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ABSTRACT 

 

 

A HARDWARE IMPLEMENTATION OF 

   TRUE-MOTION ESTIMATION WITH 3-D RECURSIVE  

SEARCH BLOCK MATCHING ALGORITHM 

 

 

DEDEOĞLU, Soner 

 

 

Computer Engineering 

 

 

Supervisor: Asst. Prof. Dr. Hasan Fatih UĞURDAĞ 

 

 

January 2008, 53 pages 

 

 

Motion estimation, in video processing, is a technique for describing a frame in terms of 

translated blocks of another reference frame. This technique increases the ratio of video 

compression by the efficient use of redundancy information between frames. The Block 

Matching based motion estimation methods, based on dividing frames into blocks and 

calculating a motion vector for each block, are accepted as motion estimation standards in 

video encoding systems by international enterprises, such as MPEG, ATSC, DVB and ITU. In 

this thesis study, a hardware implementation of 3-D Recursive Search Block Matching 

Algorithm for the motion estimation levels, global and local motion estimations, is presented.  

 

Keywords: Digital Video Processing, Motion Estimation, Very Large Scale Integration 
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ÖZET 

 

 

ÜÇ BOYUTLU ÖZYĐNELĐ ARAMA BLOK UYUMLAMA  

ALGORĐTMASI ĐLE GERÇEK-HAREKET TAHMĐNĐNĐN 

DONANIMSAL GERÇEKLEŞTĐRMESĐ 

 

 

DEDEOĞLU, Soner 

 

 

Bilgisayar Mühendisliği 

 

 

Tez Danışmanı: Yrd. Doç. Dr. Hasan Fatih UĞURDAĞ 

 

 

Ocak 2008, 53 Sayfa 

 

 

Hareket tahmini, dijital video işlemede, bir çerçevenin başka bir referans çerçevenin 

bloklarının çevrilmesi cinsinden tanımlanması tekniğine verilen isimdir. Bu teknik, çerçeveler 

arası artıklık bilgilerinin daha verimli kullanılması ile video sıkıştırma oranları 

yükseltilmesini sağlamaktadır. Çerçeveleri bloklara bölerek her blok için bir hareket vektörü 

hesaplamaya dayanan Blok Uyumlama bazlı hareket tahmini yöntemleri MPEG, ATSC, DVB 

ve ITU gibi uluslararası kuruluşlar tarafından video kodlama sistemlerinde hareket tahmini 

standartları olarak kabul edilmiştir. Bu tez çalışmasında hareket tahmini aşamalarından olan 

global ve lokal hareket tahmini için Üç Boyutlu Özyineli Arama Blok Uyumlama Algoritması 

donanımsal olarak gerçekleştirilmesi sunulmuştur. 

 

Anahtar Kelimeler: Dijital  Video Đşleme, Hareket Tahmini, Çok Büyük Ölçekli Tümleşik 

Devre 
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1. INTRODUCTION 

 

There have been two significant revolutions in television history. First was in 1954 

when the first color TV signals were broadcasted. Nowadays, black-and-white TV 

signals are unavailable in the airwaves. Second of the revolutions is eventuated by 

digital TV signals, broadcasted at the end of 1998 first on the air. Analog TV signals 

have been started to be disappeared from the airwaves as black-and-white TV 

signals.  

 

Digital TV is not just a provider of quality in video; it also enables many multimedia 

applications and services to be introduced. While digital video and digital TV 

technologies are developing rapidly, they triggered the academic researches on the 

subject, digital video processing. Video processing differs from image processing 

due to the movements of the objects in video. Understanding how objects move helps 

us to transmit, store, and manipulate the video in an efficient way. This subject 

makes the algorithmic development and architectural implementation of motion 

estimation techniques to be the hottest research topics in multimedia. 

 

This thesis study gives a brief discussion about the well-known motion estimation 

algorithms and an architectural implementation of true motion estimation with 3-D 

recursive search block matching algorithm. 

 

In Section 2, the definitions of motion compensation and estimation are given. The 

proposed well-known motion estimation techniques are briefly listed in algorithmic 

view and 3-D recursive search block matching algorithm is examined in details at the 

same section. In Section 3, a hardware implementation for global motion estimation 

and local motion estimation techniques is proposed.  In Section 4, object oriented 

software to test the architecture is explained at two levels of development: DLL 

Development and GUI development. In the last section, the Conclusion and future 

works are given. 



2 

 

2. MOTION ESTIMATION ALGORITHMS 

In video compression, motion compensation is a technique for describing a picture in 

terms of translated copies of portions of a reference picture, often 8x8 or 16x16-pixel 

blocks. This increases compression ratios by making better use of redundant 

information between successive frames. 

 

With consumer hardware approaching 1920 pixels per scan line at 24 frames per 

second for a cinema production a one-pixel-per-frame motion needs more than a 

minute to cross the screen, many motions are faster. Global motion compensation 

scrolls the whole screen an integer amount of pixels following a mean motion so that 

the mentioned methods can work. Block motion compensation divides up the current 

frame into non-overlapping blocks, and the motion compensation vector tells where 

those blocks come from in the previous frame, where the source blocks typically 

overlap. 

 

2.1. GLOBAL MOTION COMPENSATION 

 

In global motion compensation (GMC), the motion model basically reflects camera 

motions such as dolly (forward, backwards), track (left, right), boom (up, down), pan 

(left, right), tilt (up, down), and roll (along the view axis). It works best for still 

scenes without moving objects. There are several advantages of global motion 

compensation: 

• It models precisely the major part of motion usually found in video sequences 

with just a few parameters. The share in bit-rate of these parameters is 

negligible.  

 

• It does not partition the frames. This avoids artifacts at partition borders.  

 

• A straight line (in the time direction) of pixels with equal spatial positions in 

the frame corresponds to a continuously moving point in the real scene. Other 

MC schemes introduce discontinuities in the time direction. 
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2.2. BLOCK MOTION COMPENSATION 

 

In block motion compensation (BMC), the frames are partitioned in blocks of pixels. 

Each block is predicted from a block of equal size in the reference frame. The blocks 

are not transformed in any way apart from being shifted to the position of the 

predicted block. This shift is represented by a motion vector. 

 

To exploit the redundancy between neighboring block vectors, it is common to 

encode only the difference between the current and previous motion vector in the bit-

stream. The result of this differencing process is mathematically equivalent to global 

motion compensation capable of panning. Further down the encoding pipeline, an 

entropy coder will take advantage of the resulting statistical distribution of the 

motion vectors around the zero vector to reduce the output size. 

 

It is possible to shift a block by a non-integer number of pixels, which is called sub-

pixel precision. The in-between pixels are generated by interpolating the neighboring 

pixels. Commonly, half-pixel or quarter pixel precision is used. The computational 

expense of sub-pixel precision is much higher due to the extra processing required 

for interpolation and on the encoder side, a much greater number of potential source 

blocks to be evaluated. 

 

The main disadvantage of block motion compensation is that it introduces 

discontinuities at the block borders (blocking artifacts). These artifacts appear in the 

form of sharp horizontal and vertical edges which are easily spotted by the human 

eye and produce ringing effects (large coefficients in high frequency sub-bands) in 

the Fourier-related transform used for transform coding of the residual frames. 

 

Block motion compensation divides the current frame into non-overlapping blocks, 

and the motion compensation vector tells where those blocks come from (a common 

misconception is that the previous frame is divided into non-overlapping blocks, and 

the motion compensation vectors tell where those blocks move to). The source 

blocks typically overlap in the source frame. Some video compression algorithms 
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assemble the current frame out of pieces of several different previously-transmitted 

frames. 

 

2.3. MOTION ESTIMATION 

 

One of the key elements of many video compression schemes is motion estimation 

(ME). A video sequence consists of a series of frames. To achieve compression, the 

temporal redundancy between adjacent frames can be exploited. That is, a frame is 

selected as a reference, and subsequent frames are predicted from the reference using 

a technique known as motion estimation. The process of video compression using 

motion estimation is also known as interframe coding.  

 

When using motion estimation, an assumption is made that the objects in the scene 

have only translational motion. This assumption holds as long as there is no camera 

pan, zoom, changes in luminance, or rotational motion. However, for scene changes, 

interframe coding does not work well, because the temporal correlation between 

frames from different scenes is low. In this case, a second compression technique is 

used, known as intraframe coding. 

 

In a sequence of frames, the current frame is predicted from a previous frame known 

as reference frame. The current frame is divided into macroblocks (MB), typically 

16x16 pixels in size. This choice of size is a good trade-off between accuracy and 

computational cost. However, motion estimation techniques may choose different 

block sizes, and may vary the size of the blocks within a given frame.  

 

Each macroblock is compared to a macroblock in the reference frame using some 

error measure, and the best matching macroblock is selected. The search is 

conducted over a predetermined search area, also known as search window (SW). A 

vector, denoting the displacement of the macroblock in the reference frame with 

respect to the macroblock in the current frame, is determined. This vector is known 

as motion vector (MV).  
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Figure 2.1:  Relation between reference frame, current frame and motion vector 

 

When a previous frame is used as a reference, the prediction is referred to as forward 

prediction. If the reference frame is a future frame, then the prediction is referred to 

as backwards prediction. Backwards prediction is typically used with forward 

prediction, and this is referred to as bidirectional prediction. 

 

 
Figure 2.2: Types of frame prediction 
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2.3.1. Error Function for Block-Matching Algorithms  

 

Block-matching process is performed on the basis of the minimum distortion. In 

many algorithms SAD, sum of absolute differences, function is adopted as the block 

distortion measure. Assume ),( nmMBi
r is the reference block of size NxN pixels 

whose upper most left pixel is at the location ),( nm of the current frame i , and 

),(1 vnumMBi
r ++− is a candidate block within the SW of the previous frame 1−i  

with ),( vu displacement from i
rMB . Let wbe the maximum motion displacement 

and ),( nmpi be pixel value at location ),( nm in frame i , then the SAD between i
rMB  

and 1−i
rMB  is defined as 

 

 ∑∑
−

=

−

=

− ++++−++=
1

0

1

0

1 ),(),(),(
N

k

N

l

ii vlnukmplnkmpvuSAD , (2.1) 

 

where uw ≤− , wv ≤ . 

  

The SAD is computed for each candidate block within the SW. A block with the 

minimum SAD is considered the best-matched block, and the value ),( vu for the 

best-matched block is called motion vector. That is, motion vector (MV) is given by 

 

    ),(min|),( vuSADvuMV =  .   (2.2) 

 

2.3.2 Full Search (FS) Algorithm 

 

The full search algorithm is the most straightforward brute-force ME algorithm. It 

matches all possible candidates within the SW. This means that it is at least as 

accurate (in terms of distortion) as any other block motion estimation algorithm. 

However, that accuracy comes at the cost of a large number of memory operations 

and computations. FS is rarely used today, but it remains useful as a benchmark for 

comparison with other algorithms. 
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2.3.3. Three Step Search (TSS) Algorithm 

 

This algorithm is introduced by Koga (1981, p. G.5.3.1 - G.5.3.4). It became very 

popular because of its simplicity, robust and near optimal performance. It searches 

for the best motion vectors in a coarse to fine search pattern. The algorithm may be 

described as: 

 

Table 2.1: TSS algorithm 

STEP – 1: An initial step size is picked. Eight blocks at a  

  distance of step size from the center are picked for 

  comparison. 

 

STEP – 2: The step size is halved. The center is moved to the  

  point with the minimum distortion. 

   

  Steps 1 and 2 are repeated till the step size becomes 

  smaller than 1. 

 

One problem that occurs with the TSS is that it uses a uniformly allocated checking 

point pattern in the first step, which becomes inefficient for small motion estimation. 

2.3.4. Two Dimensional Logarithmic (TDL) Search Algorithm 

 

This algorithm was introduced by Jain and Jain (1981, pp. 1799 – 1808) around the 

same time that the 3SS was introduced and is closely related to it. Although this 

algorithm requires more steps than the 3SS, it can be more accurate, especially when 

the search window is large. The algorithm may be described as: 

 

Table 2.2: TDL algorithm 

STEP – 1: Pick an initial step size. Look at the block at the center and the four  

  blocks at a distance of step size from this on the X and Y axes.  
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STEP – 2: If the position of best match is at the center, halve the step size. If 

  however, one of the other four points is the best match, then it  

  becomes the center and step 1 is repeated. 

 

STEP – 3: When the step size becomes 1, all the nine blocks around the center 

  are chosen for the search and the best among them is picked as the 

   required block. 

 

A lot of variations of this algorithm exist and they differ mainly in the way in which 

the step size is changed. Some people argue that the step size should be halved at 

every stage. On the other hand, some people believe that the step size should also be 

halved if an edge of the SW is reached. However, this idea has been found to fail 

sometimes. 

 

2.3.5. Four Step Search (FSS) Algorithm 

 

This block matching algorithm was proposed by Po and Ma (1996, pp. 313-317). It is 

based on the real world image sequence’s characteristics of center-biased motion. 

The algorithm is started with a nine point comparison and then the selection of points 

for comparison is based on the following algorithm: 

 

Table 2.3: FSS algorithm 

STEP – 1:  Start with a step size of 2. Pick nine points around the SW center. 

  Calculate the distortion and find the point with the smallest distortion. 

  If this point is found to be the center of the searching area go to step 

  4, otherwise go to step 2. 

 

STEP – 2: Move the center to the point with the smallest distortion. The step 

  size is maintained at 2. The search pattern depends on the position of  

  previous minimum distortion. 
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  a) If the previous minimum point is located at the corner of the  

  previous search area, five points are picked. (Figure 2.3b) 

 

  b) If the previous minimum distortion is found at the middle of  

  horizontal or vertical axis of the previous search window, three  

  additional checking points are picked. (Figure 2.3c) 

 

  Locate the point the minimum distortion. If this is at the center, go to 

  step 4, otherwise go to step 3. 

STEP – 3: The search pattern strategy is the same, however it will finally go to 

  step 4. 

 

STEP – 4: The step size is reduced to 1 and all nine points around the center of  

  the search area examined. 

 

 

 

        

 (a)    (b)     (c) 

Figure 2.3:  Illustration of selection of blocks for different cases is FSS  

(a) Initial Configuration. (b) If point A has minim um distortion, pick given five points.  

(c) If point B has minimum distortion, pick given three points. 

 

 

The computational complexity of the FSS is less than that of the TSS, while the 

performance in terms of quality is better. It is also more robust than the TSS and it 

maintains its performance for image sequence with complex movements like camera 

zooming and fast motion. Hence it is a very attractive strategy for motion estimation. 
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2.3.6. Orthogonal Search Algorithm (OSA) 

 

Puri, Hang and Schilling (1987, pp. 1063 – 1066) introduced the algorithm as a 

hybrid of the TSS and TDL algorithms. Vertical stage is followed by a horizontal 

stage to search the optimal block. Steps of algorithm may be listed as follows: 

 

Table 2.4: OSA algorithm 

STEP – 1: Pick a step size (usually half the maximum displacement in the SW). 

  Take two points at a distance of step size in the horizontal direction 

  from the center of the SW and locate the point of minimum 

  distortion. Move the center to this point. 

 

STEP – 2: Take two points at a distance step size from the center in vertical 

  direction and find the point with the minimum distortion. 

 

STEP – 3: Halve the step size. If it is greater than or equal to one go to step 1,  

  otherwise halt. 

 

2.4. 3-D RECURSIVE SEARCH BLOCK MATCHING ALGORITHM 

 

Several algorithms, including the algorithms mentioned previous section, have been 

proposed for frame rate conversion for consumer television applications. There exists 

a common problem due to complexity of the motion estimator while VLSI 

implementation of these algorithms; on the other hand, the existing simpler 

algorithms, such as One-At-a-Time Search (OTS) Algorithm of Srinivasan and Rao 

(1985, pp. 888 – 896), cause very unnatural artifacts. 

 

De Haan, Biezen, Huijgen and Ojo (1993, pp. 368 – 379) proposed a new recursive 

block-matching motion estimation algorithm, called 3-D Recursive Search Block-

Matching Algorithm. Measured with criteria relevant for the FRC application, this 

algorithm is shown to have a superior performance over alternative algorithms, with 

a significantly less complexity. 
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2.4.1. 1-D Recursive Search 

 

The block-matching algorithms, as the most attractive for VLSI implement, limit 

number of candidate vectors to be evaluated. This can be realized through recursively 

optimizing a previously found vector, which can be either spatially or temporally 

neighboring result. 

 

If spatially and temporally neighboring MVs are believed to predict the displacement 

reliably, a recursive algorithm should enable true ME, if the amount of updates are 

around the prediction vector is limited to a minimum. The spatial prediction was 

excluded for the candidate set: 
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where L is the update length, which is measured on the frame grid, TYXX ),(= is 

the position on the block grid, t is time, and the prediction vector ),(1 tXD i − is 

selected according to: 
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and the candidate set is limited to a set maxCS : 

 

  { }MCMNCNCCS yx +≤≤−+≤≤−= ,|max   (2.5) 

 

The resulting estimated MV ),( txD , which is assigned to all pixel positions, 

Tyxx ),(= , in the block )(XB of size YX × with center X : 

 

{ }2/2/2/2/|)( YXyYXXXxXXxXB yyxx +≤≤−∧+≤≤−=  (2.6) 
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equals the candidate vector ),( tXC with the smallest error ),,( tXCl : 

 

{ }),(),,,(),,(|),(),(:)( tXCSFtXFtXCtXCSCtxDXBx ii ∈∀≤∈∈∈∀ ll  (2.7) 

 

Errors are calculated as summed absolute differences (SAD): 

 

  ∑
∈

⋅−−−=
)(

),(),(),,(
XBx

TntCxFtxFtXCl    (2.8) 

 

where ),( txF is the luminance function and T the field period. The block size is 

fixed to 8== YX , although experiments indicate little sensitivity of the algorithm to 

this parameter. 

 

2.4.2. 2-D Recursive Search 

 

It is well known that, the convergence can be improved with predictions calculated 

from a 2-D area or even a 3-D space. In this section, 2-D prediction strategy is 

introduced that does not dramatically increase the complexity of the hardware. 

 

The essential difficulty with 1-D recursive algorithm is that it cannot manage the 

discontinuities at the edges of moving objects. The first impression may be that 

smoothness constraints exclude good step response in a motion estimator. The 

dilemma of combining smooth vector fields can be assailed with a good step 

response. 

 

When the assumption, that the discontinuities in the velocity plane are spaced at a 

distance that enables convergence of the recursive block matcher in between two 

discontinuities, the recursive block matcher yields the correct vector value at the first 

side of the object boundary and begins converging at the opposite side. 
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Figure 2.4: The bidirectional convergence (2-D C) principle 

 

It seems attractive to apply two estimator processes at the same time with the 

opposite convergence directions (Fig. 2.4). SAD of both vectors can be used for 

selection. 2-D C is formalized as a process that generates a MV: 
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where  

 

∑
∈

−−−=
)(

),(),(),,(
XBx

aa TtDxFtxFtXDl   (2.10) 

 

and 

  

  ∑
∈

−−−=
)(

),(),(),,(
XBx

bb TtDxFtxFtXDl    (2.11) 

 

while aD and bD are found in a spatial recursive process prediction vectors 

),( tXSa : 

 

),(),( tSDXDtXS aaa −=      (2.12) 

 

and ),( tXSb : 
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   ),(),( tSDXDtXS bbb −=     (2.13) 

 

where 

 

ba SDSD ≠ .     (2.14) 

 

The two estimators have unequal spatial recursion vectorsSD. One of these 

estimators have converged already at the position where the other is yet to do so, that 

is how 2-D C solves the run-in problem at edges of moving objects, if the two 

convergence directions are opposite. The attractiveness of a convergence direction 

varies significantly for hardware (Fig. 2.5). The predictions taken from blocks 1, 2, 

or 3, are favorable for hardware. Block 4 is less attractive, as it perplexes pipelining 

of algorithm that the previous result has to be ready before the next can be 

calculated. Block 5 is not attractive because of reversing the line scan. Blocks 6, 7, 

and 8 are totally unattractive because of reversing vertical scan direction. Reversing 

horizontal and vertical scans require extra memories in the hardware. 

 

 
Figure 2.5: Locations around the current block, from which the estimation result could be used 

as a spatial prediction vector. 

 

When applying only the preferred blocks, the best implementation of 2-D C results 

with predictions from blocks 1 and 3. By taking predictions from blocks P and Q, it 

is possible to enlarged the angle between the convergence direction, however, it is 

observed worse results rather than blocks 1 and 3 for 2-D C.  
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Figure 2.6: Location of the spatial predictions of estimators a and b with respect  

to the current block.  

2.4.3. 3-D Recursive Search 

 

Both estimators, a and b, in algorithm produce four candidate vectors each by 

updating their spatial predictions ),( tXSa  and ),( tXSb . The spatial predictions were 

chosen to create two perpendicular diagonal convergence axes: 

 



















−= t

Y

X
XDtXS aa ,),(     (2.15) 

and 

 


















−
−= t

Y

X
XDtXS bb ,),( .   (2.16) 

 

Due to movements in picture, displacements between two consecutive velocity 

planes are small compared to MB size. The definition of a third and a forth 

estimators, c and d, is enabled by this assumption.  

 

Selection of predictions for estimators, c and d, from position 6 and 8 (Fig. 2.5), 

respectively, creates additional convergence directions opposite to predictions of a 

and b; however, the resulting design reduces the convergence speed due to temporal 

component in prediction delays of c and d. 
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Instead of choosing additional estimators, c and d, it is suggested to apply vectors 

from positions opposite to the spatial prediction position as additional candidates in 

the already defined estimators to save hardware with the calculation of fewer errors. 

De Haan (1992) keynotes that; working with fewer candidates reduces the risk of 

inconsistency. 

 

As the algorithm is improved, a fifth candidate in each spatial estimator, a temporal 

prediction value from previous field accelerates the convergence. These convergence 

accelerators are taken from a MB shifted diagonally over r MBs and opposite to the 

MBs from which aS and bS result: 
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and 
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rXDtXT b ,),( .   (2.18) 

 

By the experimental results, 2=r is the best spatial distance for a MB size of 8x8 

pixels.  

 

 
Figure 2.7: The relative positions of the spatial predictors Sa and Sb and the convergence 

accelerators Ta and Tb 
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For the resulting algorithm, ),( tXDa  and ),( tXDb result from estimators, a and b, 

calculated in parallel with the candidate setaCS : 
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and bCS : 
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while distortions are assigned to candidate vectors using the SAD function (Eq. 2.8). 

 

2.5. GLOBAL MOTION ESTIMATION TECHNIQUE 

 

Camera effects, i.e., panning, tilting, travelling, and zooming, have very regular 

character causing very smooth MVs compared to the object motion. Zooming with 

the camera yields MVs, which linearly change with the spatial position. On the other 

hand, other camera effects generate a uniform MV, called global motion vector, field 

for the entire video. 

 

To estimate globalMV , a sample set )(tS , proposed by De Haan and Biezen (1998, pp. 

85 – 92), containing nine MVs, )1,( −tXD  from different positions X on the MB 

grid in a centered window of size XmW )2( − by YqH )2( − in the picture with the 

width XW ⋅ and the height YH ⋅ from the temporal vector prediction memory 

according to 
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where the values of mand qare noncritical.  

 

 

Figure 2.8: Position of the sample SWs to find globalMV  in the image plane 

 

Global motion estimation to find globalMV  differs from local motion estimation due to 

MB sizes. The MB size related to global motion estimation is fixed to 16== YX .  

 

Another difference between global and local motion estimations is the algorithm to 

find MVs. globalMV  is calculated in each SWs by Full Search (FS) Algorithm, on the 

other hand, local displacement vectors are calculated by 3-D RS. Although it is 

possible to choose anyone other block matching algorithms instead of FS to reduce 

the number of computations, with the very limited number of search windows and 

the aim to find more accurate global displacement vector, FS is performed and )(tS  

(Eq. 2.21) is filled.  
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The resultant globalMV  is derived AS the median vector of each MVs in )(tS : 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )8,...,1,0,8,...,1,0 yyyxxxglobal SSSmedianSSSmedianMV =  (2.22) 

 

and added as an additional candidate vector to candidate set in order to use in local 

motion estimation. 
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3. MOTION ESTIMATION HARDWARE 

3.1. VIDEO FORMAT 

Wide Extended Graphics Array (WXGA) is one of the non-standard resolutions, 

derived from the XGA, referring to a resolution of 1366x768. WXGA became the 

most popular one for the LCD and HD televisions in 2006 for wide screen 

presentation at an aspect ratio of 16:9. Video frames, whose rate to be converted by 

the motion estimation and compensation in this master thesis work, have WXGA 

resolution. 

 

A significant point related to the input video format is that it is composed of 

consecutive repeated frame of each frame (Fig. 3.1).  

 

 
Figure 3.1: Video sequence composed of repeated frames 

 

Because each frame is followed by its duplicated copy, it is not necessary to store all 

the frames provided by video source into memory. Repeated frames are skipped for 

memory storage, however, they are not completely omitted. Repeated frames are 

used while outputting the video frames to the display screen. 

 

Table 3.1: Input frame sequence and storage into DDR 

Frame Time 0 1 2 3 4 5 6 7 8 9 … 

inF  0F  
0F  

2F  
2F  

4F  
4F  

6F  
6F  

8F  
8F  … 

inDDR  
0F   

2F   
4F   

6F   
8F   … 
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The objective with ME and MC is to generate new sub-frames by interpolation of 

MBs with MVs instead of repeated frames and outputting the video frames that have 

a higher frame rate.  

 

Table 3.2: Timeline representation of DDR access, ME, and generation of output video sequence 

Frame Time 0 1 2 3 4 5 6 7 8 9 … 

inF  0F  
0F  

2F  
2F  

4F  
4F  

6F  
6F  

8F  
8F  … 

inDDR  0F   
2F   

4F   
6F   

8F   … 

outDDR    
0F   

2F   
4F   

6F   … 

ME    1F   
3F   

5F   
7F   … 

outF   
0F  

1F  2F  
3F  4F  

5F  6F  
7F  8F  … 

 

 

3.2. HIGH-LEVEL ARCHITECTURE OF HARDWARE 

 

Fully implemented motion estimation and compensation hardware consists of five 

main components: data converters, external memory block, memory interface, 

motion estimator, and motion compensator.  

 

Color values of each pixel of a video frame are stored in RGB format in video 

sources, and digital displayers need also RGB pixel values to show the frames, 

however, motion estimation algorithms are performed on gray-scaled images. A 

method to obtain gray-scaled image is to convert the color space into YUV color 

space, which separates the gray-scale (Y - luminance) and color information (U and 

V) with the equations 

 

( )( )
( )( )
( )( ) 12881281894112

12881281127438

1681282512966

+>>+×−×−×=
+>>+×+×−×−=

+>>+×+×+×=

BGRV

BGRU

BGRY

.  (3.1)  
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To regenerate RGB data from YUV color space for displaying the frame on display 

screen a reverse conversion is provided using the equations 

 

( ) ( )( )( )
( ) ( ) ( )( )( )
( ) ( )( )( )255,1312816531169535

255,1312832031286660169535

255,1312813074169535

>>−×+−×=
>>−×−−×−−×=

>>−×+−×=

UYMINB

UVYMING

VYMINR

. (3.2) 

 

An RGB2YUV converter hardware block is placed behind the video source; 

likewise, a YUV2RGB converter is installed in front of the display screen to convert 

the pixel values to RGB formats. 
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Figure 3.2: High-level block diagram motion estimator/compensator architecture 

 

 

DDR, as external memory, is used in architecture to store incoming frames and the 

estimated motion vectors to be used in the following steps of motion estimation.   
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DDR interface block acts as a global bridge in the system and controls the DDR, 

Motion Estimator and Motion Compensator blocks. DDR interface is the block 

where the packing strategy of pixels, presented in following section, is operated. 

 

Motion Estimator is the main hardware component of the whole system whose 

functionality is presented in details following sections. 

 

Motion Compensator is end-point of the architecture where the estimated vectors to 

be used for interpolation and generation of interframes to increase the frame rate of 

the original video sequence. 

 

3.3. PACKING STRATEGY OF PIXELS 

 

In architectures for the block-matching algorithms, memory configuration plays an 

important role. It enables the exploitation of various techniques such as parallelism 

and pipelining. The motion-estimation techniques are performed with a great amount 

data during the computations. This requires a decrement in the number of external 

memory access and fetching more pixels from DDR at a single cycle. 

 

Pixels from video source are received one by one every pixel clock and converted 

into YUV color space. Instead of storing 24-bit YUV value of each pixel into each 

word of external memory, every YUV value is divided into 8-bit Y, which is the only 

value of pixel used in motion estimation, and 16-bit UV block and for four 

consecutive pixels 8-bit Y values and 16-bit UV values are buffered in DDR 

interface. Four pieces of Y values are combined to get a 32-bit word; likewise, two 

pieces of UV values, selected according to 4:2:2 co-sited sampling, are combined to 

yield another 32-bit word, and then these words are stored to related address of 

external memory. This configuration of memory provides the motion estimator to 

fetch luminance values of four consecutive pixels at a single access to external 

memory. 
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Figure 3.3: Packing strategy of pixels and DDR storage 

 

3.4. GLOBAL MOTION ESTIMATOR 

 

Global motion estimator is the component to detect the global movements in the 

background image of frame as a result of camera effects. It is based on FS block-

matching strategy on fixed reference locations of each frame and extracting a global 

MV after scanning the reference SWs.  

 

 
Figure 3.4: Global motion estimator block diagram 
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3.4.1. GME Memory Structure 

 

FS block-matching algorithm is performed between current frame with the MB of 

16x16 in size and previous frame with the SW of 48x36 in size, calculated with the 

search range of ±16 in horizontal and ±10 in vertical. 

 

To reduce the number of access to external memory, MB and SW are totally fetched 

to internal memories, i.e. Block RAMs of FPGA, before the FS is started. The 

structure of the DDR words, internal block-RAMs is set to 32-bit in width. Because 

each word consists of four luminance values, the numbers of addresses of SW block 

RAM and MB block RAM are set to 
( )

432
4

3648 =×
and 

( )
64

4

1616 =×
, 

respectively. 

 

GME_MEMO

CURR_MB_CAG
(Current Macro Block –

Controller – Address Generator)
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Figure 3.5: Memory structure of global motion estimator 

 



26 

 

Three luminance values of SW are required to provide the regularity of the data flow 

to processing elements in FS algorithm; however, a single block-RAM is eligible to 

provide two pixel data, S_0 and S_1, over its one read and one read/write ports. So 

an additional block-RAM, labeled as SW_DUP_BRAM in Fig. 3.5, is installed on 

global motion estimation structure to transmit the third necessary data, S_2, to 

processing elements. The contents of additional memory block and the original SW 

memory block are identical.  

 

READ_BYTE_SELECTOR is a multiplexing structure to select the essential bytes 

for PEs from the 32-bit outputs of block-RAMs, CURR_MB_BRAM, SW_BRAM, 

and SW_DUP_BRAM. It decides the luminance to be selected by a simple 2-bit 

counter inside. 

 

Address generators of block-RAMs are controlled by the status inputs (Table 3.3 and 

Table 3.4), fed from DDR interface.  

Table 3.3: Address generator states 

State Number Meaning 

0 IDLE 

1 WRITE TO BLOCK-RAM 

2 READ FROM BLOCK-RAM 

  

Table 3.4: Address generation algorithm 

Previous State Current State To Do 

0 0 Do nothing 

0 1 
Enable writing over block-RAM. Reset write 
address. 

0 2 
Enable reading from block-RAM. Reset read 
address. 

1 0 Disable writing. 
1 1 Increase write address by appropriate value. 

1 2 
Disable writing. Enable reading from block-
RAM. Reset read address. 

2 0 Disable reading. 
2 1 Unreachable state transition. 

2 2 
Increase/Decrease read address by appropriate 
value. 
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Figure 3.6: GME_MEMO data access timeline and address generation 
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3.4.2. GME Processing Element Array 

 

Due to the search range of ± 16 locations in horizontal, there exists 33 search points 

for each line of SW. This enables a set of parallel 33 PEs in processing element array 

structure of global motion estimator. Each PE is assigned to calculate the SAD of the 

corresponding search location. After a completed calculation PE is assigned for a 

new SAD calculation of the search location in next line with the same column. 

 

 
Figure 3.7: Structure of GME processing element 

 

PE array data of SW is provided by the GME memory structure over 3 luminance 

ports S_0, S_1 and S_2, however, each PE uses only 1 or 2 of this luminance values 

due to the region of the corresponding its search location. A SW consists of 3 search 

regions. Columns 0-15, 17-32, 33-48 are defined as region-0, region-1, and region-2, 

respectively. The data providing of these regions are shared to the luminance ports 

S_0, S_1, and S_2; on the other hand, the luminance values of current MB are 

provided over single port, labeled as C_i, in serial and shifted from a PE to the 

following PE. 
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Table 3.5: Data flow to processing elements over input luminance ports 

C_i S_0 S_1 S_2 PE0 PE1 PE2 PE3 PE4 … PE14 PE15 PE16 PE17 PE18 … PE31 PE32
c0 S0,0 x x C0 - S0,0 IDLE IDLE IDLE IDLE … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c1 S0,1 x x C1 - S0,1 C0 - S0,1 IDLE IDLE IDLE … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c2 S0,2 x x C2 - S0,2 C1 - S0,2 C0 - S0,2 IDLE IDLE … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c3 S0,3 x x C3 - S0,3 C2 - S0,3 C1 - S0,3 C0 - S0,3 IDLE … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE

c4 S0,4 x x C4 - S0,4 C3 - S0,4 C2 - S0,4 C1 - S0,4 C0 - S0,4 … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c5 S0,5 x x … … … … … … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c6 S0,6 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c7 S0,7 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c8 S0,8 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c9 S0,9 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c10 S0,10 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c11 S0,11 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c12 S0,12 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c13 S0,13 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c14 S0,14 x x … … … … C0 - S0,14 IDLE IDLE IDLE IDLE … IDLE IDLE
c15 S0,15 x x C15 - S0,15 C14 - S0,15 C13 - S0,15 C12 - S0,15 C11 - S0,15 … C1 - S0,15 C0 - S0,15 IDLE IDLE IDLE … IDLE IDLE
c16 S1,0 S0,16 x C16 - S1,0 C15 - S0,16 C14 - S0,16 C13 - S0,16 C12 - S0,16 … C2 - S0,16 C1 - S0,16 C0 - S0,16 IDLE IDLE … IDLE IDLE
c17 S1,1 S0,17 x C17 - S1,1 C16 - S1,1 C15 - S0,17 C14 - S0,17 C13 - S0,17 … C3 - S0,17 C2 - S0,17 C1 - S0,17 C0 - S0,17 IDLE … IDLE IDLE
c18 S1,2 S0,18 x C18 - S1,2 C17 - S1,2 C16 - S1,2 C15 - S0,18 C14 - S0,18 … … IDLE IDLE
c19 S1,3 S0,19 x C16 - S1,3 C15 - S0,19 … … IDLE IDLE

c20 S1,4 S0,20 x C16 - S1,4 … … IDLE IDLE
c21 S1,5 S0,21 x … … IDLE IDLE
c22 S1,6 S0,22 x … … IDLE IDLE
c23 S1,7 S0,23 x … … IDLE IDLE
c24 S1,8 S0,24 x … … IDLE IDLE
c25 S1,9 S0,25 x … … IDLE IDLE
c26 S1,10 S0,26 x … … IDLE IDLE
c27 S1,11 S0,27 x … … IDLE IDLE
c28 S1,12 S0,28 x … … IDLE IDLE
c29 S1,13 S0,29 x … … IDLE IDLE
c30 S1,14 S0,30 x … … IDLE IDLE
c31 S1,15 S0,31 x C31 - S1,15 C30 - S1,15 C29 - S1,15 C28 - S1,15 C27 - S1,15 … … C0 - S0,31 IDLE
c32 S2,0 S1,16 S0,32 C32 - S2,0 C31 - S1,16 C30 - S1,16 C29 - S1,16 C28 - S1,16 … … C0-S0,32

c33 S2,1 S1,17 S0,33 C32 - S2,1 C31 - S1,17 C30 - S1,17 C29 - S1,17 … …
c34 S2,2 S1,18 S0,34 C32 - S2,2 C31 - S1,18 C30 - S1,18 … …
c35 S2,3 S1,19 S0,35 C32 - S2,3 C31 - S1,19 … …

c36 S2,4 S1,20 S0,36 C32 - S2,4 … …
c37 S2,5 S1,21 S0,37 … …
c38 S2,6 S1,22 S0,38 … …
c39 S2,7 S1,23 S0,39 … …
c40 S2,8 S1,24 S0,40 … …
c41 S2,9 S1,25 S0,41 … …
c42 S2,10 S1,26 S0,42 … …
c43 S2,11 S1,27 S0,43 … …
c44 S2,12 S1,28 S0,44 … …
c45 S2,13 S1,29 S0,45 … …
c46 S2,14 S1,30 S0,46 … …
c47 S2,15 S1,31 S0,47 … …

INPUT PORTS PROCESSING ELEMENTS
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.

 

As it is given in Table 3.5, all processing elements do not use every input port, and 

ports corresponded to PEs are changing cycle by cycle. This requires an adaptive 

multiplexing structure for switching between input ports. This structure is built by 
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simple 2×1 multiplexers in front of processing elements and the select inputs of these 

multiplexers are fed by S_Select port from the GME controller. 

 

Table 3.6: PEs vs. corresponding luminance ports 

PE index Corresponding Luminance Ports 

0 S_0 

1-15 S_0 and S_1 

16 S_1 

17-31 S_1 and S_2 

32 S_2 

 

 

 
Figure 3.8: GME PE array structure 

 

Since the MB size is fixed to 16×16, an SAD calculation time equals to 256 cycles 

for a single search location. Total execution time of PE array for whole SW can be 

calculated by the formula: 

 

  54083221256256_ =+×=+×= tnT arrayPE   (3.3) 

 

where n  is the number of vertical search locations in a SW column, and t  is the 

delay of pipelining due to the number of PEs. 
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3.4.3. GME Minimum SAD Comparator 

 

A motion vector in a SW is decided by the location of minimum distortion (SAD). 

PE array calculates all the SAD values and passes to the minimum SAD comparator 

component of the GME structure. This component finds the minimum distortion with 

comparison between incoming SAD value and the SAD value stored in currentMin 

register. If the comparison results as true, the motion vector is updated by the values 

of counters, triggered by enable port.   

 

 
Figure 3.9: Structure of GME minimum SAD comparator  

 

 

3.5. MEDIAN VECTOR GENERATION 

 

Nine different reference points are set to find the global motion vector defining the 

camera movements.  Each reference point generates its own motion vector. globalMV  

is determined by the median vector of these nine different motion vectors. (Eq. 2.22) 
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There exists several algorithms to find the median vector; however, due to the clock 

frequency of input video and the size of chip, it is not feasible to implement a 

hardware block to find the median vector in a single cycle. In this study, median 

vector generator is implemented by a serial bubble sorter, which takes:  

 

 

   ( ) ( ) 56)18()19(21 =−×−=−×− nn    (3.4) 

 

cycles in  ( )2nO  complexity where n  is the number of motion vectors to be sorted. 

Middle element of both x and y components array generates the median vector, said 

to be globalMV . 

 

3.6. LOCAL MOTION ESTIMATOR 

 

By the local motion estimator, it is targeted to find the motion vectors for moving 

objects. The hardware architecture is based on 3-D RS block-matching algorithm 

which is explained in Sec. 2.4. 

 

 
Figure 3.10: Local motion estimator block diagram 
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3.6.1. Motion Vector Array 

 

3-D RS algorithm is based on the motion vectors calculated during the motion 

estimation between previous 2 frames.  

 

MV_ARRAY

0 STATIONARY VECTOR

1 S_a

3 S_b

2 S_a + U_a

4 S_b + U_b

6 T_b

5 T_a

7 MV_global

MV_previous

MV_global

Updater

Updater
MV_i

min_sad_index

MV_current

mv_arr_status

 

Figure 3.11: Structure of motion vector array 

 

Local motion vectors are computed by 8 different motion vectors, four of those are 

directly related to the motion vectors from previous estimation (S_a, S_b, T_a, and 

T_b). These four vectors are fetched from DDR and stored into the register block of 

the MV array structure. Two vectors are generated by the updaters. Remaining two 

vectors are the stationary vector, showing the same search location of MB on SW, 

and globalMV , calculated by global motion estimator and the median vector generator. 
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Figure 3.12: Structure of updater 

 

Updater blocks inside the MV array generate two new motion vectors to be searched 

by adding update vectors from an update set: 
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   (3.5) 

 

over spatial vectors, S_a and S_b. The update vectors are listed in a LUT which is 

fed by a randomly generated update index. The randomization of this index is 

provided by a pseudo-random number generator, which is designed on the basics of 

Galois LFSR in this thesis study.  

 

 
Figure 3.13: Galois LFSR 
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3.6.2. LME Memory Structure 

 

Like FS algorithm in GME, 3-D RS is performed between MBs from current frame 

and the SWs from previous frame; however, the sizes of these blocks differ from 

GME. MB is set to be 8×8 in size that reduces the size of SW to 40×28 due to the 

search range of ±16 in horizontal and ±10 in vertical. MB and SW are fetched to 

internal memories as same as the GME to reduce the number of access to external 

memory. The configuration of words to write into block-RAMs is also identical to 

configuration in GME. The only difference related to the block-RAMs is in numbers 

of addresses of SW block-RAM and MB block-RAM that are 
( )

280
4

2840 =×
 and 

( )
16

4

88 =×
, respectively, due to the block sizes. 

 

Figure 3.14: Memory structure for local motion estimator 
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Another difference between the GME and LME memory structures is the width of 

the output ports. In GME, there exist four output ports, C_i, S_0, S_1, and S_2, of 8 

bits in width to run the FS data flow. This enables the calculation of SAD for 33 

different search locations. In LME, the strategy of minimum distortion calculation is 

completely different, where eight blocks in SW, pointed with eight independent 

motion vectors, are correlated with MB of current frame. This means that the pixels 

search blocks are not listed consecutively in SW block-RAMs. The situation of the 

block-RAM configuration prevents the calculation of eight different distortions in 

parallel with a small number of block-RAMs in structure. Because the number of 

block-RAMs in FPGAs is very limited, it is necessary to design a structure reducing 

the block-RAM demand for data providing to processing elements. 

 

To reduce the number of block-RAMs, the parallelism strategy is converted from 

Parallel-Serial (minimum distortion calculation of different search locations in 

parallel by feeding PEs with corresponding search pixels of different search locations 

in serial) to Serial-Parallel (minimum distortion calculation of different search 

location in serial by feeding PEs with corresponding search pixels of same search 

location in parallel). The structure can be implemented by two output ports, C and S, 

each of which is 64 bits in width. 

 

Due to the value of motion vector, that decides the macroblock from SW to be 

correlated with current MB, eight luminance values of previous MB might be 

distributed to 2 or 3 words in block-RAM related to search window; on the other 

hand, the luminance values of current MB are placed in every two words of its own 

block-RAM. A block-RAM is able to output two values with its one read and one 

read/write port. This enables that the current MB values can be provided by a single 

block-RAM; otherwise, for search window, a second block-RAM, with an identical 

content with original SW block-RAM, is required to provide the data because of the 

possibility of distribution of necessary values in 3 words due to the MVs.  

 

After fetching these three words from block-RAMs, a multiplexing structure has to 

be installed behind the block-RAMs to select the correct eight luminance values out 

of twelve values, fetched from two block-RAMs, due to the MV. 
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Yi Yi+1 Yi+2 Yi+3 Yi+4 Yi+5 Yi+6 Yi+7 Yi+8 Yi+9 Yi+10 Yi+11

From Address A 

of SW_BRAM
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of SW_BRAM

From Address A+2 

of SW_DUP_BRAM

S_SELECTORMV_i
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Figure 3.15: Selection of correct luminance value 

 

S_SELECTOR component multiplexes these luminance values for correct data 

providing. It analyzes the motion vector and generates a k  value pointing the 

corresponding head luminance and forms the 64-bit S value composed of 8 

luminance values. 

 

Table 3.7: Value of pointer k due to motion vector input 

(X coordinate of MV_i) mod 4 Value of k 

0 0 

1 1 

2 2 

3 3 

3.6.3. LME Processing Element Array 

 

In every pixel clock during the local motion estimation, memory structure feeds eight 

luminance values for both current MB and search MB. Since the block size of each 

macroblock is 8×8 and 8 luminance values are fed every single cycle by memory, 

there could be installed 8 PEs to accumulate the SADs of each column of 

macroblocks in eight cycles. 
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Figure 3.16: LME PE array structure 

 

PEs, used in LME, are similar to the PEs in GME; however; they are not exactly 

identical. Because global motion estimation is performed by the FS algorithm where 

the SAD calculation strategy is Parallel-Serial, explained in Sec. 3.6.2, luminance 

values of current MB are transferred from one PE to the following one to start the 

correlation between the block of search location and the current MB. The structures 

of PEs are also different in reset input. While every PE in GME is reset right after the 

previous PE in sequence of the array, the reset signal of a PE is also shifted to the 

following PE.  

 

 
Figure 3.17: Structure of LME processing element 

 

The last difference between the PEs of GME and LME is the width of the output 

SAD port. The width of this port varies the number of accumulation for resultant 
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SAD value for each PE. In GME, a PE is responsible for a whole MB correlation 

where the block size is 16×16; then it takes 256 cycles to finish the process. The 

worst distortion value would be 65280256255 =× , where 255 is the value of the 

worst distortion (between white and black pixel) and 256 is the number of pixels in 

whole MB, could be represented in 16 bits. On the other hand, in LME, a PE is 

responsible only one column of an MB, where the block size is set to 8×8; it would 

take only 8 cycles to finish the SAD process. In the worst case of LME, the 

maximum distortion would be 20408255 =× , where 255 has the same meaning with 

GME and 8 is the number of the pixels in an MB column, could be represented in 

narrower bit width, 11. 

 

3.6.4. Adder Tree 

 

The PE array unit comprises 8 PEs, with each PE computing the SAD for one 

column of the block. After every 8 pixel clock cycles, the SADs of all the 8 columns 

are summed up using an 8-input high-speed parallel adder to produce the SAD for 

the entire block.  

 
Figure 3.18: Computation of SAD for an LME block 
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The parallel adder is made up of 6 CSAs and one CPA in the final stage. Each CSA 

takes three 14-bit inputs and produces a 14-bit sum and a 14-bit carry at the output. 

Since the PE outputs are only of 11-bit length, the maximum length of the sum of 8 

such inputs can be 14 bits, and hence an adder with a final output of length 14 bits is 

sufficient. In this 8-input parallel adder, 2 CSAs are present in first stage to accept 6 

inputs and produce 2 sum outputs and 2 carry outputs. The remaining two inputs are 

simply carried to the next stage. The 2 carry outputs are left-shifted by 1 bit. In a 

similar manner, 2 CSAs are used in the second stage, and so on. The final CSA gives 

one sum output and one carry output. In the final stage, a CPA adds up the sum and 

the left-shifted carry to produce the final sum of 14-bit length. This becomes the 

SAD for the entire block. 

 

3.6.5. LME Minimum SAD Comparator 

 

Like GME minimum SAD comparator, the comparator in LME finds the minimum 

distortion which decides the motion vector output; however, the counter in LME 

structure does not directly count the motion vector value, but the index of the motion 

vector stored in the register array of MV array unit of local motion estimator.  

 

When the enable port is high, the component checks the incoming SAD value as if it 

is smaller than the minimum SAD value inside the currentMin register. If the 

comparison gives true as the result, index value pointing the MV array is updated by 

the value of index counter. 

 

 
Figure 3.19: Structure of LME minimum SAD comparator 
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4. VERIFICATION STRATEGY AND TOOLS 

 

Hardware verification is the process of verifying the functional characteristics of 

models at any level of abstraction. Simulators, such as Modelsim, Veriwell, Icarus, 

etc., are used to simulate the hardware models. To verify if the RTL code meets the 

functional requirements of the specification, it has to be observed if all RTL blocks 

are functionally correct. To achieve this, a testbench is needed to be written, which 

generates clock, reset and the required stimulus. 

 

The waveform output from the simulator is used to see if the device under test is 

functionally correct. As the design becomes more complicated, self checking 

testbench is preferred, where the testbench applies the test vector, then compares the 

output of DUT with the expected value. 

 

 
Figure 4.1: Testbench environment 

 

In this thesis study, Modelsim, as the simulator software, is only used for applying 

test vectors and generating the DUT outputs; however, the expected values are not 

generated by the testbench. Remaining steps of are provided by the verification tool, 

developed in C# language. This tool is designed at two levels: DLL development, 

and GUI development. 

4.1. MOTION DLL CLASSES 

 

A reusable dynamic linked library is developed for the verification strategy of the 

study, composed of many classes with the inherited structure between each other.  
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Figure 4.2: Class Diagram of Motion DLL 

4.1.1. MemoryBlock  

 

MemoryBlock represents a two-dimensional integer array with the given height and 

width, and their values. Sub-classes, Frame and SearchBlock, are inherited from this 

class, since they are two-dimensional array like structures. 
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4.1.2. SearchBlock  

 

Search block is a kind of memory block, that is windowed by a given size and is 

filled by coordinate values of x and y on a specified frame. For the motion estimation 

algorithms all blocks, i.e. current MB and SW, are defined as the instantiations of 

this class. The size of blocks are changing due to the algorithm used for motion 

estimation. 

4.1.3. Frame  

 

Frame is another memory block, which can be also defined as the pixel matrix of an 

image. The pixel values of the frame are stored by only its gray values, calculated by 

the conversion formula between RGB and YUV color spaces, while only the gray-

scale image is needed for motion estimation. 

 

Because the purpose of the software development is to test the 3-D RS algorithm, 

and since 3-D RS needs the motion vectors of previous estimation between two 

previous images, a function called FillVectorMapWithFullSearch is implemented to 

generate the initial motion vectors for motion estimation. FS algorithm is performed 

by a static function inside the class and motion vector map of the first frame of video 

sequence is filled by the result of this static function. 

 

One of the problems with the motion estimation algorithms is to find the motion 

vector of macroblocks at border, where some pixels of corresponding SW do not 

exists. The software handles this problem by another static function of the class, 

GenerateBorderedFrame, which adds additional black pixels for the missing parts of 

SW, needed. 

4.1.4. FrameGenerator  

 

FrameGenerator is a single-static-functioned class that generates a frame from a 

given bitmap file by converting the RGB data into YUV and saves only the Y values 

inside the frame memory array. 
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4.1.5. MotionVector  

 

Motion vector of macroblocks are modeled by this class. Motion vector is composed 

of two coordinates that refer displacement in both vertical and horizontal.  

 

Motion vectors due to spatial domain in 3-D RS algorithm are updated by random 

numbers to generate two additional candidate vectors for algorithm. This process is 

provided by the function RandomUpdate.  

 

Global motion estimation algorithm generates 9 motion vectors due to 9 different 

reference locations. globalMV  is calculated by the median operation over these 9 

motion vectors. The median vector, labeled as globalMV , is computed by a static 

function of class over an input parameter with type of motion vector array. 

 

4.1.6. MotionEstimation 

 

The class is designed as the base class for motion estimation algorithms. Since every 

motion estimation algorithm requires a previous, a current frame, a SW and a current 

MB with fixed sizes, these attributes are packed in the MotionEstimation class.  

 

4.1.7. GlobalMotionEstimation 

 

The class is the implementation of global motion estimation with the strategy 

explained in Sec. 2.5. After an object instantiation of class, reference locations are 

calculated by Eq. 2.2. 

 

Perform function runs FS algorithm for each reference location and stores the motion 

vectors in an array, called MotionVectors. Finally it generates the global motion 

vector by calling the static function, FindMedian, and of MotionVector class passing 

the array the function as input parameter. 
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4.1.8. RecursiveTrueMotionEstimation 

 

Implementation of 3-D RS algorithm is coded in this class. The constructor of the 

class takes globalMV  as an additional input parameter, computed by the execution of 

global motion estimation algorithm. 

 

Perform function of the class runs the algorithm for each macroblock in current 

frame and fills the vector map of current frame by the vectors found by the 

algorithm. 

 

4.2. GUI FOR TEST SOFTWARE 

 

GUI is the second level for the test software development. The application runs with 

the given scenario: 

 

 
Figure 4.3: Main user form of motion estimation test software 

 

Three consecutive video frames are opened, where the first two frames, labeled as 

( )thi 2−  and ( )thi 1−  are used to find the initial local vectors. Initial vector calculation 

step is performed by FS algorithm. The initial vectors would be used in next step, 3-
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D RS, as previous motion vectors. Global motion estimation and 3-D RS algorithms 

are applied between last two frames, loaded as ( )thi 1−  and thi . 

 

 
Figure 4.4: “Baskirt - Amusement Park” sequence is loaded 

 

After computation of local motion vectors, the motion vectors are drawn on a local 

vectors form. Each vector line begins from the left upper corner of each macroblock 

and ends at the location pointed by the MV. 

 

 
Figure 4.5: Initial motion vectors calculated by FS algorithm 

 

globalMV  is calculated by the algorithm explained in Sec. 2.5 right after the 

calculation of initial vectors. The global vector is drawn on a coordinate plane by a 

red line. 
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Figure 4.6: Global motion vector on coordinate plane 

 

After the processes, finding initial vectors and global vector, are finished, software is 

ready to estimate the local vectors between ( )thi 1−  and thi frames by 3-D RS 

algorithm. 

 
Figure 4.7: Local motion vectors calculated by 3-D RS algorithm 

 

“Baskirt – Amusement Park” sequence is a test video with WXGA resolution; 

likewise, the software, as a result of the modularity in DLL, is also capable of motion 

estimation over videos with any resolutions.  

 

 
Figure 4.8: Motion estimation over “Phaeton” sequence with 352×240 resolution 
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5. CONCLUSION AND FUTURE WORKS 

 

During this thesis study, an architectural design is given for global motion estimation 

using FS algorithm and local motion estimation using 3-D RS algorithm. Global 

motion estimation level of the project is fully implemented by Verilog and verified 

by the object oriented software developed.  

 

The coded hardware design is synthesized for Xilinx Spartan 3E FPGA with the 

version xc3s1600e-4fg484 by Xilinx ISE 8.1. Design summary for synthesized GME 

and median hardware blocks are given by the table below: 

 

Table 5.1: Design summary for GME and median hardware blocks 

Hardware 
Block 

Number 
of  

Slices 

Number of 
Slice Flip-

Flops 

Number 
of  

4-input 
LUTs 

Number 
of 

BRAMs 

Clock 
Frequency 

(MHz) 

GME_MEMO 112 111 208 3 101.513 
GME_PE_ARR 718 816 1099 0 122.714 

GME_CTRL 71 52 109 0 145.433 
MEDIAN 611 155 1113 0 82.902 

 

By looking at the synthesis results of the GME and median blocks, it is feasible to 

implement the design for the given Xilinx chip using about 11% of total slices in it. 

The current design is also feasible for a video sequence having 80 MHz in pixel 

clock frequency.  

 

As a future work, it is decided to implement the given architectural design of LME in 

Verilog and get the design summary for the same FPGA. It will be examined as if the 

whole architecture is feasible for given version of Xilinx Spartan 3E FPGA. 

 

In architectural view, it is possible to implement a simple MEDIAN block structure, 

what significantly decreases the maximum clock frequency of the chip and occupies 

significantly more space in terms of number of slices for a single median operation.  
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Another possible architectural study is available about reusing the pre-fetched 

luminance values of a SW for the next ME of next MB in LME. Because the 

significant amount of values in BRAMs is also needed for next MB of the same line, 

development of a structure to hold the needed data on BRAM and only fetch the new 

columns from the DDR will extremely decrease the number of DDR accesses and 

number of cycles for LME in total. 

 

In this thesis study, an object-oriented verification tool for motion estimation 

techniques is developed. By the modularity in DLL development stage, as a future, 

this tool can be extended to realize other proposed motion estimation algorithms 

using classes. 
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