

T.R.

BAHCESEHIR UNIVERSITY

DESIGNING AN EARLY WARNING SYSTEM FOR

STOCK MARKET CRASHES BASED ON MACHINE

LEARNING FORECASTING

Master Thesis

MURAT ACAR

İSTANBUL, 2010

T.R.

BAHCESEHIR UNIVERSITY

The Graduate School of Natural and Applied Sciences

Computer Engineering Graduate Program

DESIGNING AN EARLY WARNING SYSTEM FOR

STOCK MARKET CRASHES BASED ON MACHINE

LEARNING FORECASTING

Master Thesis

Murat ACAR

SUPERVISOR: ASSOC. PROF. DR. ADEM KARAHOCA

İSTANBUL, 2010

T.R.

BAHCESEHIR UNIVERSITY

The Graduate School of Natural and Applied Sciences

Computer Engineering Graduate Program

Name of the thesis: DESIGNING AN EARLY WARNING SYSTEM FOR STOCK

MARKET CRASHES BASED ON MACHINE LEARNING FORECASTING

Name/Last Name of the Student: Murat Acar

Date of Thesis Defense: 07.06.2010

The thesis has been approved by The Graduate School of Natural and Applied Sciences.

 Asst. Prof. Dr. F. Tunç Bozbura

Director

Signature

This is to certify that we have read this thesis and that we find it fully adequate in scope,

quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Assoc. Prof. Dr. Adem Karahoca (Supervisor)

Prof. Dr. Nizamettin Aydın

Asst. Prof. Dr. M. Alper Tunga

i

ACKNOWLEDGEMENTS

It is a pleasure to thank people who made this thesis possible; first and foremost, I

would like to thank my family for always being supportive of my wife, son and

daughter who have untiringly shown me patience and love. Without them, I never

would have been able to get here.

I would like to express my deepest gratitude both personally and professionally, to my

advisor, Assoc. Prof. Dr. Adem Karahoca, without whose guide and encouragement the

completion of this study would be impossible. I will remember every word of his

valuable advices through all my future studies.

Also I would like to add my thanks to committee members Prof. Dr. Nizamettin Aydın

and Asst. Prof. Dr. M. Alper Tunga for carefully reading the thesis manuscript and their

valuable suggestions.

I would like to thank Computer Engineering Graduate Program Academic Staff for

making my years at Bahçeşehir University a great experience.

Finally, I would like to thank all my friends for their motivation.

 Murat Acar

ii

ABSTRACT

DESIGNING AN EARLY WARNING SYSTEM FOR STOCK MARKET CRASHES

BASED ON MACHINE LEARNING FORECASTING

Acar Murat

The Graduate School of Natural and Applied Sciences, Computer Engineering Graduate

Program

Supervisor: Assoc. Prof. Dr. Adem Karahoca

Jun 2010, 59 pages

In this study, we focus on building a financial early warning system (EWS) to predict

stock market crashes by using stock market volatility and rising stock prices. The

relation of stock market volatility with stock market crashes is analyzed empirically in

this study. Also, Istanbul Stock Exchange (ISE) national 100 index data will be used to

achieve better results from the point of modeling purpose. A stock market crash risk

indicator is computed to predict crashes and to give an early warning signal. Various

data mining classifiers are compared to obtain the best practical solution for the

financial early warning system. ANFIS model is offered as a means to forecast stock

market crashes efficiently. Besides, adaptive neuro fuzzy inference system (ANFIS) will

be explained in detail as a training tool for the EWS. The empirical results show that the

proposed adaptive neuro fuzzy (NF) model is successful thanks to ANFIS that includes

both artificial neural network (ANN) learning ability and the fuzzy logic inference

mechanism.

Keywords: Stock market crash; Economic crisis; Early warning system; Adaptive neuro

fuzzy inference system; Data mining classifier

iii

ÖZET

BORSA ÇÖKÜŞLERİNİ TAHMİN ETMEK İÇİN BİLGİSAYAR TABANLI BİR

ERKEN UYARI SİSTEMİ TASARIMI

Acar Murat

Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Yüksek Lisans Programı

Danışman: Doç. Dr. Adem Karahoca

Haziran 2010, 59 sayfa

Bu çalışmada, borsadaki fiyat değişkenliği ve hisse senetlerinin fiyatları ile ilgili verileri

kullanarak, olası borsa çöküşlerini tahmin etmek için bir finansal erken uyarı sistemi

(FEUS) geliştirme üzerine odaklandık. Borsalardaki fiyat değişkenliği ile borsa

çöküşleri arasındaki ilişki ampirik olarak analiz edilmiştir. Aynı zamanda, modelleme

açısından daha iyi sonuçlar almak için, İstanbul Menkul Kıymetler Borsası (IMKB)

Ulusal 100 Endeksi de kullanılmıştır. Borsadaki olası çöküşleri tahmin etmek ve bir

erken uyarı sinyali verebilmek için bir risk göstergesi hesaplanmıştır. Finansal erken

uyarı sistemi konusundaki en pratik çözümü bulmak için çeşitli veri madenciliği

sınıflayıcıları birbirleriyle karşılaştırılmıştır. Adaptif Bulanık Yapay Sinir Ağı ile

geliştirilen model borsadaki olası çöküşleri önceden etkli bir şekilde tahmin etmek için

kullanılabilecek bir araç olarak önerilmektedir. Bunun yanı sıra, geliştirilen erken uyarı

sisteminin eğitim aracı olan Adaptif Bulanık Yapay Sinir Ağı detaylı bir şekilde

açıklanacaktır. Ampirik sonuçlar, ön görülen adaptif bulanık yapay sinir ağı modelinin,

hem yapay sinir ağının öğrenme becerisi ve hem de bulanık mantık mekanizması

dolayısıyla başarılı olduğunu göstermiştir.

Anahtar Kelimeler: Borsa çöküşü; Ekonomik Kriz; Erken Uyarı Sistemi; Adaptif

Bulanık Yapay Sinir Ağı; Veri madenciliği sınıflayıcıları

iv

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 4

3. MATERIAL AND METHODS ... 7

3.1. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) 13

3.1.1. ANFIS Algorithm .. 15

3.2. BAYES NETWORK (BN) ... 17

3.2.1. BAYES Algorithm .. 20

3.3. LOGISTIC REGRESSION (LR) ... 25

3.4. MULTILAYER PERCEPTRON (MLP) .. 28

3.5. RADIAL BASIS FUNCTION (RBF) NETWORK ... 36

3.6. SIMPLE LOGISTIC (SL) .. 38

3.7. BAGGING .. 40

3.8. COMPARING DATA MINING METHODS .. 45

4. FINDINGS ... 51

5. CONCLUSIONS.. 56

REFERENCES .. 57

v

LIST OF TABLES

Table 4.1 : Test results for the selected methods .. 52

vi

LIST OF FIGURES

Figure 3.1 : Istanbul Stock Exchange national 100 index of 2008 (xt) 9

Figure 3.2 : Daily rise and fall rate of 2008 (pt) .. 9

Figure 3.3 : Ten-day moving average of rise and fall rate of 2008 (t) 10

Figure 3.4 : Ten-day moving variance of rise and fall rate of 2008 (st
2
) 10

Figure 3.5 : Ratio of moving variance of 2008 (rt) ... 10

Figure 3.6 : Stock market crash risk indicator of 2008 ... 11

Figure 3.7 : First-order Sugeno fuzzy model .. 14

Figure 3.8 : ANFIS Architecture ... 14

Figure 3.9 : Example datasets and corresponding perceptrons 30

Figure 3.10 : Multilayer perceptron with a hidden layer ... 33

Figure 3.11 : A confusion matrix for positive and negative tuples 46

Figure 3.12 : The ROC curves of two classification models .. 50

Figure 4.1 : The ROC curves of selected methods.. 52

Figure 4.2 : FIS Model .. 53

Figure 4.3 : Training plot .. 53

Figure 4.4 : Testing plot .. 54

Figure 4.5 : Checking plot ... 54

Figure 4.6 : FIS Rules.. 55

Figure 4.7 : FIS Model Structure .. 55

vii

LIST OF SYMBOLS/ABBREVIATIONS

Adaptive Neuro Fuzzy Inference System : ANFIS

Akaike Information Criterion : AIC

Area Under Curve : AUC

Artificial Neural Network : ANN

Bayes Network : BN

Bayesian Belief Network : BBN

Confusion Matrix : CM

Decision Tree : DT

Directed Acyclic Graph : DAG

Early Warning System : EWS

False Negatives : FN

False Positives : FP

Fuzzy Inference System : FIS

Gross Domestic Product : GDP

Istanbul Stock Exchange : ISE

Log Likelihood : LL

Logistic Discrimination : LD

Logistic Regression : LR

Matrix Laboratory : MATLAB

Maximum A Posteriori : MAP

Multilayer Perceptron : MLP

Neuro Fuzzy : NF

Radial Basis Function : RBF

Receiver Operating Characteristic : ROC

Root Mean Square Error : RMSE

Simple Logistic : SL

Support Vector Machine : SVM

Tree Augmented Naïve Bayes : TAN

True Negative Rate : TNR

True Negatives : TN

True Positive Rate : TPR

True Positives : TP

United States : US

Waikato Environment for Knowledge

Analysis : WEKA

1

1. INTRODUCTION

Failures in financial systems may cause financial crises and then the latter may develop

into economic fundamental crises that might not be always inevitable results. Economic

crises are characterized by sharp falls in both asset prices and currency values. Failures

could lead to a stock market crash that is often defined as a sharp dip in share prices of

equities listed on the stock exchanges. Rising stock prices and excessive economic

optimism may also cause a stock market crash. Although there is no a numerically

specific definition of a stock market crash, it can be defined as double-digit percentage

losses in a stock market index over a period of several days.

Stock market crashes can provoke recessions, lead to failures in the financial system or

consume years of savings and pensions instantaneously. Testing for the existence of

log-periodic behavior and attempting to forecast crashes are thus important for financial

regulators, risk and portfolio managers, policy makers and financial institutions

(Cajueiro, 2009). Generally, in any given field, crashes are extremely difficult to

forecast accurately. Forecasting of crashes is one of the most popular research topics in

finance. Many theoretical and empirical studies have been done to forecast crashes and

many models have been developed to predict the occurrence of such crashes.

With increasing globalization and financial integration, crises in a country could make

other countries highly vulnerable to shocks. The United States (US) subprime mortgage

crisis also hit the Turkish economy in 2008. The Istanbul Stock Exchange (ISE)

decreased from 54708 to 26864 in 2008 because of the rapid decrease in foreign

markets and insufficient fresh money entrance. The ISE is the only securities exchange

in Turkey. The ISE is a dynamic and growing emerging market with an increasing

number of publicly traded companies, state-of-the-art technology and strong foreign

participation. The ISE provides a transparent and fair trading environment not only for

domestic participants, but also for foreign issuers and investors (http://www.ise.org).

Iseri and et al. (2008)'s study indicates that the ISE has very high chaotic phenomena.

So prediction on chaotic phenomena is very complex (Iseri, 2008).

2

Investors are intensely interested in market directions and possibilities of stock market

crashes. Therefore behavior patterns of risky market days of this kind should be defined.

Relationships among variables derived from the historical financial data should be

discovered and a financial early warning system (EWS) should be constructed to

forecast stock market crashes. Financial early warning systems have evolved

considerably during the last decade thanks to data mining. Data mining is the

automatization of the process of finding interesting patterns in datasets. Methodologies

in data mining come from machine learning and statistics. Machine learning is

connected to computer science and artificial intelligence and is concerned with finding

relations and regularities in data that can be translated into general truths. The aim of

machine learning is the reproduction of the data-generating process, allowing analysts to

generalize from the observed data to new, unobserved cases (Giudici, 2003).

Early warning systems in finance are vital tools for monitoring and detecting events in

financial markets to predict upcoming financial crises. The world financial crisis in

2008 has put an emphasis on the importance of prediction of crises in both academic

and industrial senses. It‘s now more necessary to develop an efficient and predictive

model to give early warning signals and to anticipate crises. From a policy perspective,

EWS models that help to reliably anticipate financial crises constitute an important tool

for policy makers if they are employed carefully and sensibly. Many financial crises

over the past few decades had devastating social, economic and political consequences.

Developing reliable EWS models therefore can be of substantial value by allowing

policy makers to obtain clearer signals about when and how to take pre-emptive action

in order to mitigate or even prevent financial turmoil. It should be stressed that EWS

models cannot replace the sound judgment of the policy maker to guide policy, but they

can play an important complementary role as a neutral and objective measure of

vulnerability (Bussiere, 2006).

Forecasting simply means understanding which variables lead or help to predict other

variables, when many variables interact in volatile markets. This means looking at the

past to see what variables are significant leading indicators of the behavior of other

variables. It also means a better understanding of the timing of lead–lag relations among

many variables, understanding the statistical significance of these lead–lag

3

relationships, and learning which variables are the more important ones to watch as

signals for further developments in other returns (McNelis, 2005).

In this study, the main motivation is developing reliable EWS. High stock market

volatility and excessive stock prices make stock markets more risky. ISE national 100

index data was used to measure the dynamic change of volatility of ISE. A model was

developed to predict the occurrence of such crises by using stock market volatility and

rising stock prices or rising ISE national 100 index. Five variables as input variables and

one variable as an output variable were included in the model. The output variable

which is a crisis risk indicator represents the probability of a stock market crash. If the

probability is strong, it should be interpreted as a warning signal that a stock market

crash is more likely to happen. Adaptive neuro fuzzy inference system (ANFIS) is used

in the model to give early warning signals and these signals help forecasting any stock

market crash before it happens.

The rest of the study is organized as follows: Section 2 surveys the related works with

developing EWS. In Section 3, variables and data mining methods in the model are

explained. Respectively, Section 4 reports the results of data mining classifiers and

detailed explanation of the ANFIS application. Finally, conclusions are drawn in

Section 5.

4

2. LITERATURE REVIEW

There are various types of financial crises: currency crises, banking crises, sovereign

debt crises, private sector debt crises, equity market crises. Most of early warning

systems developed so far have tried to predict currency crises, banking crises or both.

Previous early warning systems of financial crises have used methods that fall into two

broad categories. One approach uses logit or probit models, whereas the other extracts

signals from a range of indicators (Bussiere, 2006). The most remarkable papers in this

field are written by Frankel and Rose (1996) and Kaminsky et al. (1998).

The advantage of logit or probit model is to represent all the information contained in

the variables by giving the probability of the crisis. The disadvantage is that it cannot

gauge the precise forecasting ability of each variable though it can give the significance

level of each variable. In other words, the ability of the correct signal and false alarm for

each variable can not be seen exactly from the model. On the other hand, the signal

approach can show the contribution of each variable for the crisis prediction. Besides, it

can also offer a summary indicator by calculating the conditional probability given the

number of indicators used for signaling (Lin, 2006).

Frankel and Rose (1996) use a panel of annual data for over one hundred developing

countries from 1971 through 1992 to characterize currency crashes. They define a

currency crash as a large change of the nominal exchange rate that is also a substantial

increase in the rate of change of the nominal depreciation. They examine the

composition of the debt as well as its level, and a variety of other macroeconomic,

external and foreign factors. Factors are significantly related to crash incidence,

especially output growth, the rate of change of domestic credit, and foreign interest

rates. A low ratio of foreign direct investment to debt is consistently associated with a

high likelihood of a crash.

Kaminsky and et al. (1998) examines the empirical evidence on currency crisis and

proposes a specific early warning system. This system involves monitoring the

evolution of several indicators that tend to exhibit an unusual behavior in periods

preceding a crisis. When an indicator exceeds a certain threshold value, this is

5

interpreted as a warning ―signal‖ that a currency crisis may take place within the next

24 months. The threshold values are calculated so as to strike a balance between the risk

of having many false signals and the risk of missing the crisis altogether. Also, since the

group of indicators that are issuing signals would be identified, this helps provide

information about the source(s) of problems that underlie a crisis.

Peltonen‘s study (2006) analyzes the predictability of emerging market currency crises

by comparing the often used probit model to a multi-layer perceptron artificial neural

network (ANN) model. The main result of the study is that both the probit and the ANN

model are able to correctly signal crises reasonably well in-sample, and that the ANN

model slightly outperforms the probit model. In contrast to the findings in the earlier

literature on currency crises, the ability of the models to predict currency crises out-of-

sample is found to be weak. Only in the case of the Russian crisis (1998) both models

are able to signal its occurrence well in advance. In addition, certain economic factors

are found to be related to the emerging market currency crises. These factors are the

contagion effect, the prevailing de facto exchange rate regime, the current account and

government budget deficits, as well as real gross domestic product (GDP) growth.

Until now, however, a few studies have been done on stock market crises. Kim and et

al. (2004) study for modeling EWSs by training classifiers for the distinctive features of

economic crises. An economic crisis always makes it possible to consider EWS as a

pattern classifier between critical and normal economic situations. To find a better

classifier for training EWSs, logistic discrimination (LD) model, decision tree (DT),

support vector machine (SVM), neuro-fuzzy model (NF), and artificial neural networks

(ANN) are considered among various classifiers. Each of these classifiers has its own

strength and weakness, which might work either positively or negatively during training

EWS. Kim defines five classifiers to compare in terms of their performances which are

done by building EWS based on each classifier for Korean economy which experienced

a severe economic crisis in 1997. As a concluding remark of his studies, ANN is

suggested as a better classifier and is argued that its major drawback, overfitting might

work positively for training EWS.

6

Levy (2008) also analyzes stock market crashes. He writes in his paper that stock

market crashes are traumatic events that affect the lives of millions of people around the

globe and have tremendous economic implications. Crashes are not only dramatic, but

often completely unexpected. Levy suggests that spontaneous market crashes can be

explained by a ‗social phase transition‘ mechanism similar to statistical mechanics

phase transitions. The analysis suggests that dramatic crashes are a robust and inevitable

property of financial markets. It also implies that market crashes should be preceded by

an increase in price volatility, as empirically observed. Thus market crashes are a

fundamental and unavoidable part of our world. However, he thinks early warning

systems can be developed that may help minimize the damages.

7

3. MATERIAL AND METHODS

We use ISE national 100 index data to measure the dynamic change of volatility of ISE

in 2008. All variables which are used to estimate early warning signals are derived from

ISE national 100 index (xt) in Figure 3.1 by applying formulas numbered 3.2, 3.3, 3.4,

and 3.5 that are mentioned below.

We use Kim and et al.‘s detailed analysis to select input variables to measure the

volatility and their analysis could be summarized as follows: It is expected that the stock

market must have shown a sudden increase of volatility as it headed into the crisis.

Indeed, five input variables are considered to measure such a sudden volatility increase.

Input variables are Istanbul Stock Exchange national 100 index (xt), daily rise and fall

rate (pt), ten-day moving average of rise and fall rate (t), ten-day moving variance of

rise and fall rate (st
2
) and ratio of moving variance (rt). The frequency and amplitude of

pt in Figure 3.2 reflects a sudden volatility increase of the stock market due to the

upcoming crisis. The other variables t in Figure 3.3, st
2
 in Figure 3.4 and rt in Figure

3.5 add an additional dimension to the volatility analysis. Clearly, st
2
 measures the

amount of variation of pt, and rt is found to be very useful to obtain specific dates of

sudden volatility increase. In fact, one can easily observe that st
2
 starts to increase from

September and there was an obvious signal or flag at September 16 by rt (i.e. rt exceeds

4 on that date) which is an early warning signal. The variable t
is included since it is a

variable to smooth out fluctuations over the recent 10 days and then it would help

creating a stable indicator. Note that a rather short period of 10 days for moving average

is taken into account in order to obtain the visibly clear non-stationary of pt. These input

variables are calculated by formulas presented as follows:

[xt]

(3.1)

[pt=(xt-xt-1)/xt-1]

(3.2)

[t 



t

ti

p
9

i/10]
(3.3)

8

[st
2
=(1/10))(

9

tppi
t

ti




2
]

(3.4)

[rt=st
2
/st-1

2
]

(3.5)

The output variable or the stock market crash risk indicator in Figure 3.6 contains

normalized results of the multiplication of Istanbul Stock Exchange national 100 index

(xt) and the ten-day moving variance of rise and fall rate (st
2
) values:

[the result= xt* st
2
]

(3.6)

After normalization of the result values, we obtained five output values by applying the

following rule:

If the result<0.2 then output=0.2,

Else If the result<0.4 then output=0.4,

Else If the result<0.6 then output=0.6,

Else If the result<0.8 then output=0.8,

Else output=1.

So the output variable contains five values which are 0.2, 0.4, 0.6, 0.8 and 1. The output

value 1 means the most risky value in the stock market and if the output value is 1, a

stock market crash likely happens in the very following days.

All input and output data is divided into three parts as training data set, testing data set

and checking data set. Training data is used for model building, testing data is used for

model validation and checking data is used for model evaluation.

9

Figure 3.1 : Istanbul Stock Exchange national 100 index of 2008 (xt)

Figure 3.2 : Daily rise and fall rate of 2008 (pt)

0

10000

20000

30000

40000

50000

60000

2
0

0
7

/1
2

/0
3

2
0

0
7

/1
2

/1
4

2
0

0
8

/0
1

/0
2

2
0

0
8

/0
1

/1
5

2
0

0
8

/0
1

/2
8

2
0

0
8

/0
2

/0
8

2
0

0
8

/0
2

/2
1

2
0

0
8

/0
3

/0
5

2
0

0
8

/0
3

/1
8

2
0

0
8

/0
3

/3
1

2
0

0
8

/0
4

/1
1

2
0

0
8

/0
4

/2
5

2
0

0
8

/0
5

/0
8

2
0

0
8

/0
5

/2
2

2
0

0
8

/0
6

/0
4

2
0

0
8

/0
6

/1
7

2
0

0
8

/0
6

/3
0

2
0

0
8

/0
7

/1
1

2
0

0
8

/0
7

/2
4

2
0

0
8

/0
8

/0
6

2
0

0
8

/0
8

/1
9

2
0

0
8

/0
9

/0
1

2
0

0
8

/0
9

/1
2

2
0

0
8

/0
9

/2
5

2
0

0
8

/1
0

/1
4

2
0

0
8

/1
0

/2
7

2
0

0
8

/1
1

/1
1

2
0

0
8

/1
1

/2
4

2
0

0
8

/1
2

/0
5

2
0

0
8

/1
2

/2
4

-0,1000000000

-0,0500000000

0,0000000000

0,0500000000

0,1000000000

0,1500000000

2
0

0
7

/1
2

/0
3

2
0

0
7

/1
2

/1
7

2
0

0
8

/0
1

/0
4

2
0

0
8

/0
1

/1
8

2
0

0
8

/0
2

/0
1

2
0

0
8

/0
2

/1
5

2
0

0
8

/0
2

/2
9

2
0

0
8

/0
3

/1
4

2
0

0
8

/0
3

/2
8

2
0

0
8

/0
4

/1
1

2
0

0
8

/0
4

/2
8

2
0

0
8

/0
5

/1
2

2
0

0
8

/0
5

/2
7

2
0

0
8

/0
6

/1
0

2
0

0
8

/0
6

/2
4

2
0

0
8

/0
7

/0
8

2
0

0
8

/0
7

/2
2

2
0

0
8

/0
8

/0
5

2
0

0
8

/0
8

/1
9

2
0

0
8

/0
9

/0
2

2
0

0
8

/0
9

/1
6

2
0

0
8

/1
0

/0
6

2
0

0
8

/1
0

/2
0

2
0

0
8

/1
1

/0
5

2
0

0
8

/1
1

/1
9

2
0

0
8

/1
2

/0
3

2
0

0
8

/1
2

/2
3

10

Figure 3.3 : Ten-day moving average of rise and fall rate of 2008 (t)

Figure 3.4 : Ten-day moving variance of rise and fall rate of 2008 (st
2
)

Figure 3.5 : Ratio of moving variance of 2008 (rt)

-0,0300000000

-0,0200000000

-0,0100000000

0,0000000000

0,0100000000

0,0200000000

2
0

0
7

/1
2

/0
3

2
0

0
7

/1
2

/1
7

2
0

0
8

/0
1

/0
4

2
0

0
8

/0
1

/1
8

2
0

0
8

/0
2

/0
1

2
0

0
8

/0
2

/1
5

2
0

0
8

/0
2

/2
9

2
0

0
8

/0
3

/1
4

2
0

0
8

/0
3

/2
8

2
0

0
8

/0
4

/1
1

2
0

0
8

/0
4

/2
8

2
0

0
8

/0
5

/1
2

2
0

0
8

/0
5

/2
7

2
0

0
8

/0
6

/1
0

2
0

0
8

/0
6

/2
4

2
0

0
8

/0
7

/0
8

2
0

0
8

/0
7

/2
2

2
0

0
8

/0
8

/0
5

2
0

0
8

/0
8

/1
9

2
0

0
8

/0
9

/0
2

2
0

0
8

/0
9

/1
6

2
0

0
8

/1
0

/0
6

2
0

0
8

/1
0

/2
0

2
0

0
8

/1
1

/0
5

2
0

0
8

/1
1

/1
9

2
0

0
8

/1
2

/0
3

2
0

0
8

/1
2

/2
3

0,0000000000
0,0005000000
0,0010000000
0,0015000000
0,0020000000
0,0025000000
0,0030000000
0,0035000000

2
0

0
7

/1
2

/0
3

2
0

0
7

/1
2

/1
7

2
0

0
8

/0
1

/0
4

2
0

0
8

/0
1

/1
8

2
0

0
8

/0
2

/0
1

2
0

0
8

/0
2

/1
5

2
0

0
8

/0
2

/2
9

2
0

0
8

/0
3

/1
4

2
0

0
8

/0
3

/2
8

2
0

0
8

/0
4

/1
1

2
0

0
8

/0
4

/2
8

2
0

0
8

/0
5

/1
2

2
0

0
8

/0
5

/2
7

2
0

0
8

/0
6

/1
0

2
0

0
8

/0
6

/2
4

2
0

0
8

/0
7

/0
8

2
0

0
8

/0
7

/2
2

2
0

0
8

/0
8

/0
5

2
0

0
8

/0
8

/1
9

2
0

0
8

/0
9

/0
2

2
0

0
8

/0
9

/1
6

2
0

0
8

/1
0

/0
6

2
0

0
8

/1
0

/2
0

2
0

0
8

/1
1

/0
5

2
0

0
8

/1
1

/1
9

2
0

0
8

/1
2

/0
3

2
0

0
8

/1
2

/2
3

0,0000000000

1,0000000000

2,0000000000

3,0000000000

4,0000000000

5,0000000000

2
0

0
7

/1
2

/0
3

2
0

0
7

/1
2

/1
7

2
0

0
8

/0
1

/0
4

2
0

0
8

/0
1

/1
8

2
0

0
8

/0
2

/0
1

2
0

0
8

/0
2

/1
5

2
0

0
8

/0
2

/2
9

2
0

0
8

/0
3

/1
4

2
0

0
8

/0
3

/2
8

2
0

0
8

/0
4

/1
1

2
0

0
8

/0
4

/2
8

2
0

0
8

/0
5

/1
2

2
0

0
8

/0
5

/2
7

2
0

0
8

/0
6

/1
0

2
0

0
8

/0
6

/2
4

2
0

0
8

/0
7

/0
8

2
0

0
8

/0
7

/2
2

2
0

0
8

/0
8

/0
5

2
0

0
8

/0
8

/1
9

2
0

0
8

/0
9

/0
2

2
0

0
8

/0
9

/1
6

2
0

0
8

/1
0

/0
6

2
0

0
8

/1
0

/2
0

2
0

0
8

/1
1

/0
5

2
0

0
8

/1
1

/1
9

2
0

0
8

/1
2

/0
3

2
0

0
8

/1
2

/2
3

11

Figure 3.6 : Stock market crash risk indicator of 2008

In this section, definitions of data mining methods used in this study are given. The

methods are general methods that are used for forecasting purposes. Following data

mining methods are Adaptive neuro fuzzy inference system (ANFIS), Bayes network

(BN), Logistic regression (LR), Multilayer perceptron (MLP), Radial basis function

(RBF) network, Simple logistic (SL) and Bagging. Matlab and Weka as data mining

tools were used. Weka doesn‘t include ANFIS. ANFIS was performed in Matlab and

others were performed in Weka.

The MATLAB high-performance language for technical computing integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation. Typical uses

include math and computation, algorithm development, data acquisition, modeling,

simulation, and prototyping, data analysis, exploration, and visualization, scientific and

engineering graphics, application development, including graphical user interface

building. MATLAB is an interactive system whose basic data element is an array that

does not require dimensioning. It allows you to solve many technical computing

problems, especially those with matrix and vector formulations, in a fraction of the time

it would take to write a program in a scalar noninteractive language such as C or

Fortran. The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by the LINPACK and

EISPACK projects. Today, MATLAB engines incorporate the LAPACK and BLAS

libraries, embedding the state of the art in software for matrix computation. MATLAB

0,000

0,200

0,400

0,600

0,800

1,000

1,200

2
0

0
8

0
1

0
2

2
0

0
8

0
1

1
5

2
0

0
8

0
1

2
8

2
0

0
8

0
2

0
8

2
0

0
8

0
2

2
1

2
0

0
8

0
3

0
5

2
0

0
8

0
3

1
8

2
0

0
8

0
3

3
1

2
0

0
8

0
4

1
1

2
0

0
8

0
4

2
5

2
0

0
8

0
5

0
8

2
0

0
8

0
5

2
2

2
0

0
8

0
6

0
4

2
0

0
8

0
6

1
7

2
0

0
8

0
6

3
0

2
0

0
8

0
7

1
1

2
0

0
8

0
7

2
4

2
0

0
8

0
8

0
6

2
0

0
8

0
8

1
9

2
0

0
8

0
9

0
1

2
0

0
8

0
9

1
2

2
0

0
8

0
9

2
5

2
0

0
8

1
0

1
4

2
0

0
8

1
0

2
7

2
0

0
8

1
1

1
1

2
0

0
8

1
1

2
4

2
0

0
8

1
2

0
5

2
0

0
8

1
2

2
4

12

features a family of add-on application-specific solutions called toolboxes. Very

important to most users of MATLAB, toolboxes allow you to learn and apply

specialized technology. Toolboxes are comprehensive collections of MATLAB

functions (M-files) that extend the MATLAB environment to solve particular classes of

problems. You can add on toolboxes for signal processing, control systems, neural

networks, fuzzy logic, wavelets, simulation, and many other areas (Getting Started

Guide, 2008). Fuzzy Logic Toolbox was used in this study. Fuzzy Logic Toolbox

software is a collection of functions built on the MATLAB technical computing

environment. It provides tools for you to create and edit fuzzy inference systems (FISs)

within the framework of MATLAB (Fuzzy Logic Toolbox User‘s Guide , 2008).

The Weka workbench is a collection of state-of-the-art machine learning algorithms and

data preprocessing tools. It is designed so that you can quickly try out existing methods

on new datasets in flexible ways. It provides extensive support for the whole process of

experimental data mining, including preparing the input data, evaluating learning

schemes statistically, and visualizing the input data and the result of learning. As well as

a wide variety of learning algorithms, it includes a wide range of preprocessing tools.

This diverse and comprehensive toolkit is accessed through a common interface so that

its users can compare different methods and identify those that are most appropriate for

the problem at hand. Weka was developed at the University of Waikato in New

Zealand, and the name stands for Waikato Environment for Knowledge Analysis

(WEKA). The system is written in Java and distributed under the terms of the GNU

General Public License. It runs on almost any platform and has been tested under Linux,

Windows, and Macintosh operating systems—and even on a personal digital assistant. It

provides a uniform interface to many different learning algorithms, along with methods

for pre- and postprocessing and for evaluating the result of learning schemes on any

given dataset (Witten, 2005).

13

3.1. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)

We use adaptive neuro fuzzy inference system (ANFIS) to model these input and output

data. Fuzzy inference systems (FISs) are also known as fuzzy rule-based systems, fuzzy

model, fuzzy expert system, and fuzzy associative memory. This is a major unit of a

fuzzy logic system. The decision-making is an important part in the entire system. The

FIS formulates suitable rules and based upon the rules the decision is made. This is

mainly based on the concepts of the fuzzy set theory, fuzzy IF–THEN rules, and fuzzy

reasoning. FIS uses ―IF. . . THEN. . . ‖ statements, and the connectors present in the rule

statement are ―OR‖ or ―AND‖ to make the necessary decision rules. The basic FIS can

take either fuzzy inputs or crisp inputs, but the outputs it produces are almost always

fuzzy sets. When the FIS is used as a controller, it is necessary to have a crisp output.

Therefore in this case defuzzification method is adopted to best extract a crisp value that

best represents a fuzzy set.

The most important two types of fuzzy inference method are Mamdani and Takagi–

Sugeno method.

We use Takagi–Sugeno method in this study. The Sugeno fuzzy model was proposed by

Takagi, Sugeno, and Kang in an effort to formalize a system approach to generating

fuzzy rules from an input–output data set. Sugeno fuzzy model is also known as

Sugeno–Takagi model. A typical fuzzy rule in a Sugeno fuzzy model has the format

IF x is A and y is B THEN z = f(x, y),

where A,B are fuzzy sets in the antecedent; Z = f(x, y) is a crisp function in the

consequent. Usually f(x, y) is a polynomial in the input variables x and y, but it can be

any other functions that can appropriately describe the output of the system within the

fuzzy region specified by the antecedent of the rule. When f(x, y) is a first-order

polynomial, we have the first-order Sugeno fuzzy model. When f is a constant, we then

have the zero-order Sugeno fuzzy model, which can be viewed either as a special case

of the Mamdani FIS where each rule‘s consequent is specified by a fuzzy singleton, or a

special case of Tsukamoto‘s fuzzy model where each rule‘s consequent is specified by a

membership function of a step function centered at the constant. Moreover, a zero-order

14

Sugeno fuzzy model is functionally equivalent to a radial basis function (RBF) network

under certain minor constraints. The first two parts of the fuzzy inference process,

fuzzifying the inputs and applying the fuzzy operator, are exactly the same. The main

difference between Mamdani and Sugeno is that the Sugeno output membership

functions are either linear or constant. A typical rule in a Sugeno fuzzy model has the

form

IF Input 1 = x AND Input 2 = y, THEN Output is z = ax + by + c.

For a zero-order Sugeno model, the output level z is a constant (a = b =0). The output

level zi of each rule is weighted by the firing strength wi of the rule (Sivanandam, 2007).

Rule 1: If X is A1 and Y is B1, then f1 = p1x + q1y + r1

 Rule 2: If X is A2 and Y is B2, then f2 = p2x + q2y + r1

The fuzzy reasoning mechanism is summarized in Figure 3.7. Weighted averages are

used in order to avoid extreme computational complexity in defuzzification processes.

Figure 3.7 : First-order Sugeno fuzzy model

Figure 3.8 : ANFIS Architecture

x

y

A1

A2

 B1

 B2

П

П

N

N

Σ

1W 1W

W2 2W

11 fW

22 fW

 f

15

3.1.1. ANFIS Algorithm

Layer 0: It consists of plain input variable set.

Layer 1: Each node in this layer generates a membership grade of a linguistic label. For

instance, the node function of the i-th liode may be a generalized bell membership

function:

(3.7)

where x is the input to node i; Ai is the linguistic label (small , large, etc.) associated

with this node; and {ai, bi, ci} is the parameter set that changes the shapes of the

membership function. Parameters in this layer are referred to as the premise parameters.

Layer 2: The function is a T-norm operator that performs the firing strength of the rule,

e.g., fuzzy conjunctives AND and OR. The simplest implementation just calculates the

product of all incoming signals.

.2,1),()( iyBxAw iii  (3.8)

Layer 3: Every node in this layer is fixed and determines a normalized firing strength. It

calculates the ratio of the jth rule‘s firing strength to the sum of all rules firing strength.

.2,1,
21




 i
ww

w
w i

i

(3.9)

Layer 4: The nodes in this layer are adaptive and are connected with the input nodes (of

layer 0) and the preceding node of layer 3. The result is the weighted output of the rule

j.

)(iiiiii ryqxpwfw 
(3.10)

ii b

i

i

A

a

cx

x






















 



2

1

1
)(

16

where iw is the output of layer 3, and {pi, qi , ri}is the parameter set. Parameters in this

layer are referred to as the consequent parameters.

Layer 5: This layer consists of one single node which computes the overall output as the

summation of all incoming signals.

Overall Output = 


 

i i

i ii

i

ii
w

fw
fw

(3.11)

The constructed adaptive network in Figure 3.8 is functionally equivalent to a fuzzy

inference system in Figure 3.7. The basic learning rule of ANFIS is the back-

propagation gradient descent which calculates error signals (the derivative of the

squared error with respect to each node's output) recursively from the output layer

backward to the input nodes. This learning rule is exactly the same as the back-

propagation learning rule used in the common feed-forward neural networks (JANG,

1992,1993,1996).

17

3.2. BAYES NETWORK (BN)

A Bayesian network is a graphical model for probabilistic relationships among a set of

variables. Over the last decade, the Bayesian network has become a popular

representation for encoding uncertain expert knowledge in expert systems. More

recently, researchers have developed methods for learning Bayesian networks from

data. The techniques that have been developed are new and still evolving, but they have

been shown to be remarkably effective for some data-modeling problems (Heckerman,

1997).

The Bayes classifiers produce probability estimates rather than predictions. For each

class value, they estimate the probability that a given instance belongs to that class.

Most other types of classifiers can be coerced into yielding this kind of information if

necessary. For example, probabilities can be obtained from a decision tree by computing

the relative frequency of each class in a leaf and from a decision list by examining the

instances that a particular rule covers.

Probability estimates are often more useful than plain predictions. They allow

predictions to be ranked, and their expected cost to be minimized. In fact, there is a

strong argument for treating classification learning as the task of learning class

probability estimates from data. What is being estimated is the conditional probability

distribution of the values of the class attribute given the values of the other attributes.

The classification model represents this conditional distribution in a concise and easily

comprehensible form.

Naïve Bayes classifiers, logistic regression models, decision trees, and so on, are just

alternative ways of representing a conditional probability distribution. Of course, they

differ in representational power. Naïve Bayes classifiers and logistic regression models

can only represent simple distributions, whereas decision trees can represent—or at least

approximate— arbitrary distributions. However, decision trees have their drawbacks:

they fragment the training set into smaller and smaller pieces, which inevitably yield

less reliable probability estimates, and they suffer from the replicated subtree problem.

Rule sets go some way toward addressing these shortcomings, but the design of a good

rule learner is guided by heuristics with scant theoretical justification.

18

There is a statistically based alternative: a theoretically well-founded way of

representing probability distributions concisely and comprehensibly in a graphical

manner. The structures are called Bayesian networks. They are drawn as a network of

nodes, one for each attribute, connected by directed edges in such a way that there are

no cycles—a directed acyclic graph (DAG). In our explanation of how to interpret

Bayesian networks and how to learn them from data, we will make some simplifying

assumptions. We assume that all attributes are nominal and that there are no missing

values. Some advanced learning algorithms can create new attributes in addition to the

ones present in the data—so-called hidden attributes whose values cannot be observed.

These can support better models if they represent salient features of the underlying

problem, and Bayesian networks provide a good way of using them at prediction time.

However, they make both learning and prediction far more complex and time

consuming.

The way to construct a learning algorithm for Bayesian networks is to define two

components: a function for evaluating a given network based on the data and a method

for searching through the space of possible networks. The quality of a given network is

measured by the probability of the data given the network. We calculate the probability

that the network accords to each instance and multiply these probabilities together over

all instances. In practice, this quickly yields numbers too small to be represented

properly (called arithmetic underflow), so we use the sum of the logarithms of the

probabilities rather than their product. The resulting quantity is the log-likelihood (LL)

of the network given the data.

The nodes in the network are predetermined, one for each attribute (including the class).

Learning the network structure amounts to searching through the space of possible sets

of edges, estimating the conditional probability tables for each set, and computing the

log-likelihood of the resulting network based on the data as a measure of the network‘s

quality. Bayesian network learning algorithms differ mainly in the way in which they

search through the space of network structures. Some algorithms are introduced below.

There is one caveat. If the log-likelihood is maximized based on the training data, it will

always be better to add more edges: the resulting network will simply overfit. Various

19

methods can be employed to combat this problem. One possibility is to use cross-

validation to estimate the goodness of fit. A second is to add a penalty for the

complexity of the network based on the number of parameters, that is, the total number

of independent estimates in all the probability tables. For each table, the number of

independent probabilities is the total number of entries minus the number of entries in

the last column, which can be determined from the other columns because all rows must

sum to 1. Let K be the number of parameters, the log-likelihood, and N the number of

instances in the data. Two popular measures for evaluating the quality of a network are

the Akaike Information Criterion (AIC), AIC score = -LL + K, and the following MDL

metric based on the MDL principle: MDL score = -LL + K/2log N. In both cases the log-

likelihood is negated, so the aim is to minimize these scores.

A third possibility is to assign a prior distribution over network structures and find the

most likely network by combining its prior probability with the probability accorded to

the network by the data. This is the ―Bayesian‖ approach to network scoring. Depending

on the prior distribution used, it can take various forms. However, true Bayesians would

average over all possible network structures rather than singling out a particular network

for prediction. Unfortunately, this generally requires a great deal of computation. A

simplified approach is to average over all network structures that are substructures of a

given network. It turns out that this can be implemented very efficiently by changing the

method for calculating the conditional probability tables so that the resulting probability

estimates implicitly contain information from all subnetworks. The details of this

approach are rather complex.

The task of searching for a good network structure can be greatly simplified if the right

metric is used for scoring. Recall that the probability of a single instance based on a

network is the product of all the individual probabilities from the various conditional

probability tables. The overall probability of the dataset is the product of these products

for all instances. Because terms in a product are interchangeable, the product can be

rewritten to group together all factors relating to the same table. The same holds for the

log-likelihood, using sums instead of products. This means that the likelihood can be

optimized separately for each node of the network. This can be done by adding, or

20

removing, edges from other nodes to the node that is being optimized—the only

constraint is that cycles must not be introduced. The same trick also works if a local

scoring metric such as AIC or MDL is used instead of plain log-likelihood because the

penalty term splits into several components, one for each node, and each node can be

optimized independently.

3.2.1. BAYES Algorithm

One simple and very fast learning algorithm, called K2, starts with a given ordering of

the attributes (i.e., nodes). Then it processes each node in turn and greedily considers

adding edges from previously processed nodes to the current one. In each step it adds

the edge that maximizes the network‘s score. When there is no further improvement,

attention turns to the next node. As an additional mechanism for overfitting avoidance,

the number of parents for each node can be restricted to a predefined maximum.

Because only edges from previously processed nodes are considered and there is a fixed

ordering, this procedure cannot introduce cycles. However, the result depends on the

initial ordering, so it makes sense to run the algorithm several times with different

random orderings.

The Naïve Bayes classifier is a network with an edge leading from the class attribute to

each of the other attributes. When building networks for classification, it sometimes

helps to use this network as a starting point for the search. This can be done in K2 by

forcing the class variable to be the first one in the ordering and initializing the set of

edges appropriately.

Another potentially helpful trick is to ensure that every attribute in the data is in the

Markov blanket of the node that represents the class attribute. A node‘s Markov blanket

includes all its parents, children, and children‘s parents. It can be shown that a node is

conditionally independent of all other nodes given values for the nodes in its Markov

blanket. Hence, if a node is absent from the class attribute‘s Markov blanket, its value is

completely irrelevant to the classification. Conversely, if K2 finds a network that does

not include a relevant attribute in the class node‘s Markov blanket, it might help to add

an edge that rectifies this shortcoming. A simple way of doing this is to add an edge

21

from the attribute‘s node to the class node or from the class node to the attribute‘s node,

depending on which option avoids a cycle.

A more sophisticated but slower version of K2 is not to order the nodes but to greedily

consider adding or deleting edges between arbitrary pairs of nodes (all the while

ensuring acyclicity, of course). A further step is to consider inverting the direction of

existing edges as well. As with any greedy algorithm, the resulting network only

represents a local maximum of the scoring function: it is always advisable to run such

algorithms several times with different random initial configurations. More

sophisticated optimization strategies such as simulated annealing, tabu search, or

genetic algorithms can also be used.

Another good learning algorithm for Bayesian network classifiers is called tree

augmented Naïve (TAN) Bayes. As the name implies, it takes the Naïve Bayes classifier

and adds edges to it. The class attribute is the single parent of each node of a Naïve

Bayes network: TAN considers adding a second parent to each node. If the class node

and all corresponding edges are excluded from consideration, and assuming that there is

exactly one node to which a second parent is not added, the resulting classifier has a tree

structure rooted at the parentless node—this is where the name comes from. For this

restricted type of network there is an efficient algorithm for finding the set of edges that

maximizes the network‘s likelihood based on computing the network‘s maximum

weighted spanning tree. This algorithm is linear in the number of instances and

quadratic in the number of attributes.

All the scoring metrics that we have described so far are likelihood based in the sense

that they are designed to maximize the joint probability Pr[a1, a2, . . ., an] for each

instance. However, in classification, what we really want to maximize is the conditional

probability of the class given the values of the other attributes—in other words, the

conditional likelihood. Unfortunately, there is no closed-form solution for the maximum

conditional-likelihood probability estimates that are needed for the tables in a Bayesian

network. On the other hand, computing the conditional likelihood for a given network

and dataset is straightforward—after all, this is what logistic regression does. Hence it

22

has been proposed to use standard maximum likelihood probability estimates in the

network, but the conditional likelihood to evaluate a particular network structure.

Another way of using Bayesian networks for classification is to build a separate

network for each class value, based on the data pertaining to that class, and combine the

predictions using Bayes‘s rule. The set of networks is called a Bayesian multinet. To

obtain a prediction for a particular class value, take the corresponding network‘s

probability and multiply it by the class‘s prior probability. Do this for each class and

normalize the result (Witten, 2005).

In Bayesian statistics, the parameters are considered to be random variables, and the

data are considered to be known. The parameters are regarded to come from a

distribution of possible values, and Bayesians look to the observed data to provide

information on likely parameter values. Let θ represent the parameters of the unknown

distribution. Bayesian analysis requires elicitation of a prior distribution for θ, called the

prior distribution, p(θ). In the field of data mining, huge data sets are often encountered;

therefore, the prior distribution should be dominated by the overwhelming amount of

information to be found in the observed data.

Once the data have been observed, prior information about the distribution of θ can be

updated by factoring in the information about θ contained in the observed data. This

modification leads to the posterior distribution, p(θ|X), where X represents the entire

array of data. The posterior distribution of θ given the data is proportional to the product

of the likelihood and the prior.

A common estimation method is to choose the posterior mode, the value of θ that

maximizes p(θ|X) for an estimate, in which case we call this estimation method the

maximum a posteriori (MAP) method. The Bayesian MAP classification is optimal; that

is, it achieves the minimum error rate for all possible classifiers. The MAP classifier

may be expressed as θMAP = arg maxθ p(X|θ)p(θ). Bayes‘ theorem is given by

(3.12)

23

where A and B are events.

The posterior odds ratio represents a measure of the strength of evidence in favor of a

particular classification and is calculated as

(3.13)

where θc represents a particular classification of the unknown target variable. A value

greater than 1 indicates that the posterior distribution favors the positive classification; a

value less than 1 represents evidence against the positive classification (e.g., churn =

true). The value of the posterior odds ratio may be interpreted as indicating roughly the

proportion of evidence provided by the posterior distribution in favor of the positive

classification against the negative classification.

In general, the number of probabilities that would need to be calculated to find the MAP

classification would be on the order of k
m

, where k is the number of classes for the

target variable and m is the number of predictor variables. However, we may make the

simplifying assumption that the predictor variables are conditionally independent given

the target value. Two events A and B are said to be conditionally independent if for a

given event C, p(A ∩ B|C) = p(A|C)p(B|C).

Thus, the naive Bayes classification is

(3.14)

When the conditional independence assumption is valid, the naive Bayes classification

is the same as the MAPclassification. When using naive Bayes classification, far fewer

probabilities need to be estimated, just km probabilities rather than k
m

 for the MAP

classifier, in other words, just the number of predictor variables times the number of

distinct values of the target variable. Bayesian classification can be extended from

24

categorical to continuous predictor variables, provided that we know the relevant

probability distribution.

Bayesian belief networks (BBNs) are designed to allow joint conditional

independencies to be defined among subsets of variables. BBNs, also called Bayesian

networks or Bayes nets, take the form of a directed acyclic graph, where directed means

that the arcs are traversed in one direction only, and acyclic means that no child node

cycles back up to any progenitor. The nodes represent variables, and the arcs represent

the (directed) dependence among the variables.

In general, node A is a parent or immediate predecessor of node X, and node X is a

descendant of node A, if there exists a directed arc from node A to node X. The intrinsic

relationship among the variables in a Bayesian network is as follows: Each variable in a

Bayesian network is conditionally independent of its nondescendants in the network,

given its parents. The Bayesian network represents the joint probability distribution by

providing that (1) a specified set of assumptions regarding the conditional independence

of the variables, and (2) the probability tables for each variable, given its direct

predecessors. For each variable, information regarding both (1) and (2) is provided

(Larose, 2005).

25

3.3. LOGISTIC REGRESSION (LR)

Linear regression is used to approximate the relationship between a continuous response

variable and a set of predictor variables. However, the response variable is often

categorical rather than continuous. For such cases, linear regression is not appropriate,

but the analyst can turn to an analogous method, logistic regression (LR), which is

similar to linear regression in many ways. Logistic regression refers to methods for

describing the relationship between a categorical response variable and a set of predictor

variables.

Logistic regression assumes that the relationship between the predictor and the response

is nonlinear. In linear regression, the response variable is considered to be a random

variable Y = β0 + β1x + ε with conditional mean π(x) = E(Y|x) = β0 + β1x. The

conditional mean for logistic regression takes on a different form from that of linear

regression. Specifically,

(3.15)

Curves of this form are called sigmoidal because they are S-shaped and therefore

nonlinear. The minimum for π(x) is obtained at

(3.16)

and the maximum for π(x) is obtained at

(3.17)

Thus, π(x) may be interpreted as the probability that the positive outcome is present for

records with X = x, and 1 − π(x) may be interpreted as the probability that the positive

outcome is absent for such records. The variance of ε is π(x) [1 − π(x)], which is the

variance for a binomial distribution, and the response variable in logistic regression Y =

π(x) + ε is assumed to follow a binomial distribution with probability of success π(x).

The logit transformation is as follows:

26

(3.18)

Noclosed-form solution exists for estimating logistic regression coefficients. Thus,we

must turn to maximum likelihood estimation, which finds estimates of the parameters

for which the likelihood of observing the observed data is maximized.

A saturated model is a model that which contains as many parameters as data points and

so predicts the response variable perfectly with no prediction error.We may then look

upon the observed values of the response variable to be the values predicted by the

saturated model. To compare the values predicted by our fitted model (with fewer

parameters than data points) to the values predicted by the saturated model, we use

(3.19)

The resulting hypothesis test is called a likelihood ratio test. The deviance represents the

error left over in the model, after the predictors have been accounted for. As such, it is

analogous to the sum of squares error in linear regression. To determine whether a

particular predictor is significant, find the deviance of the model without the predictor,

and subtract the deviance of the model with the predictor, thus:

(3.20)

The test statistic G follows a chi-square distribution with 1 degree of freedom, assuming

that the null hypothesis is true that β1 = 0.

Odds may be defined as the probability that an event occurs divided by the probability

that the event does not occur. The odds ratio (OR) is defined as the odds that the

response variable occurred for records with x = 1 divided by the odds that the response

variable occurred for records with x = 0. Conveniently, odds ratio = e
β

1 . The odds ratio

27

is sometimes used to estimate the relative risk, defined as the probability that the

response occurs for x = 1 divided by the probability that the response occurs for x = 0.

The slope coefficient β1 may be interpreted as the change in the value of the logit for a

unit increase in the value of the predictor, β1 = g(x + 1) − g(x). The coefficient b1

represents the estimated change in the log odds ratio for a unit increase in the predictor.

In general, for a constant c, the quantity cb1 represents the estimated change in the log

odds ratio for an increase of c units in the predictor.

Zero cells play havoc with the logistic regression solution, causing instability in the

analysis and leading to possibly unreliable results. Rather than omitting the categories

with zero cells, we may try to collapse the categories or redefine them somehow, in

order to find some records for the zero cells. The logistic regression results should

always be validated using either the model diagnostics and goodnessof-fit statistics, or

the traditional data mining cross-validation methods (Larose, 2005).

28

3.4. MULTILAYER PERCEPTRON (MLP)

Neural network proponents used a different approach for nonlinear classification: they

connected many simple perceptron-like models in a hierarchical structure. This can

represent nonlinear decision boundaries.

Human and animal brains successfully undertake very complex classification tasks—for

example, image recognition. The functionality of each individual neuron in a brain is

certainly not sufficient to perform these feats. How can they be solved by brain-like

structures? The answer lies in the fact that the neurons in the brain are massively

interconnected, allowing a problem to be decomposed into subproblems that can be

solved at the neuron level. This observation inspired the development of networks of

artificial neurons—neural nets.

Consider the simple datasets in Figure 3.9. Figure 3.9(a) shows a two dimensional

instance space with four instances that have classes 0 and 1, represented by white and

black dots, respectively. No matter how you draw a straight line through this space, you

will not be able to find one that separates all the black points from all the white ones. In

other words, the problem is not linearly separable, and the simple perceptron algorithm

will fail to generate a separating hyperplane (in this two-dimensional instance space a

hyperplane is just a straight line). The situation is different in Figure 3.9(b) and Figure

3.9(c): both these problems are linearly separable. The same holds for Figure 3.9(d),

which shows two points in a one-dimensional instance space (in the case of one

dimension the separating hyperplane degenerates to a separating point).

Figure 3.9(a) represents a logical XOR, where the class is 1 if and only if both attributes

have the same value. Figure 3.9(b) represents logical AND, where the class is 1 if and

only if both attributes have value 1. Figure 3.9(c) represents OR, where the class is 0

only if both attributes have value 0. Figure 3.9(d) represents NOT, where the class is 0

if and only if the attribute has value 0. Because the last three are linearly separable, a

perceptron can represent AND, OR, and NOT. Indeed, perceptrons for the

corresponding datasets are shown in Figure 3.9(f) through (h) respectively. However, a

simple perceptron cannot represent XOR, because that is not linearly separable. To

29

build a classifier for this type of problem a single perceptron is not sufficient: we need

several of them.

Figure 3.9(e) shows a network with three perceptrons, or units, labeled A, B, and C. The

first two are connected to what is sometimes called the input layer of the network,

representing the attributes in the data. As in a simple perceptron, the input layer has an

additional constant input called the bias. However, the third unit does not have any

connections to the input layer. Its input consists of the output of units A and B (either 0

or 1) and another constant bias unit. These three units make up the hidden layer of the

multilayer perceptron (MLP). They are called ―hidden‖ because the units have no direct

connection to the environment. This layer is what enables the system to represent XOR.

Closer inspection of the behavior of the three units reveals that the first one represents

OR, the second represents NAND (NOT combined with AND), and the third represents

AND. Together they represent the expression (a1 OR a2) AND (a1 NAND a3), which is

precisely the definition of XOR.

30

Figure 3.9 : Example datasets and corresponding perceptrons

31

There are two aspects to how to learn a multilayer perceptron: learning the structure of

the network and learning the connection weights. It turns out that there is a relatively

simple algorithm for determining the weights given a fixed network structure. This

algorithm is called backpropagation. However, although there are many algorithms that

attempt to identify network structure, this aspect of the problem is commonly solved

through experimentation—perhaps combined with a healthy dose of expert knowledge.

Sometimes the network can be separated into distinct modules that represent identifiable

subtasks (e.g., recognizing different components of an object in an image recognition

problem), which opens up a way of incorporating domain knowledge into the learning

process. Often a single hidden layer is all that is necessary, and an appropriate number

of units for that layer are determined by maximizing the estimated accuracy.

Backpropagation

Suppose that we have some data and seek a multilayer perceptron that is an accurate

predictor for the underlying classification problem. Given a fixed network structure, we

must determine appropriate weights for the connections in the network. In the absence

of hidden layers, the perceptron learning rule can be used to find suitable values. But

suppose there are hidden units. We know what the output unit should predict, and could

adjust the weights of the connections leading to that unit based on the perceptron rule.

But the correct outputs for the hidden units are unknown, so the rule cannot be applied

there.

It turns out that, roughly speaking, the solution is to modify the weights of the

connections leading to the hidden units based on the strength of each unit‘s contribution

to the final prediction. There is a standard mathematical optimization algorithm, called

gradient descent, which achieves exactly that. Unfortunately, it requires taking

derivatives, and the step function that the simple perceptron uses to convert the

weighted sum of the inputs into a 0/1 prediction is not differentiable. We need to see

whether the step function can be replaced with something else.

32

Step function: if the input is smaller than zero, it outputs zero; otherwise, it outputs one.

We want a function that is similar in shape but differentiable. A commonly used

replacement is the sigmoid function, and it is defined by

(3.21)

Learning a multilayer perceptron is closely related to logistic regression. To apply the

gradient descent procedure, the error function—the thing that is to be minimized by

adjusting the weights—must also be differentiable. Multilayer perceptrons are usually

trained by minimizing the squared error of the network‘s output, essentially treating it as

an estimate of the class probability. (Other loss functions are also applicable. For

example, if the likelihood is used instead of the squared error, learning a sigmoid-based

perceptron is identical to logistic regression.)

Gradient descent exploits information given by the derivative of the function that is to

be minimized—in this case, the error function. As an example, consider a hypothetical

error function that happens to be identical to x
2
 + 1. The X-axis represents a

hypothetical parameter that is to be optimized. The derivative of x
2
 + 1 is simply 2x.

The crucial observation is that, based on the derivative, we can figure out the slope of

the function at any particular point. If the derivative is negative the function slopes

downward to the right; if it is positive, it slopes downward to the left; and the size of the

derivative determines how steep the decline is. Gradient descent is an iterative

optimization procedure that uses this information to adjust a function‘s parameters. It

takes the value of the derivative, multiplies it by a small constant called the learning

rate, and subtracts the result from the current parameter value. This is repeated for the

new parameter value, and so on, until a minimum is reached.

The learning rate determines the step size and hence how quickly the search converges.

If it is too large and the error function has several minima, the search may overshoot

and miss a minimum entirely, or it may oscillate wildly. If it is too small, progress

toward the minimum may be slow. Note that gradient descent can only find a local

minimum. If the function has several minima— and error functions for multilayer

33

perceptrons usually have many—it may not find the best one. This is a significant

drawback of standard multilayer perceptrons compared with, for example, support

vector machines.

To use gradient descent to find the weights of a multilayer perceptron, the derivative of

the squared error must be determined with respect to each parameter— that is, each

weight in the network.

Figure 3.10 : Multilayer perceptron with a hidden layer

Suppose f(xi) is the output of the ith hidden unit, wij is the weight of the connection

from input j to the ith hidden unit, and wi is the weight of the ith hidden unit to the

output unit. The situation is depicted in Figure 3.10. f(x) is the output of the single unit

in the output layer. Putting everything together yields an equation for the derivative of

the error function with respect to the weights wij:

(3.22)

34

As before, we calculate this value for every training instance, add up the changes

associated with a particular weight wij, multiply by the learning rate, and subtract the

outcome from the current value of wij. This derivation applies to a perceptron with one

hidden layer. If there are two hidden layers, the same strategy can be applied a second

time to update the weights pertaining to the input connections of the first hidden layer,

propagating the error from the output unit through the second hidden layer to the first

one. Because of this error propagation mechanism, this version of the generic gradient

descent strategy is called backpropagation.

We have assumed that weights are only updated after all training instances have been

fed through the network and all the corresponding weight changes have been

accumulated. This is batch learning, because all the training data is processed together.

But exactly the same formulas can be used to update the weights incrementally after

each training instance has been processed. This is called stochastic backpropagation

because the overall error does not necessarily decrease after every update and there is no

guarantee that it will converge to a minimum. In both variants of backpropagation, it is

often helpful to standardize the attributes to have zero mean and unit standard deviation.

Before learning starts, each weight is initialized to a small, randomly chosen value

based on a normal distribution with zero mean.

Like any other learning scheme, multilayer perceptrons trained with backpropagation

may suffer from overfitting—especially if the network is much larger than what is

actually necessary to represent the structure of the underlying learning problem. Many

modifications have been proposed to alleviate this. A very simple one, called early

stopping, works like reduced-error pruning in rule learners: a holdout set is used to

decide when to stop performing further iterations of the backpropagation algorithm. The

error on the holdout set is measured and the algorithm is terminated once the error

begins to increase, because that indicates overfitting to the training data. Another

method, called weight decay, adds to the error function a penalty term that consists of

the squared sum of all weights in the network. This attempts to limit the influence of

irrelevant connections on the network‘s predictions by penalizing large weights that do

not contribute a correspondingly large reduction in the error.

35

Although standard gradient descent is the simplest technique for learning the weights in

a multilayer perceptron, it is by no means the most efficient one. In practice, it tends to

be rather slow. A trick that often improves performance is to include a momentum term

when updating weights: add to the new weight change a small proportion of the update

value from the previous iteration. This smoothes the search process by making changes

in direction less abrupt. More sophisticated methods use information obtained from the

second derivative of the error function as well; they can converge much more quickly.

However, even those algorithms can be very slow compared with other methods of

classification learning.

A serious disadvantage of multilayer perceptrons that contain hidden units is that they

are essentially opaque. There are several techniques that attempt to extract rules from

trained neural networks. However, it is unclear whether they offer any advantages over

standard rule learners that induce rule sets directly from data—especially considering

that this can generally be done much more quickly than learning a multilayer perceptron

in the first place.

Although multilayer perceptrons are the most prominent type of neural network, many

others have been proposed. Multilayer perceptrons belong to a class of networks called

feedforward networks because they do not contain any cycles and the network‘s output

depends only on the current input instance. Recurrent neural networks do have cycles.

Computations derived from earlier input are fed back into the network, which gives

them a kind of memory (Witten, 2005).

36

3.5. RADIAL BASIS FUNCTION (RBF) NETWORK

Another popular type of feedforward network is the radial basis function (RBF)

network. It has two layers, not counting the input layer, and differs from a multilayer

perceptron in the way that the hidden units perform computations. Each hidden unit

essentially represents a particular point in input space, and its output, or activation, for a

given instance depends on the distance between its point and the instance—which is just

another point. Intuitively, the closer these two points, the stronger the activation. This is

achieved by using a nonlinear transformation function to convert the distance into a

similarity measure. A bell-shaped Gaussian activation function, whose width may be

different for each hidden unit, is commonly used for this purpose. The hidden units are

called RBFs because the points in instance space for which a given hidden unit produces

the same activation form a hypersphere or hyperellipsoid. (In a multilayer perceptron,

this is a hyperplane.)

The output layer of an RBF network is the same as that of a multilayer perceptron: it

takes a linear combination of the outputs of the hidden units and— in classification

problems—pipes it through the sigmoid function.

The parameters that such a network learns are (a) the centers and widths of the RBFs

and (b) the weights used to form the linear combination of the outputs obtained from the

hidden layer. A significant advantage over multilayer perceptrons is that the first set of

parameters can be determined independently of the second set and still produce accurate

classifiers.

One way to determine the first set of parameters is to use clustering, without looking at

the class labels of the training instances at all. The simple k-means clustering algorithm

can be applied, clustering each class independently to obtain k basis functions for each

class. Intuitively, the resulting RBFs represent prototype instances. Then the second set

of parameters can be learned, keeping the first parameters fixed. This involves learning

a linear model (e.g., linear or logistic regression). If there are far fewer hidden units than

training instances, this can be done very quickly.

37

A disadvantage of RBF networks is that they give every attribute the same weight

because all are treated equally in the distance computation. Hence they cannot deal

effectively with irrelevant attributes—in contrast to multilayer perceptrons. Support

vector machines share the same problem. In fact, support vector machines with

Gaussian kernels (i.e., ―RBF kernels‖) are a particular type of RBF network, in which

one basis function is centered on every training instance, and the outputs are combined

linearly by computing the maximum margin hyperplane. This has the effect that only

some RBFs have a nonzero weight—the ones that represent the support vectors (Witten,

2005).

38

3.6. SIMPLE LOGISTIC (SL)

The Simple logistic (SL) model is widely used for technology forecasting. Many new

forecasting models were proposed based on the simple logistic model and include

innovations such as the Bass diffusion model and extended logistic model. The most

important characteristic of simple logistic model is that it is symmetric about the point

of inflection. This feature indicates that the process which will happen after the point of

inflection is the mirror image of the process that happened before the point. The model

for the simple logistic curve is controlled by three coefficients, a, b, and L is expressed

as

(3.23)

where yt is the value of interest, L is the maximum value of yt, a describes the location

of the curve, and b controls the shape of the curve. To estimate the parameters for a and

b, the equation of the simple logistic model is transformed into a linear function using

natural logarithms. The linear model is expressed as

(3.24)

where the parameter a and b are then estimated using a simple linear regression

(Trappey, 2008).

When the outcome, or class, is numeric, and all the attributes are numeric, linear

regression is a natural technique to consider. This is a staple method in statistics. The

idea is to express the class as a linear combination of the attributes, with predetermined

weights:

x = w0 + w1a1 + w2a2+...+wkak (3.25)

where x is the class; a1, a2, . . ., ak are the attribute values; and w0, w1, . . ., wk are

weights.

39

The weights are calculated from the training data. Here the notation gets a little heavy,

because we need a way of expressing the attribute values for each training instance. The

first instance will have a class, say x
(1)

, and attribute values a1
(1)

, a2
(1)

, . . ., ak
(1)

, where

the superscript denotes that it is the first example. Moreover, it is notationally

convenient to assume an extra attribute a0 whose value is always 1.

The predicted value for the first instance‘s class can be written as

(3.26)

This is the predicted, not the actual, value for the first instance‘s class. Of interest is the

difference between the predicted and the actual values. The method of linear regression

is to choose the coefficients wj—there are k + 1 of them—to minimize the sum of the

squares of these differences over all the training instances. Suppose there are n training

instances; denote the ith one with a superscript (i). Then the sum of the squares of the

differences is

(3.27)

where the expression inside the parentheses is the difference between the ith instance‘s

actual class and its predicted class. This sum of squares is what we have to minimize by

choosing the coefficients appropriately.

Linear regression is an excellent, simple method for numeric prediction, and it has been

widely used in statistical applications for decades. Of course, linear models suffer from

the disadvantage of, well, linearity. If the data exhibits a nonlinear dependency, the

best-fitting straight line will be found, where ―best‖ is interpreted as the least mean-

squared difference. This line may not fit very well. However, linear models serve well

as building blocks for more complex learning methods.

40

3.7. BAGGING

Combining the decisions of different models means amalgamating the various outputs

into a single prediction. The simplest way to do this in the case of classification is to

take a vote (perhaps a weighted vote); in the case of numeric prediction, it is to calculate

the average (perhaps a weighted average). Bagging and boosting both adopt this

approach, but they derive the individual models in different ways. In bagging, the

models receive equal weight, whereas in boosting, weighting is used to give more

influence to the more successful ones—just as an executive might place different values

on the advice of different experts depending on how experienced they are.

To introduce bagging, suppose that several training datasets of the same size are chosen

at random from the problem domain. Imagine using a particular machine learning

technique to build a decision tree for each dataset. You might expect these trees to be

practically identical and to make the same prediction for each new test instance.

Surprisingly, this assumption is usually quite wrong, particularly if the training datasets

are fairly small. This is a rather disturbing fact and seems to cast a shadow over the

whole enterprise! The reason for it is that decision tree induction is an unstable process:

slight changes to the training data may easily result in a different attribute being chosen

at a particular node, with significant ramifications for the structure of the subtree

beneath that node. This automatically implies that there are test instances for which

some of the decision trees produce correct predictions and others do not.

Returning to the preceding experts analogy, consider the experts to be the individual

decision trees.We can combine the trees by having them vote on each test instance. If

one class receives more votes than any other, it is taken as the correct one. Generally,

the more the merrier: predictions made by voting become more reliable as more votes

are taken into account. Decisions rarely deteriorate if new training sets are discovered,

trees are built for them, and their predictions participate in the vote as well. In

particular, the combined classifier will seldom be less accurate than a decision tree

constructed from just one of the datasets. (Improvement is not guaranteed, however. It

can be shown theoretically that pathological situations exist in which the combined

decisions are worse.)

41

The effect of combining multiple hypotheses can be viewed through a theoretical device

known as the bias–variance decomposition. Suppose that we could have an infinite

number of independent training sets of the same size and use them to make an infinite

number of classifiers. A test instance is processed by all classifiers, and a single answer

is determined by majority vote. In this idealized situation, errors will still occur because

no learning scheme is perfect: the error rate will depend on how well the machine

learning method matches the problem at hand, and there is also the effect of noise in the

data, which cannot possibly be learned. Suppose the expected error rate were evaluated

by averaging the error of the combined classifier over an infinite number of

independently chosen test examples. The error rate for a particular learning algorithm is

called its bias for the learning problem and measures how well the learning method

matches the problem. This technical definition is a way of quantifying the vaguer notion

of bias: it measures the ―persistent‖ error of a learning algorithm that can‘t be

eliminated even by taking an infinite number of training sets into account. Of course, it

cannot be calculated exactly in practical situations; it can only be approximated.

A second source of error in a learned model, in a practical situation, stems from the

particular training set used, which is inevitably finite and therefore not fully

representative of the actual population of instances. The expected value of this

component of the error, over all possible training sets of the given size and all possible

test sets, is called the variance of the learning method for that problem. The total

expected error of a classifier is made up of the sum of bias and variance: this is the bias–

variance decomposition. Combining multiple classifiers decreases the expected error by

reducing the variance component. The more classifiers that are included, the greater the

reduction in variance.

Of course, a difficulty arises when putting this voting method into practice: usually

there‘s only one training set, and obtaining more data is either impossible or expensive.

Bagging attempts to neutralize the instability of learning methods by simulating the

process described previously using a given training set. Instead of sampling a fresh,

independent training dataset each time, the original training data is altered by deleting

some instances and replicating others. Instances are randomly sampled, with

replacement, from the original dataset to create a new one of the same size. This

42

sampling procedure inevitably replicates some of the instances and deletes others. The

term bagging stands for bootstrap aggregating. Bagging applies the learning scheme—

for example, a decision tree inducer—to each one of these artificially derived datasets,

and the classifiers generated from them vote for the class to be predicted.

The algorithm is summarized as follows (Han, 2006).

Bagging Algorithm: The bagging algorithm—create an ensemble of models (classifiers

or predictors) for a learning scheme where each model gives an equally-weighted

prediction.

Input:

D, a set of d training tuples;

k, the number of models in the ensemble;

a learning scheme (e.g., decision tree algorithm, backpropagation, etc.)

Output: A composite model, M*.

Method:

(1) for i = 1 to k do // create k models:

(2) create bootstrap sample, Di, by sampling D with replacement;

(3) use Di to derive a model, Mi;

(4) endfor

To use the composite model on a tuple, X:

(1) if classification then

(2) let each of the k models classify X and return the majority vote;

(3) if prediction then

(4) let each of the k models predict a value for X and return the average

predicted value;

Instead of obtaining independent datasets from the domain, bagging just resamples the

original training data. The datasets generated by resampling are different from one

another but are certainly not independent because they are all based on one dataset.

However, it turns out that bagging produces a combined model that often performs

43

significantly better than the single model built from the original training data, and is

never substantially worse.

Bagging can also be applied to learning methods for numeric prediction— for example,

model trees. The only difference is that, instead of voting on the outcome, the individual

predictions, being real numbers, are averaged. The bias–variance decomposition can be

applied to numeric prediction as well by decomposing the expected value of the mean-

squared error of the predictions on fresh data. Bias is defined as the mean-squared error

expected when averaging over models built from all possible training datasets of the

same size, and variance is the component of the expected error of a single model that is

due to the particular training data it was built from. It can be shown theoretically that

averaging over multiple models built from independent training sets always reduces the

expected value of the mean-squared error.

Bagging helps most if the underlying learning method is unstable in that small changes

in the input data can lead to quite different classifiers. Indeed it can help to increase the

diversity in the ensemble of classifiers by making the learning method as unstable as

possible. For example, when bagging decision trees, which are already unstable, better

performance is often achieved by switching pruning off, which makes them even more

unstable. Another improvement can be obtained by changing the way that predictions

are combined for classification. As originally formulated, bagging uses voting. But

when the models can output probability estimates and not just plain classifications, it

makes intuitive sense to average these probabilities instead. Not only does this often

improve classification slightly, but the bagged classifier also generates probability

estimates—ones that are often more accurate than those produced by the individual

models. Implementations of bagging commonly use this method of combining

predictions.

Bagging is a prime candidate for cost-sensitive classification because it produces very

accurate probability estimates from decision trees and other powerful, yet unstable,

classifiers. However, a disadvantage is that bagged classifiers are hard to analyze.

44

A method called MetaCost combines the predictive benefits of bagging with a

comprehensible model for cost-sensitive prediction. It builds an ensemble classifier

using bagging and uses it to relabel the training data by giving every training instance

the prediction that minimizes the expected cost, based on the probability estimates

obtained from bagging. MetaCost then discards the original class labels and learns a

single new classifier—for example, a single pruned decision tree—from the relabeled

data. This new model automatically takes costs into account because they have been

built into the class labels! The result is a single cost-sensitive classifier that can be

analyzed to see how predictions are made.

45

3.8. COMPARING DATA MINING METHODS

We often need to compare two different learning methods on the same problem to see

which the better one to use is. It seems simple: estimate the error using cross-validation

(or any other suitable estimation procedure), perhaps repeated several times, and choose

the scheme whose estimate is smaller. This is quite sufficient in many practical

applications: if one method has a lower estimated error than another on a particular

dataset, the best we can do is to use the former method‘s model. However, it may be

that the difference is simply caused by estimation error, and in some circumstances it is

important to determine whether one scheme is really better than another on a particular

problem. This is a standard challenge for machine learning researchers. If a new

learning algorithm is proposed, its proponents must show that it improves on the state of

the art for the problem at hand and demonstrate that the observed improvement is not

just a chance effect in the estimation process.

This is a job for a statistical test that gives confidence bounds, the kind we met

previously when trying to predict true performance from a given test-set error rate. If

there were unlimited data, we could use a large amount for training and evaluate

performance on a large independent test set, obtaining confidence bounds just as before.

However, if the difference turns out to be significant we must ensure that this is not just

because of the particular dataset we happened to base the experiment on. What we want

to determine is whether one scheme is better or worse than another on average, across

all possible training and test datasets that can be drawn from the domain. Because the

amount of training data naturally affects performance, all datasets should be the same

size: indeed, the experiment might be repeated with different sizes to obtain a learning

curve (Witten, 2005).

Using training data to derive a classifier or predictor and then to estimate the accuracy

of the resulting learned model can result in misleading overoptimistic estimates due to

overspecialization of the learning algorithm to the data. Instead, accuracy is better

measured on a test set consisting of class-labeled tuples that were not used to train the

model. The accuracy of a classifier on a given test set is the percentage of test set tuples

that are correctly classified by the classifier. In the pattern recognition literature, this is

46

also referred to as the overall recognition rate of the classifier, that is, it reflects how

well the classifier recognizes tuples of the various classes.

We can also speak of the error rate or misclassification rate of a classifier,M, which is

simply 1-Acc(M), where Acc(M) is the accuracy of M. If we were to use the training set

to estimate the error rate of a model, this quantity is known as the resubstitution error.

This error estimate is optimistic of the true error rate (and similarly, the corresponding

accuracy estimate is optimistic) because the model is not tested on any samples that it

has not already seen.

The confusion matrix (CM) is a useful tool for analyzing how well your classifier can

recognize tuples of different classes. A confusion matrix for two classes is shown in

Figure 3.11. Given m classes, a confusion matrix is a table of at least size m by m. An

entry, CMi, j in the first m rows and m columns indicates the number of tuples of class i

that were labeled by the classifier as class j. For a classifier to have good accuracy,

ideally most of the tuples would be represented along the diagonal of the confusion

matrix, from entry CM1, 1 to entry CMm, m , with the rest of the entries being close to

zero. The table may have additional rows or columns to provide totals or recognition

rates per class.

Figure 3.11 : A confusion matrix for positive and negative tuples

Given two classes, we can talk in terms of positive tuples versus negative tuples. True

positives (TP) refer to the positive tuples that were correctly labeled by the classifier,

while true negatives (TN) are the negative tuples that were correctly labeled by the

classifier. False positives (FP) are the negative tuples that were incorrectly labeled.

Similarly, false negatives (FN) are the positive tuples that were incorrectly labeled.

These terms are useful when analyzing a classifier‘s ability.

47

Sensitivity is also referred to as the true positive (recognition) rate (that is, the

proportion of positive tuples that are correctly identified), while specificity is the true

negative rate (TNR) (that is, the proportion of negative tuples that are correctly

identified). The counts in a confusion matrix can also be expressed in terms of

percentages. The true positive rate (TPR) or sensitivity is defined as the fraction of

positive examples predicted correctly by the model:

sensitivity (TPR) = TP/(TP + FN) (3.28)

Similarly, the true negative rate (TNR) or specificity is defined as the fraction of

negative examples predicted correctly by the model.

specificity (TNR) = TN/(TN + FP) (3.29)

Accuracy is a function of sensitivity and specificity:

(3.30)

Precision determines the fraction of records that actually turns out to be positive in the

group which the classifier has declared as a positive class. The higher the precision is,

the lower the number of false positive errors committed by the classifier.

precision = TP/(TP + FP) (3.31)

Recall is defined:

recall = TP/(TP + FN) (3.32)

F-score, which is defined as the harmonic mean of recall and precision:

(3.33)

48

Correctness is the percentage of correctly classified instances. RMSE denotes the root

mean square error (RMSE) for the given dataset and method of classification.

Correctness and RMSE values show important variety. Lower RMSE systems tend to

make less incorrect classifications than the others and it indicates reliability in further

testing of data.

In classification problems, it is commonly assumed that all tuples are uniquely

classifiable, that is, that each training tuple can belong to only one class. Yet, owing to

the wide diversity of data in large databases, it is not always reasonable to assume that

all tuples are uniquely classifiable. Rather, it is more probable to assume that each tuple

may belong to more than one class. How then can the accuracy of classifiers on large

databases be measured? The accuracy measure is not appropriate, because it does not

take into account the possibility of tuples belonging to more than one class.

Rather than returning a class label, it is useful to return a probability class distribution.

Accuracy measures may then use a second guess heuristic, whereby a class prediction is

judged as correct if it agrees with the first or second most probable class. Although this

does take into consideration, to some degree, the nonunique classification of tuples, it is

not a complete solution.

ROC curves are a useful visual tool for comparing two classification models. The name

ROC stands for Receiver Operating Characteristic (ROC). ROC curves come from

signal detection theory that was developed during World War II for the analysis of radar

images. An ROC curve shows the trade-off between the true positive rate or sensitivity

(proportion of positive tuples that are correctly identified) and the false-positive rate

(proportion of negative tuples that are incorrectly identified as positive) for a given

model. That is, given a two-class problem, it allows us to visualize the trade-off

between the rate at which the model can accurately recognize ‗yes‘ cases versus the rate

at which it mistakenly identifies ‗no‘ cases as ‗yes‘ for different ―portions‖ of the test

set. Any increase in the true positive rate occurs at the cost of an increase in the false-

positive rate. The area under the ROC curve is a measure of the accuracy of the model.

49

In order to plot an ROC curve for a given classification model, M, the model must be

able to return a probability or ranking for the predicted class of each test tuple. That is,

we need to rank the test tuples in decreasing order, where the one the classifier thinks is

most likely to belong to the positive or ‗yes‘ class appears at the top of the list. Naive

Bayesian and backpropagation classifiers are appropriate, whereas others, such as

decision tree classifiers, can easily be modified so as to return a class probability

distribution for each prediction. The vertical axis of an ROC curve represents the true

positive rate. The horizontal axis represents the false-positive rate. An ROC curve for M

is plotted as follows. Starting at the bottom left-hand corner (where the true positive rate

and false-positive rate are both 0), we check the actual class label of the tuple at the top

of the list. If we have a true positive (that is, a positive tuple that was correctly

classified), then on the ROC curve, we move up and plot a point. If, instead, the tuple

really belongs to the ‗no‘ class, we have a false positive. On the ROC curve, we move

right and plot a point. This process is repeated for each of the test tuples, each time

moving up on the curve for a true positive or toward the right for a false positive.

Figure 3.12 shows the ROC curves of two classification models. The plot also shows a

diagonal line where for every true positive of such a model, we are just as likely to

encounter a false positive. Thus, the closer the ROC curve of a model is to the diagonal

line, the less accurate the model. If the model is really good, initially we are more likely

to encounter true positives as we move down the ranked list. Thus, the curve would

move steeply up from zero. Later, as we start to encounter fewer and fewer true

positives, and more and more false positives, the curve cases off and becomes more

horizontal.

50

Figure 3.12 : The ROC curves of two classification models

To assess the accuracy of a model, we can measure the area under the curve (AUC).

Several software packages are able to perform such calculation. The closer AUC is to

0.5, the less accurate the corresponding model is. A model with perfect accuracy will

have an area of 1.0 (Han, 2006).

51

4. FINDINGS

This study compares various data mining classifiers to obtain the best practical solution

for the financial early warning system and offers ANFIS as a means to efficient stock

market crashes forecasting.

We should again underline that it is possible to foresee whether the market is close to a

stock market crash by monitoring the market‘s volatility. Market volatility is expected

to peak just before the market crash. The input variables are taken into account in this

study mainly because they can effectively measure the volatility change of stock

market. This effect may be pronounced in advance, as illustrated by numerical

simulation, and in confirmation with the empirical findings. The value of the stock

market crash risk indicator closely shows the possibility of an upcoming crisis. The

possibility of a crisis is as high as the value.

Rule based models and decision tree derivatives have high level of precision, however

they demonstrate poor robustness when the dataset is changed. In order to provide

adaptability of the classification technique, neural network based alteration of fuzzy

inference system parameters is necessary. The results prove that, ANFIS method

combines both precision of fuzzy based classification system and adaptability (back

propagation) feature of neural networks in classification of data. Receiver operating

characteristics analysis conveys information about performance from all possible

combinations and of misclassification costs and class distributions. The Receiver

Operating Characteristic (ROC) curve, which is obtained by altering threshold level, is

typically used to visualize the performance and robustness of the method. The ROC

curve indicates how the prediction rate changes as the thresholds are varied to generate

more or fewer false alarms. The ROC curve is a plot of prediction accuracy against the

false positive probability that tradeoffs prediction accuracy against the analyst

workload. The ROC curves for selected methods are illustrated on Fig. 4.1.

52

Figure 4.1 : The ROC curves of selected methods

In this study, various data mining classifiers were used. The empirical results in Table

4.1 show that the proposed ANFIS model is the most successful one.

Table 4.1 : Test results for the selected methods

Method Sensitivity Precision Recall F-Measure ROC Area

ANFIS 0.9664 0.9492 0.9664 0.9574 0.9886

Bagging 0.7466 0.7156 0.7466 0.7296 0.958

BayesNet 0.8098 0.9084 0.8098 0.8412 0.967

Logistic 0.8986 0.9166 0.8986 0.9068 0.988

MultilayerPerceptron 0.8526 0.8696 0.8526 0.8582 0.996

RBFNetwork 0.7474 0.8038 0.7474 0.7664 0.8442

SimpleLogistic 0.8722 0.902 0.8722 0.8846 0.994

The ANFIS approach uses Gaussian functions for fuzzy sets and linear functions for the

rule outputs. The initial parameters of the network are the mean and standard deviation

of the membership functions (antecedent parameters) and the coefficients of the output

linear functions (consequent parameters). The ANFIS learning algorithm is then used to

obtain these parameters. This learning algorithm is a hybrid algorithm consisting of the

gradient descent and the least-squares estimate. Using this hybrid algorithm, the rule

parameters are recursively updated until an acceptable error is reached. Iterations have

two steps, one forward and one backward. In the forward pass, the antecedent

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1

ANFIS

Bagging

BayesNet

Logistic

Multilayer Perceptron

RBF Network

Simple Logistic

53

parameters are fixed, and the consequent parameters are obtained using the linear least-

squares estimate. In the backward pass, the consequent parameters are fixed, and the

output error is back-propagated through this network, and the antecedent parameters are

accordingly updated using the gradient descent method.

In the designing of ANFIS model in Figure 4.2, the number of membership functions,

the number of fuzzy rules, and the number of training epochs are important factors to be

considered. If they are not selected appropriately, the system will overfit the data or will

not be able to fit the data. Adjusting mechanism works using a hybrid algorithm

combining the least squares method and the gradient descent method with a mean

square error method. ANFIS creates membership functions for each variable input.

Figure 4.2 : FIS Model

The aim of the training process in Figure 4.3 is to minimize the training error between

the ANFIS output and the actual objective. This allows a fuzzy system to train its

features from the data it observes, and implements these features in the system rules.

Figure 4.3 : Training plot

54

As seen on Figure 4.4 and Figure 4.5, the results indicate that ANFIS has a pretty good

means to model an EWS. 78 of 83 test samples were correctly classified. In Figure 4.4,

the vertical axis denotes the test output, whereas the horizontal axis shows the index of

the testing data instances.

Figure 4.4 : Testing plot

Figure 4.5 : Checking plot

The plots in Figure 4.3, Figure 4.4 and Figure 4.5 show that the proposed neuro fuzzy

model is successful. Average training error is 0.0498, average testing error is 0.0653

and average checking error is 0.0587. The result of experiment shows that the accuracy

rate of the neuro fuzzy model is approximately 95%.

We prefer Sugeno-type for computational efficiency. As seen on Figure 4.6, Takagi and

Sugeno‘s fuzzy if-then rules are used in the model. The output of each rule is a linear

combination of input variables and a constant term. The final output is the weighted

average of each rule‘s output. The basic learning rule of the proposed network is based

on the gradient descent and the chain rule. Takagi and Sugeno‘s fuzzy is a fuzzy system

with crisp functions in consequent, which perceived proper for multifaceted

applications. Due to crisp consequent functions, ANFIS method requires a rather

uncomplicated form of scaling implicitly. The ANFIS has the advantage of good

55

applicability as it can be interpreted as local linearization modeling and that form of

state estimation is straightforwardly applicable to different systems.

Figure 4.6 : FIS Rules

Figure 4.7 shows the model used in this study for predicting stock market crashes. As

mentioned before, 5 inputs are fed into ANFIS model and one variable output is

obtained at the end. The last node (rightmost one) calculates the summation of all

outputs.

Figure 4.7 : FIS Model Structure

56

5. CONCLUSIONS

In this study, we presented a new methodology of early warning system for stock

market crashes and this new methodology is able to provide excellent early warning

information. We have constructed early warning systems by using various data mining

classifiers. The empirical results show that the proposed neuro fuzzy model is the most

successful.

ISE national 100 index data is non-linear and ANFIS can model non-linear system

successfully. Consequently, the model learns patterns from the dataset and these

patterns can help us decide upcoming stock market crashes and so the model is capable

of indicating crash risks effectively.

One disadvantage of the ANFIS method is that the complexity of the algorithm is high

when there are more than a number of inputs fed into the system. However, when the

system reaches an optimal configuration of membership functions, it can be used

efficiently against large datasets. Based on the accuracy of the results of the study, it can

be stated that the ANFIS models can be used as an alternative to current financial early

warning systems to predict stock market crashes.

ANFIS we used in this study is a part of a new and progressive technology, data mining

and data mining is among the fastest increasing business technologies in the world.

Early warning systems based on data mining are especially becoming integral parts of

our daily lives. Early warning systems can reduce or eliminate losses that are caused by

disasters. Our capability for forecasting future economic, social, and political

discontinuities is much less well developed (Ayres, 2000). Therefore, we believe that

scientists should put emphasis on early warning systems more than usual.

57

REFERENCES

Ayres R. U., 2000, On forecasting discontinuities, Technological Forecasting and Social

Change 65, 81–97.

Bussiere M., & Fratzscher M., 2006, Towards a new early warning system of financial

crises, Journal of International Money and Finance, 25 953-973.

Cajueiro, D. O., & Tabak, B. M., 2009, Werneck, F. K., Can we predict crashes? The

case of the Brazilian stock market, Physica A 388 16031609.

Frankel, J. A., & Rose, A. K., 1996, Currency crashes in emerging markets: An

empirical treatment, Journal of International Economics, vol. 41(3-4), pages 351-366,

November.

Giudici, P., 2003, Applied data mining, John Wiley & Sons Ltd, ISBN: 0-470-84679-8

(Paper).

Han J., & Kamber M., 2006, Data mining: Concepts and techniques, Morgan Kaufmann

Publishers, ISBN: 978-1-55860-901-3.

Heckerman D., 1997, Bayesian networks for data mining, Data Mining and Knowledge

Discovery 1, 79–119.

Iseri M., & Caglar H., & Caglar N., 2008, A model proposal for the chaotic structure of

Istanbul stock exchange, Chaos, Solitons and Fractals 36 1392–1398.

http://www.ise.org/.

JANG, J-SR., 1996, Input Selection for ANFIS learning, Proceedings of the IEEE

International Conference on Fuzzy Systems, pp.1493-1499.

JANG, J-SR., 1993, ANFIS: Adaptive-network-based fuzzy inference system, IEEE

Trans. Syst. Man Cybernet, Vol.23, No.3, pp.665–685.

JANG, J-SR., 1992, Self-learning fuzzy controllers based on temporal back

propagation, IEEE Trans Neural Networks, Vol.3, No.5, pp.714–723.

Kaminsky, G., & Lizondo, S., & Reinhart, C., 1998, Leading indicators of currency

crisis, International Monetary Fund Staff Papers, March Volume 45, Number 1.

58

Kim, T. Y., & Oh, K. J., & Sohn, I., & Hwang, C., 2004, Usefulness of artificial neural

networks for early warning system of economic crisis, Expert Systems with

Applications 26 583–590.

Larose, D. T., 2005, Data mining methods and models, John Wiley & Sons, Inc., ISBN:

978-0-471-66656-1.

Levy, M., 2008, Stock market crashes as social phase transitions, Journal of Economic

Dynamics & Control 32 137–155.

Lin C., & Khan H. A., & Wang Y., & Chang R., 2006, A new Approach to modeling

earlywarning systems for currency crises : Can a machine-learning fuzzy expert system

predict the currency crises effectively?, CIRJE-F-411, April.

MATLAB, 2008, Getting started guide, The MathWorks, Inc., Twelfth printing,

October.

MATLAB, 2008, Fuzzy logic toolbox user‘s guide, The MathWorks, Inc., Revised for

Version 2.2.8 (Release 2008b), October.

McNelis P. D., 2005, Neural networks in finance: Gaining predictive edge in the

market, Elsevier Academic Press, ISBN: 0-12-485967-4.

Peltonen, T. A., 2006, Are emerging market currency crises predictable? A test,

European Central Bank, Working Paper Series, No. 571 / January.

Sivanandam, S. N., & Sumathi, S., & Deepa, S. N., 2007, Introduction to fuzzy logic

using matlab, Springer, ISBN: 10 3-540-35780-7.

Trappey C. V., & Wu H., 2008, An evaluation of the time-varying extended logistic,

simple logistic, and Gompertz models for forecasting short product lifecycles,

Advanced Engineering Informatics 22 421–430

Witten, I. H., & Frank E., 2005, Data mining, Morgan Kaufmann Publishers, ISBN: 0-

12-088407-0.

59

CURRICULUM VITAE

Personal Name/Last Name : Murat ACAR

E-mail : muratacar@gmail.com

Place/Date of Birth : İzmir - 1973

Marital Status : Married

Military Service : Completed

Smoking : No

Driving Licence : B Class

Experience 2007 – ... Istanbul Stock Exchange Takasbank Inc., ISTANBUL

Project Manager

1999 – 2007 Istanbul Stock Exchange Takasbank Inc., ISTANBUL

Software Specialist

Education 1991–1996 Ege University, Izmir

Faculty of Engineering B.Sc. in Computer Engineering

1988–1991 Ataturk Lisesi, Izmir

