
i

T.C

BAHÇEŞEHĐR ÜNĐVERSĐTESĐ

INSTITUTE OF SCIENCE

COMPUTER ENGINEERING

A HARDWARE IMPLEMENTATION OF

TRUE-MOTION ESTIMATION WITH 3-D RECURSIVE

SEARCH BLOCK MATCHING ALGORITHM

Master Thesis

SONER DEDEOĞLU

ĐSTANBUL, 2008

ii

T.C

BAHÇEŞEHĐR ÜNĐVERSĐTESĐ

INSTITUTE OF SCIENCE

COMPUTER ENGINEERING

A HARDWARE IMPLEMENTATION OF

TRUE-MOTION ESTIMATION WITH 3-D RECURSIVE

SEARCH BLOCK MATCHING ALGORITHM

Master Thesis

SONER DEDEOĞLU

Supervisor: ASST. PROF. DR. HASAN FATĐH UĞURDAĞ

ĐSTANBUL, 2008

iii

T.C

BAHÇEŞEHĐR ÜNĐVERSĐTESĐ

INSTITUTE OF SCIENCE

COMPUTER ENGINEERING

Name of the thesis: A Hardware Implementation of True-Motion Estimation with 3-D
 Recursive Search Block Matching Algorithm
Name/Last Name of the Student: Soner DEDEOĞLU
Date of Thesis Defense: 30 January 2008

The thesis has been approved by the Institute of Science.

 Assoc. Prof. Dr. Đrini DĐMĐTRĐYAD ĐS
 Director

I certify that this thesis meets all the requirements as a thesis for the degree of Master
of Science.

 Asst. Prof. Dr. Adem KARAHOCA
 Program Coordinator

This is to certify that we have read this thesis and that we find it fully adequate in
scope, quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Asst. Prof. Dr. Hasan Fatih UĞURDAĞ ____________________

Prof. Dr. Ali GÜNGÖR ____________________

Prof. Dr. Nizamettin AYDIN ____________________

Prof. Dr. Emin ANARIM ____________________

Asst. Prof. Dr. Sezer GÖREN UĞURDAĞ ____________________

iv

ACKNOWLEDGMENTS

This thesis is dedicated to my family for their patience and understanding during my master’s

study and the writing of this thesis. I am also grateful to Ahmet ÖZUĞURLU for his moral

and spiritual support.

I would like to express my gratitude to Asst. Prof. Dr. Hasan Fatih UĞURDAĞ for not only

being such a great supervisor but also encouraging and challenging me throughout my

academic program.

I wish to thank Ali SAYINTA, Sinan YALÇIN, and Ümit MALKOÇ who provided me

with great environment at Vestel – Vestek Research and Development Department during my

thesis studies.

I also thank Prof. Dr. Şenay YALÇIN, Prof. Dr. Ali GÜNGÖR, Prof. Dr. Nizamettin

AYDIN, Prof. Dr. Emin ANARIM, and Asst. Prof. Dr. Sezer GÖREN UĞURDAĞ for

their help on various topics in the areas of digital chip design and digital video processing, for

their advice and time.

v

ABSTRACT

A HARDWARE IMPLEMENTATION OF

 TRUE-MOTION ESTIMATION WITH 3-D RECURSIVE

SEARCH BLOCK MATCHING ALGORITHM

DEDEOĞLU, Soner

Computer Engineering

Supervisor: Asst. Prof. Dr. Hasan Fatih UĞURDAĞ

January 2008, 53 pages

Motion estimation, in video processing, is a technique for describing a frame in terms of

translated blocks of another reference frame. This technique increases the ratio of video

compression by the efficient use of redundancy information between frames. The Block

Matching based motion estimation methods, based on dividing frames into blocks and

calculating a motion vector for each block, are accepted as motion estimation standards in

video encoding systems by international enterprises, such as MPEG, ATSC, DVB and ITU. In

this thesis study, a hardware implementation of 3-D Recursive Search Block Matching

Algorithm for the motion estimation levels, global and local motion estimations, is presented.

Keywords: Digital Video Processing, Motion Estimation, Very Large Scale Integration

vi

ÖZET

ÜÇ BOYUTLU ÖZYĐNELĐ ARAMA BLOK UYUMLAMA

ALGORĐTMASI ĐLE GERÇEK-HAREKET TAHMĐNĐNĐN

DONANIMSAL GERÇEKLEŞTĐRMESĐ

DEDEOĞLU, Soner

Bilgisayar Mühendisliği

Tez Danışmanı: Yrd. Doç. Dr. Hasan Fatih UĞURDAĞ

Ocak 2008, 53 Sayfa

Hareket tahmini, dijital video işlemede, bir çerçevenin başka bir referans çerçevenin

bloklarının çevrilmesi cinsinden tanımlanması tekniğine verilen isimdir. Bu teknik, çerçeveler

arası artıklık bilgilerinin daha verimli kullanılması ile video sıkıştırma oranları

yükseltilmesini sağlamaktadır. Çerçeveleri bloklara bölerek her blok için bir hareket vektörü

hesaplamaya dayanan Blok Uyumlama bazlı hareket tahmini yöntemleri MPEG, ATSC, DVB

ve ITU gibi uluslararası kuruluşlar tarafından video kodlama sistemlerinde hareket tahmini

standartları olarak kabul edilmiştir. Bu tez çalışmasında hareket tahmini aşamalarından olan

global ve lokal hareket tahmini için Üç Boyutlu Özyineli Arama Blok Uyumlama Algoritması

donanımsal olarak gerçekleştirilmesi sunulmuştur.

Anahtar Kelimeler: Dijital Video Đşleme, Hareket Tahmini, Çok Büyük Ölçekli Tümleşik

Devre

vii

TABLE OF CONTENTS

LIST OF TABLES…………………………………………………………………… … ix
LIST OF FIGURES…………………………………………………………………….. x
LIST OF ABBREVIATIONS………………………………………………………….. xii
LIST OF SYMBOLS…………………………………………………………………… xiv

1. INTRODUCTION…………………………………………………………………..... 1

2. MOTION ESTIMATION ALGORITHMS……………………………………… … 2

 2.1. GLOBAL MOTION COMPENSATION…………………………………. 2
 2.2. BLOCK MOTION COMPENSATION…………………………………… 3
 2.3. MOTION ESTIMATION………………………………………………….. 4
 2.3.1. Error Function for Block-Matching Algorith ms……………….. 6
 2.3.2. Full Search (FS) Algorithm……………………………………… 6
 2.3.3. Three Step Search (TSS) Algorithm ……………………………. 7
 2.3.4. Two Dimensional Logarithmic (TDL) Search Algorithm……… 7
 2.3.5. Four Step Search (FSS) Algorithm……………………………... 8
 2.3.6. Orthogonal Search Algorithm (OSA)…………………………... 10
 2.4. 3-D RECURSIVE SEARCH BLOCK MATCHING ALGORITHM …… 10
 2.4.1. 1-D Recursive Search……………………………………………. 11
 2.4.2. 2-D Recursive Search……………………………………………. 12
 2.4.3. 3-D Recursive Search……………………………………………. 15
 2.5. GLOBAL MOTION ESTIMATION TECHNIQUE… ………………….. 17

3. MOTION ESTIMATION HARDWARE………………………………………….. 20

 3.1. VIDEO FORMAT…………………………………………………………. 20
 3.2. HIGH-LEVEL ARCHITECTURE OF HARDWARE………………….. 21
 3.3. PACKING STRATEGY OF PIXELS……………………………………. 23
 3.4. GLOBAL MOTION ESTIMATOR…………………………… …………. 24
 3.4.1. GME Memory Structure……………………………………….... 25
 3.4.2. GME Processing Element Array………………………………... 28
 3.4.3. GME Minimum SAD Comparator……………………………… 31
 3.5. MEDIAN VECTOR GENERATION……………………………………... 31
 3.6. LOCAL MOTION ESTIMATOR……………………… ………………… 32
 3.6.1. Motion Vector Array…………………………………………….. 33
 3.6.2. LME Memory Structure…………………………………………. 35
 3.6.3. LME Processing Element Array………………………………… 37
 3.6.4. Adder Tree………………………………………………………... 39
 3.6.5. LME Minimum SAD Comparator………………………………. 40

4. VERIFICATION STRATEGY AND TOOLS…...………………………………. . 41

 4.1. MOTION DLL CLASSES……………………………………………….... 41
 4.1.1. MemoryBlock……………………………………………………. 42
 4.1.2. SearchBlock……………………………………………………… 43
 4.1.3. Frame…………………………………………………………….. 43

viii

 4.1.4. FrameGenerator…………………………………………………. 43
 4.1.5. MotionVector…………………………………………………….. 44
 4.1.6. MotionEstimation………………………………………………… 44
 4.1.7. GlobalMotionEstimation…………………………………………. 44
 4.1.8. RecursiveTrueMotionEstimation………………………………... 45
 4.2. GUI FOR TEST SOFTWARE…………………………………………….. 45

5. CONCLUSION AND FUTURE WORK…………………………………………… 48

REFERENCES…………………………………………………………………………. 50

VITAE….……………………………………………………………………………....... 53

ix

LIST OF TABLES

Table 2.1 : TSS algorithm……………………………………..……………… 7

Table 2.2 : TDL algorithm…………………………………….……………... 7

Table 2.3 : FSS algorithm…………………………………….……………… 8

Table 2.4 : OSA algorithm…………………………………….……………... 10

Table 3.1 : Input frame sequence and storage into DDR…………………….. 20

Table 3.2 : Timeline representation of DDR access, ME, and generation

 of output video sequence………………………………………… 21

Table 3.3 : Address generator states……………………………..…………… 26

Table 3.4 : Address generation algorithm……………………………………. 26

Table 3.5 : Data flow to processing elements over input luminance ports…... 29

Table 3.6 : PEs vs. corresponding luminance ports………………………….. 30

Table 3.7 : Value of pointer k due to motion vector input…………………... 37

Table 5.1 : Design summary for GME and median hardware blocks………... 48

x

LIST OF FIGURES

Figure 2.1 : Relation between reference frame, current frame and motion

 vector……………………………………………………………... 5

Figure 2.2 : Types of frame prediction………………………………………... 5

Figure 2.3 : Illustration of selection of blocks for different cases is FSS…….. 9

Figure 2.4 : The bidirectional convergence (2-D C) principle………………... 13

Figure 2.5 : Locations around the current block, from which the estimation

 result could be used as a spatial prediction vector……………….. 14

Figure 2.6 : Location of the spatial predictions of estimators a and b with

 respect to the current block………………………………………. 15

Figure 2.7 : The relative positions of the spatial predictors Sa and Sb and the

 convergence accelerators Ta and Tb………………………………. 16

Figure 2.8 : Position of the sample SWs to find MVglobal in the image plane.... 18

Figure 3.1 : Video sequence composed of repeated frames…………………... 20

Figure 3.2 : High-level block diagram motion estimator/compensator

 architecture……………………………………………………….. 22

Figure 3.3 : Packing strategy of pixels and DDR storage……………………... 24

Figure 3.4 : Global motion estimator block diagram………………………….. 24

Figure 3.5 : Memory structure of global motion estimator……………………. 25

Figure 3.6 : GME_MEMO data access timeline and address generation……... 27

Figure 3.7 : Structure of GME processing element……………………………. 28

Figure 3.8 : GME PE array structure…………………………………………... 30

Figure 3.9 : Structure of GME minimum SAD comparator…………………… 31

Figure 3.10 : Local motion estimator block diagram…………………………… 32

Figure 3.11 : Structure of motion vector array…………………………………. 33

Figure 3.12 : Structure of updater………………………………………………. 34

Figure 3.13 : Galois LFSR………………………………………………………. 34

Figure 3.14 : Memory structure for local motion estimator…………………….. 35

Figure 3.15 : Selection of correct luminance value……………………………... 37

Figure 3.16 : LME PE array structure…………………………………………... 38

Figure 3.17 : Structure of LME processing element……………………………. 38

Figure 3.18 : Computation of SAD for an LME block………………………….. 39

xi

Figure 3.19 : Structure of LME minimum SAD comparator…………………… 40

Figure 4.1 : Testbench environment…………………………………………… 41

Figure 4.2 : Class Diagram of Motion DLL…………………………………… 42

Figure 4.3 : Main user form of motion estimation test software………………. 45

Figure 4.4 : “Baskirt - Amusement Park” sequence is loaded…………………. 46

Figure 4.5 : Initial motion vectors calculated by FS algorithm………………... 46

Figure 4.6 : Global motion vector on coordinate plane……………………….. 47

Figure 4.7 : Local motion vectors calculated by 3-D RS algorithm…………... 47

Figure 4.8 : Motion estimation over “Phaeton” sequence with 352×240

 resolution……………………………………………………….... 47

xii

LIST OF ABBREVIATIONS

Advanced Television Systems Committee : ATSC

Bidirectional Convergence : 2-D C

Block Motion Compensation : BMC

Carry Save Adder : CSA

Carry Propagate Adder : CPA

Device Under Test : DUT

Digital Video Broadcasting : DVB

Dual Data Rate : DDR

Dynamically Linked Library : DLL

Extended Graphics Array : XGA

Four Step Search Algorithm : FSS

Frame Rate Conversion : FRS

Full Search : FS

Global Motion Estimation : GME

Graphical User Interface : GUI

High Definition : HD

International Telecommunications Union : ITU

Linear Feedback Shift Register : LFSR

Liquid Crystal Display : LCD

Local Motion Estimation : LME

Luminance-Chrominance Color Space : YUV

Motion Compensation : MC

Motion Estimation : ME

Motion Vector : MV

Moving Picture Experts Group : MPEG

One-At-a-Time Search Algorithm : OTS

Orthogonal Search Algorithm : OSA

Processing Element : PE

Random Access Memory : RAM

Recursive Search : RS

Red-Green-Blue Color Space : RGB

xiii

Search Window : SW

Sum of Absolute Differences : SAD

Three Step Search Algorithm : TSS

Two Dimensional Logarithmic Search Algorithm : TDL

Wide Extended Graphics Array : WXGA

xiv

LIST OF SYMBOLS

Candidate set of position X on thi frame : ()tXCSi ,

Candidate vector :),(tXC

DDR input data : inDDR

DDR output data : outDDR

Error function due to candidate vector,),(tXC , on the position X :),,(tXCl

Global motion vector : globalMV

Input frame :
inF

Maximum motion displacement : w

Macroblock with upper most left pixel at the location),(nm :),(nmMBi
r

Macroblock of position X :)(XB

Output frame :
outF

Spatial distance : r

Spatial recursive vector :),(tXSa

Sum of absolute differences due to displacement),(vu :),(vuSAD

Temporal recursive vector :),(tXT a

Position on the block grid : X

Prediction vector of position X on thi frame :),(tXD i

Update value : L

Update vector : U

Value of pixel at location),(nm :),(nmpi

1

1. INTRODUCTION

There have been two significant revolutions in television history. First was in 1954

when the first color TV signals were broadcasted. Nowadays, black-and-white TV

signals are unavailable in the airwaves. Second of the revolutions is eventuated by

digital TV signals, broadcasted at the end of 1998 first on the air. Analog TV signals

have been started to be disappeared from the airwaves as black-and-white TV

signals.

Digital TV is not just a provider of quality in video; it also enables many multimedia

applications and services to be introduced. While digital video and digital TV

technologies are developing rapidly, they triggered the academic researches on the

subject, digital video processing. Video processing differs from image processing

due to the movements of the objects in video. Understanding how objects move helps

us to transmit, store, and manipulate the video in an efficient way. This subject

makes the algorithmic development and architectural implementation of motion

estimation techniques to be the hottest research topics in multimedia.

This thesis study gives a brief discussion about the well-known motion estimation

algorithms and an architectural implementation of true motion estimation with 3-D

recursive search block matching algorithm.

In Section 2, the definitions of motion compensation and estimation are given. The

proposed well-known motion estimation techniques are briefly listed in algorithmic

view and 3-D recursive search block matching algorithm is examined in details at the

same section. In Section 3, a hardware implementation for global motion estimation

and local motion estimation techniques is proposed. In Section 4, object oriented

software to test the architecture is explained at two levels of development: DLL

Development and GUI development. In the last section, the Conclusion and future

works are given.

2

2. MOTION ESTIMATION ALGORITHMS

In video compression, motion compensation is a technique for describing a picture in

terms of translated copies of portions of a reference picture, often 8x8 or 16x16-pixel

blocks. This increases compression ratios by making better use of redundant

information between successive frames.

With consumer hardware approaching 1920 pixels per scan line at 24 frames per

second for a cinema production a one-pixel-per-frame motion needs more than a

minute to cross the screen, many motions are faster. Global motion compensation

scrolls the whole screen an integer amount of pixels following a mean motion so that

the mentioned methods can work. Block motion compensation divides up the current

frame into non-overlapping blocks, and the motion compensation vector tells where

those blocks come from in the previous frame, where the source blocks typically

overlap.

2.1. GLOBAL MOTION COMPENSATION

In global motion compensation (GMC), the motion model basically reflects camera

motions such as dolly (forward, backwards), track (left, right), boom (up, down), pan

(left, right), tilt (up, down), and roll (along the view axis). It works best for still

scenes without moving objects. There are several advantages of global motion

compensation:

• It models precisely the major part of motion usually found in video sequences

with just a few parameters. The share in bit-rate of these parameters is

negligible.

• It does not partition the frames. This avoids artifacts at partition borders.

• A straight line (in the time direction) of pixels with equal spatial positions in

the frame corresponds to a continuously moving point in the real scene. Other

MC schemes introduce discontinuities in the time direction.

3

2.2. BLOCK MOTION COMPENSATION

In block motion compensation (BMC), the frames are partitioned in blocks of pixels.

Each block is predicted from a block of equal size in the reference frame. The blocks

are not transformed in any way apart from being shifted to the position of the

predicted block. This shift is represented by a motion vector.

To exploit the redundancy between neighboring block vectors, it is common to

encode only the difference between the current and previous motion vector in the bit-

stream. The result of this differencing process is mathematically equivalent to global

motion compensation capable of panning. Further down the encoding pipeline, an

entropy coder will take advantage of the resulting statistical distribution of the

motion vectors around the zero vector to reduce the output size.

It is possible to shift a block by a non-integer number of pixels, which is called sub-

pixel precision. The in-between pixels are generated by interpolating the neighboring

pixels. Commonly, half-pixel or quarter pixel precision is used. The computational

expense of sub-pixel precision is much higher due to the extra processing required

for interpolation and on the encoder side, a much greater number of potential source

blocks to be evaluated.

The main disadvantage of block motion compensation is that it introduces

discontinuities at the block borders (blocking artifacts). These artifacts appear in the

form of sharp horizontal and vertical edges which are easily spotted by the human

eye and produce ringing effects (large coefficients in high frequency sub-bands) in

the Fourier-related transform used for transform coding of the residual frames.

Block motion compensation divides the current frame into non-overlapping blocks,

and the motion compensation vector tells where those blocks come from (a common

misconception is that the previous frame is divided into non-overlapping blocks, and

the motion compensation vectors tell where those blocks move to). The source

blocks typically overlap in the source frame. Some video compression algorithms

4

assemble the current frame out of pieces of several different previously-transmitted

frames.

2.3. MOTION ESTIMATION

One of the key elements of many video compression schemes is motion estimation

(ME). A video sequence consists of a series of frames. To achieve compression, the

temporal redundancy between adjacent frames can be exploited. That is, a frame is

selected as a reference, and subsequent frames are predicted from the reference using

a technique known as motion estimation. The process of video compression using

motion estimation is also known as interframe coding.

When using motion estimation, an assumption is made that the objects in the scene

have only translational motion. This assumption holds as long as there is no camera

pan, zoom, changes in luminance, or rotational motion. However, for scene changes,

interframe coding does not work well, because the temporal correlation between

frames from different scenes is low. In this case, a second compression technique is

used, known as intraframe coding.

In a sequence of frames, the current frame is predicted from a previous frame known

as reference frame. The current frame is divided into macroblocks (MB), typically

16x16 pixels in size. This choice of size is a good trade-off between accuracy and

computational cost. However, motion estimation techniques may choose different

block sizes, and may vary the size of the blocks within a given frame.

Each macroblock is compared to a macroblock in the reference frame using some

error measure, and the best matching macroblock is selected. The search is

conducted over a predetermined search area, also known as search window (SW). A

vector, denoting the displacement of the macroblock in the reference frame with

respect to the macroblock in the current frame, is determined. This vector is known

as motion vector (MV).

5

Figure 2.1: Relation between reference frame, current frame and motion vector

When a previous frame is used as a reference, the prediction is referred to as forward

prediction. If the reference frame is a future frame, then the prediction is referred to

as backwards prediction. Backwards prediction is typically used with forward

prediction, and this is referred to as bidirectional prediction.

Figure 2.2: Types of frame prediction

6

2.3.1. Error Function for Block-Matching Algorithms

Block-matching process is performed on the basis of the minimum distortion. In

many algorithms SAD, sum of absolute differences, function is adopted as the block

distortion measure. Assume),(nmMBi
r is the reference block of size NxN pixels

whose upper most left pixel is at the location),(nm of the current frame i , and

),(1 vnumMBi
r ++− is a candidate block within the SW of the previous frame 1−i

with),(vu displacement from i
rMB . Let wbe the maximum motion displacement

and),(nmpi be pixel value at location),(nm in frame i , then the SAD between i
rMB

and 1−i
rMB is defined as

 ∑∑
−

=

−

=

− ++++−++=
1

0

1

0

1),(),(),(
N

k

N

l

ii vlnukmplnkmpvuSAD , (2.1)

where uw ≤− , wv ≤ .

The SAD is computed for each candidate block within the SW. A block with the

minimum SAD is considered the best-matched block, and the value),(vu for the

best-matched block is called motion vector. That is, motion vector (MV) is given by

),(min|),(vuSADvuMV = . (2.2)

2.3.2 Full Search (FS) Algorithm

The full search algorithm is the most straightforward brute-force ME algorithm. It

matches all possible candidates within the SW. This means that it is at least as

accurate (in terms of distortion) as any other block motion estimation algorithm.

However, that accuracy comes at the cost of a large number of memory operations

and computations. FS is rarely used today, but it remains useful as a benchmark for

comparison with other algorithms.

7

2.3.3. Three Step Search (TSS) Algorithm

This algorithm is introduced by Koga (1981, p. G.5.3.1 - G.5.3.4). It became very

popular because of its simplicity, robust and near optimal performance. It searches

for the best motion vectors in a coarse to fine search pattern. The algorithm may be

described as:

Table 2.1: TSS algorithm

STEP – 1: An initial step size is picked. Eight blocks at a

 distance of step size from the center are picked for

 comparison.

STEP – 2: The step size is halved. The center is moved to the

 point with the minimum distortion.

 Steps 1 and 2 are repeated till the step size becomes

 smaller than 1.

One problem that occurs with the TSS is that it uses a uniformly allocated checking

point pattern in the first step, which becomes inefficient for small motion estimation.

2.3.4. Two Dimensional Logarithmic (TDL) Search Algorithm

This algorithm was introduced by Jain and Jain (1981, pp. 1799 – 1808) around the

same time that the 3SS was introduced and is closely related to it. Although this

algorithm requires more steps than the 3SS, it can be more accurate, especially when

the search window is large. The algorithm may be described as:

Table 2.2: TDL algorithm

STEP – 1: Pick an initial step size. Look at the block at the center and the four

 blocks at a distance of step size from this on the X and Y axes.

8

STEP – 2: If the position of best match is at the center, halve the step size. If

 however, one of the other four points is the best match, then it

 becomes the center and step 1 is repeated.

STEP – 3: When the step size becomes 1, all the nine blocks around the center

 are chosen for the search and the best among them is picked as the

 required block.

A lot of variations of this algorithm exist and they differ mainly in the way in which

the step size is changed. Some people argue that the step size should be halved at

every stage. On the other hand, some people believe that the step size should also be

halved if an edge of the SW is reached. However, this idea has been found to fail

sometimes.

2.3.5. Four Step Search (FSS) Algorithm

This block matching algorithm was proposed by Po and Ma (1996, pp. 313-317). It is

based on the real world image sequence’s characteristics of center-biased motion.

The algorithm is started with a nine point comparison and then the selection of points

for comparison is based on the following algorithm:

Table 2.3: FSS algorithm

STEP – 1: Start with a step size of 2. Pick nine points around the SW center.

 Calculate the distortion and find the point with the smallest distortion.

 If this point is found to be the center of the searching area go to step

 4, otherwise go to step 2.

STEP – 2: Move the center to the point with the smallest distortion. The step

 size is maintained at 2. The search pattern depends on the position of

 previous minimum distortion.

9

 a) If the previous minimum point is located at the corner of the

 previous search area, five points are picked. (Figure 2.3b)

 b) If the previous minimum distortion is found at the middle of

 horizontal or vertical axis of the previous search window, three

 additional checking points are picked. (Figure 2.3c)

 Locate the point the minimum distortion. If this is at the center, go to

 step 4, otherwise go to step 3.

STEP – 3: The search pattern strategy is the same, however it will finally go to

 step 4.

STEP – 4: The step size is reduced to 1 and all nine points around the center of

 the search area examined.

 (a) (b) (c)

Figure 2.3: Illustration of selection of blocks for different cases is FSS

(a) Initial Configuration. (b) If point A has minim um distortion, pick given five points.

(c) If point B has minimum distortion, pick given three points.

The computational complexity of the FSS is less than that of the TSS, while the

performance in terms of quality is better. It is also more robust than the TSS and it

maintains its performance for image sequence with complex movements like camera

zooming and fast motion. Hence it is a very attractive strategy for motion estimation.

10

2.3.6. Orthogonal Search Algorithm (OSA)

Puri, Hang and Schilling (1987, pp. 1063 – 1066) introduced the algorithm as a

hybrid of the TSS and TDL algorithms. Vertical stage is followed by a horizontal

stage to search the optimal block. Steps of algorithm may be listed as follows:

Table 2.4: OSA algorithm

STEP – 1: Pick a step size (usually half the maximum displacement in the SW).

 Take two points at a distance of step size in the horizontal direction

 from the center of the SW and locate the point of minimum

 distortion. Move the center to this point.

STEP – 2: Take two points at a distance step size from the center in vertical

 direction and find the point with the minimum distortion.

STEP – 3: Halve the step size. If it is greater than or equal to one go to step 1,

 otherwise halt.

2.4. 3-D RECURSIVE SEARCH BLOCK MATCHING ALGORITHM

Several algorithms, including the algorithms mentioned previous section, have been

proposed for frame rate conversion for consumer television applications. There exists

a common problem due to complexity of the motion estimator while VLSI

implementation of these algorithms; on the other hand, the existing simpler

algorithms, such as One-At-a-Time Search (OTS) Algorithm of Srinivasan and Rao

(1985, pp. 888 – 896), cause very unnatural artifacts.

De Haan, Biezen, Huijgen and Ojo (1993, pp. 368 – 379) proposed a new recursive

block-matching motion estimation algorithm, called 3-D Recursive Search Block-

Matching Algorithm. Measured with criteria relevant for the FRC application, this

algorithm is shown to have a superior performance over alternative algorithms, with

a significantly less complexity.

11

2.4.1. 1-D Recursive Search

The block-matching algorithms, as the most attractive for VLSI implement, limit

number of candidate vectors to be evaluated. This can be realized through recursively

optimizing a previously found vector, which can be either spatially or temporally

neighboring result.

If spatially and temporally neighboring MVs are believed to predict the displacement

reliably, a recursive algorithm should enable true ME, if the amount of updates are

around the prediction vector is limited to a minimum. The spatial prediction was

excluded for the candidate set:

±
∨

±
=+=∈= −

L

L
UUtXDCCSCtXCS ii 0

0
,),(|),(1max (2.3)

where L is the update length, which is measured on the frame grid, TYXX),(= is

the position on the block grid, t is time, and the prediction vector),(1 tXD i − is

selected according to:

{ }
{ }

>∈∀≤∈
=

∈ −−
−

)1(),(),,,(),,(|),(

)1(,0
),(11

1

itXCSFtXFtXCtXCSC

i
tXD ii

i

ll
 (2.4)

and the candidate set is limited to a set maxCS :

 { }MCMNCNCCS yx +≤≤−+≤≤−= ,|max (2.5)

The resulting estimated MV),(txD , which is assigned to all pixel positions,

Tyxx),(= , in the block)(XB of size YX × with center X :

{ }2/2/2/2/|)(YXyYXXXxXXxXB yyxx +≤≤−∧+≤≤−= (2.6)

12

equals the candidate vector),(tXC with the smallest error),,(tXCl :

{ }),(),,,(),,(|),(),(:)(tXCSFtXFtXCtXCSCtxDXBx ii ∈∀≤∈∈∈∀ ll (2.7)

Errors are calculated as summed absolute differences (SAD):

 ∑
∈

⋅−−−=
)(

),(),(),,(
XBx

TntCxFtxFtXCl (2.8)

where),(txF is the luminance function and T the field period. The block size is

fixed to 8== YX , although experiments indicate little sensitivity of the algorithm to

this parameter.

2.4.2. 2-D Recursive Search

It is well known that, the convergence can be improved with predictions calculated

from a 2-D area or even a 3-D space. In this section, 2-D prediction strategy is

introduced that does not dramatically increase the complexity of the hardware.

The essential difficulty with 1-D recursive algorithm is that it cannot manage the

discontinuities at the edges of moving objects. The first impression may be that

smoothness constraints exclude good step response in a motion estimator. The

dilemma of combining smooth vector fields can be assailed with a good step

response.

When the assumption, that the discontinuities in the velocity plane are spaced at a

distance that enables convergence of the recursive block matcher in between two

discontinuities, the recursive block matcher yields the correct vector value at the first

side of the object boundary and begins converging at the opposite side.

13

Figure 2.4: The bidirectional convergence (2-D C) principle

It seems attractive to apply two estimator processes at the same time with the

opposite convergence directions (Fig. 2.4). SAD of both vectors can be used for

selection. 2-D C is formalized as a process that generates a MV:

>
≤

=∈∀
)),,(),,((),,(

)),,(),,((),,(
)(:)(

tXDtXDtXD

tXDtXDtXD
xDXBx

bab

baa

ll

ll
 (2.9)

where

∑
∈

−−−=
)(

),(),(),,(
XBx

aa TtDxFtxFtXDl (2.10)

and

 ∑
∈

−−−=
)(

),(),(),,(
XBx

bb TtDxFtxFtXDl (2.11)

while aD and bD are found in a spatial recursive process prediction vectors

),(tXSa :

),(),(tSDXDtXS aaa −= (2.12)

and),(tXSb :

14

),(),(tSDXDtXS bbb −= (2.13)

where

ba SDSD ≠ . (2.14)

The two estimators have unequal spatial recursion vectorsSD. One of these

estimators have converged already at the position where the other is yet to do so, that

is how 2-D C solves the run-in problem at edges of moving objects, if the two

convergence directions are opposite. The attractiveness of a convergence direction

varies significantly for hardware (Fig. 2.5). The predictions taken from blocks 1, 2,

or 3, are favorable for hardware. Block 4 is less attractive, as it perplexes pipelining

of algorithm that the previous result has to be ready before the next can be

calculated. Block 5 is not attractive because of reversing the line scan. Blocks 6, 7,

and 8 are totally unattractive because of reversing vertical scan direction. Reversing

horizontal and vertical scans require extra memories in the hardware.

Figure 2.5: Locations around the current block, from which the estimation result could be used

as a spatial prediction vector.

When applying only the preferred blocks, the best implementation of 2-D C results

with predictions from blocks 1 and 3. By taking predictions from blocks P and Q, it

is possible to enlarged the angle between the convergence direction, however, it is

observed worse results rather than blocks 1 and 3 for 2-D C.

15

Figure 2.6: Location of the spatial predictions of estimators a and b with respect

to the current block.

2.4.3. 3-D Recursive Search

Both estimators, a and b, in algorithm produce four candidate vectors each by

updating their spatial predictions),(tXSa and),(tXSb . The spatial predictions were

chosen to create two perpendicular diagonal convergence axes:

−= t

Y

X
XDtXS aa ,),((2.15)

and

−
−= t

Y

X
XDtXS bb ,),(. (2.16)

Due to movements in picture, displacements between two consecutive velocity

planes are small compared to MB size. The definition of a third and a forth

estimators, c and d, is enabled by this assumption.

Selection of predictions for estimators, c and d, from position 6 and 8 (Fig. 2.5),

respectively, creates additional convergence directions opposite to predictions of a

and b; however, the resulting design reduces the convergence speed due to temporal

component in prediction delays of c and d.

16

Instead of choosing additional estimators, c and d, it is suggested to apply vectors

from positions opposite to the spatial prediction position as additional candidates in

the already defined estimators to save hardware with the calculation of fewer errors.

De Haan (1992) keynotes that; working with fewer candidates reduces the risk of

inconsistency.

As the algorithm is improved, a fifth candidate in each spatial estimator, a temporal

prediction value from previous field accelerates the convergence. These convergence

accelerators are taken from a MB shifted diagonally over r MBs and opposite to the

MBs from which aS and bS result:

−

⋅+= Tt

Y

X
rXDtXT a ,),((2.17)

and

−

−
⋅+= Tt

Y

X
rXDtXT b ,),(. (2.18)

By the experimental results, 2=r is the best spatial distance for a MB size of 8x8

pixels.

Figure 2.7: The relative positions of the spatial predictors Sa and Sb and the convergence

accelerators Ta and Tb

17

For the resulting algorithm,),(tXDa and),(tXDb result from estimators, a and b,

calculated in parallel with the candidate setaCS :

−

⋅+∪

±
∨

±
=

+

−=∈=

Tt
Y

X
XD

L

L
U

Ut
Y

X
XDCCSCtXCS aa

,2
0

0

,,),(max

 (2.19)

and bCS :

−

−
⋅+∪

±
∨

±
=

+

−
−=∈=

Tt
Y

X
XD

L

L
U

Ut
Y

X
XDCCSCtXCS bb

,2
0

0

,,),(max

 (2.20)

while distortions are assigned to candidate vectors using the SAD function (Eq. 2.8).

2.5. GLOBAL MOTION ESTIMATION TECHNIQUE

Camera effects, i.e., panning, tilting, travelling, and zooming, have very regular

character causing very smooth MVs compared to the object motion. Zooming with

the camera yields MVs, which linearly change with the spatial position. On the other

hand, other camera effects generate a uniform MV, called global motion vector, field

for the entire video.

To estimate globalMV , a sample set)(tS , proposed by De Haan and Biezen (1998, pp.

85 – 92), containing nine MVs,)1,(−tXD from different positions X on the MB

grid in a centered window of size XmW)2(− by YqH)2(− in the picture with the

width XW ⋅ and the height YH ⋅ from the temporal vector prediction memory

according to

18

 −+

 −−=

 −+

 −−=−=

YqHYqHX

XmWXmWXtXDtS

y

X

2

1
,0,

2

1

,
2

1
,0,

2

1
)1,()(

 (2.21)

where the values of mand qare noncritical.

Figure 2.8: Position of the sample SWs to find globalMV in the image plane

Global motion estimation to find globalMV differs from local motion estimation due to

MB sizes. The MB size related to global motion estimation is fixed to 16== YX .

Another difference between global and local motion estimations is the algorithm to

find MVs. globalMV is calculated in each SWs by Full Search (FS) Algorithm, on the

other hand, local displacement vectors are calculated by 3-D RS. Although it is

possible to choose anyone other block matching algorithms instead of FS to reduce

the number of computations, with the very limited number of search windows and

the aim to find more accurate global displacement vector, FS is performed and)(tS

(Eq. 2.21) is filled.

19

The resultant globalMV is derived AS the median vector of each MVs in)(tS :

() () ()() () () ()()()8,...,1,0,8,...,1,0 yyyxxxglobal SSSmedianSSSmedianMV = (2.22)

and added as an additional candidate vector to candidate set in order to use in local

motion estimation.

20

3. MOTION ESTIMATION HARDWARE

3.1. VIDEO FORMAT

Wide Extended Graphics Array (WXGA) is one of the non-standard resolutions,

derived from the XGA, referring to a resolution of 1366x768. WXGA became the

most popular one for the LCD and HD televisions in 2006 for wide screen

presentation at an aspect ratio of 16:9. Video frames, whose rate to be converted by

the motion estimation and compensation in this master thesis work, have WXGA

resolution.

A significant point related to the input video format is that it is composed of

consecutive repeated frame of each frame (Fig. 3.1).

Figure 3.1: Video sequence composed of repeated frames

Because each frame is followed by its duplicated copy, it is not necessary to store all

the frames provided by video source into memory. Repeated frames are skipped for

memory storage, however, they are not completely omitted. Repeated frames are

used while outputting the video frames to the display screen.

Table 3.1: Input frame sequence and storage into DDR

Frame Time 0 1 2 3 4 5 6 7 8 9 …

inF 0F
0F

2F
2F

4F
4F

6F
6F

8F
8F …

inDDR
0F

2F
4F

6F
8F …

21

The objective with ME and MC is to generate new sub-frames by interpolation of

MBs with MVs instead of repeated frames and outputting the video frames that have

a higher frame rate.

Table 3.2: Timeline representation of DDR access, ME, and generation of output video sequence

Frame Time 0 1 2 3 4 5 6 7 8 9 …

inF 0F
0F

2F
2F

4F
4F

6F
6F

8F
8F …

inDDR 0F
2F

4F
6F

8F …

outDDR
0F

2F
4F

6F …

ME 1F
3F

5F
7F …

outF
0F

1F 2F
3F 4F

5F 6F
7F 8F …

3.2. HIGH-LEVEL ARCHITECTURE OF HARDWARE

Fully implemented motion estimation and compensation hardware consists of five

main components: data converters, external memory block, memory interface,

motion estimator, and motion compensator.

Color values of each pixel of a video frame are stored in RGB format in video

sources, and digital displayers need also RGB pixel values to show the frames,

however, motion estimation algorithms are performed on gray-scaled images. A

method to obtain gray-scaled image is to convert the color space into YUV color

space, which separates the gray-scale (Y - luminance) and color information (U and

V) with the equations

()()
()()
()() 12881281894112

12881281127438

1681282512966

+>>+×−×−×=
+>>+×+×−×−=

+>>+×+×+×=

BGRV

BGRU

BGRY

. (3.1)

22

To regenerate RGB data from YUV color space for displaying the frame on display

screen a reverse conversion is provided using the equations

() ()()()
() () ()()()
() ()()()255,1312816531169535

255,1312832031286660169535

255,1312813074169535

>>−×+−×=
>>−×−−×−−×=

>>−×+−×=

UYMINB

UVYMING

VYMINR

. (3.2)

An RGB2YUV converter hardware block is placed behind the video source;

likewise, a YUV2RGB converter is installed in front of the display screen to convert

the pixel values to RGB formats.

RGB2YUV
RGBin

F
ro
m
 V
id
e
o

S
o
u
rc
e

DDR i/f
YUVin

DDR

Data Address

MOTION ESTIMATOR

GME MEDIAN LME

Ycurrent

Yprevious

M
V
g
lo
b
a
l

Ycurrent

Yprevious

MVprevious

MVcurrent

FRCFRAME GENERATOR

YUV2RGB Y
U
V
p
re
v
io
u
s

Y
U
V
c
u
rr
e
n
t

YUVout

RGBout

T
o
 D
is
p
la
y

S
c
re
e
n

MOTION COMPENSATOR

Figure 3.2: High-level block diagram motion estimator/compensator architecture

DDR, as external memory, is used in architecture to store incoming frames and the

estimated motion vectors to be used in the following steps of motion estimation.

23

DDR interface block acts as a global bridge in the system and controls the DDR,

Motion Estimator and Motion Compensator blocks. DDR interface is the block

where the packing strategy of pixels, presented in following section, is operated.

Motion Estimator is the main hardware component of the whole system whose

functionality is presented in details following sections.

Motion Compensator is end-point of the architecture where the estimated vectors to

be used for interpolation and generation of interframes to increase the frame rate of

the original video sequence.

3.3. PACKING STRATEGY OF PIXELS

In architectures for the block-matching algorithms, memory configuration plays an

important role. It enables the exploitation of various techniques such as parallelism

and pipelining. The motion-estimation techniques are performed with a great amount

data during the computations. This requires a decrement in the number of external

memory access and fetching more pixels from DDR at a single cycle.

Pixels from video source are received one by one every pixel clock and converted

into YUV color space. Instead of storing 24-bit YUV value of each pixel into each

word of external memory, every YUV value is divided into 8-bit Y, which is the only

value of pixel used in motion estimation, and 16-bit UV block and for four

consecutive pixels 8-bit Y values and 16-bit UV values are buffered in DDR

interface. Four pieces of Y values are combined to get a 32-bit word; likewise, two

pieces of UV values, selected according to 4:2:2 co-sited sampling, are combined to

yield another 32-bit word, and then these words are stored to related address of

external memory. This configuration of memory provides the motion estimator to

fetch luminance values of four consecutive pixels at a single access to external

memory.

24

Ri Gi Bi

Ri+1 Gi+1 Bi+1

Ri+2 Gi+2 Bi+2

Ri+3 Gi+3 Bi+3

Yi Ui Vi

Yi+1 Ui+1 Vi+1

Yi+2 Ui+2 Vi+2

Yi+3 Ui+3 Vi+3

Yi Yi+1 Yi+2 Yi+3

Ui Ui+2

RGB2YUV

process

Packing

process

Ri+4 Gi+4 Bi+4

Ri+5 Gi+5 Bi+5

Ri+6 Gi+6 Bi+6

Ri+7 Gi+7 Bi+7

Yi+4 Ui+4 Vi+4

Yi+5 Ui+5 Vi+5

Yi+6 Ui+6 Vi+6

Yi+7 Ui+7 Vi+7

Yi+4 Yi+5 Yi+6 Yi+7

Ui+4 Ui+6

Storage

process

DDR

Pixel Time

t

t+1

t+2

t+3

t+4

t+5

t+6

t+7

Vi+4 Vi+6

Vi Vi+2

Figure 3.3: Packing strategy of pixels and DDR storage

3.4. GLOBAL MOTION ESTIMATOR

Global motion estimator is the component to detect the global movements in the

background image of frame as a result of camera effects. It is based on FS block-

matching strategy on fixed reference locations of each frame and extracting a global

MV after scanning the reference SWs.

Figure 3.4: Global motion estimator block diagram

25

3.4.1. GME Memory Structure

FS block-matching algorithm is performed between current frame with the MB of

16x16 in size and previous frame with the SW of 48x36 in size, calculated with the

search range of ±16 in horizontal and ±10 in vertical.

To reduce the number of access to external memory, MB and SW are totally fetched

to internal memories, i.e. Block RAMs of FPGA, before the FS is started. The

structure of the DDR words, internal block-RAMs is set to 32-bit in width. Because

each word consists of four luminance values, the numbers of addresses of SW block

RAM and MB block RAM are set to
()

432
4

3648 =×
and

()
64

4

1616 =×
,

respectively.

GME_MEMO

CURR_MB_CAG
(Current Macro Block –

Controller – Address Generator)

CURR_MB_BRAM
(Current Macro Block -

Block RAM -

of Adresses: 64

RAM Width: 32 bits)

SW_CAG
(Search Window –

Controller – Address Generator)

SW_BRAM
(Search Window -

Block RAM -

of Adresses: 512

RAM Width: 32 bits)

SW_DUP_CAG
(Search Window Duplicated –

Controller – Address Generator)

SW_DUP_BRAM
(Search Window Duplicated -

Block RAM -

of Adresses: 512

RAM Width: 32 bits)

curr_mg_cag_status

pxl_clk

sw_cag_status

curr_mb_write_enable

curr_mb_write_address

curr_mb_read_address

sw_write_enable

sw_enable_a

sw_enable_b

sw_address_a

sw_address_b

Y_previous

Y_current

pxl_clk

pxl_clk

pxl_clk

pxl_clk pxl_clk

sw_dup_write_enable

sw_dup_write_address

sw_dup_read_address

READ_BYTE_

SELECTOR

curr_mb_data

sw_data_a

sw_data_b

sw_dup_data

C_i

S_0

S_1

S_2

pxl_clk

Figure 3.5: Memory structure of global motion estimator

26

Three luminance values of SW are required to provide the regularity of the data flow

to processing elements in FS algorithm; however, a single block-RAM is eligible to

provide two pixel data, S_0 and S_1, over its one read and one read/write ports. So

an additional block-RAM, labeled as SW_DUP_BRAM in Fig. 3.5, is installed on

global motion estimation structure to transmit the third necessary data, S_2, to

processing elements. The contents of additional memory block and the original SW

memory block are identical.

READ_BYTE_SELECTOR is a multiplexing structure to select the essential bytes

for PEs from the 32-bit outputs of block-RAMs, CURR_MB_BRAM, SW_BRAM,

and SW_DUP_BRAM. It decides the luminance to be selected by a simple 2-bit

counter inside.

Address generators of block-RAMs are controlled by the status inputs (Table 3.3 and

Table 3.4), fed from DDR interface.

Table 3.3: Address generator states

State Number Meaning

0 IDLE

1 WRITE TO BLOCK-RAM

2 READ FROM BLOCK-RAM

Table 3.4: Address generation algorithm

Previous State Current State To Do

0 0 Do nothing

0 1
Enable writing over block-RAM. Reset write
address.

0 2
Enable reading from block-RAM. Reset read
address.

1 0 Disable writing.
1 1 Increase write address by appropriate value.

1 2
Disable writing. Enable reading from block-
RAM. Reset read address.

2 0 Disable reading.
2 1 Unreachable state transition.

2 2
Increase/Decrease read address by appropriate
value.

27

Figure 3.6: GME_MEMO data access timeline and address generation

28

3.4.2. GME Processing Element Array

Due to the search range of ± 16 locations in horizontal, there exists 33 search points

for each line of SW. This enables a set of parallel 33 PEs in processing element array

structure of global motion estimator. Each PE is assigned to calculate the SAD of the

corresponding search location. After a completed calculation PE is assigned for a

new SAD calculation of the search location in next line with the same column.

Figure 3.7: Structure of GME processing element

PE array data of SW is provided by the GME memory structure over 3 luminance

ports S_0, S_1 and S_2, however, each PE uses only 1 or 2 of this luminance values

due to the region of the corresponding its search location. A SW consists of 3 search

regions. Columns 0-15, 17-32, 33-48 are defined as region-0, region-1, and region-2,

respectively. The data providing of these regions are shared to the luminance ports

S_0, S_1, and S_2; on the other hand, the luminance values of current MB are

provided over single port, labeled as C_i, in serial and shifted from a PE to the

following PE.

29

Table 3.5: Data flow to processing elements over input luminance ports

C_i S_0 S_1 S_2 PE0 PE1 PE2 PE3 PE4 … PE14 PE15 PE16 PE17 PE18 … PE31 PE32
c0 S0,0 x x C0 - S0,0 IDLE IDLE IDLE IDLE … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c1 S0,1 x x C1 - S0,1 C0 - S0,1 IDLE IDLE IDLE … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c2 S0,2 x x C2 - S0,2 C1 - S0,2 C0 - S0,2 IDLE IDLE … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c3 S0,3 x x C3 - S0,3 C2 - S0,3 C1 - S0,3 C0 - S0,3 IDLE … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE

c4 S0,4 x x C4 - S0,4 C3 - S0,4 C2 - S0,4 C1 - S0,4 C0 - S0,4 … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c5 S0,5 x x … … … … … … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c6 S0,6 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c7 S0,7 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c8 S0,8 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c9 S0,9 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c10 S0,10 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c11 S0,11 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c12 S0,12 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c13 S0,13 x x … IDLE IDLE IDLE IDLE IDLE … IDLE IDLE
c14 S0,14 x x … … … … C0 - S0,14 IDLE IDLE IDLE IDLE … IDLE IDLE
c15 S0,15 x x C15 - S0,15 C14 - S0,15 C13 - S0,15 C12 - S0,15 C11 - S0,15 … C1 - S0,15 C0 - S0,15 IDLE IDLE IDLE … IDLE IDLE
c16 S1,0 S0,16 x C16 - S1,0 C15 - S0,16 C14 - S0,16 C13 - S0,16 C12 - S0,16 … C2 - S0,16 C1 - S0,16 C0 - S0,16 IDLE IDLE … IDLE IDLE
c17 S1,1 S0,17 x C17 - S1,1 C16 - S1,1 C15 - S0,17 C14 - S0,17 C13 - S0,17 … C3 - S0,17 C2 - S0,17 C1 - S0,17 C0 - S0,17 IDLE … IDLE IDLE
c18 S1,2 S0,18 x C18 - S1,2 C17 - S1,2 C16 - S1,2 C15 - S0,18 C14 - S0,18 … … IDLE IDLE
c19 S1,3 S0,19 x C16 - S1,3 C15 - S0,19 … … IDLE IDLE

c20 S1,4 S0,20 x C16 - S1,4 … … IDLE IDLE
c21 S1,5 S0,21 x … … IDLE IDLE
c22 S1,6 S0,22 x … … IDLE IDLE
c23 S1,7 S0,23 x … … IDLE IDLE
c24 S1,8 S0,24 x … … IDLE IDLE
c25 S1,9 S0,25 x … … IDLE IDLE
c26 S1,10 S0,26 x … … IDLE IDLE
c27 S1,11 S0,27 x … … IDLE IDLE
c28 S1,12 S0,28 x … … IDLE IDLE
c29 S1,13 S0,29 x … … IDLE IDLE
c30 S1,14 S0,30 x … … IDLE IDLE
c31 S1,15 S0,31 x C31 - S1,15 C30 - S1,15 C29 - S1,15 C28 - S1,15 C27 - S1,15 … … C0 - S0,31 IDLE
c32 S2,0 S1,16 S0,32 C32 - S2,0 C31 - S1,16 C30 - S1,16 C29 - S1,16 C28 - S1,16 … … C0-S0,32

c33 S2,1 S1,17 S0,33 C32 - S2,1 C31 - S1,17 C30 - S1,17 C29 - S1,17 … …
c34 S2,2 S1,18 S0,34 C32 - S2,2 C31 - S1,18 C30 - S1,18 … …
c35 S2,3 S1,19 S0,35 C32 - S2,3 C31 - S1,19 … …

c36 S2,4 S1,20 S0,36 C32 - S2,4 … …
c37 S2,5 S1,21 S0,37 … …
c38 S2,6 S1,22 S0,38 … …
c39 S2,7 S1,23 S0,39 … …
c40 S2,8 S1,24 S0,40 … …
c41 S2,9 S1,25 S0,41 … …
c42 S2,10 S1,26 S0,42 … …
c43 S2,11 S1,27 S0,43 … …
c44 S2,12 S1,28 S0,44 … …
c45 S2,13 S1,29 S0,45 … …
c46 S2,14 S1,30 S0,46 … …
c47 S2,15 S1,31 S0,47 … …

INPUT PORTS PROCESSING ELEMENTS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

As it is given in Table 3.5, all processing elements do not use every input port, and

ports corresponded to PEs are changing cycle by cycle. This requires an adaptive

multiplexing structure for switching between input ports. This structure is built by

30

simple 2×1 multiplexers in front of processing elements and the select inputs of these

multiplexers are fed by S_Select port from the GME controller.

Table 3.6: PEs vs. corresponding luminance ports

PE index Corresponding Luminance Ports

0 S_0

1-15 S_0 and S_1

16 S_1

17-31 S_1 and S_2

32 S_2

Figure 3.8: GME PE array structure

Since the MB size is fixed to 16×16, an SAD calculation time equals to 256 cycles

for a single search location. Total execution time of PE array for whole SW can be

calculated by the formula:

 54083221256256_ =+×=+×= tnT arrayPE (3.3)

where n is the number of vertical search locations in a SW column, and t is the

delay of pipelining due to the number of PEs.

31

3.4.3. GME Minimum SAD Comparator

A motion vector in a SW is decided by the location of minimum distortion (SAD).

PE array calculates all the SAD values and passes to the minimum SAD comparator

component of the GME structure. This component finds the minimum distortion with

comparison between incoming SAD value and the SAD value stored in currentMin

register. If the comparison results as true, the motion vector is updated by the values

of counters, triggered by enable port.

Figure 3.9: Structure of GME minimum SAD comparator

3.5. MEDIAN VECTOR GENERATION

Nine different reference points are set to find the global motion vector defining the

camera movements. Each reference point generates its own motion vector. globalMV

is determined by the median vector of these nine different motion vectors. (Eq. 2.22)

32

There exists several algorithms to find the median vector; however, due to the clock

frequency of input video and the size of chip, it is not feasible to implement a

hardware block to find the median vector in a single cycle. In this study, median

vector generator is implemented by a serial bubble sorter, which takes:

 () () 56)18()19(21 =−×−=−×− nn (3.4)

cycles in ()2nO complexity where n is the number of motion vectors to be sorted.

Middle element of both x and y components array generates the median vector, said

to be globalMV .

3.6. LOCAL MOTION ESTIMATOR

By the local motion estimator, it is targeted to find the motion vectors for moving

objects. The hardware architecture is based on 3-D RS block-matching algorithm

which is explained in Sec. 2.4.

Figure 3.10: Local motion estimator block diagram

33

3.6.1. Motion Vector Array

3-D RS algorithm is based on the motion vectors calculated during the motion

estimation between previous 2 frames.

MV_ARRAY

0 STATIONARY VECTOR

1 S_a

3 S_b

2 S_a + U_a

4 S_b + U_b

6 T_b

5 T_a

7 MV_global

MV_previous

MV_global

Updater

Updater
MV_i

min_sad_index

MV_current

mv_arr_status

Figure 3.11: Structure of motion vector array

Local motion vectors are computed by 8 different motion vectors, four of those are

directly related to the motion vectors from previous estimation (S_a, S_b, T_a, and

T_b). These four vectors are fetched from DDR and stored into the register block of

the MV array structure. Two vectors are generated by the updaters. Remaining two

vectors are the stationary vector, showing the same search location of MB on SW,

and globalMV , calculated by global motion estimator and the median vector generator.

34

Figure 3.12: Structure of updater

Updater blocks inside the MV array generate two new motion vectors to be searched

by adding update vectors from an update set:

−

−

−

−

−

−

−

−

=

4

0
,

0

4
,

4

0
,

0

4
,

3

0
,

0

3
,

3

0
,

0

3

,
2

0
,

0

2
,

2

0
,

0

2
,

1

0
,

0

1
,

1

0
,

0

1
U

 (3.5)

over spatial vectors, S_a and S_b. The update vectors are listed in a LUT which is

fed by a randomly generated update index. The randomization of this index is

provided by a pseudo-random number generator, which is designed on the basics of

Galois LFSR in this thesis study.

Figure 3.13: Galois LFSR

35

3.6.2. LME Memory Structure

Like FS algorithm in GME, 3-D RS is performed between MBs from current frame

and the SWs from previous frame; however, the sizes of these blocks differ from

GME. MB is set to be 8×8 in size that reduces the size of SW to 40×28 due to the

search range of ±16 in horizontal and ±10 in vertical. MB and SW are fetched to

internal memories as same as the GME to reduce the number of access to external

memory. The configuration of words to write into block-RAMs is also identical to

configuration in GME. The only difference related to the block-RAMs is in numbers

of addresses of SW block-RAM and MB block-RAM that are
()

280
4

2840 =×
 and

()
16

4

88 =×
, respectively, due to the block sizes.

Figure 3.14: Memory structure for local motion estimator

36

Another difference between the GME and LME memory structures is the width of

the output ports. In GME, there exist four output ports, C_i, S_0, S_1, and S_2, of 8

bits in width to run the FS data flow. This enables the calculation of SAD for 33

different search locations. In LME, the strategy of minimum distortion calculation is

completely different, where eight blocks in SW, pointed with eight independent

motion vectors, are correlated with MB of current frame. This means that the pixels

search blocks are not listed consecutively in SW block-RAMs. The situation of the

block-RAM configuration prevents the calculation of eight different distortions in

parallel with a small number of block-RAMs in structure. Because the number of

block-RAMs in FPGAs is very limited, it is necessary to design a structure reducing

the block-RAM demand for data providing to processing elements.

To reduce the number of block-RAMs, the parallelism strategy is converted from

Parallel-Serial (minimum distortion calculation of different search locations in

parallel by feeding PEs with corresponding search pixels of different search locations

in serial) to Serial-Parallel (minimum distortion calculation of different search

location in serial by feeding PEs with corresponding search pixels of same search

location in parallel). The structure can be implemented by two output ports, C and S,

each of which is 64 bits in width.

Due to the value of motion vector, that decides the macroblock from SW to be

correlated with current MB, eight luminance values of previous MB might be

distributed to 2 or 3 words in block-RAM related to search window; on the other

hand, the luminance values of current MB are placed in every two words of its own

block-RAM. A block-RAM is able to output two values with its one read and one

read/write port. This enables that the current MB values can be provided by a single

block-RAM; otherwise, for search window, a second block-RAM, with an identical

content with original SW block-RAM, is required to provide the data because of the

possibility of distribution of necessary values in 3 words due to the MVs.

After fetching these three words from block-RAMs, a multiplexing structure has to

be installed behind the block-RAMs to select the correct eight luminance values out

of twelve values, fetched from two block-RAMs, due to the MV.

37

Yi Yi+1 Yi+2 Yi+3 Yi+4 Yi+5 Yi+6 Yi+7 Yi+8 Yi+9 Yi+10 Yi+11

From Address A

of SW_BRAM
From Address A+1

of SW_BRAM

From Address A+2

of SW_DUP_BRAM

S_SELECTORMV_i

Sr,0 Sr,1 Sr,2 Sr,3 Sr,4 Sr,5 Sr,6 Sr,7

(Y
i+
k)

(Y
i+
k
+
1)

(Y
i+
k
+
2)

(Y
i+
k
+
3)

(Y
i+
k
+
4)

(Y
i+
k
+
5)

(Y
i+
k
+
6)

(Y
i+
k
+
7)

Figure 3.15: Selection of correct luminance value

S_SELECTOR component multiplexes these luminance values for correct data

providing. It analyzes the motion vector and generates a k value pointing the

corresponding head luminance and forms the 64-bit S value composed of 8

luminance values.

Table 3.7: Value of pointer k due to motion vector input

(X coordinate of MV_i) mod 4 Value of k

0 0

1 1

2 2

3 3

3.6.3. LME Processing Element Array

In every pixel clock during the local motion estimation, memory structure feeds eight

luminance values for both current MB and search MB. Since the block size of each

macroblock is 8×8 and 8 luminance values are fed every single cycle by memory,

there could be installed 8 PEs to accumulate the SADs of each column of

macroblocks in eight cycles.

38

Figure 3.16: LME PE array structure

PEs, used in LME, are similar to the PEs in GME; however; they are not exactly

identical. Because global motion estimation is performed by the FS algorithm where

the SAD calculation strategy is Parallel-Serial, explained in Sec. 3.6.2, luminance

values of current MB are transferred from one PE to the following one to start the

correlation between the block of search location and the current MB. The structures

of PEs are also different in reset input. While every PE in GME is reset right after the

previous PE in sequence of the array, the reset signal of a PE is also shifted to the

following PE.

Figure 3.17: Structure of LME processing element

The last difference between the PEs of GME and LME is the width of the output

SAD port. The width of this port varies the number of accumulation for resultant

39

SAD value for each PE. In GME, a PE is responsible for a whole MB correlation

where the block size is 16×16; then it takes 256 cycles to finish the process. The

worst distortion value would be 65280256255 =× , where 255 is the value of the

worst distortion (between white and black pixel) and 256 is the number of pixels in

whole MB, could be represented in 16 bits. On the other hand, in LME, a PE is

responsible only one column of an MB, where the block size is set to 8×8; it would

take only 8 cycles to finish the SAD process. In the worst case of LME, the

maximum distortion would be 20408255 =× , where 255 has the same meaning with

GME and 8 is the number of the pixels in an MB column, could be represented in

narrower bit width, 11.

3.6.4. Adder Tree

The PE array unit comprises 8 PEs, with each PE computing the SAD for one

column of the block. After every 8 pixel clock cycles, the SADs of all the 8 columns

are summed up using an 8-input high-speed parallel adder to produce the SAD for

the entire block.

Figure 3.18: Computation of SAD for an LME block

40

The parallel adder is made up of 6 CSAs and one CPA in the final stage. Each CSA

takes three 14-bit inputs and produces a 14-bit sum and a 14-bit carry at the output.

Since the PE outputs are only of 11-bit length, the maximum length of the sum of 8

such inputs can be 14 bits, and hence an adder with a final output of length 14 bits is

sufficient. In this 8-input parallel adder, 2 CSAs are present in first stage to accept 6

inputs and produce 2 sum outputs and 2 carry outputs. The remaining two inputs are

simply carried to the next stage. The 2 carry outputs are left-shifted by 1 bit. In a

similar manner, 2 CSAs are used in the second stage, and so on. The final CSA gives

one sum output and one carry output. In the final stage, a CPA adds up the sum and

the left-shifted carry to produce the final sum of 14-bit length. This becomes the

SAD for the entire block.

3.6.5. LME Minimum SAD Comparator

Like GME minimum SAD comparator, the comparator in LME finds the minimum

distortion which decides the motion vector output; however, the counter in LME

structure does not directly count the motion vector value, but the index of the motion

vector stored in the register array of MV array unit of local motion estimator.

When the enable port is high, the component checks the incoming SAD value as if it

is smaller than the minimum SAD value inside the currentMin register. If the

comparison gives true as the result, index value pointing the MV array is updated by

the value of index counter.

Figure 3.19: Structure of LME minimum SAD comparator

41

4. VERIFICATION STRATEGY AND TOOLS

Hardware verification is the process of verifying the functional characteristics of

models at any level of abstraction. Simulators, such as Modelsim, Veriwell, Icarus,

etc., are used to simulate the hardware models. To verify if the RTL code meets the

functional requirements of the specification, it has to be observed if all RTL blocks

are functionally correct. To achieve this, a testbench is needed to be written, which

generates clock, reset and the required stimulus.

The waveform output from the simulator is used to see if the device under test is

functionally correct. As the design becomes more complicated, self checking

testbench is preferred, where the testbench applies the test vector, then compares the

output of DUT with the expected value.

Figure 4.1: Testbench environment

In this thesis study, Modelsim, as the simulator software, is only used for applying

test vectors and generating the DUT outputs; however, the expected values are not

generated by the testbench. Remaining steps of are provided by the verification tool,

developed in C# language. This tool is designed at two levels: DLL development,

and GUI development.

4.1. MOTION DLL CLASSES

A reusable dynamic linked library is developed for the verification strategy of the

study, composed of many classes with the inherited structure between each other.

42

Figure 4.2: Class Diagram of Motion DLL

4.1.1. MemoryBlock

MemoryBlock represents a two-dimensional integer array with the given height and

width, and their values. Sub-classes, Frame and SearchBlock, are inherited from this

class, since they are two-dimensional array like structures.

43

4.1.2. SearchBlock

Search block is a kind of memory block, that is windowed by a given size and is

filled by coordinate values of x and y on a specified frame. For the motion estimation

algorithms all blocks, i.e. current MB and SW, are defined as the instantiations of

this class. The size of blocks are changing due to the algorithm used for motion

estimation.

4.1.3. Frame

Frame is another memory block, which can be also defined as the pixel matrix of an

image. The pixel values of the frame are stored by only its gray values, calculated by

the conversion formula between RGB and YUV color spaces, while only the gray-

scale image is needed for motion estimation.

Because the purpose of the software development is to test the 3-D RS algorithm,

and since 3-D RS needs the motion vectors of previous estimation between two

previous images, a function called FillVectorMapWithFullSearch is implemented to

generate the initial motion vectors for motion estimation. FS algorithm is performed

by a static function inside the class and motion vector map of the first frame of video

sequence is filled by the result of this static function.

One of the problems with the motion estimation algorithms is to find the motion

vector of macroblocks at border, where some pixels of corresponding SW do not

exists. The software handles this problem by another static function of the class,

GenerateBorderedFrame, which adds additional black pixels for the missing parts of

SW, needed.

4.1.4. FrameGenerator

FrameGenerator is a single-static-functioned class that generates a frame from a

given bitmap file by converting the RGB data into YUV and saves only the Y values

inside the frame memory array.

44

4.1.5. MotionVector

Motion vector of macroblocks are modeled by this class. Motion vector is composed

of two coordinates that refer displacement in both vertical and horizontal.

Motion vectors due to spatial domain in 3-D RS algorithm are updated by random

numbers to generate two additional candidate vectors for algorithm. This process is

provided by the function RandomUpdate.

Global motion estimation algorithm generates 9 motion vectors due to 9 different

reference locations. globalMV is calculated by the median operation over these 9

motion vectors. The median vector, labeled as globalMV , is computed by a static

function of class over an input parameter with type of motion vector array.

4.1.6. MotionEstimation

The class is designed as the base class for motion estimation algorithms. Since every

motion estimation algorithm requires a previous, a current frame, a SW and a current

MB with fixed sizes, these attributes are packed in the MotionEstimation class.

4.1.7. GlobalMotionEstimation

The class is the implementation of global motion estimation with the strategy

explained in Sec. 2.5. After an object instantiation of class, reference locations are

calculated by Eq. 2.2.

Perform function runs FS algorithm for each reference location and stores the motion

vectors in an array, called MotionVectors. Finally it generates the global motion

vector by calling the static function, FindMedian, and of MotionVector class passing

the array the function as input parameter.

45

4.1.8. RecursiveTrueMotionEstimation

Implementation of 3-D RS algorithm is coded in this class. The constructor of the

class takes globalMV as an additional input parameter, computed by the execution of

global motion estimation algorithm.

Perform function of the class runs the algorithm for each macroblock in current

frame and fills the vector map of current frame by the vectors found by the

algorithm.

4.2. GUI FOR TEST SOFTWARE

GUI is the second level for the test software development. The application runs with

the given scenario:

Figure 4.3: Main user form of motion estimation test software

Three consecutive video frames are opened, where the first two frames, labeled as

()thi 2− and ()thi 1− are used to find the initial local vectors. Initial vector calculation

step is performed by FS algorithm. The initial vectors would be used in next step, 3-

46

D RS, as previous motion vectors. Global motion estimation and 3-D RS algorithms

are applied between last two frames, loaded as ()thi 1− and thi .

Figure 4.4: “Baskirt - Amusement Park” sequence is loaded

After computation of local motion vectors, the motion vectors are drawn on a local

vectors form. Each vector line begins from the left upper corner of each macroblock

and ends at the location pointed by the MV.

Figure 4.5: Initial motion vectors calculated by FS algorithm

globalMV is calculated by the algorithm explained in Sec. 2.5 right after the

calculation of initial vectors. The global vector is drawn on a coordinate plane by a

red line.

47

Figure 4.6: Global motion vector on coordinate plane

After the processes, finding initial vectors and global vector, are finished, software is

ready to estimate the local vectors between ()thi 1− and thi frames by 3-D RS

algorithm.

Figure 4.7: Local motion vectors calculated by 3-D RS algorithm

“Baskirt – Amusement Park” sequence is a test video with WXGA resolution;

likewise, the software, as a result of the modularity in DLL, is also capable of motion

estimation over videos with any resolutions.

Figure 4.8: Motion estimation over “Phaeton” sequence with 352×240 resolution

48

5. CONCLUSION AND FUTURE WORKS

During this thesis study, an architectural design is given for global motion estimation

using FS algorithm and local motion estimation using 3-D RS algorithm. Global

motion estimation level of the project is fully implemented by Verilog and verified

by the object oriented software developed.

The coded hardware design is synthesized for Xilinx Spartan 3E FPGA with the

version xc3s1600e-4fg484 by Xilinx ISE 8.1. Design summary for synthesized GME

and median hardware blocks are given by the table below:

Table 5.1: Design summary for GME and median hardware blocks

Hardware
Block

Number
of

Slices

Number of
Slice Flip-

Flops

Number
of

4-input
LUTs

Number
of

BRAMs

Clock
Frequency

(MHz)

GME_MEMO 112 111 208 3 101.513
GME_PE_ARR 718 816 1099 0 122.714

GME_CTRL 71 52 109 0 145.433
MEDIAN 611 155 1113 0 82.902

By looking at the synthesis results of the GME and median blocks, it is feasible to

implement the design for the given Xilinx chip using about 11% of total slices in it.

The current design is also feasible for a video sequence having 80 MHz in pixel

clock frequency.

As a future work, it is decided to implement the given architectural design of LME in

Verilog and get the design summary for the same FPGA. It will be examined as if the

whole architecture is feasible for given version of Xilinx Spartan 3E FPGA.

In architectural view, it is possible to implement a simple MEDIAN block structure,

what significantly decreases the maximum clock frequency of the chip and occupies

significantly more space in terms of number of slices for a single median operation.

49

Another possible architectural study is available about reusing the pre-fetched

luminance values of a SW for the next ME of next MB in LME. Because the

significant amount of values in BRAMs is also needed for next MB of the same line,

development of a structure to hold the needed data on BRAM and only fetch the new

columns from the DDR will extremely decrease the number of DDR accesses and

number of cycles for LME in total.

In this thesis study, an object-oriented verification tool for motion estimation

techniques is developed. By the modularity in DLL development stage, as a future,

this tool can be extended to realize other proposed motion estimation algorithms

using classes.

50

REFERENCES

Books

Jack, K., 2007. Video demystified: a handbook for the digital engineer, 5th edn.,

 USA: Newnes Press.

51

Periodical Publications

Jain, J. R. & Jain, A. K., 1981. Displacement measurement and its application in

 interframe image coding, IEEE Transactions on Communications, 29 (12), pp

 1799 – 1808.

Po, L. M. & Ma, W. C., 1996. A novel four-step search algorithm for fast block

 motion estimation, IEEE Transactions on Circuits and Systems for Video

 Technology, 6, pp 313 – 317.

Srinivasan, R. & Rao, K. R., 1985. Predictive coding based on efficient motion

 estimation, IEEE Transactions on Commun., 33 (8), pp 888 – 896.

De Haan, G., Biezen P. W. A. C., Huijgen H. & Ojo O. A., 1993. True-motion

 estimation with 3-D recursive search block matching, IEEE Transactions on

 Circuits and Systems for Video Technology, 3 (5), pp 368 – 379.

De Haan, G. & Biezen P. W. A. C., 1998. An efficient true-motion estimator using

 candidate vectors from a parametric motion model, IEEE Transactions on

 Circuits and Systems for Video Technology, 8 (1), pp 85 – 91.

Fanucci, L., Saponara, S. & Bertini, L., 2001. A parametric VLSI architecture for

 video motion estimation, The VLSI Journal of Integration, 31, pp 79 – 100.

Swamy, P. N., Chakrabarti, I. & Ghosh, D., 2002. Architecture for motion estimation

 using the one-dimensional hierarchical search block-matching algorithm, IEE

 Proc.-Comput. Digit. Tech., 149 (5), pp 229 – 239.

Yang, S., Wolf, W. & Vijaykrishnan, N., 2005. Power and performance analysis of

 motion estimation based on hardware and software realizations, IEEE

 Transactions on Computers, 54 (6), pp 714 – 726.

52

Other Publications

Toga, T., 1981. Motion-compensated inter-frame coding for video conferencing,

 NTC ’81, New Orleans, LA, November 1981, p G.5.3.1 – G.5.3.4.

Puri, A., Hang, H. M. & Schilling, D., 1987. An efficient block-matching algorithm

 for motion-compensated coding, IEEE International Conference on

 Acoustics, Speech, and Signal Processing’87, Dallas, TX, 6-9 April 1987, pp

 1063 – 1066.

Chen, Y. K., (1998). True motion estimation – theory, application, and

 implementation. PhD Thesis. Princeton, NJ: Princeton University Electrical

 Engineering Department.

Turaga, D., & Alkanhal, M., 1998. Search algorithms for block-matching in motion

 estimation [online], Carnegie Mellon University,

 http://www.ece.cmu.edu/~ee899/project/deepak_mid.htm [citied 2 October

 2006]

53

VITAE

Name Surname : Soner DEDEOĞLU

Address : Bahçeşehir Üniversitesi Mühendislik Fakültesi
 Çırağan Cd. Osmanpaşa Mektebi Sk. No: 4 – 6
 34349 Beşiktaş / Đstanbul / Türkiye

Birth Place / Year : Đstanbul - 1983

Languages : Turkish (native) - English

Elementary School : Oğuzkaan College – 1994

High School : Beşiktaş Atatürk Anatolian High School - 2001

BSc : Bahçeşehir University - 2005

MSc : Bahçeşehir University - 2008

Name of Institute : Institute of Science

Name of Program : Computer Engineering

Publications : Ugurdag H.F., Sahin Y., Baskirt O., Dedeoglu S., Ugurdag
 S.G. & Kocak Y. S., 2006. Population-based FPGA
 solution to mastermind game, 1st NASA/ESA
 Conference on Adaptive Hardware and Systems,
 Istanbul, Turkey, 15-18 June 2006.

 Dedeoglu S. & Kocak Y. S., (2005), Digital net-list simulator
 with JAVA, BSc Graduation Project. Istanbul, Turkey:
 Bahçeşehir University Computer Engineering
 Department.

Work Experience : Bahçeşehir University Computer Engineering Department
 Teaching and Research Assistant
 (August 2005 – Today)

 Bahçeşehir University Computer Engineering Department
 Student Assistant
 (October 2002 – January 2005)

 Kent State University School of Technology
 Research Intern
 (September 2002)

