(RF/Contactless) technology.15 

2.1.1. ISO 7816 Summary 
 

This is a quick overview of what the 7816 specifications cover. As these can be in revision 

at any time, check with ISO for the latest updates. ISO 7816 has six parts. 
(http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.1. ISO 7816-1 
 

Physical Characteristics, 1987; defines the physical dimensions of contact smartcards and 

their resistance to static electricity, electromagnetic radiation and mechanical stress. It also 

describes the physical location of an IC card's magnetic stripe and embossing area.  
(http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.2. ISO 7816-2 
 
Dimensions and Location of Contacts, 1988; defines the location, purpose and electrical 

characteristics of the card's metallic contacts. (http://en.wikipedia.org/wiki/ISO_7816) 

 

 

 
15 ANSI American National Standards Institute. ANSI's address and phone is: 11 West 42nd Street, New York, NY 10036. 



 30

2.1.1.3. ISO 7816-3 
 

Electronic Signals and Transmission Protocols, 1989; defines the voltage and current 

requirements for the electrical contacts as defined in part 2 and asynchronous half-duplex 

character transmission protocol (T=0). Amendment 1: 1992, Protocol type T=1, 

asynchronous half duplex block transmission protocol. (http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.4. ISO 7816-4 
 

Inter-industry Commands for Interchange; establishes a set of commands for CPU cards 

across all industries to provide access, security and transmission of card data. Within this 

basic kernel, for example, are commands to read, write and update records.  
(http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.5. ISO 7816-5 
 

Numbering System and Registration Procedure for Application Identifiers (AID); sets 

standards for Application Identifiers. An AID has two parts. The first is a Registered 

Application Provider Identifier (RID) of five bytes that is unique to the vendor. The second 

part is a variable length field of up to 11 bytes that RIDs can use to identify specific 

applications. (http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.6. ISO 7816-6 
 
Inter -industry data elements; physical transportation of device and transaction data, answer 

to reset and transmission protocols.  

 

The specifications permit two transmission protocols: Character protocol (T=0) or block 

protocol (T=1). A card may support either but not both. (http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.7. ISO 7816-7 
 

Inter-industry command for Structured Card Query Language (SCQL); This document 

specifies the concept of a SCQL database (SCQL = Structured Card Query Language based 

on SQL, see MS ISO 9075), and the related inter-industry enhanced commands. 
(http://en.wikipedia.org/wiki/ISO_7816) 



 31

2.1.1.8. ISO 7816-8 (commands for security operations) 
 

Created in 1995 and updated in 2004. It specifies interindustry commands for integrated 

circuit cards (either with contacts or without contacts) that may be used for cryptographic 

operations. These commands are complementary to and based on the commands listed in 

ISO/IEC 7816-4. 

 

The choice and conditions of use of cryptographic mechanisms may affect card 

exportability. The evaluation of the suitability of algorithms and protocols is outside the 

scope of ISO/IEC 7816-8. 
(http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.9. ISO 7816-9 (commands for card management) 
 

Commands for Card Management; specifies a description and coding of the life cycle of 

cards and related objects, a description and coding of security attributes of card related 

objects, functions and syntax of additional inter-industry commands, data elements 

associated with these commands, and a mechanism for initiating card-originated messages. 
(http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.10. ISO 7816-10 (electronic signals and answer to reset for syncronous cards) 
 

Electrical signals and answer to reset for synchronous cards; this part of ISO 7816 specifies 

the power, signal structures, and the structure for the answer to reset between an integrated 

circuit card(s) with synchronous transmission and an interface device such as a terminal. 
(http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.11. ISO 7816-11 (personel verification through biometric methods) 
 

Personal verification through biometric methods; currently a draft.  
(http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.12. ISO 7816-12 (cards with contacts) 
 

ISO/IEC 7816-12 created in 2005.  



 32

• The electrical conditions when a USB-ICC is operated by an interface device - 

for those contact fields that are not used, when the USB interface is applied;  

• The USB standard descriptors and the USB-ICC class specific descriptor;  

• the data transfer between host and USB-ICC using bulk transfers or control 

transfers;  

• The control transfers which allow two different protocols named version A 

and version B;  

• The (optional) interrupt transfers to indicate asynchronous events;  

• Status and error conditions. 

 

ISO/IEC 7816-12 provides two protocols for control transfers. This is to support the 

protocol T=0 (version A) or to use the transfer on APDU level (version B). 
(http://en.wikipedia.org/wiki/ISO_7816) 

 

2.1.1.13. ISO 7816-13 (application management in multi-application environment) 
 

As of 2006, this document is in development (source) and is supposed to integrate methods 

from the GlobalPlatform standard, like its Secure Channel Protocols (see this NIST report 

(in PDF format) for more information). 
(http://en.wikipedia.org/wiki/ISO_7816) 

2.1.1.14. ISO 7816-15 (Cryptographic information application) 

 

This application contains information on cryptographic functionality. Further, ISO/IEC 

7816-15 defines a common syntax (in ASN.1) and format for the cryptographic information 

and mechanisms to share this information whenever appropriate. 

 

ISO/IEC 7816-15 supports the following capabilities created in 2004: 

• Storage of multiple instances of cryptographic information in a card;  

• Use of the cryptographic information;  

• Retrieval of the cryptographic information;  



 33

• Cross-referencing of the cryptographic information with DOs defined in ISO/IEC 

7816 when appropriate;  

• Different authentication mechanisms; 

• Multiple cryptographic algorithms. 
(http://en.wikipedia.org/wiki/ISO_7816) 

2.2. FIPS (Federal Information Processing Standards) 
 

FIPS are developed by the Computer Security Division with in National Institute of 

Standards and Technology (NIST). FIPS standards are designed to protect federal assets 

including computer and telecommunications systems. 
(http://en.wikipedia.org/wiki/ISO_7816) 

 

2.2.1. FIPS 140 (1-3) 
 

The security requirements contained in FIPS 140 (1-3) pertain to areas related to the secure 

design and implementation of a cryptographic module, specifically: cryptographic module 

specification; cryptographic module ports and interfaces; roles, services, and 

authentication; finite state model; physical security; operational environment; 

cryptographic key management; electromagnetic interference/electromagnetic 

compatibility (EMI/EMC); self-tests; design assurance; and mitigation of other attacks. 
(http://en.wikipedia.org/wiki/ISO_7816) 

2.2.2. FIPS 201 
 

Currently a draft, this specification will cover all aspects of multifunction cards used in 

identity management systems throughout the U.S. government. 
(http://en.wikipedia.org/wiki/ISO_7816) 

2.3. EMV (EuroCard/EuroPay, MasterCard, Visa) 
 

EMV is a standard for interoperation of IC cards ("Chip cards") and IC capable POS 

terminals and ATM' s, for authenticating credit and debit card payments. The name EMV 

comes from the initial letters of Europay, MasterCard and VISA, the three companies 

which originally cooperated to develop the standard. Europay International SA was 



 34

                                                

absorbed into Mastercard in 2002. JCB (formerly Japan Credit Bureau) joined the 

organization in December 2004, and American Express joined in February 2009. IC card 

systems based on EMV are being phased in across the world, under names such as "IC 

Credit" and "Chip and PIN". The EMV specification is also the basis of the Chip 

Authentication Program, where banks give customers hand-held card readers to perform 

online authenticated transactions. 

 

The EMV standard defines the interaction at the physical, electrical, data and application 

levels between IC cards and IC card processing devices for financial transactions. Portions 

of the standard are heavily based on the IC Chip card interface defined in ISO 7816.16 

 

The most widely known implementations of EMV standard are: 

VSDC - VISA  

MChip - MasterCard  

AEIPS - American Express  

J Smart – Japan Credit Bureau 

2.3.1. Differences and Benefits of EMV 
 

The purpose and goal of the EMV standard is to specify interoperability between EMV 

compliant IC cards and EMV compliant credit card payment terminals throughout the 

world. There are two major benefits to moving to smartcard based credit card payment 

systems: improved security (with associated fraud reduction), and the possibility for finer 

control of "offline" credit card transaction approvals.  

 

The goals and benefits of EMV: 

 

High level standard on terminal card API: It reduces the cost and time interval of software 

development (POS, ATM, HSM, etc.). The non EMV payment smartcard has its own 

crypto protections (RSA, DES) and is based on local private standards. 

 

 
16  http://en.wikipedia.org/wiki/EMV 



 35

                                                

EMV financial transactions are more secure against fraud than traditional credit card 

payments which use the data encoded in a magnetic stripe on the back of the card. This is 

due to the use of encryption algorithms such as DES, Triple-DES, RSA and SHA to 

provide authentication of the card to the processing terminal and the transaction processing 

center. 

 

Although not the only possible method, the majority of implementations of EMV cards and 

terminals confirm the identity of the cardholder by requiring the entry of a PIN (Personal 

Identification Number) rather than signing a paper receipt. Wheather or not PIN 

authentication takes place depends upon the capabilities of the terminal and programming 

of the card.17 

2.3.2. Control of the EMV Standard 
 

The first version of EMV standard was published in 1999. Now the standard is defined and 

managed by the public corporation EMVCo LLC. The current members of EMVCo are 

JCB International, American Express, MasterCard Worldwide, and Visa, Inc. Each of these 

organizations owns one quarter of EMVCo and has representatives in the EMVCo 

organization and EMVCo working groups. 

 

Recognition of compliance with the EMV standard (i.e. device certification) is issued by 

EMVCo following submission of results of testing performed by an accredited testing 

house. 

 

EMV Compliance testing has two levels: EMV Level 1 which covers physical, electrical 

and transport level interfaces, and EMV Level 2 which covers payment application 

selection and credit financial transaction processing. 

 

After passing a common EMVCo tests the software must be tested to comply with EMV 

standard (VISA VSDC, MasterCard MChip, etc.) 
(EMVCo Ltd.-EMV Book 1) 

 
17  http://en.wikipedia.org/wiki/EMV 



 36

                                                

List of EMV documents and standards: 

 

Since version 4.0, the official EMV standard documents, that define all the components in 

an EMV payment system, are published as four "books": 

 

• Application Independent ICC to Terminal Interface Requirement  

• Security and Key Management  

• Application Specification  

• Cardholder, Attendant, and Acquirer Interface Requirements 

 

First EMV standard came into view in 1995 as EMV 2.0. This was upgraded to EMV 3.0 in 

1996 with later ammendments to EMV3.1.1 in 1998. This was further ammended to 

version 4.0 in December 2000. 

  

Version 4.0 became effective in June 2004.  

Version, 4.1 became effective in June 2007. 

Version EMV 4.2 is in effect since June 2008.18 

2.4. PC / SC 
 

A Microsoft proposed and implemented standard for cards and readers, called the PC/SC 

specification. This proposal only applies to CPU cards. They have also built into their 

CryptoAPI a framework that supports many security mechanisms for cards and systems. 

PC/SC is now a fairly common middleware interface for PC logon applications. The 

standard is a highly abstracted set of middleware components that allow for the most 

common reader card interactions.19 

2.5. CEN (Comite’ Europe’ en De Normalisation) 
 

ETSI (European Telecommunications Standards Institute) is focused on telecommunica-

tions, as with the GSM SIM for cellular telephones GSM 11.11 and ETSI300045. CEN can 

 
18  http://en.wikipedia.org/wiki/EMV 
19  Blair Dillaway, “PC/SC Workgroup Specification for PC-ICC Interoperability,” Presentation at CardTech/SecurTech ‘96 West, 
December 1996. 



 37

                                                

be contacted at Rue de Stassart, 36 B-1050 Brussels, Belgium, attention to the Central 

Secretariat.22 

2.6. HIPAA 
 

HIPAA means the Health Insurance Portability and Accountability Act. The national 

standards for implementing a secure electronic health transaction system in the U.S. Exam-

ple transactions affected by this include claims, enrollment, eligibility, payment and 

coordination of benefits. Smartcards are governed by the requirements of HIPAA 

pertaining to data security and patient privacy.20 

2.7. IC Communication Standards 
 

These existed for non-volatile memories before the chips were adopted for smartcard use. 

This specifically applies to the I2C and SPI EEPROM interfaces.22 

2.8. SmartCard Standards 
 

An important characteristic of smartcards is their broad compatibility with a wide variety of 

informatics infrastructures. These standards serve as basic reference documents for card 

manufacturers, operating system developers and application developers. 

2.8.1. Standarts for Card Bodies 
 

The general physical characteristics of cards are described in the ISO/IEC 7810 standard. It 

forms the basis for a further set of standards (including TS 102 221 and EMV Book 1), which 

describe specific details and forms of implementation of the ISO/IEC standard in their 

introductory sections. 

2.8.2. Standarts for Operating Systems 
 

The most important set of standards for smartcard operating systems is the ISO/IEC 7816 

family, which describes the essential informatic aspects of smartcards. The basic data trans-

 
20, 22 http://en.wikipedia.org/wiki/EMV 



 38

mission parameters are ATR, PPS, T=0, and T=1. The requirements for contactless data 

transmission for proximity cards are described in the ISO/IEC 14 443 standard. 

 

ISO/IEC 7816 standard contains a description of the file system, including the file types 

(MF, DF and EF), file structures (transparent, linear, linear variable, cyclic and TLV co-

ded), and selection options.5 The essential mechanisms for Secure Messaging are also spe-

cified in this standard. The ISO/IEC 7816 standard is also the most important reference for 

basic smartcard commands. Administrative commands are described in ISO/IEC 7816-9, 

and commands for cryptographic operations are described in ISO/IEC 7816-8 (EMV Book 2 – 

EMVCo. Ltd.) 

2.9. File Management 
 

Managing files is the principal task of a smartcard operating system. File management 

means not only providing read and write access to files and creating and deleting files, but 

also granting access privileges and monitoring compliance with access privileges. File ma-

nagement is especially important because most smartcard applications are file-based. File 

management in smartcards is almost entirely based on the provisions of the ISO/IEC 7816-

4 standard. They specify a maximum possible functional scope, which in turn is imple-

mented in actual smartcard operating systems only to the extent necessary. 
(GEMPLUS 1999 / EPCOS-EMV Specification) 

2.9.1. File Types 
 

Smartcard file structures are always based on a tree structure with a root directory, as 

illustrated in Figure 2.1. The root directory of a smartcard, which is analogous to the ‘c:’ 

volume of a PC, is called the MF (master file) and is present only once in the file tree of the 

smartcard. It has the properties of a directory, which means it can only contain other direc-

tories and cannot store data directly. 



 
Figure 2.1   The two possible forms of file-based applications in smartcards. A simple smartcard file system 

is shown on the left. It contains an MF with application-independent Efs located directly below the MF, along 
with a DF with application data contained in EFs. A DF without a visible MF is shown on the right. It also 
contains application data in the form of EFs located below the DF. This sort of DF is also called an ADF.21 

 

The directories of a smartcard are called DFs (dedicated files), and in theory they can be 

nested indefinitely. Three or four levels are commonly used in actual applications, and 

smartcard operating systems rarely support more than eight levels. The ADF (application 

dedicated file) is a special type of DF. It is a DF for a specific application and can be loca-

ted in the file tree of the smartcard without there being any direct relationship to the root 

directory. Typically, it holds all the files of a particular application. ADFs are rarely en-

countered in actual practice. 

 

The actual application data and operating system data are stored in EFs. EFs are always 

located in directories, and there are two possible types: working EFs and internal EFs. 

Working EFs are used to store application data that is accessible to the outside world via 

smartcard commands. By contrast, internal EFs are used by the smartcard operating system 

to store data for internal purposes.  

 

For example, they can be used to store keys or a seed (initial value) for a random number 

generator. (GEMPLUS 1999 / EPCOS-EMV Specification) 

                                                 

 39
21 Advanced Card Systems Ltd. – Chapter 1 – What is a SmartCard ? 



 
 

Figure 2.2. MPCOS-EMV File Hierarchy22 
 

The files in MPCOS-EMV cards are organized into a 2-level hierarchy. The level formed by the Master File 

with Elementary Files directly beneath it is called the global level. The level formed by Dedicated Files with 

Elementary Files beneath them is called the local level. 

 

The Master File: The Master File is the root of the MPCOS-EMV file structure. It is the 

equivalent of the DOS root directory. The Master File (only one per card) can have up to 

63 Elementary and Dedicated files in it. 

 

Dedicated Files: Dedicated Files store sets of Elementary Files. In MPCOS-EMV cards, 

each Dedicated File stores a set of Elementary Files that form an application. Dedicated 

Files are the equivalent of DOS directories. Each Dedicated File can store up to 63 

Elementary Files, but no nested Dedicated Files are allowed. 

 

Elementary Files: Elementary Files are the main component of the MPCOS-EMV file 

structure. They store application data. Different types of EFs are available in MPCOS-

EMV, these are Purse files, secret code files, key files, transaction manager files, tran-

sparent files, linear fixed files, linear variable files and cyclic elementary files. 

 

 

                                                 

 40
22 GEMPLUS 1999 / MPCOS-EMV Specification pg.4 



 41

                                                

2.9.2. File Names 
 

As smartcards are always used under the control of a terminal, it is not necessary to make 

the file names compatible with human needs. Standard file names thus consist of a 2-byte 

data element called the FID (file identifier). The FID of the MF, which is '3F00', is reserved 

for this purpose. All other FIDs can be freely chosen. Table 2.1 lists the file names of 

commonly used types of smartcard files and summarises their key characteristics. 

 

Each directory file (DF) has a supplementary name in addition to its FID, and it can be 

addressed in the file tree using this supplementary name. This supplementary name is 

called the DF name, and it usually includes an AID (application identifier). The AID 

consists of an RID (registered application provider identifier) and a PIX (proprietary 

application identifier extension). RIDs can be registered officially to ensure that they are 

unique throughout the world. In this case, the PIX can be used as necessary to further 

identify a specific DF. This makes it possible to define a unique name for a specific 

smartcard application, which can then be used to recognize and select it in every smartcard. 

The EFs provided to hold data are also assigned FIDs, similar to all smartcard files. In 

addition, each EF has an SFI (short file identifier), which can be provided as a parameter of 

a read or write command to select the EF directly.23 

 
Table 2.1. Possible file names as specified by ISO/IEC 7816-4 23(a). 

Data Type  File Name    Size  Value Range 
MF (master file)  FID (file identifier)   2 bytes  ‘3F00’ 

DF (dedicated file) FID (file identifier)   2 bytes  0 … ‘F … F’ 

   DF name (usually includes an AID)  1-16 bytes 0 … ‘F … F’ 

 AID (RID || PIX)    5-16 bytes According to AID  

Definition 

EF (elementary file) FID (file identifier)   2 bytes  0 … ‘FFFF’ 

   SFI (short file identifier)   5 bits  1 … ‘30’ 

 

 
23, 26(a)  GEMPLUS 1999 / EPCOS-EMV Specification 



 42

2.9.3. File Structures 
 

Smartcard data files (EFs) have internal structures. This means that the data stored in the 

files can be arranged in various ways. Five different structures are available, as illustrate in 

Figure 2.3. 

 

In the transparent structure, the data items are arranged as a series of bytes (byte string). 

The commands READ BINARY and UPDATE BINARY can be used to read data from or 

write data to this file structure using parameters that specify an integral number of bytes 

and an offset from the start of the file. This EF structure is a general-purpose structure that 

can be put to a wide variety of uses. 

 

Besides the transparent file structure, there are three record-oriented file structures. EFs 

with a linear fixed file structure can be used to store equal-length records. The linear 

variable file structure allows the records to have different lengths. If records with different 

lengths must be stored in a smartcard, the amount of memory space required will be less if 

a linear variable EF is used than if a linear fixed EF is used. These two file structures are 

typically used to store personal data such as addresses or telephone numbers. The cyclic 

file structure extends the linear file structure to include a pointer that indicates which 

record was most recently written. This structure is thus ideal for a variety of log file 

applications. 

 

The records of all record-oriented files can be read and written using the READ RECORD 

and UPDATE RECORD commands. Normally, it is only possible to read or write complete 

records although relatively recent operating systems also support access to partial records. 

 

The fifth type of file structure enables data objects to be stored in a TLV structure. In such 

a structure, each data object is identified by tag (T) and length (L) elements, which are 

followed by the actual data or value (V). This file structure can also be used to store nested 

data objects. Data objects can be read and stored using the GET DATA and PUT DATA 

commands.  

 



Types of smartcard files and summarises their key characteristics. 

 
Figure 2.3. The five possible structures of data files (EFs) used in smartcards. Each cell in the diagrams 

represents a data byte.24 
 

Table 2.2  File Structures and File Sizes 
 
File Structure  Typical File Size    

Transparent  Total Size    1-33 023 bytes 

Linear   Record length    1-255 bytes  

   Number of Records   1-254 

Linear Variable  Record Length    1-255 bytes  

   Number of Records   1-254 

Cyclic   Record length    1-255 bytes  

   Number of Records   1-254 

TLV Data object size    Not specified (typically 65 535 bytes) 

 Number of data objects   Not specified (typically 255) 

2.9.4. File Attributes 
 

Smart files in smartcards can also have various attributes, depending on the specific 

operating system. The best-known set of attributes is shareable and not shareable. These 
                                                 

 43
24  GEMPLUS 1999 / EPCOS-EMV Specification 



 44

                                                

attributes can be used to specify for each file whether it permits concurrent read or write 

access via multiple logical channels. There are many other possible file attributes, but they 

are not standardized. (GEMPLUS 1999 / EPCOS-EMV Specification) 

2.9.5. File Selection 
 

The smartcard SELECT command is used to explicitly select a file. A file must always be 

selected before it can be accessed with the usual commands such as READ BINARY or 

UPDATE BINARY. 

 

One of the available identifiers (FID, DF Name or AID) must be used for selection, 

depending on the file type (MF, DF or EF). These identifiers do not have to be unique in 

the directory and file structure of a smartcard. Consequently, the selection options depend 

on the currently selected file. Figure 2.4 illustrates the selection methods that can normally 

be used in the directory and file structure. 

 

Selection using a path name enables fast selection across several DFs with a single 

command. With this method, the path to the file to be selected is passed to the smartcard as 

a command parameter. This path can be referenced to the MF or to the currently selected 

file. This is the simplest selection option, and above all, it is the option that requires the 

least amount of transaction time. The MF can be selected in a similar manner. It can be 

selected from anywhere in the entire file tree using a single command. 

 

The four commonly used read and write commands (READ BINARY, UPDATE 

BINARY, READ RECORD and UPDATE RECORD) also support file selection during 

command transaction (implicit selection). This eliminates the need to use SELECT to select 

the desired file before issuing the actual read or write command. This function is called 

implicit file selection, and it is quite useful for reducing file access times.25 

 
25  (GEMPLUS 1999 / EPCOS-EMV Specification) 



 
Figure 2.4 File selection options for smartcards. Option 1 is explicit selection using an FID (file identifier); 
option 2 is implicit file selection using an SFI (short file identifier); option 3 is selection using a DF name; 

option 4 is selection using an FID (file identifier) and a path parameter.25 

2.9.6. Access Conditions 
 

Access conditions associated with the files defined in a file system are an essential 

component of the file system. They specify which conditions must be satisfied to enable 

read or write access to the files. These conditions could be, for example, successful PIN 

verification or successful authentication of the terminal by the smartcard. 

 

Two different methods are commonly used in smartcards for technical implementation of 

access conditions: state-based access conditions and rule-based access conditions. The first 

method has been used for more than a decade in large systems, such as the SIMs used in 

GSM mobile telecommunication systems. Rule-based access conditions were first 

published as a standard1 in the late 1990s. They are actually just a generalization and 

extension of the state-based method. As a result, all aspects of state-based access conditions 

can be reproduced using rule-based conditions. 
(GEMPLUS 1999 / EPCOS-EMV Specification) 

 45



 46

2.9.6.1. State-Based Access Conditions 
 

In the case of state-based access conditions, each form of access (read or write) is only 

possible if a certain state has been attained, independent of other forms of access. The 

EFADN (abbreviated dialling number) file of a SIM can be used here as a typical example. 

This file can only be read using the READ RECORD command if PIN 1 has previously 

been correctly verified by the smartcard. 

 

Nearly all file-based smartcard applications can be implemented with relative ease using 

state-based access conditions. However, a growing number of smartcard operating systems 

support the rule-based method, which is more future-proof and significantly more flexible.  
(GEMPLUS 1999 / EPCOS-EMV Specification) 

2.9.6.2. Rule-Based Access Conditions 
 

Rule-based access conditions in smartcards are based on assigning all files (DFs and EFs) 

references to a record-oriented file containing sets of access rules. This file is assigned the 

name EFARR (access rule reference), and each reference is simply composed of the FID of 

the EFARR and a record number that addresses the appropriate set of rules. The FID of 

EFARR is freely selectable. 

 

Each record in EFARR contains a set of rules for the various forms of access, such as read 

and write. As directory files can also be assigned references to an EFARR, it is also possible 

to define rules for creating and deleting files.  

 

With rule-based access conditions, it is even possible to specify that certain files can only 

be accessed using Secure Messaging. The ISO/IEC 7816-9 standard forms the basis for the 

coding and the available functionality, but you should always consult the specifications of 

the smartcard operating system being used, since the standard provides many options and 

there are large differences between individual operating systems. The operating principle of 

rule-based access is illustrated in Figure 2.5. 



 
Figure 2.5 Operating principle of using an EFARR to manage rule-based access conditions for files and data 
objects.26 
 

All commonly encountered requirements for access to files and data objects in smartcard 

applications can be implemented using rule-based access conditions. Although this method 

is not especially simple, it is very powerful. As a comment regarding security, we can note 

here that it is essential to ensure that write accesses to EFARR can only be performed by 

authorized entities. Otherwise, the entire security of an application can be effectively by 

passed. 

 

A mistake in connection with EFARR that can nearly be regarded as classic must be 

mentioned here. If it is possible to freely delete and create files in the directory containing 

EFARR, the following simple but highly effective attack is possible. The attacker first uses 

DELETE to delete EFARR and then uses CREATE to create a new EFARR in which all read 

and write conditions for the files that reference this file are set to ‘always’. After this, the 

attacker can use standard commands to read all EFs containing application data, and of 

course the attacker can also alter the contents of these files. Although this is essentially a 

primitive form of attack, it shows quite clearly that even a sophisticated method such as 

rule-based access requires suitably careful planning. 
(GEMPLUS 1999 / EPCOS-EMV Specification) 

2.9.7. File Life Cycle 
 

In the ideal case, it is possible to create, use and then delete files in a smartcard file system 

whenever so desired. In addition, the amount of free memory available to the file system is 

                                                 

 47
26  (GEMPLUS 1999 / EPCOS-EMV Specification) 



ideally just as large after completion of this cycle as at the beginning. The life cycle of 

files, including all possible options, is illustrated in Figure 2.6. 

 
Figure 2.6 States and associated state transitions during the entire life cycle of a file, as specified by ISO/IEC 

7816-9 
 

All these options are actually available in large smartcard operating systems. On the other 

hand, simple operating systems often have restrictions in this regard. For instance, simple 

operating systems often do not allow files to be deleted once they have been created or if 

they do allow files to be deleted, the amount of available free memory may be reduced by 

several bytes for each pass through the described life cycle. (GEMPLUS 1999 / EPCOS-EMV 

Specification) 

2.10. EMV Commands 
 

Aside from file management, commands are the most important functionality that a 

smartcard operating system provides to the outside world. Table 2.3 provides a summary of 

standard smartcard commands, and Table 2.4 provides a selected list of the most commonly 

encountered return codes sent by smartcards in response to commands received from a 

terminal. With regard to the exact coding of individual commands, you must always refer 

to the specifications of the smartcard operating system being used. (GEMPLUS 1999 / EPCOS-EMV 

Specification) 

 

 

 48



 49

2.10.1. EMV Administration Commands (commands for file operations) 
 

The commands for file operations include SELECT, which is used to select a specific file, 

and READ BINARY and READ RECORD, which are used to read data from files having 

various structures. By contrast, UPDATE BINARY and UPDATE RECORD are the 

commands for writing data to files. The search commands SEARCH BINARY and 

SEARCH RECORD can be used to search for specific values in the EFs of the associated 

directory and file structure. (GEMPLUS 1999 / EPCOS-EMV Specification) 

2.10.1.1. Commands for Data Objects 
 

Application data can be stored in data objects and/or files. GET DATA and PUT DATA 

read data from data objects and write data to data objects. 

2.10.1.2. Commands for Security Functions 

 

The best-known security function command is VERIFY, which is used to verify PINs. GET 

CHALLENGE requests a random number for a subsequent EXTERNAL AUTHEN-

TICATE command, which is used to authenticate the outside world with respect to the 

smartcard. By contrast, INTERNAL AUTHENTICATE can be used to authenticate a 

smartcard with respect to the rest of the world by using a challenge–response process. 

MUTUAL AUTHENTICATION can be used to authenticate the smartcard and the outside 

world with respect to each other in a single operation. (GEMPLUS 1999 / EPCOS-EMV Specification) 

2.10.2. EMV Payment Commands (for file management) 
 

The commands for file management are used for administrative purposes to manage the 

directory files (DFs) and data files (EFs) in the file tree of a smartcard. This includes using 

CREATE FILE to create new files, APPEND RECORD to enlarge files, and DELETE FI-

LE to delete existing files. The ACTIVATE FILE and DEACTIVATE FILE commands 

block and unblock files. The TERMINATE DF and TERMINATE EF commands perma-

nently block files without deleting them from the file tree. 
(GEMPLUS 1999 / EPCOS-EMV Specification) 



 50

2.10.3. EMV Commands & Descriptions 
 

List of the most important smart commands defined by ISO/IEC 7816-4, -8, -9 and Open 

Platform. 
 

Table 2.3. Administration commands27 
 

Administration Commands Table 

Function Class Name   Description 

File  Select File  Selects an elemantary or a dedicated file for use in transactions. 

(Select a file operation) 

Write Binary Writes data to an Elementary File by performing a logical OR 

operation between the current value of the write area and the 

value being written. 

  Read Binary  Reads data from transparent elemantary files. 

  Read Record  Reads data from structured file (record-oriented file). 

  Update Binary  Updates data in an Elemantary File. 

  Update Record  Updates data from a structured file. 

  Search Binary  Search data from transparent elemantary file. 

  Search Record  Search data from a structured file. (record-orianted file). 

Select File Key Computes temporary administration key, and an authentication 

cryptogram. 

                                                 
27  (GEMPLUS 1999 / EPCOS-EMV Specification) and Smart Visa Programming.pdf (EMVco.) 



 51

Function Class Name   Description 

File Management Create File  Creates an Elementary or Dedicated File. (EF or DF) 

Append Record Appends a new record to a structured file. (Create new record in 

a record- oriented file) 

Activate File  Reversibly unblock file. 

Deactivate File  Reversibly block file. 

Terminate DF/EF  Permanently block a file (DF or EF) 

Delete File  Delete a File DF or EF. 

 

Function Class Name   Description 

Data Objects Get Data   Read TLV-coded data objects. 

  Put Data   Write TLV-coded data objects. 

 

Function Class Name   Description 

Security  Verify   Compares the value submitted to the secret code number in the 

secret code file for the currently selected dedicated file. (Verify 

transferred data.) 

Get Challenge Generates an eight-byte random number.(Request a random 

number (e.g. for a subsequent EXTERNAL AUTHENTICATE) 

Internal Authenticate Causes the card the compute a cryptogram for verification by the 

outside the world. 

External Authenticate Causes the card to check a cryptogram sent from the outside 

world. 

Mutual Authentication Mutual authentication of the smartcard and the outside the world 

Perform Security 

Operation Execute a cryptographic algorithm in the smartcard. 

Manage Security 

Environment Manage security command parameters. 

Freezze Access 

Conditions Locks or localizes a file access condition. 

 



 52

Function Class Name   Description 

Program Code Load   Load a code-based application. 
Management     

  Install   Install a code-based application. 

  Put Key   Load a key for a code-based application. 

Set Status Write state information for the life cycle of the smartcard or an 

application. 

Set Card Status Sets the Personalization flag to 1 once personalization has been 

completed and sets other card parameters such as the size of the 

data units. 

Get Status Read State information about a security domain, load file or 

application. 

Set Secret Code Unlocks or changes a secret code in the local EFsc. 

Delete Delete an object. 

 

Function Class Name   Description 

Data Transmission Get Response  Retrieves and erases the data prepared in RAM by the card in  

response to the previous command. (Request data for the T=0 

transmission protocol from the smartcard.) 

  Get Info   Retvieves information about the card. 

  Switch Protocol  Switches the card to another protocol or speed. 

 

Table 2.4  Payment commands28 
 

Payment Commands Table 

 

Function Class Name   Description 

Payment  Cancel Debit  Cancels the previous debit performed by a terminal and  

optionally replaces it by a new debit. 

Credit   Credits a purse. 

Debit   Debits a purse. 

Read Balance  Reads the specified purse balance value. 

Select Purse & Key Selects the specified purse and key, then generates a new 

temporary payment transaction key and an authentication 

cryptogram. 

                                                 
28  (GEMPLUS 1999 / EPCOS-EMV Specification) and Smart Visa Programming.pdf (EMVco.) 



 53

Set Option Sets the following Sign command options. 

- Use current purse balance in the certificate calculation. 
- Clear the RAM parameters after executing the Sign 

command. 

Sign   Generates a certificate for the previous transaction. 

2.10.4. Return & Error Codes Meanings (Status Codes) 
 

Table 2.5 Error Codes 
 
Group   SW1   /   SW2 Meaning 

Normal Processing  ‘9000’  Process executed successfully. 

 ‘61xx’ Processing completed successfully. xx data bytes are available in 

response and can be retrieved using GET RESPONSE. 

 

Warning Processing ‘62xx’  Data in nonvolatile memory not modified. See SW2 for details. 

‘63xx’ Data in nonvolatile memory modified; see SW2 for details. 

 

Execution Error  ‘64xx’  Data in nonvolatile memory not modified; see SW2 for details. 

‘65xx’ Data in nonvolatile memory modified; see SW2 for details. 

‘66xx’ Security-relevant result 

 

Checking Error  ‘6700’  Incorrect length (no additional information). 

‘68xx’ Functions in class byte not supported; see SW2 for details. 

‘69xx’ Illegal command; see SW2 for details. 

‘6Axx’ Incorrect P1/P2 parameters; see SW2 for details. 

‘6B00’ Incorrect P1 or P2 parameter. 

‘6Cxx’ Bad Le value; see SW2 for correct number of available data 

bytes. 

 

Group   SW1   /   SW2 Meaning 

Checking Error  ‘6D00’  Command code invalid or not supported. 

‘6E00’ Class not supported. 

‘6F00’ No spesific diagnosis 

 

 



 54

2.11. Data Transmission 
 

This master/slave principle pervades all communications with smartcards. After the 

electrical startup of the smartcard microcontroller, the terminal sends a reset signal to the 

smartcard, which responds to this signal with an ATR (answer to reset). This can optionally 

be followed by a PPS (protocol parameter selection), which transfers a set of parameters 

that modify the subsequent data transmission process. In this case as well, the smartcard 

only responds to an explicit request from the terminal. The actual transmission protocol, 

during which the smartcard only reacts to commands by sending responses, begins after 

this initialization phase. 

 

There are two types of reset for smartcards: cold reset and warm reset. With a cold reset, 

the smartcard is started up from the power-down state and reset during this process. By 

contrast, with a warm reset the smartcard is already powered up and only receives a reset 

signal from the terminal. 

 
Table 2.6 Logical sequence of transactions during smartcard startup. The PPS transaction is optional and 
can be omitted if the parameters of the transmission protocol provided in the ATR will be used unchanged. 
 
IFD Terminal      ICC (Smartcard) 

Reset       Startup smartcard operating system. 

    ATR 

 

Optional 

PPS Request      PPS processing. 

    PPS response 

 

Commands 

APDU 1 Command     Command processing. 

    Response APDU 1 Command 

…       … 

 



The master – slave relationship also affects the behaviour of the chip hardware and the 

operating system, as illustrated in table 2.6. After the power-up sequence, the smartcard o-

perating system is started up and an ATR is transmitted. After this, the smartcard enters a 

low-power sleep mode. It remains in this mode until the terminal transmits a command. 

The command is received and processed, and the response is sent back to the terminal. The 

smartcard then enters the sleep mode again and waits for the next command from the ter-

minal, which causes it to return to the active mode. Alternatively, the terminal can initiate 

the power-down sequence at this point to shut down the smartcard. 

 

 
Figure 2.7 The possible states of a smartcard operating system for transmitting and receiving data. The 
smartcard remains in the low-power sleep mode until it receives data via the interface. The power-down 
sequence can be executed at any desired time, but typically, it occurs in sleep mode. 

2.11.1. Answer to Reset (ATR) 
 

The ATR (answer to reset) is the first communication a smartcard sends after detecting a 

reset. Among other things, the ATR provides the terminal with information about the trans-

mission protocols and data transmission rates supported by the smartcard. The ATR is al-

ways transmitted with a divider value of 372, which yields a transmission data rate of 9 600 

bps with a clock frequency of 3.5712 MHz. 
(Microsoft MSDN http://msdn.microsoft.com/en-us/library/aa924246.aspx)-Automatic Terminal Recognition 

2.11.2. Transmission Protocols 
 

 55



 56

The transmission protocols define the communication processes between the terminal and 

the smartcard in case of successful transactions and the mechanisms to be used to handle 

detected transmission errors. 

 

The most commonly used protocols for chip cards with memory chips are the ICC protocol 

and the 2-wire or 3-wire protocol. The T=0 and T=1 transmission protocols, which are 

commonly used with processor cards, are used almost without exception with contact-type 

processsor cards. There are already several types of smartcards that support the USB 

protocol, which is widely used in the PC environment. In the case of contactless microcon-

troller smartcards, the most widely used protocols are ISO/IEC 14 443 Type A and Type B. 

 

Several abbreviations related to data transmission are commonly used in the processor card 

realm. A data record at the transmission level is called a TPDU (transport protocol data 

unit), while a data record at the application level is called an APDU (application protocol 

data unit). TPDUs and APDUs are defined for the commands sent to smartcards and the 

associated responses. A command APDU consists of a command header and a command 

body. The header is mandatory, but the body is optional. A response APDU consists of a 

response body and a response trailer. Only the trailer is mandatory in the response APDU. 

 

A command APDU consists of four bytes designated as follows: Class (CLA), Instruction 

(INS), Parameter 1 (P1) and Parameter 2 (P2). The principle that the class byte should indi-

cate the standard in which the command in question is specified is adhered to in most cases. 

The instruction byte defines the actual command, and the two parameters (P1 and P2) pro-

vide additional information about the command. 

 

The command body can contain a maximum of three data elements. The first, Lc (length 

command), contains the length of the data in the command APDU, while Le (length expec-

ted) contains the length of the data requested from the smartcard, which is to be retur-ned 

in the response APDU. 

Four different combinations are permitted for the command APDU. Each combination is 

called a case. There are only two variants for the response APDU. The T=0 or T=1 trans-



mission protocol, which is located below the application layer, looks after communicating 

these rigidly defined APDUs between the terminal and the smartcard. 

 
 
Figure 2.8 The four different cases of command APDUs and the two different variants of response APDUs.29 

 

2.11.2.1. T=0 Transmission Protocol for Contact Cards 
 

The T=0 transmission protocol is the oldest and most widely used protocol for smartcards. 

It is a byte-oriented transmission protocol with relatively poor layer separation. As a result, 

Case 4 commands in Figure 2.8 are not possible with T=0. Instead, the terminal must use 

the GET RESPONSE command to retrieve data to be provided to the terminal by the smart-

card. However, this has not significantly restricted the use of the T=0 protocol, which is the 

standard protocol for the world’s largest smartcard application: the SIMs and USIMs used 

in GSM and UMTS mobile telecommunication systems29. 

2.11.2.2. T=1 Transmission Protocol for Contact Cards 
 

The block-oriented T=1 protocol has distinct layer separation, so all four cases of command 

APDUs can be used with this protocol. T=1 has a significantly more complicated structure 

than T=0, but it is also significantly more robust, thanks to its processes for detecting and 

resending blocks that contain transmission errors. T=1 is often used with payment cards 

                                                 

 57
29  Advanced Card Systems Ltd. ACOS3 SmartCard Technical Specification 



 58

and ID cards. It is indisputably a more modern protocol than T=0, but its advantages 

relative to T=0 are not large enough to threaten T=0 with becoming irrelevant29. 

2.11.2.3. USB Transmission Protocol for Contact Cards 
 

The data transmission rate of T=0 or T=1 rarely exceeds 115 kbps in practice. This is too 

low for smartcards with large data memories. This is one of the reasons why the USB pro-

tocol (Universal Serial Bus) is slowly becoming established in the smartcard world. The 

second main reason is that USB provides compatibility with the PC environment. USB 

smartcards that support the 1.5 Mbps data rate of low-speed USB and even the 12 Mbps 

data rate of full-speed USB. (Advanced Card Systems Ltd. ACOS3 SmartCard Technical Specification) 

2.11.2.4. Contactless Transmission Protocol 
 

ISO/IEC 14 443 specifies the properties of contactless smartcards for use at a maximum 

distance of 10 cm from a terminal. Such cards are called proximity cards and they operate 

on the principle of inductive coupling via an RF magnetic field with a frequency of 13.56 

MHz that is generated by the terminal or PCD (proximity coupling device). 

 

Two different transmission techniques can be used for communication, since agreement on 

a single technique could not be reached during the preparation of the standard. They are 

called ISO/IEC 14 443 Type A and Type B and are mutually incompatible. However, com-

monly used terminals for contactless smartcards, as well as many types of smartcard micro-

controllers, support both transmission techniques.  (Advanced Card Systems Ltd. ACOS3 SmartCard Technical 

Specification) 

2.11.3. Secure Messaging 
 

For some applications, it is necessary to cryptographically secure data transmission to the 

smartcard to prevent eavesdropping and manipulation. This sort of security for smartcards 

is called Secure Messaging. It involves either adding an MAC (message authentication 

code) to each APDU or fully encrypting each APDU. It is also possible to use send 

sequence counters (SSCs) for the command and response APDUs to prevent successful 

playback of previous messages. Secure Messaging is a technically elegant solution that 



 59

provides transparent communication of APDUs and is highly configurable via parameters, 

but this comes at the price of complexity. (Advanced Card Systems Ltd. ACOS3 SmartCard Technical Specification) 

2.12. Special Operating System Functions 
 

In addition to file management functions, commands and data transmission, smartcard 

operating systems offer a range of special functions that can be used to develop 

applications. The available functions very depending on the hardware of the selected 

smartcard microcontroller and the operating system, so you should always compare the 

information provided here against the functional scope of the smartcard you intend to use 

before starting to create a specific application. (Advanced Card Systems Ltd. ACOS3 SmartCard Technical 

Specification) 

2.12.1. Cryptographic Functions 
 

The basic cryptographic functions of smartcards encompass the entire range of current 

cryptographic algorithms. Table 2.7 provides an overview. The basic functions are usually 

not directly available to the outside world at the interface, but are instead incorporated into 

commands that provide more abstract functions based on these functions. 

 

One of these functions is encrypting and decrypting data. This can often be done at the 

level of performance that is suitable for real-time processing of audio or video data. 

Another function abstracted from the basic algorithms is authentication of entities, which is 

usually performed using a symmetric cryptographic algorithm. For compatibility reasons, 

DES (Data Encryption Standard) and Triple DES are always provided for this purpose, but 

the trend is clearly heading toward AES (Advanced Encryption Standard) with all three 

defined key lengths, which is inherently stronger than DES. 
 



 60

Table 2.7 Types of Crypto Algorithms 
 
Types of Algorithms     Algorithms 

Symmetric Cryptographic Algorithms   AES (128 bit, 196 bit, 256 bit) 

       DES (56 bit), TDES (112 bit) 

       IDEA (128 bit) 

 
Asymmetric Cryptographic Algorithms   DSA 

       ECDSA (160 bit, 256 bit) 

       RSA (1024 bit, 2048 bit) 

 
Types of Algorithms     Algorithms 

Hash Algorithms     HMAC 

       MD5 

       RIPEMD-160 

       SHA-1 and SHA-256 

 
Key generation for symmetric cryptographic algorithms Various 

Key generation for symmetric cryptographic algorithms Various 

Random number generators    Various 

Error detection codes     SHA-1 and SHA-256 

 

 

2.13. Data Implementation 
 

It is decisively important to always maintain a good overview of the data in a smartcard sy-

stem. One way to do this is to generate and maintain a data dictionary of all the data in all 

components of the system. In the simplest case, this dictionary can consist of a table gene-

rated using a word processing program, but relatively complex database applications are 

often used for this purpose in complex systems. Table 2.8 shows an example of a typical 

entry in a data dictionary. 

 
Table 2.8 Data elements for a typical access control card and the associated read and write conditions for 
the administrative and operational phases. ‘ADM1’ is the administration PIN for card personalization and 
‘ADM2’ is the administration PIN of the system operator. 
 



 61

 

Life cycle Phase   Administrator Phase Operational Phase 

Access    Read Write  Read Write 

Card Number   Always ADM1  Always Never 

Seed For PRN Generator  Never ADM1  Never Never 

Current Random Number  Never ADM1  Always Never 

PIN    Never ADM1  Never PIN or PUK 

PIN error counter   Always ADM1  Always Never 

Access privileges   Never ADM1  PIN ADM2 

Access protocol   Never ADM1  PIN Never 

2.14. Implementation of Files 
 

The vast majority of smartcard applications are file-based applications consisting of a cer-

tain number of files (EFs – elementary files) with corresponding access conditions, all loca-

ted in a directory (DF – dedicated file). The most important task for generating an applica-

tion thus consists of specifying the files and associated access conditions. 

2.14.1. Access Conditions 
 

The next step is to define a systematic set of access conditions (access privileges). These 

conditions essentially relate to user identification using PIN verification and unilateral or 

mutual authentication of the smartcard and/or components of the outside world. Enter the 

results in the previously mentioned list of data elements. Next, you can systematically gro-

up the individual data elements into separate files, which form the basis for the filebased 

application. As part of this activity, you can also specify the file structures of the individual 

files. Table 2.10 shows some of the data elements of Table 2.9 assigned to several files. 

 

Rule-based access conditions provide significantly more freedom for specifying file access 

privileges. However, this also creates significantly more complexity and thus more oppor-

tunities to make mistakes. A prerequisite for this type of access control is an EFARR (access 

rule reference) file in the DF of the application. Each record of the EFARR file contains a set 

of rules for accessing a particular file. Table 5.4 shows some typical access rules that could 

be placed in an EFARR file for the data elements and files listed in the table below. 

 



 62

 
Table 2.9 Assignment of some of the data elements listed in the table below to files according to the specified 
read and write privileges. 
 
Data Element   File   EFARR Rule 

 

Card Number   EFCardnumber  SE1, Rule Set 2 

       SE2, Rule Set 1 

Random Number Generator EFRNDSeed  SE1, Rule Set 3 

Seed       SE2, Rule Set 4 

PIN    EFPIN   SE1, Rule Set 3 

       SE2, Rule Set 2 

Access Privileges   EFPriv1  SE1, Rule Set 3 

       SE2, Rule Set 3 

Access Protocols   EFProt  SE1, Rule Set 3 

       SE2, Rule Set 5 

 

A set of rules must be generated corresponding to the previously generated list of files and 

associated accesses conditions and then distribute them among the appropriate records of 

the EFARR file. In the interest of simplicity, it is appropriate to note here that you should be 

economical when generating access rules.  

All entities involved in the entire life cycle of the smartcard must be taken into account 

when defining access privilege groups. Initialization and personalization by the card 

manufacturer occur at the beginning of the smartcard life cycle. They are followed by an 

administrative phase with an application operator. It is certainly possible for several 

applications belonging to different operators to be present in a single smartcard. This must 

be reflected in the access rules. Specific privileges are usually necessary for the smartcard 

user, and possibly also for the card owner, although these privileges can often be combined. 

The access conditions for the EFARR file must be chosen carefully because this file governs 

all accesses to the files of the smartcard application. If the rules in EFARR can be modified, 

the entire security scheme can be bypassed. Consequently, write accesses to EFARR must be 

restricted to the administrative level and users must never be granted write access. If it is 

possible to foresee that the specified access rules will be adequate for any files to be 

created at some later date, write access to EFARR can also be set to ‘Never’. 



 63

 

Of course, it must be impossible to delete EFARR, as otherwise the EFARR file at the next 

higher level would become applicable and the access rules defined in that file could lead to 

security problems. 
 
Table 2.10 Example of the typical content of an EFARR file for a system with two different security 
environments (SEs): one for the administrative phase (SE1) and the other for the operational phase (SE2) 
 

 

SE1, Rule Set 1  READ: Always, UPDATE: Never 

Rule for readable data that cannot be modified during personalization. A typical 

example of such data is the code that identifies the microcontroller type and 

associated memory sizes. 

 

SE1, Rule Set 2  READ: always, UPDATE: ADM1, CREATE: ADM1, DELETE: never 

Combined rule for file access and file management. The file access rule applies to 

data that must be read and modified during personalization such as name, address, 

date of birth and the like. Read access is necessary for verifying correct 

personalization in a subsequent step. The file management rule only allows data 

entry, since data deletion is not necessary during personalization. 

 

 

 

SE1, Rule set 3   READ: never, UPDATE: ADM1 

Rule for non-readable data that can be written during personalization. An example 

of such data is a seed value for a random number generator or a key for encrypting 

keys stored in the card. 

 

SE2, Rule set 1   READ: always, UPDATE: never, CREATE: never, DELETE: never 

Combined rule for file access and file management. The file access rule applies to 

data that can be read freely but can never be modified after being stored. An 

example is the card number. The file management rule excludes creating new files 

and deleting files. 

 

SE2, Rule set 2   READ: PIN, UPDATE: PIN, CREATE: ADM2, DELETE: ADM2 

Combined rule for file access and file management. The file access rule applies to 

user data that can be read and modified after successful PIN verification. The file 



 64

management rule permits creating and deleting files after successful verification of 

the PIN (ADM2) of the administrative entity. 

 

SE2, Rule set 3   READ: PIN, UPDATE: ADM2, CREATE: ADM2, DELETE: ADM2 

Combined rule for file access and file management. The file access rule applies to 

data that can only be read by the user and can only be modified by the system 

operator. An example of such data is the access privileges in a card used for 

computer access. The file management rule permits creating and deleting files 

after successful verification of the PIN (ADM2) of the administrative entity. 

 

SE2, Rule set 4   READ: never, UPDATE: never 

This rule applies to data that is only used internally by the smartcard operating 

system and cannot be read or written by the outside world.  

 

SE2, Rule set 5   READ: PIN, UPDATE: never 

This rule applies to data that can be read after successful verification but can only 

be written internally by the smartcard operating system. 

 

 

Besides the access rules for the data files, a variety of other conditions must be defined for 

each application and entered in the EFARR file. They are the conditions for creating (CRE-

ATE), deleting (DELETE), resizing (RESIZE), blocking (INVALIDATE), unbloc-king 

(REHABILITATE), and permanently blocking (LOCK) data files (EFs) and di-rectories 

(DFs). 

 

For security reasons, the access conditions should always be specified as conservatively as 

possible. However, you must take care to ensure that suitable tests can still be performed 

after completion of the manufacturing phase in order to ensure correct personalization. 

These tests are usually based on reading or using personalization data (for example, for an 

authentication).30 

 

                                                 
30  EPCOS-EMV Product Overview version 1.0 



 65

Similar considerations apply to accesses that are necessary for analysing complaints about 

cards in the field. The access privileges should at least be sufficiently lenient to make a-

nalysis of the problem possible, but they should not create any opportunities for attacks.  

2.14.2. File Names 
 

There are few restrictions on the file names (FIDs – file identifiers) for data files. The 

reserved FIDs specified in ISO/IEC 7816-4 are '3F00' for the root directory (MF) (master 

file), '3FFF' for selecting a file using a path name, and 'FFFF' for future use. From practical 

experience, it is a good idea to use the same upper byte for all FIDs assigned to a set of 

related files. The lower byte can then take the form of an incrementing number. For 

example, you could assign FIDs in the range 'A001'–'A004' to the files of an access control 

application and FIDs in the range 'B001'–'B008' to the files of a payment application in the 

same smartcard. 

2.15. PIN Management 

 

Numeric codes have been used for many years to authenticate card users. Only a simple 

ten-digit numeric keypad is needed to enter the codes and numbers are also suitable in 

terms of the ability of the general population to remember them.  

 

However, this subject requires attention to more than just the technical aspects. You also 

have to take the behaviour and preferences of the users into consideration. Smartcards are 

used in all reaches of society, so only well established and widely accepted methods, such 

as PIN entry, should be employed. 

 

This is also the reason for the widely used PIN code length of four digits. Although the 

theoretical security of PIN codes increases with the number of digits, the practical security 

reaches a maximum at four digits. If a larger number of digits is used, more users will 

either write the PIN code on the card or keep it in a handy location near the card. The 

number of cards that are blocked because of incorrect PIN entries also increases in 

proportion to the length of the PIN code, with a corresponding decline in user satisfaction 

and significantly increased administrative costs.  



 66

 

The PIN error counter normally blocks the application in the smartcard after three incorrect 

PIN entries. This is also regarded as tolerable with regard to security. In the case of longer 

PIN codes for special functions; the maximum value of the error counter before blocking 

occurs can be increased to as much as 10 for some applications.  

 

The reset function can be implemented individually in each card by using a personal 

unblocking number (PUK). This requires the user of the smartcard to enter the PUK and his 

new PIN in the smartcard in a single session. A new PIN is necessary because the user has 

obviously forgotten his previous PIN.  

2.16. Key Management 
 

Key management for smartcard systems encompasses an enormous variety of options. 

Examples that can be found in actual practice range from a single key for all system 

functions to highly complicated key management schemes with 30 or more derived keys 

for each smartcard. The reasons for this wide range of variation can be found in the 

individual applications and the number of smartcards in the field for the specific 

applications. 

 

The primary objectives of good key management are protecting the system against 

attackers and providing a good fallback position in the event of a successful attack. 

Consequently, simple smartcard systems that are not especially attractive targets of attack 

usually have correspondingly simple key management. The most elaborate forms of key 

management are used in electronic purse systems and smartcard systems for pay TV, both 

of which are unquestionably exposed to the most severe forms of attack.  

 

Technically sophisticated key management schemes employ a different key for each 

function, which is called key diversification. The key for each function is called the master 

key for that function. On the basis of this master key, individual keys (derived keys) can be 

derived for each smartcard and supported function. Dynamic keys and session-specific 

keys can in turn be generated from the derived keys. These dynamic keys and session keys 



are ultimately used by the cryptographic algorithms for the actual functions. Figure 2.9 

shows this in graphic form. 

 

 
Figure 2.9 Key hierarchy of an elaborate key management system, such as is used in electronic purse card 
systems, with a separate key hierarchy for each smartcard function. The number of key generations stored in 
individual smartcards is typically five or less. 
 

This means that an attacker must work his way along the entire chain, from the session spe-

cific keys through the derived keys to the master key, to fully break the cryptographic pro-

tection of the smartcard system for a particular function. To make things even more dif-

ficult for attackers, several generations of keys can be stored in each smartcard so that the 

system can switch from one generation to the next at regular intervals or as necessary. Al-

ternatively, means can be provided to download new keys to the smartcards from the back-

ground system. The best way to do this is to use an asymmetric cryptographic algorithm 

such as RSA. 

 67



 68

3. MATERIAL & METHODS 

3.1. System Analysis 
 
While doing the system analysis, it is a very important fact that the smart card to be used to 

be compatible with the EMV applications. Made a point of choosing a card that has public 

producer specifications and easy to provide, because producers conceal the EMV com-

patible smartcard standards for the security causes. Programming specifications of these 

cards can only be getten in only mass card  purchases with privacy aggreements. Otherwise 

the specifications are not public. For security reasons the card must work with algorithyms 

such as DES and 3DES. The ACOS2 operating system is a commonly used operating sys-

tem. USB card readers to read the card are obtained with the smart card. 

3.1.1. Requirements Analysis 
 
Principally it is needed to be known and obeyed the cardinal standards to be able to prog-

ram a smartcard with operating system. For this process, the document that the producer of 

the smart card has allready published must beread in details, then the commands and rules 

must be known clearly. It must be matching with the EMV standards of the cards producer. 

Matching EMV standards means highly secure in other words. For programming the card, a 

USB card reader that should be able to read the card in our hand is needed. USB card rea-

ders communicate with the software by using PC/AC protocole. Clearly understanding the 

key management subject that the card producer has written is a must for the usage of the 

card key and the terminal key. All the processes are suitable to the ISO 7816 norms. 

 
ACOS2 Microprocessor Card and ACOS2 Card’s Specification (Smart card operating 

system requirement / Issuer Specific Requirement) 

 
PC / AC Smart Card Reader, EMV Specification, VISA Specification, DES / 3DES Algo-

rithm, Key Management, Smart card commands, APDU commands and means, Microsoft 

Visual Basic 6.0 or Microsoft Visual Studio .NET. 

 
 
 
 
 



 69

Smart Card Personalization 

Smart card personalization describes the general procedure in the personalization of an 

ACOS2 smart card. While the card personalization may be carried out in separate proces-

sing steps, the personalization process generally requires the execution of the steps descri-

bed below.  

 
The personalization of a new ACOS2 smart card is suggested to be carried out according to 

the following sequence: 

 

1) Power up and reset the card.  

 

2) Submit the default Issuer Code IC (the code is communicated to the card issuer by ACS; 

the code may be different for different batches of cards supplied). 

 

3) Select the Personalization File (File ID = FF 02H) and write the required settings to the 

Option Register and the parameter N_OF_FILE. Caution: Do not accidentally set the 

Personalization Bit and do not change the Security Option Register at this stage!  

 

4) Perform a card reset. After the reset, ACOS2 reads the Personalization File and accepts 

the new value of N_OF_FILE and the option bits stored in the Option Register.  

 

5) Submit the default Issuer Code IC.  

 

6) Select the User File Management File (File ID = FF 04H) and write the File Definition 

Blocks for the required User Files (WRITE RECORD command) with the security 

attributes set to ‘Free Access’.  

 

7) Select the individual User Files and initialize the data in the files as required (WRITE 

RECORD command).  

 

8) Select the User File Management File (File ID = FF 04H) and write the required security 

attributes for all User Files (WRITE RECORD command). Verify the contents of the User 



 70

File Management File (READ RECORD command). Caution: Do not accidentally 

change the other parameters in the File Definition Blocks.  

 

9) If applicable, select the Account File (File ID = FF 05H) and initialize the relevant data 

in the Account File (WRITE RECORD command). Verify the contents of the Account File 

(READ RECORD command).  

 

10) If applicable, select the Account Security File (File ID = FF 06H) and initialize the ac-

count processing keys (WRITE RECORD command). Verify the contents of the Account 

Security File (READ RECORD command).  

 

11) Select the Security File (File ID = FF 03H) and initialize all keys and codes (WRITE 

RECORD command). Verify the contents of the Security File (READ RECORD com-

mand)  

 

12) Select the Personalization File (File ID = FF 02H) and initialize the Security Option 

Register and the remaining bytes of the Personalization File. Set the Personalization Bit 

(WRITE RECORD command). Verify the contents of the Personalization File (READ 

RECORD command). Caution: Do not accidentally change the value of the Option 

Register and N_OF_FILE.  

 

13) Perform a card reset. The chip life cycle stage as indicated in the ATR should be ‘User 

Stage’.  

 

14) The correct personalization can be verified by submitting the secret codes and keys 

programmed in the card (AUTHENTICATE, SUBMIT CODE commands) and rea-

ding/writing the allocated data files and executing the Account commands. 

 

 



 
Figure 3.1 Requirements 

 
(Smart)CPU card - 8bits/16 bits, 8051 or 6805 core 

• ROM 3Kbytes to 32 Kbytes 

• RAM ~100 bytes to 1 Kbytes 

• EEPROM 512 bytes to 32 Kbytes 

Smart card has four main elements, Central Process Unit(CPU), memory, input/output and 

Interface Device(IFD). Generally, smart card CPU is an 8 bit microcontroller. There are 

three types of memory inside smart card. Read Only Memory(ROM), Electrically Erasable 

Programmable Read Only Memory(EEPROM) and Random Access Memory(RAM). 

Smart card operating system and basic software are stored in the ROM. The EEPROM is 

used to install and run the application. The RAM is used to perform calculation process. 

 

 ROM 
 (operating system)  
 

  
L/O RAM CPU  system (temp storage) 

 
EEPROM  

(application storage) 
 

 
Figure 3.2 Smart card elements 

 

 

 71



 72

EMV defines 

-Electromechanical characteristics 

-Logical interface and Transmission protocols 

-Data Elements & commands 

-Application selection 

-Security aspects 

 

EMV does not define 

-Physical data structure 

-Operating system 

-Personalization procedure 

VIS 1.3.1:  

VISA options of EMV specifications. VIS is sufficient to develop a chip card application. 

 

VIS defines 

-Data elements and functions (from EMV) 

-Card Risk Management processing 

-Calculation of cryptograms 

-Additional VISA specific commands and data elements 

 

VIS does not define 

-Proprietary processes, data & commands 

-Operating system 

-Personalization procedure 

 

APDU Format 

Application Protocol Data Unit(APDU) is a command message which is send from the 

application layer to the smart card and response message being sent from smart card to the 

application layer. Communication between smart card and card reader is performed using 

APDU message. There are two kinds of APDU, Command APDU and Response APDU. 

 



 73

Smart Card always waits for a “Command APDU” from a terminal. It then executes the 

action specified in the APDU and replies to the terminal with a Response APDU. 

 

ISO-IN Command  

CLA INS P1 P2 L in Datain 

 

ISO-OUT Command  

CLA INS P1 P2 L out 

 

 

ACOS2 Security Mechanism: 

 

a) Passive Authentication: VERIFY command with PIN password. 

 

b) Active Authentication:  

 
INTERNAL AUTHENTICATION with challenge 

EXTERNAL AUTHENTICATION with response to challange 

 

c) Data Authentication:  

READ, WRITE, UPDATE command with secured messaging 

Protecting Access Channel 

 

d) Data Enchipherment: READ, WRITE, UPDATE command with ciphered data 

 

COS Security 

 At implementation level 

 At command definition level 

 

File Header – MF / DF Header 

Byte 0  File descriptor byte 

Byte 1 – 2 File ID 



 74

Byte 3 – 4 File size allocated 

Byte 5  DF state AND mask 

Byte 6  DF body size 

Byte 7 – 8 Create – delete access 

Byte 9 – 10 File size remaining 

Byte 11 Current DF headers checksum 

 

File Header – Transparent / TLV / Variable Record File 

Byte 0  File descriptor byte 

Byte 1 – 2 File ID 

Byte 3 – 4  File size allocated 

Byte 5 – 6 Read Access 

Byte 7 – 8 Update Access 

 

File Header – Linear / Cyclic Record File 

Byte 0  File descriptor byte 

Byte 1 – 2  File ID 

Byte 3 – 4 Number of record, Record length 

Byte 5 – 6 Read Access 

Byte 7 – 8  Update Access 

 

Security Policy 

 DF Access Condition (Create, Delete) 

 EF Access Condition (Read, Update) 

B7 B6 B5 B4 B3 B2 B1 B0 Description 

1 - - - - - - - 1=Ciphered 

- 1 - - - - - - 1=MAC 

- - Level - - - - - 0=key in current DF, 1=parent DF 

- - - x x x x x 11111 indicates that key is session key 

else indicates key number in the key file 

 



 75

B7 B6 B5 B4 B3 B2 B1 B0 Description 

x x x - - - - - Access Logic 

- - - x x x x x Access State 

 

Each key record contains the following fields: 

Byte 0, bit 7-5  ACTIVE_LOGIC 

Byte 0, bit 4-0  ACTIVE_STATE 

Byte 1, bit 4-0  NEXT_STATE 

Byte 1, bit 7-5  RFU 

Byte 2-3  Key capability 

Byte 4, 5  max error/ usage counter 

Byte 6, 7  error / usage counter 

Byte 8    XX key content 

 

Active Logic: 

000 – Always 

001 – Less Than (<) 

010 – Less or Equal (<=) 

011 – Equal (==) 

100 – Greater or Equal (>==) 

101 – Greater (>) 

110 – Not Equal (! =) 

111 – Never 

 

State: 

• COS has a state {0,1,2..31} 

• State is defined by a 5 bits field 

• State = 0 is the power-on default state (ALWAYS) 

• State = 31 is the NEVER (LOCKED) state 

• State is changed by a secret code presentation or key authentication 

• Active Logic, Active State set the pre-condition to use a secret code / key 



 

• Next State of secret code / key change to state machine 

• If the state machine matches the Access, access is authorized. 

 

Cryptographic Security: 

 

Symmetrical e.g. DES (or 3DES) 

• Good for many-to-one and one-to-one security (e.g. bank – customers) 

• Simple key management 

• Cannot achieve non-repudiation 

 

Asymmetrical (public key) e.g. RSA, ECC 

• Good for many-to-many security (e.g. electronic mail, electronic commerce) 

• Complex key management infra-structure 

• Public key compliments DES, not replace DES 

 

DES Data Encryption: 

• Symmetrical key algorithm 

• Manipulate data in 8 bytes block 

• Only known attack is exhaustive key search, 2 to the power of 56 computations 

• 2 million years for today’s PC @1ms per computation or a few hours with special 

designed hardware, parallel processing 

• Security can be increased using triple DES 

 

DES / 3DES: 

• Single DES uses single length key (8 bytes), K(8) 

• 3DES uses double length key (16 bytes), K(16) = KL(8) | KR(8) or KA(8) | KB(8) 

• If the left and right part are the same, 3DES reduces to single DES 

• Allows smooth migration from single DES to 3DES 

• Least significant bit of each byte not used 

 

 

 76



3.1.2. Design 
 
My application connects to smart card with PC / AC protocol. After determination of smart 

card key and terminal key, smart card formatted according to these keys. 

 

Through the formatting process; 

 

AA 11 
User Files BB 22 

CC 33 

 

a) Creates the user file with keys. 

b) Accordingly, string value data can be written in and read from all the files. 

 
Read Record: The read record comment can be executed only if a file has been already 

selected with SELECT FILE command. 

 

Record No: One byte logical record number  

Length: Number of data bytes to be read from the record, max. 32  

Data: Record data, Length bytes 

 

 77

 

 

 

 

 

 

 
 
 
 

Figure 3.3 Using Read Record (Select File) 
 
 
Write Record: The write record comment can be executed only if a file has been already 

selected with SELECT FILE command. 

Card Accapting 
Device 

Command  / Response Card 
  

READ RECORD

Record no length 
 Check file access condition 

Check file record length 
Read record data 

 
OK / Error

Data 



Record No: One byte logical record number  

Data: Data bytes to be written to the record 

 Card Accapting 
Device 

Command  / Response 
 

WRITE RECORD

Card 
 

 
 

OK / Error

Data 

Check file access condition 
Check file record length 

Write record data

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4Using Write Record  with Select File 
 
Account Processing Keys: 
 
Record No Byte 1       Byte 8 
1 KD 
2 KCR 
3 KCF 
4 KRD 

Figure 3.5 Key Storage for DES (keys are 8 byte long) 
 
KD : The DEBIT key, used in the computation of the MAC for the DEBIT command.  

KCR : The CREDIT key, used in the computation of the MAC for the CREDIT command.  

KCF : The CERTIFY key, used in the computation of the MAC with the INQUIRE 

ACCOUNT command. 

 KRD : The REVOKE DEBIT 

 
Record No Byte 1       Byte 8 
1 Right half of KD 
2 Right half of KCR 
3 Right half of KCF 
4 Right half of KRD 
5 Left half of KD 
6 Left half of KCR 
7 Left half of KCF 
8 Left half of KRD 

Figure 3.6Key Storage for 3DES (keys are 16 byte long) 
 
 78



Secret Codes: ACOS2 provides some secret codes. Five Application Codes (AC), One 

Issuer Code (IC), One PIN Code (PIN) 

 
Five Application Codes (AC1 ,….. AC5) are available to control the access to the data 

stored in data files. (Each Application Code is 8 bytes long). Issuer Code is provided to 

control access to data files and to privileged card functions; it is 8 bytes long. The PIN 

Code is provided to control access to data files. The PIN is 8 bytes long. The PIN is 

presented to the card with the SUBMIT CODE command. 

 
 Card Accepting 

Device 
Command  / Response 

 
SUBMIT CODE

Card 
 

 
 

OK / Error

Data 

 
Store new PIN Code 

Code No., DES(Code, #KS) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7  Secret code submission and Error Counters 
 
Code No.  Reference to the particular code that is submitted with the command:  

1 ... 5 = Application Codes AC1...AC5 6 = PIN 7 = Issuer Code IC  

Other values for Code No. are not allowed and will be rejected by the card.  

Code   The 8 bytes secret code to be submitted. 

KS  The current session key 

 
Change PIN Code: 
 
The PIN code can be changed in the user stage with the command CHANGE PIN if the op-

tion bit PIN_ALT is set. My program a new PIN code in the card, the current PIN code 

must have been submitted first. For security reasons, the CHANGE PIN command can only 

be executed immediately after a Mutual Authentication process. No other command must 

have been executed between the Mutual Authentication and the CHANGE PIN command. 

 

 79



Card Accepting 
Device 

Command  / Response 
 

CHANGE PIN

Card 
 

 
 

OK / Error

Data 

 
Store new PIN Code 

DES-1(PINnew, #KS) 

 

 

 

 

 

 

 

 
Figure 3.8 Change PIN Code. 

 

PINnew : The new PIN code  

KS : The current session key 

 

3.1.3. Development 
 
Firstly, I must develop mutual authentication, read / write file, account transaction 

processing in EMV standard. Secondly, I must connect to smart card reader using 

hContext handle and obtain valid hCard handle, read and write data with APDU commands 

(sending data to smart card reader with PC/AC protocol.) 

 

Mutual Authentication and Session Key based on Random Numbers: 
 
The Mutual Authentication is based on the exchange and mutual verification of secret keys 

between the Card and the Card Accepting Device. The key exchange is performed in a se-

cure way by use of random numbers and DES data encryption.  

 

ACOS2 maintains a dedicated pair of data encryption/decryption keys for the Mutual Aut-

hentication, KT, called Terminal Key, and KC, called Card Key.  

 

ACOS2 also provides a generator for the random numbers used in the Mutual Aut-

hentication process, RNDC, called Card Random Number. The session key is the final re-

sult of the Mutual Authentication process. 

 

 80



 81

Account Transaction Processing: The account has four keys. Credit Key (KCR), Debit Key 

(KD), Certify Key (KCF), Revoke Debit Key (KRD). The keys are stored in the account secu-

rity file. The keys are used in the calculation and verification of MAC cryptographic check-

sums on commands and data exchanged between the card and the Card Accepting Device 

in the Account processing. All keys are 8 bytes long. Debit Key, Credit Key and Revoke 

Debit Key have each associated an error counter CNT Kxx to count and limit the number 

of consecutive unsuccessful executions of the transaction commands. 

 

Four different transaction types can be executed on the Account Data Structure under 

security conditions: 

• INQUIRE ACCOUNT : The card returns the current balance value together with other 

relevant account information and a MAC cryptographic checksum on the relevant data. 

• DEBIT : The balance in the Account is decreased by the specified amount 

• REVOKE DEBIT : A REVOKE DEBIT is only possible after a DEBIT transaction and 

applies always to the immediately preceding DEBIT transaction. 

• CREDIT: In a CREDIT transaction, the balance in the Account is increased by the 

specified amount. 

 

The Account Data Structure can be read as a record oriented file in the Manufacturing 

Stage, in the Personalization Stage and in the User Stage after presentation of the Issuer 

Code IC. In the normal User Stage, a WRITE access to the Account is possible only 

through the special Account processing commands. WRITE RECORD access is possible 

after presentation of the Issuer Code IC. 

 

 

 

 
 
 
 
 
 
 
 



3.1.4. Implementation 
 
User File Management & Read/Write Record 
 

 
Figure 3.9 Software Screenshot 1 

 
Clicking the “Initialize” button lists all USB card readers using PC/AC protocoll in a 

combo box. Then, we select the reader mounted to the smart card click on the “connect” 

button. After all the software connects to the smartcard. Clicking the “ Format Card” button 

formats the card and AA11, BB22, CC33 user files are created for usage.  The intended u-

ser file (AA11, BB22, CC33) is to be choosen from option buttons and the string that is to 

be written in it is determined. When the string data in the textbox  “String Value of Data” is 

entered with the keyboard and the write button is clicked the string value that is entered 

with keyboard is written to the selected file. Now if we choose a user file randomly and 

click on the read button, the string value will be read from the file and shown in the “String 

Value of Data” text box. 

 82



 
Figure 3.10  Reading & Writing to EMV Microprocessor Card 

 
 83



 84

• Processes on Reading and Writing to EMV Microprocessor Card 

• Program is in Ready/Standby mode 

• Listing process of PC/AC protocole and USB readers 

• Selection process  of the USB reader 

• Connecting to the smartcard 

• Routing the APDV command to the card for the ATR command 

• Obtainment of the ATR commend by the program 

• Printing the ATR commend process to the screen if the comming ATR commend is 

true, if not the program goes back to the “Connecting to the Smartcard” process. 

• Formatting process of the card with ACOS2 operating system. 

• Creation of AA11, BB22, CC33 user files for reading and Writing process. 

• Data enterance with keyboard for writing string data to the files. 

• The process of writing data to the user files. 

• Taping process of the data written in the file. 

• Reading process of the string data from the intended User File 

• If the program is resetted, end the program, if not you can format the ACOS2 card 

or it can wait in the standby mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
MUTUAL AUTHENTICATION PROCESS 
 

 
Figure 3.11Software Screenshot 2 

 
 
Clicking the “Initialize” button lists all USB card readers using PC/AC protocoll in a 

combo box. Then, we select the reader mounted to the smart card click on the “connect” 

button. After all the software connects to the smartcard. After that, the cryipto algorithym 

(DES or 3DES) is selected from security option part. In the key template part the card key 

and terminal key is written and after all the “Format ACOS” button is clicked, so the card 

is formatted with the choosen cryipto algorithym. It must be used with entering the card 

key and terminal key, otherwise it will not work. Then, if we entered the right terminal key, 

by clicking on “Execute MA” button we are able to be logged in. Card – program 

connection is set whenn clicked on “Reset” button. The “Quit” button makes us quit the 

program. 

 
 
 
 
 

 85



 
Figure 3.12  Mutual Authentication with EMV Standard 

 86



 87

• Program is in the stand-by mode. 

• Listing of the USB readers working with PC/AC protocole in the screen. 

• Selection of the readers 

• Setting up the connection with the smartcard. 

• Sending the APDU command to the card for the ATR number 

• Getting the ATR number from the card 

• If the ATR number is correct, the process begins as selection of the algorithyms 

DES or 3DES, if not turn back to the process of connection with the smartcard. 

• Enterance of card and terminal keys with the keyboard. 

• Formatting the card that is with ACOS2 operating system with cryipto algorithym 

DES or 3DES 

• Execution of the formatting process 

• Entering the card and terminal keys by the keyboard 

• Mutual authentication to the card 

• Showing the values on the program screen. 

• If the reset button is clicked the connection between the card abd program is to be 

ended, if not the program is to be stand by in the idle mode for the formatting or 

authentication processes. 

 
ACCOUNT TRANSACTION PROCESS 
 
 
Clicking the “Initialize” button lists all card readers in a combo box. Then, we select the 

reader mounted to the smart card click on the “connect” button. After all, the software 

connects to the smartcard. After that, the cryipto algorithym (DES or 3DES) is selected 

from security option part. In the security keys part the credit key, debit key, certify key and 

revoke debit key is written and after all the “Format Card” button is clicked, so the card is 

formatted with the choosen cryipto algorithym. 

 
 
 
 
 
 
 



 

 
Figure 3.13  Software Screenshot 3 

 
 
After the formatting process; the value that is wanted to be loaded to the card should be 

written and after all the “Credit” button should be clicked. So, the value that is written in 

the “Amount” textbox represents the balans of the card.  Before loading balance to the card, 

we need to be sure that the security keys that were entered while formatting processes are 

written. They can withdraw money with the “Debit” button and with the “Inquire balance” 

button and the remaining balance in the card can be displayed. 

 88



 
Figure 3.14 Account Transaction Process 

 

 89
 



 90

• Program is in the stand-by mode. 

• Listing of the USB readers working with PC/AC protocole in the screen. 

• Selection of the readers 

• Setting up the connection with the smartcard. 

• Sending the APDU command to the card for the ATR number 

• Getting the ATR number from the card 

• If the ATR number is correct, the process begins as selection of the algorithyms 

DES or 3DES, if not turn back to the process of connection with the smartcard. 

• Enterance of credit, debit, certify and revoke debit keys with the keyboard. 

• Formatting the card with cryipto algorithym DES or 3DES 

• Execution of the formatting process 

• Entering the credit, debit, certify and revoke debit keys by the keyboard 

• Mutual authentication to the card 

• Showing the values on the program screen. 

• If the reset button is clicked the connection between the card abd program is to be 

ended, if not the program is to be stand by in the idle mode for the formatting or 

authentication processes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. TEST RESULTS & FINDINGS 
 

Table 4.1 Test Values Table (ms) 
 

Test Results  Test 1  Test 2  Test 3  Test 4  Test 5  Test 6  Test 7  Test 8  Test 9  Test 10 
Connection  100  95  97 94 98 99 96 95  101 99
Login  100  90  92 91 93 98 101 95  99 97
Format DES  2000  1800  1870 1786 1883 1798 1766 1756  1743 1755
Format 3DES  2500  2600  2536 1591 1547 1596 1572 1589  1572 1584
Read File DES  1000  971  987 969 977 985 975 986  961 982
Write File DES  1300  1277  1294 1291 1269 1276 1265 1280  1269 1244
Read File 3DES  1300  1283  1288 1271 1255 1283 1271 1269  1277 1274
Write File 3DES  1800  1742  1763 1786 1792 1783 1776 1786  1785 1783

S 

 
Figure 4.1 Test Results 

 
Connection: Connecting to Card Reader. 
 
Login: Logining to smart card sector(s). 
 
Format (DES): Formating smart card sectors with DES algorithym. 
 
Format (3DES): Formating smart card sectors with 3DES algorithym. 
 
Read File DES: Reading File from smart card sector(s) with DES decription. 
 
Write File DES: Writing file into smart card sectors with DES encryption. 
 
Read File 3DES: Reading file from smard card sectors with 3DES decription. 
 
Write File 3DES: Writing file into smart card sectors with 3DES encryption. 
 
 
 91



 92

5. CONCLUSION & FUTURE WORKS 
 
 
Smart card operating systems have improved security stepsand limitations. Access to every 

files and sectors in are depended on the commands and permissions of the operating system 

and data are written by crypto algorithms of data such as DES and 3DES to establish the 

PIN code, operating system that the smart card uses, VISA specification, file structure and 

sector structure must be known.  

 

In addition to these, the file that the PIN code is written and access to that file must be 

known. The most important issue is the smart card format to be known. It is almost impos-

sible to crack the PIN code without knowing the card format. 

 

I will develop softwares for smart card personalization with crypto algorithms in EMV 

standards after completed my CARD SOFT Design & CARD SOFT Production softwares. 



 93

REFERENCES 

Abelson H., Anderson R., Bellovin SM., Benaloh J., Blaze M., Diffei W., Gilmore J., 
Neumann P.G., Rivest R.L., Schiller J.I., and Schneier B. 1997. The Risks of Key 
Recovery, Key Escrow, and Trusted Third-Party Encryption. www.crypto.com. 
 
Anderson RJ. 2001 Security Engineering. John Wiley & Sons. 
 
Anderson RJ. and Needham RM. 1995 Programming satan’s computer, Computer Science 
Today. www.computersciencetoday.com 
 
Anderson, R. Why cryptosystems fail. Communications of the ACM, 37(11), Nov. 1994. 
 
Anderson, R. M. Bond, J. Clulow, and S. Skorobogatov. Cryptographic processors – a 
survey. Proceedings of the IEEE,94(2), Feb. 2006. Invited paper. 
 
Ausfuhrliste (Export Control List) 2004 Ausfuhrliste: Anlage AL zur 
Außenwirtschaftsverordnung, 25 May 2004.Bundesamt f¨ur Wirtschaft und 
Ausfuhrkontrolle. 
 
AWG 2004 Außenwirtschaftsgesetz (Foreign Trade Act), 23 December 2004. 
 
AWV 2001 Außenwirtschaftsverordnung (Foreign Trade Ordinance), 2 July 2001. 
 
Bond, M. and Zielinski, P. Decimalisation table attacks for PIN cracking. Technical report 
(UCAM-CL-TR-560), Computer Laboratory, University of Cambridge, 2003. 
 
Bond, M. and Zielinski, P. Encrypted? Randomised? Compromised? (When 
cryptographically secured data is not secure). In Workshop on Cryptographic Algorithms 
and their Uses, Gold Coast, Australia, July 2004. 
 
Biham, E. and Shamir, A. Differential Cryptanalysis of DES-like Cryptosystems. In A. J. 
Menezes and S. A. Vanstone, editors, Advances in Cryptology — CRYPTO ’90, volume 
LNCS 537, pages 2–21, Berlin, Germany, 1991. Springer-Verlag. 
 
BAFA – Bundesamt fur Wirtschaft und Ausfuhrkontrolle (Federal Office of Economics 
and Export Control). www.bafa.de. 
 
BDSG 2001 Bundesdatenschutzgesetz (Federal Data Protection Act), 11 May 2001. BfD – 
Bundesbeauftragte f¨ur den Datenschutz (Federal Commissioner for Data Protection). 
www.bfd.bund.de. 
 
Berkman, O. and Ostrovsky, M. The unbearable lightness of PIN cracking. In Financial 
Cryptography and Data Security (FC), Scarborough, Trinidad and Tobago, Feb. 2007. 
 
BNA – Bundesnetzagentur (Federal Network Agency). www.bundesnetzagentur.de.  



 94

 
Boehm BW. 1981 Software Engineering Economics.Prentice Hall. 
 
Bond, M. Phantom withdrawals: On-line resources for victims of ATM fraud. 
http://www.phantomwithdrawals.com. 
 
Bond, M. Understanding security APIs. Ph.D. Thesis, Computer Laboratory, University of 
Cambridge, 2004. 
 
Bond, M. Attacks on cryptoprocessor transaction sets. In Workshop on Cryptographic 
Hardware and Embedded Systems (CHES), Paris, France, May 2001. 
 
Bono S, Green M, Stubblefield A, Juels A, Rubin A, and Szydlo M 2005 Security Analysis 
of a Cryptographically-Enabled RFID Device. The Johns Hopkins 
University Information Security Institute, Baltimore. 
 
BSI – Bundesamt f¨ur Sicherheit in der Informationstechnik(Federal Office for Information 
Security). www.bsi.de. 
 
Chen Z. 2000 Java Card Technology for Smartcards.Addison Wesley. 
 
Clulow, J. The design and analysis of cryptographic APIs for security devices. Masters 
Thesis, University of Natal, Durban, South Africa, 2003. 
 
CLUSIF 2002. An Overview of Cyber-Crime in 2001. Club de la S´ecurit´e des Syst´emes 
d’Information Franc¸ais, Paris. 
 
Criteria 2005 Bekanntmachung zur elektronischen Signatur nach dem Signaturgesetz und 
der Signaturverordnung (‘Notice Regarding Electronic Signatures Compliant with the 
Signature Act and the Signature Ordinance’) (summary of suitable algorithms). 
Bundesnetzagentur (Federal Network Agency) 
 
Crypto 2002 Cryptography and Liberty: An International Survey of Encryption Policy. 
Electronic Privacy Information Center, Washington, DC. 
 
CWA 2004 Application Interface for Smartcards used as Secure Signature Creation 
Devices. CWA 14890. 
 
Datenschutz (Data Protection) 1996 Anforderungen zur informationstechnischen Sicherheit 
bei Chipkarten (‘Requirements for Information Security with Regard to Chip Cards’). The 
Data Protection Commissioner of Hamburg, Hamburg. 
 
Drimer, D. Murdoch, S. and Anderson, R. Thinking inside the box: System-level failures of 
tamper proofing. In IEEE Symposium on Security and Privacy (to appear), May 2008. Also 
avialable as a technical report (UCAM-CL-TR-711) at 
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-711.html 
 



 95

ECR 2000 Council Regulation (EC) No 1334/2000 of 22 June 2000 setting up a 
Community regime for the control of exports of dual-use items and technology. 
 
Finkenzeller F. 1999 RFID Handbook. John Wiley & Sons. 
 
Gamma E, Helm R, and Johnson RE 1994 Design Patterns Elements of Reusable Object-
Oriented Software. Addison-Wesley. 
 
Garstka H 2003 Informationelle Selbstbestimmung und Datenschutz, in Schulzki-Haddouti 
C B¨urgerrechte im Netz. Bundeszentrale f¨ur politische Bildung, Bonn. 
 
Global Platform 2003 Open Platform: Card Specification, Version 2.1.1. 
www.globalplatform.org. 
Haghiri Y and Tarantino T 2002 Smartcard Manufacturing: A Practical Guide. John Wiley 
& Sons. 
 
Holloway, R.  University of London - Information Security Group. September 2006. MSc 
in Information Security Smart Card Centre Laboratory - A Software Implementation of 
AES for a Multos Smart Card. 
 
Hassler V., Manninger M, Gordeev M, and Muller M 2002 Java Card for E-Payment 
Applications. Artech House, London. 
 
Hunt A. and Thomas D. 1999 The Pragmatic Programmer: From Journeyman to Master. 
Addison-Wesley. 
 
Horster P. and Fox D. (ed.) 1999 Datenschutz und Datensicherheit. Vieweg Verlag, 
Braunschweig. 
 
ITGH 2004 IT-Grundschutzhandbuch. Bundesanzeiger-Verlag, Cologne. 
 
ITU X.509:2000 Information Technology: Open Systems Interconnection: The Directory 
Authentication Framework. www.itu.int. 
 
Lamport L 1981 Password authentication with insecure communication, Communications 
of the ACM 24, 11. ACM (Association for Computing Machinery), San Diego, CA. 
 
Liggesmeyer P 2002 Software-Qualit¨at. Spektrum Verlag, Heidelberg. 
 
McConnell S 2002 Code Complete, 2nd edn. Barnes & Noble. 
 
Menezes AJ, van Oorschot PC, and Vanstone SA 1997 Handbook of Applied 
Cryptography. CRC Press, Boca Raton, FL. 
 
Mannan, M. and Oorschot, P. Using a personal device to strengthen password 
authentication from an untrusted computer. In Financial Cryptography and Data Security 
(FC), Scarborough, Trinidad and Tobago, Feb. 2007. 



 96

Nirmalananthan, Anusha. Microsoft Corporation. October 2002. 
Smart Card Technical Articles - The Smart Card Cryptographic Service Provider 
Cookbook 
 
Poschmann, A., Leander, G., Schramm, K. and Paar, C. 2006. A Family of Light-Weight 
Block Ciphers Based on DES Suited for RFID Applications. 
 
Poschmann, A., Leander, G., Schramm,K. and Paar, C. Horst G¨ortz Institute for IT-
Security, Ruhr-University Bochum, Germany. 2007. New Light-Weight Crypto Algorithms 
for RFID 
 
Ross, B. Jackson, R. Miyake, B. Boneh, D. and Mitchell, J.C. Stronger password 
authentication using browser extensions. In USENIX Security, 2005. 
 
Schaar P. 2002 Datenschutz im Internet. C.H. Beck, Munich. 
 
Schneier B. 1996 Angewandte Kryptographie. John Wiley & Sons. 
 
Spillner A. and Linz T. 2003 Basiswissen Softwaretest. Dpunkt Verlag, Heidelberg. 
 
Ostrovsky, O.V. Vulnerabilities in the financial PIN processing API. Masters Thesis, Tel 
Aviv University, 2006. 
 
EMV Book 1 2004 EMV Integrated Circuit Card Specification for Payment Systems, Book 
1: Application Independent ICC to Terminal Interface Requirements, Version 4.1. 
www.emvco.com. 
 
EMV Book 2 2004 EMV Integrated Circuit Card Specification for Payment Systems, Book 
2: Security and Key Management, Version 4.1. www.emvco.com. 
 
EMV Book 3 2004 EMV Integrated Circuit Card Specification for Payment Systems, Book 
3: Application Specification, Version 4.1. www.emvco.com. 
 
EMV Book 4 2004 EMV Integrated Circuit Card Specification for Payment Systems, Book 
4: Cardholder, Attendant and Acquirer Interface Requirements, Version 4.1. 
www.emvco.com. 
 
EN 1546:2000 Identification Card Systems: Inter-Sector Electronic Purse. 
 
ETSI – European Telecommunications Standards Institute. www.etsi.org. 
 
EU 1995 Directive 95/46/EC of the European Parliament and of the Council of 24 October 
1995 on the Protection of Individuals with Regard to the Processing of Personal Data and 
on the Free Movement of Such Data. Official Journal of the European Communities, L. 
281, 23 November. 
 



 97

JCAPN 2003 Java Card Platform: Application Programming Notes, Version 2.2.1, Sun 
Microsystems, Santa Clara, CA. 
 
JCAPI 2003 Java Card Platform: Application Programming Interface, Version 2.2.1, Sun 
Microsystems, Santa Clara, CA. 
 
JCRES 2003 Java Card Platform: Runtime Environment Specification, Version 2.2.1, Sun 
Microsystems, Santa Clara, CA. 
 
JCVMS 2003 Java Card Platform: Virtual Machine Specification, Version 2.2.1, Sun 
Microsystems, Santa Clara, CA. 
ICAO 2002 ICAO Machine Readable Travel Documents, Part 3: Size 1 and Size 2 
Machine Readable Official Travel Documents, 2nd edn, Doc 9303. www.icao.int. 
 
ISO/IEC 7810:2003 Identification Cards: Physical Characteristics. 
 
ISO/IEC 7811-1:2002 Identification Cards: Recording Technique: Part 1 Embossing. 
 
ISO/IEC 7811-2:2001 Identification Cards: Recording Technique: Part 2 Magnetic Stripe: 
Low Coercivity. 
 
ISO/IEC 7813:2001 Identification Cards: Financial Transaction Cards. 
 
ISO/IEC 7816-3:1997 Identification Cards: Integrated Circuit(s) Cards: Part 3 Cards with 
Contacts: Electrical Interface and Transmission Protocols. 
 
ISO/IEC 7816-4:2005 Identification Cards: Integrated Circuit Cards: Part 4 Organization, 
Security and Commands for Interchange. 
ISO/IEC 7816-6:2004 Identification Cards: Integrated Circuit Cards: Part 6 Interindustry 
Data Elements for Interchange. 
 
ISO/IEC 7816-8:2004 Identification Cards: Integrated Circuit Cards: Part 8 Commands for 
Security Operations. 
 
ISO/IEC 7816-9:2004 Identification Cards: Integrated Circuit Cards: Part 9 Commands for 
Card Management. 
 
ISO/IEC 7816-12:2005 Identification Cards: Integrated Circuit Cards: Part 12 Cards with 
Contacts: USB Electrical Interface and Operating Procedures. 
 
ISO/IEC 7816-15:2004 Identification Cards: Integrated Circuit Cards: Part 15 
Cryptographic Information Application. 
 
ISO 8402: 1994 Quality Management and Quality Assurance: Vocabulary. 
 
ISO/IEC 8824: 2002 Information Technology: Abstract Syntax Notation One (ASN.1). 
 



 98

ISO/IEC 8825: 2002 Information Technology: ASN.1 Encoding Rules Specification of 
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished 
Encoding Rules (DER). 
 
ISO/IEC 14443-4:2001 Identification Cards: Contactless Integrated Circuit(s) Cards: 
Proximity Cards. 
 
PCSC 2004 PC/SC Interoperability Specification for ICCs and Personal Computer 
Systems, V 2.00.1 
1. www.smartcardsys.com. 
 
PKCS #15 2000 Cryptographic Token Information Format Standard, V 1.1. 
www.rsa.com. 
 
Rankl W and Effing W 2002 Smartcard Handbook, 3rd edn. John Wiley & Sons. 
RFC 2289 1998 A One-Time Password System. 
 
SATSA 2004 Security and Trust Services API for Java 2 Platform Micro Edition Java 
Community Process (JCP), Version 1.0. jcp.org. 
 
Open Card 2001 Open Platform Card Specification, Version 2.1, Open Card 
Foundation. 
 
TS 101 476:2002 Digital cellular telecommunications system (Phase 2+): Subscriber 
Identity Module Application Programming Interface (SIM API): SIM API for Java 
CardTM:; Stage 2, V8.5.0. ETSI. 
 
TS 102 221:2005 Smartcards: UICC–Terminal interface: Physical and logical 
characteristics, Release 6, V6.8.0. ETSI. 
 
TS 102 222:2005 Integrated Circuit Cards (ICC): Administrative commands for 
telecommunications applications, Release 6, V6.8.0. ETSI. 
 
TS 31.102:2003 3rd Generation Partnership Project: Technical Specification Group 
Terminals: Characteristics of the USIM application, Release 6, V6.4.0. 3GPP. 
 
TS 51.011:2003 3rd Generation Partnership Project; Technical Specification Group 
Terminals; Specification of the Subscriber Identity Module – Mobile Equipment 
(SIM–ME) interface, Release 4, V4.2.0. 3GPP. 
 
TS 51.014:2003 3rd Generation Partnership Project: Technical Specification Group 
Terminals: Specification of the SIM Application Toolkit for the Subscriber Identity Module 
– Mobile Equipment (SIM–ME) interface, Release 4, V4.3.0. 3GPP. 
 
V Model XT 2004 V-Modell XT. Federal Republic of Germany, www.v-modell-xt.de. 
 



 99

Wassenaar Arrangement: List of Dual Use Goods and Technologies And Munitions List. 
Vienna. 2004. www.wassenaar.org. 
 
Algorithmic Research (ARX). PrivateServer Switch-HSM. White paper. 
http://www.arx.com/documents/Switch-HSM.pdf 
 
International Organization for Standardization (ISO). Banking – Personal Identification 
Number (PIN) management and security – Part 1: Basic principles and requirements for 
online PIN handling in ATM and POS systems, Apr. 2002. International Standard, ISO 
9564-1. 
 
EMVCo, LLC (“EMVCo”). June 2008. EMV Integrated Circuit Card Specifications for 
Payment Systems – Book 1 - Application Independent ICC to Terminal Interface 
Requirements Version 4.2 
 
EMVCo, LLC (“EMVCo”). June 2008. EMV Integrated Circuit Card Specifications for 
Payment Systems – Book 2 – Security and Key Management Version 4.2 
 
EMVCo, LLC (“EMVCo”). June 2008. EMV Integrated Circuit Card Specifications for 
Payment Systems – Book 3 – Application Specification Version 4.2 
 
EMVCo, LLC (“EMVCo”). June 2008. EMV Integrated Circuit Card Specifications for 
Payment Systems – Book 4 – Cardholder, Attendant, and Acquirer Interface Requirements 
Version 4.2 
 
EMVCo, LLC (“EMVCo”). July 2007. EMV Card Personalization Specification Version 
1.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 100

APPENDICES 
 

Appendix I – Creating User Files & Read/Write string data to EMV smart card. 
 

Windscard.dll (windscard module) 
 
Public Type SCARD_IO_REQUEST 
    dwProtocol As Long 
    cbPciLength As Long 
End Type 
 
Public Type APDURec 
    bCLA As Byte 
    bINS As Byte 
    bP1 As Byte 
    bP2 As Byte 
    bP3 As Byte 
'    DATA(1 To 255) As Byte 
    DataIn(1 To 255) As Byte 
    DataOut(1 To 255) As Byte 
    SW(1 To 2) As Byte 
    IsSend As Boolean 
End Type 
 
Public Type SCARD_READERSTATE 
    RdrName As String 
    UserData As Long 
    RdrCurrState As Long 
    RdrEventState As Long 
    ATRLength As Long 
    ATRValue(1 To 36) As Byte 
End Type 
 
 
Global Const SCARD_S_SUCCESS = 0 
Global Const SCARD_ATR_LENGTH = 33 
 
'=========================================================== 
'  Memory Card type constants 
'=========================================================== 
 
Global Const CT_MCU = &H0                     ' MCU 
Global Const CT_IIC_Auto = &H1                ' IIC (Auto Detect Memory Size) 
Global Const CT_IIC_1K = &H2                  ' IIC (1K) 
Global Const CT_IIC_2K = &H3                  ' IIC (2K) 
Global Const CT_IIC_4K = &H4                  ' IIC (4K) 



 101

Global Const CT_IIC_8K = &H5                  ' IIC (8K) 
Global Const CT_IIC_16K = &H6                 ' IIC (16K) 
Global Const CT_IIC_32K = &H7                 ' IIC (32K) 
Global Const CT_IIC_64K = &H8                 ' IIC (64K) 
Global Const CT_IIC_128K = &H9                ' IIC (128K) 
Global Const CT_IIC_256K = &HA                ' IIC (256K) 
Global Const CT_IIC_512K = &HB                ' IIC (512K) 
Global Const CT_IIC_1024K = &HC               ' IIC (1024K) 
Global Const CT_AT88SC153 = &HD               ' AT88SC153 
Global Const CT_AT88SC1608 = &HE              ' AT88SC1608 
Global Const CT_SLE4418 = &HF                 ' SLE4418 
Global Const CT_SLE4428 = &H10                ' SLE4428 
Global Const CT_SLE4432 = &H11                ' SLE4432 
Global Const CT_SLE4442 = &H12                ' SLE4442 
Global Const CT_SLE4406 = &H13                ' SLE4406 
Global Const CT_SLE4436 = &H14                ' SLE4436 
Global Const CT_SLE5536 = &H15                ' SLE5536 
Global Const CT_MCUT0 = &H16                  ' MCU T=0 
Global Const CT_MCUT1 = &H17                  ' MCU T=1 
Global Const CT_MCU_Auto = &H18               ' MCU Autodetect 
 
'================================================================ 
' Context Scope 
'================================================================ 
Global Const SCARD_SCOPE_USER = 0 ' The context is a user context, and any 
                                  ' database operations are performed within the 
                                  ' domain of the user. 
Global Const SCARD_SCOPE_TERMINAL = 1 ' The context is that of the current 
terminal, 
                                      ' and any database operations are performed 
                                      ' within the domain of that terminal.  (The 
                                      ' calling application must have appropriate 
                                      ' access permissions for any database actions.) 
Global Const SCARD_SCOPE_SYSTEM = 2 ' The context is the system context, and any 
                                    ' database operations are performed within the 
                                    ' domain of the system.  (The calling 
                                    ' application must have appropriate access 
                                    ' permissions for any database actions.) 
 
'================================================================
========== 
' Context Scope 
'================================================================
========== 
Global Const SCARD_STATE_UNAWARE = &H0 ' The application is unaware of the 
                                            ' current state, and would like to 
                                            ' know.  The use of this value 



 102

                                            ' results in an immediate return 
                                            ' from state transition monitoring 
                                            ' services.  This is represented by 
                                            ' all bits set to zero. 
Global Const SCARD_STATE_IGNORE = &H1 ' The application requested that 
                                            ' this reader be ignored.  No other 
                                            ' bits will be set. 
Global Const SCARD_STATE_CHANGED = &H2 ' This implies that there is a 
                                            ' difference between the state 
                                            ' believed by the application, and 
                                            ' the state known by the Service 
                                            ' Manager.  When this bit is set, 
                                            ' the application may assume a 
                                            ' significant state change has 
                                            ' occurred on this reader. 
 
Global Const SCARD_STATE_UNKNOWN = &H4 ' This implies that the given 
                                            ' reader name is not recognized by 
                                            ' the Service Manager.  If this bit 
                                            ' is set, then SCARD_STATE_CHANGED 
                                            ' and SCARD_STATE_IGNORE will also 
                                            ' be set. 
Global Const SCARD_STATE_UNAVAILABLE = &H8 ' This implies that the actual 
                                            ' state of this reader is not 
                                            ' available.  If this bit is set, 
                                            ' then all the following bits are 
                                            ' clear. 
Global Const SCARD_STATE_EMPTY = &H10 ' This implies that there is not 
                                            ' card in the reader.  If this bit 
                                            ' is set, all the following bits 
                                            ' will be clear. 
Global Const SCARD_STATE_PRESENT = &H20 ' This implies that there is a card 
                                            ' in the reader. 
Global Const SCARD_STATE_ATRMATCH = &H40 ' This implies that there is a card 
                                            ' in the reader with an ATR 
                                            ' matching one of the target cards. 
                                            ' If this bit is set, 
                                            ' SCARD_STATE_PRESENT will also be 
                                            ' set.  This bit is only returned 
                                            ' on the SCardLocateCard() service. 
Global Const SCARD_STATE_EXCLUSIVE = &H80 ' This implies that the card in the 
                                            ' reader is allocated for exclusive 
                                            ' use by another application.  If 
                                            ' this bit is set, 
                                            ' SCARD_STATE_PRESENT will also be 
                                            ' set. 
Global Const SCARD_STATE_INUSE = &H100 ' This implies that the card in the 



 103

                                            ' reader is in use by one or more 
                                            ' other applications, but may be 
                                            ' connected to in shared mode.  If 
                                            ' this bit is set, 
                                            ' SCARD_STATE_PRESENT will also be 
                                            ' set. 
Global Const SCARD_STATE_MUTE = &H200 ' This implies that the card in the 
                                            ' reader is unresponsive or not 
                                            ' supported by the reader or 
                                            ' software. 
Global Const SCARD_STATE_UNPOWERED = &H400 ' This implies that the card in the 
                                            ' reader has not been powered up. 
 
 
'=========================================================== 
Global Const SCARD_SHARE_EXCLUSIVE = 1 ' This application is not willing to share 
this 
                                ' card with other applications. 
Global Const SCARD_SHARE_SHARED = 2 ' This application is willing to share this 
                                ' card with other applications. 
Global Const SCARD_SHARE_DIRECT = 3 ' This application demands direct control of 
                                ' the reader, so it is not available to other 
                                ' applications. 
 
'=========================================================== 
'   Disposition 
'=========================================================== 
Global Const SCARD_LEAVE_CARD = 0 ' Don't do anything special on close 
Global Const SCARD_RESET_CARD = 1 ' Reset the card on close 
Global Const SCARD_UNPOWER_CARD = 2 ' Power down the card on close 
Global Const SCARD_EJECT_CARD = 3 ' Eject the card on close 
 
'=========================================================== 
'   Error Codes 
'=========================================================== 
Global Const SCARD_F_INTERNAL_ERROR = &H80100001 
Global Const SCARD_E_CANCELLED = &H80100002 
Global Const SCARD_E_INVALID_HANDLE = &H80100003 
Global Const SCARD_E_INVALID_PARAMETER = &H80100004 
Global Const SCARD_E_INVALID_TARGET = &H80100005 
Global Const SCARD_E_NO_MEMORY = &H80100006 
Global Const SCARD_F_WAITED_TOO_LONG = &H80100007 
Global Const SCARD_E_INSUFFICIENT_BUFFER = &H80100008 
Global Const SCARD_E_UNKNOWN_READER = &H80100009 
Global Const SCARD_E_TIMEOUT = &H8010000A 
Global Const SCARD_E_SHARING_VIOLATION = &H8010000B 
Global Const SCARD_E_NO_SMARTCARD = &H8010000C 



 104

Global Const SCARD_E_UNKNOWN_CARD = &H8010000D 
Global Const SCARD_E_CANT_DISPOSE = &H8010000E 
Global Const SCARD_E_PROTO_MISMATCH = &H8010000F 
Global Const SCARD_E_NOT_READY = &H80100010 
Global Const SCARD_E_INVALID_VALUE = &H80100011 
Global Const SCARD_E_SYSTEM_CANCELLED = &H80100012 
Global Const SCARD_F_COMM_ERROR = &H80100013 
Global Const SCARD_F_UNKNOWN_ERROR = &H80100014 
Global Const SCARD_E_INVALID_ATR = &H80100015 
Global Const SCARD_E_NOT_TRANSACTED = &H80100016 
Global Const SCARD_E_READER_UNAVAILABLE = &H80100017 
Global Const SCARD_P_SHUTDOWN = &H80100018 
Global Const SCARD_E_PCI_TOO_SMALL = &H80100019 
Global Const SCARD_E_READER_UNSUPPORTED = &H8010001A 
Global Const SCARD_E_DUPLICATE_READER = &H8010001B 
Global Const SCARD_E_CARD_UNSUPPORTED = &H8010001C 
Global Const SCARD_E_NO_SERVICE = &H8010001D 
Global Const SCARD_E_SERVICE_STOPPED = &H8010001E 
Global Const SCARD_W_UNSUPPORTED_CARD = &H80100065 
Global Const SCARD_W_UNRESPONSIVE_CARD = &H80100066 
Global Const SCARD_W_UNPOWERED_CARD = &H80100067 
Global Const SCARD_W_RESET_CARD = &H80100068 
Global Const SCARD_W_REMOVED_CARD = &H80100069 
 
'=========================================================== 
'   Protocol 
'=========================================================== 
Global Const SCARD_PROTOCOL_UNDEFINED = &H0           ' There is no active 
protocol. 
Global Const SCARD_PROTOCOL_T0 = &H1                  ' T=0 is the active protocol. 
Global Const SCARD_PROTOCOL_T1 = &H2                  ' T=1 is the active protocol. 
Global Const SCARD_PROTOCOL_RAW = &H10000             ' Raw is the active 
protocol. 
Global Const SCARD_PROTOCOL_DEFAULT = &H80000000      ' Use implicit PTS. 
 
'=========================================================== 
'   Reader State 
'=========================================================== 
Global Const SCARD_UNKNOWN = 0    ' This value implies the driver is unaware 
                                  ' of the current state of the reader. 
Global Const SCARD_ABSENT = 1     ' This value implies there is no card in 
                                  ' the reader. 
Global Const SCARD_PRESENT = 2    ' This value implies there is a card is 
                                  ' present in the reader, but that it has 
                                  ' not been moved into position for use. 
Global Const SCARD_SWALLOWED = 3  ' This value implies there is a card in the 
                                  ' reader in position for use.  The card is 



 105

                                  ' not powered. 
Global Const SCARD_POWERED = 4    ' This value implies there is power is 
                                  ' being provided to the card, but the 
                                  ' Reader Driver is unaware of the mode of 
                                  ' the card. 
Global Const SCARD_NEGOTIABLE = 5 ' This value implies the card has been 
                                  ' reset and is awaiting PTS negotiation. 
Global Const SCARD_SPECIFIC = 6   ' This value implies the card has been 
                                  ' reset and specific communication 
                                  ' protocols have been established. 
 
 
'================================================================ 
' Prototypes 
'================================================================ 
Public Declare Function SCardEstablishContext Lib "Winscard.dll" (ByVal dwScope As 
Long, _ 
                                                                  ByVal pvReserved1 As Long, _ 
                                                                  ByVal pvReserved2 As Long, _ 
                                                                  ByRef phContext As Long) As Long 
                                                                   
Public Declare Function SCardReleaseContext Lib "Winscard.dll" (ByVal hContext As 
Long) As Long 
 
Public Declare Function SCardConnect Lib "Winscard.dll" Alias "SCardConnectA" 
(ByVal hContext As Long, _ 
                                                                               ByVal szReaderName As String, _ 
                                                                               ByVal dwShareMode As Long, _ 
                                                                               ByVal dwPrefProtocol As Long, _ 
                                                                               ByRef hCard As Long, _ 
                                                                               ByRef ActiveProtocol As Long) As Long 
                                                          
Public Declare Function SCardDisconnect Lib "Winscard.dll" (ByVal hCard As Long, _ 
                                                            ByVal Disposistion As Long) As Long 
 
Public Declare Function SCardBeginTransaction Lib "Winscard.dll" (ByVal hCard As 
Long) As Long 
 
Public Declare Function SCardEndTransaction Lib "Winscard.dll" (ByVal hCard As Long, 
_ 
                                                                ByVal Disposition As Long) As Long 
 
Public Declare Function SCardState Lib "Winscard.dll" (ByVal hCard As Long, _ 
                                                       ByRef State As Long, _ 
                                                       ByRef Protocol As Long, _ 
                                                       ByRef ATR As Byte, _ 
                                                       ByRef ATRLen As Long) As Long 



 106

 
Public Declare Function SCardStatus Lib "Winscard.dll" Alias "SCardStatusA" (ByVal 
hCard As Long, _ 
                                                                             ByVal szReaderName As String, _ 
                                                                             ByRef pcchReaderLen As Long, _ 
                                                                             ByRef State As Long, _ 
                                                                             ByRef Protocol As Long, _ 
                                                                             ByRef ATR As Byte, _ 
                                                                             ByRef ATRLen As Long) As Long 
 
Public Declare Function SCardTransmit Lib "Winscard.dll" (ByVal hCard As Long, _ 
                                                          pioSendRequest As SCARD_IO_REQUEST, _ 
                                                          ByRef SendBuff As Byte, _ 
                                                          ByVal SendBuffLen As Long, _ 
                                                          ByRef pioRecvRequest As SCARD_IO_REQUEST, _ 
                                                          ByRef RecvBuff As Byte, _ 
                                                          ByRef RecvBuffLen As Long) As Long 
                                                           
Public Declare Function SCardListReaders Lib "Winscard.dll" Alias "SCardListReadersA" 
(ByVal hContext As Long, _ 
                                                            ByVal mzGroup As String, _ 
                                                            ByVal ReaderList As String, _ 
                                                            ByRef pcchReaders As Long) As Long 
 
Public Declare Function SCardGetStatusChange Lib "Winscard.dll" Alias 
"SCardGetStatusChangeA" (ByVal hContext As Long, _ 
                                                          ByVal TimeOut As Long, _ 
                                                          ByRef ReaderState As SCARD_READERSTATE, _ 
                                                          ByVal ReaderCount As Long) As Long 
 
'================================================================ 
 
Public Sub LoadListToControl(ByVal Ctrl As ComboBox, ByVal ReaderList As String) 
Dim sTemp As String 
Dim indx As Integer 
 
indx = 1 
sTemp = "" 
Ctrl.Clear 
While (Mid(ReaderList, indx, 1) <> vbNullChar) 
    While (Mid(ReaderList, indx, 1) <> vbNullChar) 
       sTemp = sTemp + Mid(ReaderList, indx, 1) 
       indx = indx + 1 
    Wend 
    indx = indx + 1 
    Ctrl.AddItem sTemp 
    sTemp = "" 



 107

Wend 
 
End Sub 
 
 
Public Function GetScardErrMsg(ByVal ReturnCode As Long) As String 
  Select Case ReturnCode 
    Case SCARD_E_CANCELLED 
    GetScardErrMsg = "The action was canceled by an SCardCancel request." 
    Case SCARD_E_CANT_DISPOSE 
    GetScardErrMsg = "The system could not dispose of the media in the requested 
manner." 
    Case SCARD_E_CARD_UNSUPPORTED 
    GetScardErrMsg = "The smart card does not meet minimal requirements for support." 
    Case SCARD_E_DUPLICATE_READER 
    GetScardErrMsg = "The reader driver didn't produce a unique reader name." 
    Case SCARD_E_INSUFFICIENT_BUFFER 
    GetScardErrMsg = "The data buffer for returned data is too small for the returned data." 
    Case SCARD_E_INVALID_ATR 
    GetScardErrMsg = "An ATR string obtained from the registry is not a valid ATR string." 
    Case SCARD_E_INVALID_HANDLE 
    GetScardErrMsg = "The supplied handle was invalid." 
    Case SCARD_E_INVALID_PARAMETER 
    GetScardErrMsg = "One or more of the supplied parameters could not be properly 
interpreted." 
    Case SCARD_E_INVALID_TARGET 
    GetScardErrMsg = "Registry startup information is missing or invalid." 
    Case SCARD_E_INVALID_VALUE 
    GetScardErrMsg = "One or more of the supplied parameter values could not be properly 
interpreted." 
    Case SCARD_E_NOT_READY 
    GetScardErrMsg = "The reader or card is not ready to accept commands." 
    Case SCARD_E_NOT_TRANSACTED 
    GetScardErrMsg = "An attempt was made to end a non-existent transaction." 
    Case SCARD_E_NO_MEMORY 
    GetScardErrMsg = "Not enough memory available to complete this command." 
    Case SCARD_E_NO_SERVICE 
    GetScardErrMsg = "The smart card resource manager is not running." 
    Case SCARD_E_NO_SMARTCARD 
    GetScardErrMsg = "The operation requires a smart card, but no smart card is currently in 
the device." 
    Case SCARD_E_PCI_TOO_SMALL 
    GetScardErrMsg = "The PCI receive buffer was too small." 
    Case SCARD_E_PROTO_MISMATCH 
    GetScardErrMsg = "The requested protocols are incompatible with the protocol currently 
in use with the card." 
    Case SCARD_E_READER_UNAVAILABLE 



 108

    GetScardErrMsg = "The specified reader is not currently available for use." 
    Case SCARD_E_READER_UNSUPPORTED 
    GetScardErrMsg = "The reader driver does not meet minimal requirements for support." 
    Case SCARD_E_SERVICE_STOPPED 
    GetScardErrMsg = "The smart card resource manager has shut down." 
    Case SCARD_E_SHARING_VIOLATION 
    GetScardErrMsg = "The smart card cannot be accessed because of other outstanding 
connections." 
    Case SCARD_E_SYSTEM_CANCELLED 
    GetScardErrMsg = "The action was canceled by the system, presumably to log off or 
shut down." 
    Case SCARD_E_TIMEOUT 
    GetScardErrMsg = "The user-specified timeout value has expired." 
    Case SCARD_E_UNKNOWN_CARD 
    GetScardErrMsg = "The specified smart card name is not recognized." 
    Case SCARD_E_UNKNOWN_READER 
    GetScardErrMsg = "The specified reader name is not recognized." 
    Case SCARD_F_COMM_ERROR 
    GetScardErrMsg = "An internal communications error has been detected." 
    Case SCARD_F_INTERNAL_ERROR 
    GetScardErrMsg = "An internal consistency check failed." 
    Case SCARD_F_UNKNOWN_ERROR 
    GetScardErrMsg = "An internal error has been detected, but the source is unknown." 
    Case SCARD_F_WAITED_TOO_LONG 
    GetScardErrMsg = "An internal consistency timer has expired." 
    Case SCARD_S_SUCCESS 
    GetScardErrMsg = "No error was encountered." 
    Case SCARD_W_REMOVED_CARD 
    GetScardErrMsg = "The smart card has been removed, so that further communication is 
not possible." 
    Case SCARD_W_RESET_CARD 
    GetScardErrMsg = "The smart card has been reset, so any shared state information is 
invalid." 
    Case SCARD_W_UNPOWERED_CARD 
    GetScardErrMsg = "Power has been removed from the smart card, so that further 
communication is not possible." 
    Case SCARD_W_UNRESPONSIVE_CARD 
    GetScardErrMsg = "The smart card is not responding to a reset." 
    Case SCARD_W_UNSUPPORTED_CARD 
    GetScardErrMsg = "The reader cannot communicate with the card, due to ATR string 
configuration conflicts." 
    Case Else 
    GetScardErrMsg = "?" 
    End Select 
   
End Function 
 



 109

Main (Authentication, DES Format, Create File in Card, Read Card, Write Card, 
Read File, Write File) 
 
Option Explicit 
Dim retCode, Protocol, hContext, hCard, ReaderCount As Long 
Dim sReaderList As String * 256 
Dim sReaderGroup As String 
Dim ConnActive As Boolean 
Dim ioRequest As SCARD_IO_REQUEST 
Dim SendLen, RecvLen As Long 
Dim SendBuff(0 To 262) As Byte 
Dim RecvBuff(0 To 262) As Byte 
 
Const INVALID_SW1SW2 = -450 
 
Private Sub ClearBuffers() 
 
  Dim indx As Long 
   
  For indx = 0 To 262 
    RecvBuff(indx) = &H0 
    SendBuff(indx) = &H0 
  Next indx 
   
End Sub 
 
Private Sub InitMenu() 
 
  cbReader.Clear 
  bInit.Enabled = True 
  bConnect.Enabled = False 
  bFormat.Enabled = False 
  bReset.Enabled = False 
  fUserFile.Enabled = False 
  fFunction.Enabled = False 
  mMsg.Text = "" 
  tData.Text = "" 
  tData.Enabled = False 
  rbAA11.Value = False 
  rbBB22.Value = False 
  rbCC33.Value = False 
  Call DisplayOut(0, 0, "Program ready") 
   
End Sub 
 
Private Sub DisplayOut(ByVal mType As Integer, ByVal msgCode As Long, ByVal 
PrintText As String) 



 110

  Select Case mType 
    Case 0                   ' Notifications only 
      mMsg.SelColor = &H4000 
    Case 1                   ' Error Messages 
      mMsg.SelColor = vbRed 
      PrintText = GetScardErrMsg(retCode) 
    Case 2 
      mMsg.SelColor = vbBlack 
      PrintText = "< " & PrintText 
    Case 3 
      mMsg.SelColor = vbBlack 
      PrintText = "> " & PrintText 
  End Select 
   
  mMsg.SelText = PrintText & vbCrLf 
  mMsg.SelStart = Len(mMsg.Text) 
  mMsg.SelColor = vbBlack 
 
End Sub 
 
Private Sub AddButtons() 
 
  bInit.Enabled = False 
  bConnect.Enabled = True 
  bReset.Enabled = True 
 
End Sub 
 
Private Function SendAPDUandDisplay(ByVal SendType As Integer, ByVal ApduIn As 
String) As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
  ioRequest.dwProtocol = Protocol 
  ioRequest.cbPciLength = Len(ioRequest) 
  Call DisplayOut(2, 0, ApduIn) 
  tmpStr = "" 
  RecvLen = 262 
   
  retCode = SCardTransmit(hCard, _ 
                          ioRequest, _ 
                          SendBuff(0), _ 
                          SendLen, _ 
                          ioRequest, _ 
                          RecvBuff(0), _ 
                          RecvLen) 



 111

  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    SendAPDUandDisplay = retCode 
    Exit Function 
  Else 
    Select Case SendType 
      Case 0                  ' Read all data received 
        For indx = 0 To RecvLen - 1 
          tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
        Next indx 
      Case 1                  ' Read ATR after checking SW1/SW2 
        For indx = RecvLen - 2 To RecvLen - 1 
          tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
        Next indx 
        If tmpStr <> "90 00 " Then 
          Call DisplayOut(1, 0, "Return bytes are not acceptable.") 
        Else 
          tmpStr = "ATR: " 
          For indx = 0 To RecvLen - 3 
            tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
          Next indx 
        End If 
      Case 2                  ' Read data after checking SW1/SW2 
        For indx = RecvLen - 2 To RecvLen - 1 
          tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
        Next indx 
        If tmpStr <> "90 00 " Then 
          Call DisplayOut(1, 0, "Return bytes are not acceptable.") 
        Else 
          tmpStr = "" 
          For indx = 0 To RecvLen - 3 
            tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
          Next indx 
        End If 
    End Select 
    Call DisplayOut(3, 0, tmpStr) 
  End If 
  SendAPDUandDisplay = retCode 
   
End Function 
 
Private Function SubmitIC() As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 



 112

  SendBuff(1) = &H20        ' INS 
  SendBuff(2) = &H7         ' P1 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = &H8         ' P3 
  SendBuff(5) = &H41        ' A 
  SendBuff(6) = &H43        ' C 
  SendBuff(7) = &H4F        ' O 
  SendBuff(8) = &H53        ' S 
  SendBuff(9) = &H54        ' T 
  SendBuff(10) = &H45       ' E 
  SendBuff(11) = &H53       ' S 
  SendBuff(12) = &H54       ' T 
   
  SendLen = &HD 
  RecvLen = &H2 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    SubmitIC = retCode 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    SubmitIC = INVALID_SW1SW2 
    Exit Function 
  End If 
   
  SubmitIC = retCode 
 
End Function 
 
Private Function SelectFile(ByVal HiAddr As Byte, ByVal LoAddr As Byte) As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &HA4        ' INS 
  SendBuff(2) = &H0         ' P1 



 113

  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = &H2         ' P3 
  SendBuff(5) = HiAddr      ' Value of High Byte 
  SendBuff(6) = LoAddr      ' Value of Low Byte 
   
  SendLen = &O7 
  RecvLen = &H2 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    SelectFile = retCode 
    Exit Function 
  End If 
   
  SelectFile = retCode 
 
End Function 
 
Private Function readRecord(ByVal RecNo As Byte, ByVal dataLen As Byte) As Long 
   
  Dim indx As Integer 
  Dim tmpStr As String 
   
  ' 1. Read data from card 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &HB2        ' INS 
  SendBuff(2) = RecNo       ' Record No 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = dataLen     ' Length of Data 
  SendLen = 5 
  RecvLen = SendBuff(4) + 2 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    readRecord = retCode 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx + SendBuff(4))), "00") & " " 



 114

  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    readRecord = INVALID_SW1SW2 
    Exit Function 
  End If 
   
  readRecord = retCode 
 
End Function 
 
Private Function writeRecord(ByVal caseType As Integer, ByVal RecNo As Byte, ByVal 
maxLen As Byte, _ 
                             ByVal dataLen As Byte, ByRef ApduIn() As Byte) As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
  If caseType = 1 Then   ' If card data is to be erased before writing new data 
    ' 1. Re-initialize card values to $00 
    Call ClearBuffers 
    SendBuff(0) = &H80        ' CLA 
    SendBuff(1) = &HD2        ' INS 
    SendBuff(2) = RecNo       ' Record No 
    SendBuff(3) = &H0         ' P2 
    SendBuff(4) = maxLen     ' Length of Data 
    For indx = 0 To maxLen - 1 
      SendBuff(indx + 5) = &H0 
    Next indx 
    SendLen = SendBuff(4) + 5 
    RecvLen = &H2 
    tmpStr = "" 
    For indx = 0 To SendLen - 1 
      tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
    Next indx 
    retCode = SendAPDUandDisplay(0, tmpStr) 
    If retCode <> SCARD_S_SUCCESS Then 
      writeRecord = retCode 
      Exit Function 
    End If 
    tmpStr = "" 
    For indx = 0 To 1 
      tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
    Next indx 
    If tmpStr <> "90 00 " Then 
      Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
      writeRecord = INVALID_SW1SW2 



 115

      Exit Function 
    End If 
  End If 
   
  ' 2. Write data to card 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &HD2        ' INS 
  SendBuff(2) = RecNo       ' Record No 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = dataLen     ' Length of Data 
  For indx = 0 To dataLen - 1 
    SendBuff(indx + 5) = ApduIn(indx) 
  Next indx 
  SendLen = SendBuff(4) + 5 
  RecvLen = &H2 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    writeRecord = retCode 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    writeRecord = INVALID_SW1SW2 
    Exit Function 
  End If 
   
  writeRecord = retCode 
 
End Function 
 
Private Sub bConnect_Click() 
 
  If ConnActive Then 
    Call DisplayOut(0, 0, "Connection is already active.") 
    Exit Sub 
  End If 
   
  Call DisplayOut(2, 0, "Invoke SCardConnect") 



 116

  ' 1. Connect to selected reader using hContext handle 
  '    and obtain valid hCard handle 
  retCode = SCardConnect(hContext, _ 
                        cbReader.Text, _ 
                        SCARD_SHARE_EXCLUSIVE, _ 
                        SCARD_PROTOCOL_T0 Or SCARD_PROTOCOL_T1, _ 
                        hCard, _ 
                        Protocol) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    ConnActive = False 
    Exit Sub 
  Else 
    Call DisplayOut(0, 0, "Successful connection to " & cbReader.Text) 
  End If 
 
  ConnActive = True 
  bFormat.Enabled = True 
  fUserFile.Enabled = True 
  rbAA11.Value = True 
  fFunction.Enabled = True 
  tData.Enabled = True 
  tData.Text = "" 
  tData.MaxLength = 10 
 
End Sub 
 
Private Sub bFormat_Click() 
   
  Dim indx As Integer 
  Dim tmpStr As String 
  Dim tmpArray(0 To 31) As Byte 
 
  ' 1. Send IC Code 
  retCode = SubmitIC() 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
 
  ' 2. Select FF 02 
  retCode = SelectFile(&HFF, &H2) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 



 117

  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    Exit Sub 
  End If 
 
 
  ' 3. Write to FF 02 
  '    This will create 3 User files, no Option registers and 
  '    Security Option registers defined, Personalization bit 
  '    is not set 
  tmpArray(0) = &H0      ' 00    Option registers 
  tmpArray(1) = &H0      ' 00    Security option register 
  tmpArray(2) = &H3      ' 03    No of user files 
  tmpArray(3) = &H0      ' 00    Personalization bit 
  retCode = writeRecord(0, &H0, &H4, &H4, tmpArray) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  Call DisplayOut(0, 0, "FF 02 is updated") 
 
  ' 4. Perform a reset for changes in the ACOS to take effect 
  retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 
  retCode = SCardConnect(hContext, _ 
                        cbReader.Text, _ 
                        SCARD_SHARE_EXCLUSIVE, _ 
                        SCARD_PROTOCOL_T0 Or SCARD_PROTOCOL_T1, _ 
                        hCard, _ 
                        Protocol) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    ConnActive = False 
    Exit Sub 
  Else 
    Call DisplayOut(0, 0, "Card reset is successful.") 
  End If 
 
  ' 5. Select FF 04 
  retCode = SelectFile(&HFF, &H4) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 



 118

    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    Exit Sub 
  End If 
 
  ' 6. Send IC Code 
  retCode = SubmitIC() 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
 
  ' 7. Write to FF 04 
  ' 7.1. Write to first record of FF 04 
  tmpArray(0) = &HA       ' 10    Record length 
  tmpArray(1) = &H3       ' 3     No of records 
  tmpArray(2) = &H0       ' 00    Read security attribute 
  tmpArray(3) = &H0       ' 00    Write security attribute 
  tmpArray(4) = &HAA      ' AA    File identifier 
  tmpArray(5) = &H11      ' 11    File identifier 
  retCode = writeRecord(0, &H0, &H6, &H6, tmpArray) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  Call DisplayOut(0, 0, "User File AA 11 is defined") 
 
  ' 7.2. Write to second record of FF 04 
  tmpArray(0) = &H10      ' 16    Record length 
  tmpArray(1) = &H2       ' 2     No of records 
  tmpArray(2) = &H0       ' 00    Read security attribute 
  tmpArray(3) = &H0       ' 00    Write security attribute 
  tmpArray(4) = &HBB      ' BB    File identifier 
  tmpArray(5) = &H22      ' 22    File identifier 
  retCode = writeRecord(0, &H1, &H6, &H6, tmpArray) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  Call DisplayOut(0, 0, "User File BB 22 is defined") 
 
  ' 7.3. Write to third record of FF 04 
  tmpArray(0) = &H20      ' 32    Record length 
  tmpArray(1) = &H4       ' 4     No of records 
  tmpArray(2) = &H0       ' 00    Read security attribute 
  tmpArray(3) = &H0       ' 00    Write security attribute 
  tmpArray(4) = &HCC      ' CC    File identifier 
  tmpArray(5) = &H33      ' 33    File identifier 
  retCode = writeRecord(0, &H2, &H6, &H6, tmpArray) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 



 119

  End If 
  Call DisplayOut(0, 0, "User File CC 33 is defined") 
 
End Sub 
 
Private Sub bInit_Click() 
 
  sReaderList = String(255, vbNullChar) 
  ReaderCount = 255 
      
  ' 1. Establish context and obtain hContext handle 
  retCode = SCardEstablishContext(SCARD_SCOPE_USER, 0, 0, hContext) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    Exit Sub 
  End If 
   
  ' 2. List PC/SC card readers installed in the system 
  retCode = SCardListReaders(hContext, sReaderGroup, sReaderList, ReaderCount) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    Exit Sub 
  End If 
  Call LoadListToControl(cbReader, sReaderList) 
  cbReader.ListIndex = 0 
 
  Call AddButtons 
 
End Sub 
 
Private Sub bQuuit_Click() 
 
  If ConnActive Then 
    retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 
    ConnActive = False 
  End If 
  retCode = SCardReleaseContext(hContext) 
  Unload Me 
 
 
End Sub 
 
Private Sub bRead_Click() 
 
  Dim indx As Integer 
  Dim tmpStr, ChkStr As String 
  Dim HiAddr, LoAddr, dataLen As Byte 



 120

   ' 1. Check User File selected by user 
  If rbAA11.Value = True Then 
    HiAddr = &HAA 
    LoAddr = &H11 
    dataLen = &HA 
    ChkStr = "91 00 " 
  End If 
 
  If rbBB22.Value = True Then 
    HiAddr = &HBB 
    LoAddr = &H22 
    dataLen = &H10 
    ChkStr = "91 01 " 
  End If 
 
  If rbCC33.Value = True Then 
    HiAddr = &HCC 
    LoAddr = &H33 
    dataLen = &H20 
    ChkStr = "91 02 " 
  End If 
   
  ' 2. Select User File 
  retCode = SelectFile(HiAddr, LoAddr) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> ChkStr Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    Exit Sub 
  End If 
 
  ' 3. Read First Record of User File selected 
  retCode = readRecord(&H0, dataLen) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
 
  ' 4. Display data read from card to textbox 
  tmpStr = "" 
  indx = 0 
  While (RecvBuff(indx) <> &H0) 
    If indx < tData.MaxLength Then 



 121

      tmpStr = tmpStr & Chr(RecvBuff(indx)) 
    End If 
    indx = indx + 1 
  Wend 
  tData.Text = tmpStr 
  Call DisplayOut(0, 0, "Data read from card is displayed in Text Box.") 
 
End Sub 
 
Private Sub bReset_Click() 
 
  If ConnActive Then 
    retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 
    ConnActive = False 
  End If 
  retCode = SCardReleaseContext(hContext) 
  Call InitMenu 
 
End Sub 
 
Private Sub bWrite_Click() 
 
  Dim indx As Integer 
  Dim tmpStr, ChkStr As String 
  Dim HiAddr, LoAddr, dataLen As Byte 
  Dim tmpArray(0 To 56) As Byte 
   
  ' 1. Validate input template 
  If tData.Text = "" Then 
    tData.SetFocus 
    Exit Sub 
  End If 
   
  ' 2. Check User File selected by user 
  If rbAA11.Value = True Then 
    HiAddr = &HAA 
    LoAddr = &H11 
    dataLen = &HA 
    ChkStr = "91 00 " 
  End If 
 
  If rbBB22.Value = True Then 
    HiAddr = &HBB 
    LoAddr = &H22 
    dataLen = &H10 
    ChkStr = "91 01 " 
  End If 



 122

  If rbCC33.Value = True Then 
    HiAddr = &HCC 
    LoAddr = &H33 
    dataLen = &H20 
    ChkStr = "91 02 " 
  End If 
   
  ' 3. Select User File 
  retCode = SelectFile(HiAddr, LoAddr) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> ChkStr Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    Exit Sub 
  End If 
   
  ' 4. Write data from text box to card 
  tmpStr = tData.Text 
  For indx = 0 To Len(tmpStr) - 1 
    tmpArray(indx) = Asc(Mid(tmpStr, indx + 1, 1)) 
  Next indx 
  retCode = writeRecord(1, &H0, dataLen, Len(tmpStr), tmpArray) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  Call DisplayOut(0, 0, "Data read from Text Box is written to card.") 
   
   
End Sub 
 
Private Sub cbReader_Click() 
 
  bFormat.Enabled = False 
  tData.Text = "" 
  tData.Enabled = False 
  rbAA11.Value = False 
  rbBB22.Value = False 
  rbCC33.Value = False 
  fUserFile.Enabled = False 
  fFunction.Enabled = False 
  If ConnActive Then 
    retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 



 123

    ConnActive = False 
  End If 
 
End Sub 
 
Private Sub Form_Load() 
   
  Call InitMenu 
 
End Sub 
 
Private Sub rbAA11_Click() 
 
  tData.Text = "" 
  tData.MaxLength = 10 
   
End Sub 
 
Private Sub rbBB22_Click() 
 
  tData.Text = "" 
  tData.MaxLength = 16 
 
End Sub 
 
Private Sub rbCC33_Click() 
 
  tData.Text = "" 
  tData.MaxLength = 32 
 
End Sub 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 124

Appendix II – Formatting smart card with DES/3DES and Mutual Authentication to 
EMV smart card. 
 
Chain3DES (module) 
 
'============== ENCRYPTION ALGORITHM Constants ================ 
Global Const ALGO_DES = 0 
Global Const ALGO_3DES = 1 
Global Const ALGO_XOR = 3 
Global Const DATA_ENCRYPT = 1 
Global Const DATA_DECRYPT = 2 
 
 
'Note : Block is equal to 8 bytes. So to encrypt/decrypt 8 bytes of data  user must use 1 
‘block in the parameter. 
'       Example: 
'        'This code encrypts 8 bytes of data! 
'        Dim Data(1 to 8) as byte ' Assume data was entered 
'        Dim Key(1 to 8) as byte ' Assume key already exits 
'        Chain_DES(Data(1), Key(1), ALGO_3DES , 1 ,DATA_ENCRYPT) 
' 
'================================================================ 
'       CHAIN_DES PROTOTYPE 
'================================================================ 
Declare Function Chain_DES Lib "chaindes.dll" (ByRef Data As Any, ByRef key As Any, 
ByVal TripleDES As Integer, ByVal Blocks As Long, ByVal method As Long) As Long 
Declare Function Chain_MAC Lib "chaindes.dll" (ByRef mac As Any, ByRef Data As 
Any, ByRef key As Any, ByVal Blocks As Long) As Long 
Declare Function Chain_MAC2 Lib "chaindes.dll" (ByRef mac As Any, ByRef Data As 
Any, ByRef key As Any, ByVal Blocks As Long) As Long 
 
 
Main Mutual Authentication (DES - 3DES FORMAT, MUTUAL PROCESS, READ, 
WRITE) 
 
Option Explicit 
 
Dim retCode, Protocol, hContext, hCard, ReaderCount As Long 
Dim sReaderList As String * 256 
Dim sReaderGroup As String 
Dim ConnActive As Boolean 
Dim ioRequest As SCARD_IO_REQUEST 
Dim SendLen, RecvLen As Long 
Dim SendBuff(0 To 262) As Byte 
Dim RecvBuff(0 To 262) As Byte 
 
Const INVALID_SW1SW2 = -450 



 125

 
' this routine will encrypt 8-byte data with 8-byte key 
' the result is stored in data 
Public Sub DES(Data() As Byte, key() As Byte) 
    Call Chain_DES(Data(0), key(0), ALGO_DES, 1, DATA_ENCRYPT) 
End Sub 
 
' this routine will use 3DES algo to encrypt 8-byte data with 16-byte key 
' the result is stored in data 
Public Sub TripleDES(Data() As Byte, key() As Byte) 
    Call Chain_DES(Data(0), key(0), ALGO_3DES, 1, DATA_ENCRYPT) 
End Sub 
 
 
' MAC as defined in ACOS manual 
' receives 8-byte Key and 16-byte Data 
' result is stored in Data 
Public Sub mac(Data() As Byte, key() As Byte) 
Dim i As Integer 
 
    DES Data, key 
    For i = 0 To 7 
        Data(i) = Data(i) Xor Data(i + 8) 
    Next 
    DES Data, key 
End Sub 
 
' Triple MAC as defined in ACOS manual 
' receives 16-byte Key and 16-byte Data 
' result is stored in Data 
Public Sub TripleMAC(Data() As Byte, key() As Byte) 
Dim i As Integer 
 
    TripleDES Data, key 
    For i = 0 To 7 
        Data(i) = Data(i) Xor Data(i + 8) 
    Next 
    TripleDES Data, key 
End Sub 
 
Private Sub ClearBuffers() 
 
  Dim indx As Long 
   
  For indx = 0 To 262 
    RecvBuff(indx) = &H0 
    SendBuff(indx) = &H0 



 126

  Next indx 
   
End Sub 
Private Sub InitMenu() 
 
  cbReader.Clear 
  bInit.Enabled = True 
  bConnect.Enabled = False 
  bReset.Enabled = False 
  Call ClearTextFields 
  fSecOption.Enabled = False 
  fKey.Enabled = False 
  bExecMA.Enabled = False 
  mMsg.Text = "" 
  rbDES.Value = False 
  rb3DES.Value = False 
  Call DisplayOut(0, 0, "Program ready") 
   
End Sub 
 
Private Sub DisplayOut(ByVal mType As Integer, ByVal msgCode As Long, ByVal 
PrintText As String) 
 
  Select Case mType 
    Case 0                          ' Notifications only 
      mMsg.SelColor = &H4000 
    Case 1                          ' PC/SC Error Messages 
      mMsg.SelColor = vbRed 
      PrintText = GetScardErrMsg(retCode) 
    Case 2 
      mMsg.SelColor = vbBlack       ' Input APDU command 
      PrintText = "< " & PrintText 
    Case 3 
      mMsg.SelColor = vbBlack       ' Output data 
      PrintText = "> " & PrintText 
    Case 4 
      mMsg.SelColor = vbRed         ' Notifications on red font 
  End Select 
   
  mMsg.SelText = PrintText & vbCrLf 
  mMsg.SelStart = Len(mMsg.Text) 
  mMsg.SelColor = vbBlack 
  
 
End Sub 
 
Private Sub AddButtons() 



 127

 
  bInit.Enabled = False 
  bConnect.Enabled = True 
  bReset.Enabled = True 
 
End Sub 
 
Private Sub ClearTextFields() 
 
  tCard.Text = "" 
  tTerminal.Text = "" 
 
End Sub 
 
Private Function SendAPDUandDisplay(ByVal SendType As Integer, ByVal ApduIn As 
String) As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
  ioRequest.dwProtocol = Protocol 
  ioRequest.cbPciLength = Len(ioRequest) 
  Call DisplayOut(2, 0, ApduIn) 
  tmpStr = "" 
  RecvLen = 262 
   
  retCode = SCardTransmit(hCard, _ 
                          ioRequest, _ 
                          SendBuff(0), _ 
                          SendLen, _ 
                          ioRequest, _ 
                          RecvBuff(0), _ 
                          RecvLen) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    SendAPDUandDisplay = retCode 
    Exit Function 
  Else 
    Select Case SendType 
      Case 0                  ' Read all data received 
        For indx = 0 To RecvLen - 1 
          tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
        Next indx 
      Case 1                  ' Read ATR after checking SW1/SW2 
        For indx = RecvLen - 2 To RecvLen - 1 
          tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
        Next indx 



 128

        If tmpStr <> "90 00 " Then 
          Call DisplayOut(1, 0, "Return bytes are not acceptable.") 
        Else 
          tmpStr = "ATR: " 
          For indx = 0 To RecvLen - 3 
            tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
          Next indx 
        End If 
      Case 2                  ' Read data after checking SW1/SW2 
        For indx = RecvLen - 2 To RecvLen - 1 
          tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
        Next indx 
        If tmpStr <> "90 00 " Then 
          Call DisplayOut(1, 0, "Return bytes are not acceptable.") 
        Else 
          tmpStr = "" 
          For indx = 0 To RecvLen - 3 
            tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
          Next indx 
        End If 
    End Select 
    Call DisplayOut(3, 0, tmpStr) 
  End If 
  SendAPDUandDisplay = retCode 
   
End Function 
 
Private Function SubmitIC() As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &H20        ' INS 
  SendBuff(2) = &H7         ' P1 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = &H8         ' P3 
  SendBuff(5) = &H41        ' A 
  SendBuff(6) = &H43        ' C 
  SendBuff(7) = &H4F        ' O 
  SendBuff(8) = &H53        ' S 
  SendBuff(9) = &H54        ' T 
  SendBuff(10) = &H45       ' E 
  SendBuff(11) = &H53       ' S 
  SendBuff(12) = &H54       ' T 
   



 129

  SendLen = &HD 
  RecvLen = &H2 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    SubmitIC = retCode 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    SubmitIC = INVALID_SW1SW2 
    Exit Function 
  End If 
   
  SubmitIC = retCode 
 
End Function 
 
Private Function StartSession() As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &H84        ' INS 
  SendBuff(2) = &H0        ' P1 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = &H8         ' P3 
   
  SendLen = &H5 
  RecvLen = &HA 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    StartSession = retCode 
    Exit Function 



 130

  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx + SendBuff(4))), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    StartSession = INVALID_SW1SW2 
    Exit Function 
  End If 
   
  StartSession = retCode 
 
End Function 
 
Private Function SelectFile(ByVal HiAddr As Byte, ByVal LoAddr As Byte) As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &HA4        ' INS 
  SendBuff(2) = &H0         ' P1 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = &H2         ' P3 
  SendBuff(5) = HiAddr      ' Value of High Byte 
  SendBuff(6) = LoAddr      ' Value of Low Byte 
   
  SendLen = &O7 
  RecvLen = &H2 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    SelectFile = retCode 
    Exit Function 
  End If 
   
  SelectFile = retCode 
 
End Function 
 
Private Function readRecord(ByVal RecNo As Byte, ByVal dataLen As Byte) As Long 
   



 131

  Dim indx As Integer 
  Dim tmpStr As String 
   
  ' 1. Read data from card 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &HB2        ' INS 
  SendBuff(2) = RecNo       ' Record No 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = dataLen     ' Length of Data 
  SendLen = 5 
  RecvLen = SendBuff(4) + 2 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    readRecord = retCode 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx + SendBuff(4))), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    readRecord = INVALID_SW1SW2 
    Exit Function 
  End If 
   
  readRecord = retCode 
 
End Function 
 
Private Function writeRecord(ByVal caseType As Integer, ByVal RecNo As Byte, ByVal 
maxLen As Byte, _ 
                             ByVal dataLen As Byte, ByRef ApduIn() As Byte) As Long 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
  If caseType = 1 Then   ' If card data is to be erased before writing new data 
    ' 1. Re-initialize card values to $00 
    Call ClearBuffers 
    SendBuff(0) = &H80        ' CLA 
    SendBuff(1) = &HD2        ' INS 



 132

    SendBuff(2) = RecNo       ' Record No 
    SendBuff(3) = &H0         ' P2 
    SendBuff(4) = maxLen     ' Length of Data 
    For indx = 0 To maxLen - 1 
      SendBuff(indx + 5) = &H0 
    Next indx 
    SendLen = SendBuff(4) + 5 
    RecvLen = &H2 
    tmpStr = "" 
    For indx = 0 To SendLen - 1 
      tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
    Next indx 
    retCode = SendAPDUandDisplay(0, tmpStr) 
    If retCode <> SCARD_S_SUCCESS Then 
      writeRecord = retCode 
      Exit Function 
    End If 
    tmpStr = "" 
    For indx = 0 To 1 
      tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
    Next indx 
    If tmpStr <> "90 00 " Then 
      Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
      writeRecord = INVALID_SW1SW2 
      Exit Function 
    End If 
  End If 
   
  ' 2. Write data to card 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &HD2        ' INS 
  SendBuff(2) = RecNo       ' Record No 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = dataLen     ' Length of Data 
  For indx = 0 To dataLen - 1 
    SendBuff(indx + 5) = ApduIn(indx) 
  Next indx 
  SendLen = SendBuff(4) + 5 
  RecvLen = &H2 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    writeRecord = retCode 



 133

    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    writeRecord = INVALID_SW1SW2 
    Exit Function 
  End If 
   
  writeRecord = retCode 
 
End Function 
 
Private Function ValidTemplate() As Boolean 
 
  If Len(tCard.Text) < tCard.MaxLength Then 
    tCard.SetFocus 
    ValidTemplate = False 
    Exit Function 
  End If 
   
  If Len(tTerminal.Text) < tTerminal.MaxLength Then 
    tTerminal.SetFocus 
    ValidTemplate = False 
    Exit Function 
  End If 
   
  ValidTemplate = True 
 
End Function 
 
Private Function CheckACOS() As Boolean 
 
  Dim indx As Integer 
  Dim tmpStr As String 
 
 ' 1. Reconnect reader to accommodate change of cards 
  If ConnActive Then 
    retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 
    ConnActive = False 
  End If 
  retCode = SCardConnect(hContext, _ 
                        cbReader.Text, _ 
                        SCARD_SHARE_EXCLUSIVE, _ 



 134

                        SCARD_PROTOCOL_T0 Or SCARD_PROTOCOL_T1, _ 
                        hCard, _ 
                        Protocol) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    ConnActive = False 
    CheckACOS = False 
    Exit Function 
  End If 
  ConnActive = True 
 
  ' 2. Check for File FF 00 
  retCode = SelectFile(&HFF, &H0) 
  If retCode <> SCARD_S_SUCCESS Then 
    CheckACOS = False 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    CheckACOS = False 
    Exit Function 
  End If 
   
  ' 3. Check for File FF 01 
  retCode = SelectFile(&HFF, &H1) 
  If retCode <> SCARD_S_SUCCESS Then 
    CheckACOS = False 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    CheckACOS = False 
    Exit Function 
  End If 
   
  ' 4. Check for File FF 02 
  retCode = SelectFile(&HFF, &H2) 
  If retCode <> SCARD_S_SUCCESS Then 
    CheckACOS = False 



 135

    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    CheckACOS = False 
    Exit Function 
  End If 
   
  CheckACOS = True 
 
End Function 
 
Private Function ACOSError(ByVal Sw1 As Byte, ByVal Sw2 As Byte) As Boolean 
   
  ' Check for error returned by ACOS card 
  ACOSError = True 
  If ((Sw1 = &H62) And (Sw2 = &H81)) Then 
    Call DisplayOut(4, 0, "Account data may be corrupted.") 
      Exit Function 
  End If 
  If (Sw1 = &H63) Then 
    Call DisplayOut(4, 0, "MAC cryptographic checksum is wrong.") 
      Exit Function 
  End If 
  If ((Sw1 = &H69) And (Sw2 = &H66)) Then 
    Call DisplayOut(4, 0, "Command not available or option bit not set.") 
      Exit Function 
  End If 
  If ((Sw1 = &H69) And (Sw2 = &H82)) Then 
    Call DisplayOut(4, 0, "Security status not satisfied. Secret code, IC or PIN not 
submitted.") 
      Exit Function 
  End If 
  If ((Sw1 = &H69) And (Sw2 = &H83)) Then 
    Call DisplayOut(4, 0, "The specified code is locked.") 
      Exit Function 
  End If 
  If ((Sw1 = &H69) And (Sw2 = &H85)) Then 
    Call DisplayOut(4, 0, "Preceding transaction was not DEBIT or mutual authentication 
has not been completed.") 
      Exit Function 
  End If 
  If ((Sw1 = &H69) And (Sw2 = &HF0)) Then 



 136

    Call DisplayOut(4, 0, "Data in account is inconsistent. No access unless in Issuer 
mode.") 
      Exit Function 
  End If 
  If ((Sw1 = &H6A) And (Sw2 = &H82)) Then 
    Call DisplayOut(4, 0, "Account does not exist.") 
      Exit Function 
  End If 
  If ((Sw1 = &H6A) And (Sw2 = &H83)) Then 
    Call DisplayOut(4, 0, "Record not found or file too short.") 
      Exit Function 
  End If 
  If ((Sw1 = &H6A) And (Sw2 = &H86)) Then 
    Call DisplayOut(4, 0, "P1 or P2 is incorrect.") 
      Exit Function 
  End If 
  If ((Sw1 = &H6B) And (Sw2 = &H20)) Then 
    Call DisplayOut(4, 0, "Invalid amount in DEBIT/CREDIT command.") 
      Exit Function 
  End If 
  If (Sw1 = &H6C) Then 
    Call DisplayOut(4, 0, "Issue GET RESPONSE with P3 = " & Hex(Sw2) & " to get 
response data.") 
      Exit Function 
  End If 
  If (Sw1 = &H6D) Then 
    Call DisplayOut(4, 0, "Unknown INS.") 
      Exit Function 
  End If 
  If (Sw1 = &H6E) Then 
    Call DisplayOut(4, 0, "Unknown CLA.") 
      Exit Function 
  End If 
  If ((Sw1 = &H6F) And (Sw2 = &H10)) Then 
    Call DisplayOut(4, 0, "Account Transaction Counter at maximum. No more transaction 
possible.") 
      Exit Function 
  End If 
 
  ACOSError = False 
   
End Function 
 
Private Function GetResponse() As Long 
   
  Dim indx As Integer 
  Dim tmpStr As String 



 137

 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &HC0        ' INS 
  SendBuff(2) = &H0         ' P1 
  SendBuff(3) = &H0         ' P2 
  SendBuff(4) = &H8         ' Length of Data 
  SendLen = 5 
  RecvLen = &HA 
  tmpStr = "" 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    GetResponse = retCode 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx + SendBuff(4))), "00") & " " 
  Next indx 
  If ACOSError(RecvBuff(SendBuff(4)), RecvBuff(SendBuff(4) + 1)) Then 
    GetResponse = INVALID_SW1SW2 
    Exit Function 
  End If 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(4, 0, "GET RESPONSE command failed.") 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    GetResponse = INVALID_SW1SW2 
    Exit Function 
  End If 
 
  GetResponse = retCode 
 
End Function 
 
Private Function Authenticate(ByRef DataIn() As Byte) As Long 
   
  Dim indx As Integer 
  Dim tmpStr As String 
 
  Call ClearBuffers 
  SendBuff(0) = &H80        ' CLA 
  SendBuff(1) = &H82        ' INS 
  SendBuff(2) = &H0         ' P1 
  SendBuff(3) = &H0         ' P2 



 138

  SendBuff(4) = &H10        ' P3 
  For indx = 0 To 15 
    SendBuff(indx + 5) = DataIn(indx) 
  Next indx 
  SendLen = SendBuff(4) + 5 
  RecvLen = &HA 
  For indx = 0 To SendLen - 1 
    tmpStr = tmpStr & Format(Hex(SendBuff(indx)), "00") & " " 
  Next indx 
  retCode = SendAPDUandDisplay(0, tmpStr) 
  If retCode <> SCARD_S_SUCCESS Then 
    Authenticate = retCode 
    Exit Function 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If ACOSError(RecvBuff(0), RecvBuff(1)) Then 
    Authenticate = INVALID_SW1SW2 
    Exit Function 
  End If 
  If tmpStr <> "61 08 " Then 
    Call DisplayOut(4, 0, "AUTHENTICATE command failed.") 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    Authenticate = INVALID_SW1SW2 
    Exit Function 
  End If 
 
  Authenticate = retCode 
 
End Function 
 
Private Sub bConnect_Click() 
 
  If ConnActive Then 
    Call DisplayOut(0, 0, "Connection is already active.") 
    Exit Sub 
  End If 
   
  Call DisplayOut(2, 0, "Invoke SCardConnect") 
  ' 1. Connect to selected reader using hContext handle 
  '    and obtain valid hCard handle 
  retCode = SCardConnect(hContext, _ 
                        cbReader.Text, _ 
                        SCARD_SHARE_EXCLUSIVE, _ 
                        SCARD_PROTOCOL_T0 Or SCARD_PROTOCOL_T1, _ 



 139

                        hCard, _ 
                        Protocol) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    ConnActive = False 
    Exit Sub 
  Else 
    Call DisplayOut(0, 0, "Successful connection to " & cbReader.Text) 
  End If 
 
  ConnActive = True 
  fSecOption.Enabled = True 
  fKey.Enabled = True 
  bExecMA.Enabled = True 
  Call ClearTextFields 
  rbDES.Value = True 
  tCard.MaxLength = 8 
  tTerminal.MaxLength = 8 
 
End Sub 
 
Private Sub bExecMA_Click() 
 
  Dim indx As Integer 
  Dim tmpStr As String 
  Dim CRnd(0 To 7) As Byte            ' Card random number 
  Dim TRnd(0 To 7) As Byte            ' Terminal random number 
  Dim cKey(0 To 15) As Byte           ' Card Key 
  Dim tKey(0 To 15) As Byte           ' Terminal Key 
  Dim tmpArray(0 To 31) As Byte 
  Dim tmpResult(0 To 7) As Byte       ' Card-side authentication result 
  Dim SessionKey(0 To 15) As Byte 
  Dim ReverseKey(0 To 15) As Byte     ' Reverse of Terminal Key 
 
  ' 1. Validate data template 
  If Not ValidTemplate Then 
    Exit Sub 
  End If 
   
  ' 2. Check if card inserted is an ACOS card 
  If Not CheckACOS Then 
    Call DisplayOut(0, 0, "Please insert an ACOS card.") 
    Exit Sub 
  End If 
  Call DisplayOut(0, 0, "ACOS card is detected.") 
   
  ' 3. Card-side authentication process 



 140

  ' 3.1. Generate random number from card 
  retCode = StartSession() 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
 
  ' 3.2. Store the random number generated by the card to Crnd 
  For indx = 0 To 7 
    CRnd(indx) = RecvBuff(indx) 
  Next indx 
 
  ' 3.3. Retrieve Terminal Key from Input Template 
  tmpStr = tTerminal.Text 
  For indx = 0 To tTerminal.MaxLength - 1 
    tKey(indx) = Asc(Mid(tmpStr, indx + 1, 1)) 
  Next indx 
   
  ' 3.4. Encrypt Random No (CRnd) with Terminal Key (tKey) 
  '      tmpArray will hold the 8-byte Enrypted number 
  For indx = 0 To 7 
    tmpArray(indx) = CRnd(indx) 
  Next indx 
  If rbDES.Value = True Then 
    Call DES(tmpArray, tKey) 
  Else 
    Call TripleDES(tmpArray, tKey) 
  End If 
 
  ' 3.5. Issue Authenticate command using 8-byte Encrypted No (tmpArray) 
  '      and Random Terminal number (TRnd) 
  For indx = 0 To 7 
    tmpArray(indx + 8) = TRnd(indx) 
  Next indx 
  retCode = Authenticate(tmpArray) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
 
  ' 3.6. Get 8-byte result of card-side authentication 
  '      and save to tmpResult 
  retCode = GetResponse() 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  For indx = 0 To 7 
    tmpResult(indx) = RecvBuff(indx) 
  Next indx 



 141

 
  ' 4. Terminal-side authentication process 
  ' 4.1. Retrieve Card Key from Input Template 
  tmpStr = tCard.Text 
  For indx = 0 To tCard.MaxLength - 1 
    cKey(indx) = Asc(Mid(tmpStr, indx + 1, 1)) 
  Next indx 
 
  ' 4.2. Compute for Session Key 
  If rbDES.Value = True Then 
     
    ' 4.2a. for single DES 
    ' prepare SessionKey 
    ' SessionKey = DES (DES(RNDc, KC) XOR RNDt, KT) 
 
    ' calculate DES(cRnd,cKey) 
    For indx = 0 To 7 
      tmpArray(indx) = CRnd(indx) 
    Next indx 
    Call DES(tmpArray, cKey) 
 
    ' XOR the result with tRnd 
    For indx = 0 To 7 
      tmpArray(indx) = tmpArray(indx) Xor TRnd(indx) 
    Next indx 
 
    ' DES the result with tKey 
    Call DES(tmpArray, tKey) 
 
    ' temp now holds the SessionKey 
    For indx = 0 To 7 
      SessionKey(indx) = tmpArray(indx) 
    Next indx 
  Else 
     
    ' 4.2b. for triple DES 
    ' prepare SessionKey 
    ' Left half SessionKey =  3DES (3DES (CRnd, cKey), tKey) 
    ' Right half SessionKey = 3DES (TRnd, REV (tKey)) 
 
    ' tmpArray = 3DES (CRnd, cKey) 
    For indx = 0 To 7 
      tmpArray(indx) = CRnd(indx) 
    Next indx 
    Call TripleDES(tmpArray, cKey) 
 
    ' tmpArray = 3DES (tmpArray, tKey) 



 142

    Call TripleDES(tmpArray, tKey) 
 
    ' tmpArray holds the left half of SessionKey 
    For indx = 0 To 7 
      SessionKey(indx) = tmpArray(indx) 
    Next indx 
 
    ' compute ReverseKey of tKey 
    ' just swap its left side with right side 
    ' ReverseKey = right half of tKey + left half of tKey 
    For indx = 0 To 7 
      ReverseKey(indx) = tKey(8 + indx) 
    Next indx 
    For indx = 0 To 7 
      ReverseKey(8 + indx) = tKey(indx) 
    Next indx 
 
    ' compute tmpArray = 3DES (TRnd, ReverseKey) 
    For indx = 0 To 7 
      tmpArray(indx) = TRnd(indx) 
    Next indx 
    Call TripleDES(tmpArray, ReverseKey) 
 
    ' tmpArray holds the right half of SessionKey 
    For indx = 0 To 7 
      SessionKey(indx + 8) = tmpArray(indx) 
    Next indx 
  End If 
 
  ' 4.3. compute DES (TRnd, SessionKey) 
  For indx = 0 To 7 
    tmpArray(indx) = TRnd(indx) 
  Next indx 
  If rbDES.Value = True Then 
    Call DES(tmpArray, SessionKey) 
  Else 
    Call TripleDES(tmpArray, SessionKey) 
  End If 
 
  ' 5. Compare Card-side and Terminal-side authentication results 
  For indx = 0 To 7 
    If tmpResult(indx) <> tmpArray(indx) Then 
      Call DisplayOut(4, 0, "Mutual Authentication failed.") 
      Exit Sub 
    End If 
  Next indx 
 



 143

  Call DisplayOut(0, 0, "Mutual Authentication is successful.") 
 
End Sub 
 
Private Sub bFormat_Click() 
 
  Dim indx As Integer 
  Dim tmpStr As String 
  Dim tmpArray(0 To 31) As Byte 
   
  ' 1. Validate data template 
  If Not ValidTemplate Then 
    Exit Sub 
  End If 
   
  ' 2. Check if card inserted is an ACOS card 
  If Not CheckACOS Then 
    Call DisplayOut(0, 0, "Please insert an ACOS card.") 
    Exit Sub 
  End If 
  Call DisplayOut(0, 0, "ACOS card is detected.") 
   
  ' 3. Submit Issuer Code 
  retCode = SubmitIC() 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
 
  ' 4. Select FF 02 
  retCode = SelectFile(&HFF, &H2) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 
    Exit Sub 
  End If 
 
  ' 5. Write to FF 02 
  '    This step will define the Option registers, 
  '    Security Option registers and Personalization bit 
  '    are not set 
  If rbDES.Value = True Then    ' DES option only 



 144

    tmpArray(0) = &H0           ' 00h  3-DES is not set 
  Else 
    tmpArray(0) = &H2           ' 02h  3-DES is enabled 
  End If 
  tmpArray(1) = &H0             ' 00    Security option register 
  tmpArray(2) = &H3             ' 00    No of user files 
  tmpArray(3) = &H0             ' 00    Personalization bit 
  retCode = writeRecord(0, &H0, &H4, &H4, tmpArray) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  Call DisplayOut(0, 0, "FF 02 is updated") 
 
  ' 6. Perform a reset for changes in the ACOS to take effect 
  retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 
  ConnActive = False 
  retCode = SCardConnect(hContext, _ 
                        cbReader.Text, _ 
                        SCARD_SHARE_EXCLUSIVE, _ 
                        SCARD_PROTOCOL_T0 Or SCARD_PROTOCOL_T1, _ 
                        hCard, _ 
                        Protocol) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    ConnActive = False 
    Exit Sub 
  End If 
  Call DisplayOut(0, 0, "Account files are enabled.") 
  ConnActive = True 
 
  ' 7. Submit Issuer Code to write into FF 03 
  retCode = SubmitIC() 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
 
  ' 8. Select FF 03 
  retCode = SelectFile(&HFF, &H3) 
  If retCode <> SCARD_S_SUCCESS Then 
    Exit Sub 
  End If 
  tmpStr = "" 
  For indx = 0 To 1 
    tmpStr = tmpStr & Format(Hex(RecvBuff(indx)), "00") & " " 
  Next indx 
  If tmpStr <> "90 00 " Then 
    Call DisplayOut(0, 0, "Return string is invalid. Value: " & tmpStr) 



 145

    Exit Sub 
  End If 
 
  ' 9. Write to FF 03 
  If rbDES.Value = True Then    ' DES option uses 8-byte key 
   
  '  9a.1. Record 02 for Card key 
    tmpStr = tCard.Text 
    For indx = 0 To 7 
      tmpArray(indx) = Asc(Mid(tmpStr, indx + 1, 1)) 
    Next indx 
    retCode = writeRecord(0, &H2, &H8, &H8, tmpArray) 
    If retCode <> SCARD_S_SUCCESS Then 
      Exit Sub 
    End If 
   
  '  9a.2. Record 03 for Terminal key 
    tmpStr = tTerminal.Text 
    For indx = 0 To 7 
      tmpArray(indx) = Asc(Mid(tmpStr, indx + 1, 1)) 
    Next indx 
    retCode = writeRecord(0, &H3, &H8, &H8, tmpArray) 
    If retCode <> SCARD_S_SUCCESS Then 
      Exit Sub 
    End If 
  Else                          ' 3-DES option uses 16-byte key 
   
  '  9b.1. Write Record 02 for Left half of Card key 
    tmpStr = tCard.Text 
    For indx = 0 To 7           ' Left half of Card key 
      tmpArray(indx) = Asc(Mid(tmpStr, indx + 1, 1)) 
    Next indx 
    retCode = writeRecord(0, &H2, &H8, &H8, tmpArray) 
    If retCode <> SCARD_S_SUCCESS Then 
      Exit Sub 
    End If 
   
  '  9b.2. Record 12 for Right half of Card key 
    For indx = 8 To 15          ' Right half of Card key 
      tmpArray(indx - 8) = Asc(Mid(tmpStr, indx + 1, 1)) 
    Next indx 
    retCode = writeRecord(0, &HC, &H8, &H8, tmpArray) 
    If retCode <> SCARD_S_SUCCESS Then 
      Exit Sub 
    End If 
   
  '  9b.3. Write Record 03 for Left half of Terminal key 



 146

    tmpStr = tTerminal.Text 
    For indx = 0 To 7           ' Left half of Terminal key 
      tmpArray(indx) = Asc(Mid(tmpStr, indx + 1, 1)) 
    Next indx 
    retCode = writeRecord(0, &H3, &H8, &H8, tmpArray) 
    If retCode <> SCARD_S_SUCCESS Then 
      Exit Sub 
    End If 
   
  '  9b.4. Record 13 for Right half of Terminal key 
    For indx = 8 To 15          ' Right half of Terminal key 
      tmpArray(indx - 8) = Asc(Mid(tmpStr, indx + 1, 1)) 
    Next indx 
    retCode = writeRecord(0, &HD, &H8, &H8, tmpArray) 
    If retCode <> SCARD_S_SUCCESS Then 
      Exit Sub 
    End If 
  End If 
   
  Call ClearTextFields 
  Call DisplayOut(0, 0, "FF 03 is updated") 
 
End Sub 
 
Private Sub bInit_Click() 
 
  sReaderList = String(255, vbNullChar) 
  ReaderCount = 255 
      
  ' 1. Establish context and obtain hContext handle 
  retCode = SCardEstablishContext(SCARD_SCOPE_USER, 0, 0, hContext) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    Exit Sub 
  End If 
   
  ' 2. List PC/SC card readers installed in the system 
  retCode = SCardListReaders(hContext, sReaderGroup, sReaderList, ReaderCount) 
  If retCode <> SCARD_S_SUCCESS Then 
    Call DisplayOut(1, retCode, "") 
    Exit Sub 
  End If 
  Call LoadListToControl(cbReader, sReaderList) 
  cbReader.ListIndex = 0 
 
  Call AddButtons 
 



 147

End Sub 
 
Private Sub bQuit_Click() 
 
  If ConnActive Then 
    retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 
    ConnActive = False 
  End If 
  retCode = SCardReleaseContext(hContext) 
  Unload Me 
 
End Sub 
 
Private Sub bReset_Click() 
 
  If ConnActive Then 
    retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 
    ConnActive = False 
  End If 
  retCode = SCardReleaseContext(hContext) 
  Call InitMenu 
 
End Sub 
 
Private Sub cbReader_Click() 
   
  fSecOption.Enabled = False 
  fKey.Enabled = False 
  bExecMA.Enabled = False 
  Call ClearTextFields 
  rbDES.Value = False 
  rb3DES.Value = False 
 
  If ConnActive Then 
    retCode = SCardDisconnect(hCard, SCARD_UNPOWER_CARD) 
    ConnActive = False 
  End If 
 
End Sub 
 
Private Sub Form_Load() 
 
  Call InitMenu 
 
End Sub 
 
Private Sub rb3DES_Click() 



 148

   
  Call ClearTextFields 
  tCard.MaxLength = 16 
  tTerminal.MaxLength = 16 
 
End Sub 
 
Private Sub rbDES_Click() 
   
  Call ClearTextFields 
  tCard.MaxLength = 8 
  tTerminal.MaxLength = 8 
 
End Sub 
 
Private Sub tCard_KeyUp(KeyCode As Integer, Shift As Integer) 
 
  If (Len(tCard.Text) >= tCard.MaxLength) Then 
    tTerminal.SetFocus 
  End If 
End Sub 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 149

CURRICULUM VITAE 
 
PERSONAL INFORMATION 
 
Surname, Name: Tandoğan, Mehmet Murat  
Nationality: Turkish (TC) 
Date and Place of Birth: 07 February 1980, Bandırma/BALIKESİR 
Marital Status: Single 
Email: murat_tandogan@hotmail.com 
 
EDUCATION 
 
Degree Institution Year of Graduation 
MS Bahçeşehir University Computer Engineering 2010 
BS Bahçeşehir University Computer Engineering 2007 
AS Süleyman Demirel University Computer Programming 2001 
High School Şehit Mehmet Gönenç Lisesi, Bandırma 1997 
 
WORK EXPERIENCE 
 
Year Place Enrollment 
2009 Liba Laboratuarları A.Ş. IT Manager 
2007-2009 Çözüm Holding A.Ş. Senior Software Developer 
2006 Mako A.Ş. Intern Engineering Student 
2005 Koç Sistem A.Ş. Intern Engineering Student 
2001 Starcom Intern Engineering Student 
 
FOREIGN LANGUAGES  
 
Advanced English. 
 
 
HOBBIES 
 
Swimming, Diving, Playing Guitar, Camping, Trophical Aquariums, etc. 
 


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	ÖZET
	ABSTRACT
	LIST OF SYMBOLS / ABBREVIATIONS
	1.2.1. What is a Smart Card?
	1.2.2. CARD CLASSIFICATION
	1.2.3. TYPES OF CHIP CARDS
	1.2.3.1. Memory-Only Integrated Circuit Chip Cards
	1.2.3.2. Wired Logic Integrated Circuit Card
	1.2.3.3. Secure Microcontroller Integrated Circuit Chip Cards
	1.2.4. Contact Smartcards
	1.2.5. Contactless Smartcards
	1.2.6. Combination Cards

	1.3. CARD FORMATS
	1.4. CARD ELEMENTS
	1.4.1. Printing and Labeling
	1.4.2. Embossing
	1.4.3. Hologram
	1.4.4. Signature Panel
	1.4.5. Magnetic Stripe
	1.4.6. Chip Module
	1.4.7. Antenna

	1.5. SMARTCARD MICROCONTROLLERS
	1.5.1. Processor
	1.5.2. Memory


	2. SMART CARD STANDARDS
	2.1. ISO (International Standards Organization)
	2.1.1. ISO 7816 Summary
	2.1.1.1. ISO 7816-1
	2.1.1.2. ISO 7816-2
	2.1.1.3. ISO 7816-3
	2.1.1.4. ISO 7816-4
	2.1.1.5. ISO 7816-5
	2.1.1.6. ISO 7816-6
	2.1.1.7. ISO 7816-7
	2.1.1.8. ISO 7816-8 (commands for security operations)
	2.1.1.9. ISO 7816-9 (commands for card management)
	2.1.1.10. ISO 7816-10 (electronic signals and answer to reset for syncronous cards)
	2.1.1.11. ISO 7816-11 (personel verification through biometric methods)
	2.1.1.12. ISO 7816-12 (cards with contacts)
	2.1.1.13. ISO 7816-13 (application management in multi-application environment)
	2.1.1.14. ISO 7816-15 (Cryptographic information application)


	2.2. FIPS (Federal Information Processing Standards)
	2.2.1. FIPS 140 (1-3)
	2.2.2. FIPS 201

	2.3. EMV (EuroCard/EuroPay, MasterCard, Visa)
	2.3.1. Differences and Benefits of EMV
	2.3.2. Control of the EMV Standard

	2.4. PC / SC
	2.5. CEN (Comite’ Europe’ en De Normalisation)
	2.6. HIPAA
	2.7. IC Communication Standards
	2.8. SmartCard Standards
	2.8.1. Standarts for Card Bodies
	2.8.2. Standarts for Operating Systems

	2.9. File Management
	2.9.1. File Types
	2.9.2. File Names
	2.9.3. File Structures
	2.9.4. File Attributes
	2.9.5. File Selection
	2.9.6. Access Conditions
	2.9.6.1. State-Based Access Conditions
	2.9.6.2. Rule-Based Access Conditions

	2.9.7. File Life Cycle

	2.10. EMV Commands
	2.10.1. EMV Administration Commands (commands for file operations)
	2.10.1.1. Commands for Data Objects
	2.10.1.2. Commands for Security Functions

	2.10.2. EMV Payment Commands (for file management)
	2.10.3. EMV Commands & Descriptions
	2.10.4. Return & Error Codes Meanings (Status Codes)

	2.11. Data Transmission
	2.11.1. Answer to Reset (ATR)
	2.11.2. Transmission Protocols
	2.11.2.1. T=0 Transmission Protocol for Contact Cards
	2.11.2.2. T=1 Transmission Protocol for Contact Cards
	2.11.2.3. USB Transmission Protocol for Contact Cards
	2.11.2.4. Contactless Transmission Protocol

	2.11.3. Secure Messaging

	2.12. Special Operating System Functions
	2.12.1. Cryptographic Functions

	2.13. Data Implementation
	2.14. Implementation of Files
	2.14.1. Access Conditions
	2.14.2. File Names

	2.15. PIN Management
	2.16. Key Management

	3. MATERIAL & METHODS
	3.1. System Analysis
	3.1.1. Requirements Analysis
	3.1.2. Design
	3.1.3. Development
	3.1.4. Implementation


	4. TEST RESULTS & FINDINGS
	5. CONCLUSION & FUTURE WORKS
	REFERENCES
	APPENDICES
	Appendix I – Creating User Files & Read/Write string data to EMV smart card.
	Appendix II – Formatting smart card with DES/3DES and Mutual Authentication to EMV smart card.


