

T.C

BAHÇEŞEHİR UNIVERSITY

INSTITUTE OF SCIENCES

 INDUSTRIAL ENGINEERING

SOLVING UNIVERSITY COURSE TIMETABLING

PROBLEM USING GENETIC ALGORITHM

Master Thesis

M. ASLI AYDIN

İSTANBUL, 2008

T.C

BAHÇEŞEHİR UNIVERSITY

INSTITUTE OF SCIENCES

 INDUSTRIAL ENGINEERING

SOLVING UNIVERSITY COURSE TIMETABLING

PROBLEM USING GENETIC ALGORITHM

Master Thesis

M. Aslı AYDIN

Advisor: Asst. Prof. Dr. Ahmet BEŞKESE

İSTANBUL, 2008

T.C

BAHÇEŞEHİR UNIVERSITY

INSTITUTE OF SCIENCES

INDUSTRIAL ENGINEERING

Name of the thesis: Solving University Course Timetabling Problem Using
Genetic Algorithm
 Name/Last Name of the Student: M. Aslı AYDIN
Date of Thesis Defense: June.06.2008

The thesis has been approved by the Institute of Sciences.

Prof. Dr. Erol SEZER
Director

I certify that this thesis meets all the requirements as a thesis for the degree of

Master of Science.

 Asst. Prof. Dr. Ahmet BEŞKESE
Program Coordinator

This is to certify that we have read this thesis and that we find it fully adequate
in scope, quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Asst. Prof. Dr. Ahmet BEŞKESE ____________________

Prof. Dr. Cengiz KAHRAMAN ____________________

Asst. Prof. Dr. F. Tunç BOZBURA ____________________

ii

ACKNOWLEDGMENTS

First of all I would like to thank to my family for always being there for me and for

whatever I needed. And also I would like to thank to all those who have taken a part

in my whole education.

Secondly I would like to thank to my supervisor Asst. Prof. Dr. Ahmet Beşkese for

supporting this study by his guidance, help and time. Also, thanks to Asst. Prof. Dr.

F. Tunç Bozbura whom gave me many valuable advises in the early stages of my

thesis. And also I would like to thank to Assc. Prof. Dr. Irini Dimitriyadis for

continously asking me “how is the thesis going?”, because she encouraged me to

persevere without knowing it.

Also I would like to thank to my best friend, my colleague, my dear husband Tarkan

Aydın for his understanding, patience, encouragement, love and support. Also I thank

him for his helpful discussions.

 Finally, I would like to thank to Bahcesehir University for providing me the graduate

scholarship.

June, 2008

M. Aslı AYDIN

iii

ABSTRACT

SOLVING UNIVERSITY COURSE TIMETABLING PROBLEM USING

GENETIC ALGORITMS

Aydın, Mürüvvet Aslı

Industrial Engineering

Advisor: Assoc. Prof. Dr. Ahmet Beşkese

June, 2008 37 pages

The university course timetabling problem consists of allocating a number of courses

to a limited set of resources such as rooms, timeslots, set of lecturers and group of

students in such a way to satisfy predefined constraints. The constraints can be

divided into two groups: hard constraints and soft constraints. A timetable has to

satisfy all hard constraints in order to be feasible and it should satisfy as much as

possible soft constraints in order to be good quality.

The university timetabling problem is in class of NP-hard problems. This means that

the amount of time and work required solving this type of problems increases

exponentially with the problem size. This makes these problems more difficult and

time consuming. Therefore optimization techniques are used to solve them and

produce optimal or near optimal feasible solutions instead of exact solutions. Genetic

algorithms are considered as an efficient approach for solving this type of problems.

Genetic algorithm is based on the principle of evolution first described by Charles

Darwin and it tries to mimic some features of nature such as selection, crossover,

mutation and replacement. Through these probabilistic operators, genetic algorithms

choose the optimal solution among a set of alternate solutions which compete with

each other.

In this thesis, first a general description of genetic algorithms and theoretical

background, Schema Theorem, which describes the reasons of efficiency of genetic

algorithms are given. Then a real life university course timetabling problem is

examined with data coming from Bahcesehir University, Faculty of Arts and

iv

Sciences. A solution based on genetic algorithm is proposed for the problem. The

genetic algorithm implementations are described and applied to the sample problem.

Moreover, determination of the best parameter values, such as the population size,

mutation and crossover rate, etc. is tried. We work on this problem by introducing

modified genetic operators which do not allow violations of any hard constraints, as a

result produce only feasible solutions. Therefore the aim of the genetic algorithm is to

produce a good quality timetable. This gains us to get better solutions in a

comparative short time.

Keywords: Genetic Algorithms, Metaheuristics, Timetabling, Constraints

v

ÖZET

ÜNİVERSİTELERDE DERS PROGRAMI OLUŞTURMA PROBLEMİNİN

GENETİK ALGORİTMA İLE ÇÖZÜMÜ

Endüstri Mühendisliği

Tez Danışmanı: Yrd. Doç. Dr. Ahmet Beşkese

Haziran, 2008

Üniversite ders programı oluşturma problemi, belli bir sayıdaki derslerin sınırlı

sayıdaki sınıf, zaman dilimi ve öğretim elemanları gibi kaynaklara önceden

belirlenmiş kısıtları sağlayacak şekilde dağıtılmasını içerir. Kısıtlar iki gruba ayrılır:

Kati kısıtlar ve gevşek kısıtlar. Bir ders programının kabil olabilmesi için bütün kati

kısıtları sağlaması gerekir. İyi kalitede olabilmesi için de mümkün olduğunca fazla

gevşek kısıtları sağlamalıdır.

Üniversite ders programı oluşturma problemi NP-zor problemler sınıfındadır. Bu şu

demektir; bu tip soruları çözmede harcanan zaman ve yapılan iş, problemin

büyüklüğü arttıkça eksponensiyel olarak artar. Bu da bu problemleri daha zor ve daha

zaman alıcı yapar. Bu yüzden bunları çözmekte ve tam sonuç bulmak yerine en iyi

veya en iyiye en yakın çözümler üretmek için eniyileme teknikleri kullanılır. Genetik

algoritmalar bu tip problemlerin çözümünde verimli bir method olarak düşünülür.

Genetik algoritma, ilk kez Charles Darwin tarafından anlatılan evrim teorisini baz alır

ve doğadaki seleksiyon, çaprazlama, mutasyon ve değiştirme gibi yapıları taklit

etmeye çalışır. Bu olasılıksal operatörlerle, bibiriyle yarışan alternatif çözümler

arasından en iyi çözümü seçer.

Bu tezde, önce genetik algoritmanın genel tanımı ve genetik algoritmanın

verimliliğinin sebeplerini açıklayan teorik altyapısı, Şema teoremi verilir. Daha sonra,

Bahçeşehir Üniversitesi Fen Edebiyat Fakültesi verileriyle gerçek bir üniversite ders

programlama problemi denenir. Bu probleme genetik algoritma tabanlı bir çözüm

önerilir. Genetik algoritma uygulamaları anlatılır ve örnek probleme uygulanır.

Ayrıca, popülasyon büyüklüğü, çaprazlama ve mutasyon oranları gibi parametrelerin

vi

en iyi değerlerinin tespiti denenir. Bu problemde sonuç olarak sadece kabil ders

programları üreten, modifiye edilmiş, kati kısıtların ihlaline izin vermeyen genetik

operatörlerle çalıştık. Bu yüzden amaç sadece iyi kalitede ders programı üretmekti. Bu

bize daha kısa sürede daha iyi sonuçlar elde etmeyi sağladı.

Anahtar Kelimeler: Sezgisel Yöntemler, Zaman Tablolama, Genetik Algoritma,

Kısıtlar

vii

CONTENTS

ACKNOWLEDGMENTS ... ii

ABSTRACT ... iii

ÖZET ...v

CONTENTS .. vii

TABLES ... viii

FIGURES ... ix

1. INTRODUCTION ..1

2. LITERATURE REVIEW ..4

2.1 OPERATIONS RESEARCH APPROACHES TO TIMETABLING
PROBLEMS ..5

2.1.1 Sequential methods ..5
2.1.2 Clustering methods ..5
2.1.3 Metaheuristic methods ..6

3. GENETIC ALGORITHMS: AN OVERVIEW ...10

3.1 FUNDAMENTALS OF GENETIC ALGORITHMS11
3.1.1 Chromosome representation ...11
3.1.2 Fitness of a solution ..12
3.1.3 Basic steps of genetic algorithm ..12
3.1.3.1 Initialization of the population ..12
3.1.3.2 Selection ...12
3.1.3.3 Recombination ...13
3.1.3.4 Replacement ...16

3.2 A SIMPLE EXAMPLE OF GENETIC ALGORITHM17
3.3 THEORETICAL ASPECTS OF GENETIC ALGORITHM21

4. PROBLEM DEFINITION ..23

4.1 Goals: ..23
4.2 Constraints: ...23
4.3 Acquisition of data: ...24

5. METHODOLOGY ...26

5.1 Chromosome Representation ...26
5.2 Fitness Function ..28
5.3 Initilization of the population: ...29
5.4 Selection: ..30
5.5 Genetic Operators: ..30

6. EXPERIMENTAL RESULTS ..33

7. CONCLUSION AND DISCUSSION ..36

REFERENCES ..38

viii

TABLES

Table 6.1 : Crossover and mutation probabilities used in experiments. 34

ix

FIGURES

Figure 2.1: Pseudocode for Simulated Annealing. ... 6

Figure 2.2 : Pseudocode for Tabu Search ... 7

Figure 2.3 : Pseudocode for Ant Colony System .. 8

Figure 2.4 : Pseudocode for Genetic Algorithm ... 9

Figure 3.1 : Explanation of biological terms in Genetic Algorithm 10

Figure 3.2: Two-point Crossover .. 14

Figure 3.3: Partially Matched Crossover .. 15

Figure 3.4: Mutation Operator .. 16

Figure 3.5: Graph of the function f(x) = xsin (1/x) ... 17

Figure 5.1: The University Week .. 26

Figure 5.3: Flow chart of Genetic Algorithm ... 31

Figure 6.1: Fitness vs. Number of Generation .. 33

Figure 6.2: Fitness Changing by Probability of Genetic Operators 34

Figure 6.3: Fitness Changing by Population Size ... 35

1

1. INTRODUCTION

Timetabling is defined as “the allocation, subject to constraints, of given resources to

objects being placed in space-time, in such a way as to satisfy as nearly as possible a set

of desirable objectives “(Wren 1996, p53). A more common definition can be given as

assigning a set of events (lectures, vehicles, public events, etc.) to limited set of

resources over time in such a way to satisfy predefined constraints. These constraints

can be categorized as hard constraints and soft constraints where hard constraints have

higher priority to be satisfied than soft constraints.

 There are various timetabling problems in real world such as allocation of events,

activities, people, vehicles, etc. In most of the cases constructing a workable timetable is

very difficult to achieve because the resources (time, place, people, etc.) are limited. So

constructing an efficient timetable becomes a crucial problem for people.

This study focuses on the timetabling problem that every educational institution faces

with at the beginning of each academic semester. It is the problem of allocation of

events (teaching sessions, exams, lab sessions, etc) within a given number of rooms and

time periods.

 The problem of educational timetabling can be arranged into two categories as course

timetabling and exam timetabling. It is clear that there are a lot of similarities between

these two. The main difference is that in exam timetabling problem, although it is not

preferable, two or more exams can be scheduled in the same room, at the same time.

However in the course timetabling problem, two different courses are not allowed to be

scheduled in the same room, at the same time. Another crucial difference is flexibility of

examination’s time. An exam can be scheduled at weekends or in the evenings while

courses cannot. Moreover in exam timetabling problem conflicts are strict. Every

student must take his/her examinations at its time. In addition to these, in exam

timetabling each student should take at most one exam each day and also too many

consecutive exams are not allowed.

Course timetabling problem can also be divided into two: University timetabling and

school timetabling. School timetables are more compact, meaning that there should be

2

no free periods between lessons. Students have same starting, finishing and lunch time

which is not the case for university timetables. There are more programs, classes,

lecturers and different group of students in university timetabling problem which makes

the problem more complex.

Timetabling problems has been proved to be in the class of NP-hard problems

(Bardadym 1996). Here NP stands for “non-polynomial”. What NP-hard means is that

the amounts of work needed to solve this type of problems are increasing exponentially

with the problem size. Therefore they cannot be solved in polynomial time.

Solutions to timetabling problems have been proposed since the 1960s. Many

procedures are used for constructing workable and attractive timetables. These

approaches can be grouped into three categories: artificial intelligence, human-machine

interaction and operations research (Lai et al. 2006). Details of different approaches

which are tried to solve the timetabling problem are given at literature review part. This

research is focused on solving university course timetabling problem using Genetic

Algorithms which is categorized as metaheuristic methods in operations research subset.

To give a brief explanation, genetic algorithms are methods which use algorithms

inspired by the processes of neo-Darwinian evolutionary theory. In a genetic algorithm

each ‘chromosome’ represents a candidate solution to the problem. By evaluating and

ordering the performance of a set of candidate solutions, ‘parents’ of new candidate

solutions (‘children’) are chosen. Applying ‘mutation’ and ‘crossover’ operations to the

children gains the population new candidate solutions with higher performance to get a

better solution. These new set of candidates then evaluated, and then this cycle

continues until a termination criteria is occurred. A termination criterion can be a

predefined number of cycles or finding an adequate solution. More detailed information

will be given at Chapter 3.

The aim of this research is to describe and experimentally verify the Genetic Algorithm

which is applicable to course timetabling problems. Moreover, with such an algorithm,

we would like to tackle a real-life course timetabling problem for Bahcesehir

University. This work was motivated to solve the timetabling problem and produce a

solution fully acceptable by all users.

3

This thesis is organized as follows. Chapter 2 is literature review. Here various

approaches to solving the university timetabling problem are given. Chapter 3 provides

an overview of Genetic Algorithms. Here fundamentals of genetic algorithm and its

theoretical aspects are told. Moreover a simple example demonstrating how genetic

algorithms work is given. Chapter 4 is the problem definition part. It defines the

university course timetabling problem with all its goals, constraints and data acquisition.

Chapter 5 describes the implementation of Genetic Algorithm to the data coming from

Bahcesehir University. Chapter 6 presents the results of the sample case study. Chapter

7 discusses the results of the implementation and finally concludes the thesis.

4

2. LITERATURE REVIEW

As stated earlier in this study, timetabling problems are in the set of NP-hard problems.

It means that, for scheduling C courses into T time slots, there are TC possible candidate

timetables. Clearly, using the manual way to generate workable timetables is not

preferable in such a case. Generating timetables through automatic methods then seems

to be an attractive alternative to manual approach. This chapter concentrates on the

evaluation of automated timetabling.

Much of the literature on timetabling problems dates from the 1960s when first

computers could be useful in timetabling. A wide variety of methods used to solve

timetabling problems. There is not a strict discrimination to categorize these methods.

Some resources classify a method into some group while other resources study that

method in another group. This chapter reviews the literature on timetabling on the basis

of the classification of Lai et al. (2006). They first classified the approaches to

timetabling problem into three categories: artificial intelligence, human-machine

interaction and operations research. Constraint programming (Deris et al.2000, Valouxis

and Housos 2003), Expert Systems (Solotorevsky et al. 1994, Gunsdhi et al. 1996, Isaai

and Cassaigne 2001) and Neural Networks(Smith et al. 1995, Carrasco and Pato 2001)

can be classified in artificial intelligence technologies. The human-machine interaction

approaches are iterative processes. First the machine finds a solution then the user either

accepts it or improves it through instructions. This iteration goes on until the user is

satisfied or additional improvement is not possible. Human-machine interaction

methods are used by Mulvey (1982) and Johnson (1993) for timetable construction.

Operations research approaches also have been grouped into three categories: sequential

methods, clustering methods and metaheuristic methods. This research wills attempt to

solve the timetabling problem by Genetic Algorithm that can be categorized into

operations research group and metaheuristics subgroup.

5

2.1 OPERATIONS RESEARCH APPROACHES TO TIMETABLING

PROBLEMS

2.1.1 Sequential methods

In these methods, courses are first ordered according to the difficulty level of scheduling

them and then assigned sequentially into valid time periods so that no courses in the

period are in conflict with each other (Carter 1986). Graph coloring algorithm is the

most common example of sequential methods.

The graph coloring problem (GCP) is defined as to color the vertices of a graph

G=(V,E), where V={v1,v2,...,vn} is the set of vertices and E the set of edges connecting

the vertices such that no pair of vertices with a common edge is not in same color and

also the number of colors used is minimum.

Using graph coloring to solve small timetabling problems has a long history (Broder

1964, Welsh and Powell 1967, Krarup and de Werra 1982, Asratian and de Werra

2002). Simply, a timetabling problem can be converted to a graph coloring problem by

constructing a graph considering each course/exam as a vertex, and considering the

edges between any pair of vertices as pair of courses/exams that cannot be scheduled to

the same timeslot. Each color represents a timeslot. If one can manage to color the

graph with no more colors than available timeslots, a solution is found. A simple

example of finding a solution to the timetabling problem with 10 courses/exams and 5

available timeslots is given by Lewis (2007).

However, it is noteworthy to indicate that, conversions to graph coloring problems adapt

well when dealing with small-scale timetabling problems. When real world timetabling

problems are considered, graph coloring method fails to be sufficient (Tripathy 1984).

2.1.2 Clustering methods

In these methods, first the courses which are satisfying hard constraints are split into

groups and then the groups are assigned into timeslots using various optimization

techniques to fulfill the soft constraints. One of the first papers describing this method is

written by White and Chan (1979). The main disadvantage of these methods is that the

6

clusters of courses are formed and fixed at the beginning of the algorithm. This may

result a timetable with poor quality.

2.1.3 Metaheuristic methods

Metaheuristic approaches have been widely developed and applied to university

timetabling problems over the last two decades or so. Metaheuristic methods begin with

some initial solutions and try to get better solutions by using search techniques. Other

search techniques like local search, greedy algorithm are stuck in local optima and not

able to find the global optima. Metaheuristic methods like simulated annealing, tabu

search, ant colony systems and genetic algorithms can cope with this problem although

they cannot guarantee to find the best solution because of the nature of the problem

type. These methods are reviewed as metaheuristic approaches in this study.

Simulated annealing is said to be the oldest among the metaheuristic methods. It is an

optimization method that inspires from physical cooling process of solids. The

algorithm starts with an initial state which is selected randomly in search space as initial

solution and a high initial temperature. As in all metaheuristic approaches, the aim in

simulated annealing is improving the initial solution. Although the new solutions

improving the initial solution are always accepted, the non-improving solutions are

accepted with a certain probability. This probability of accepting a non-improving

solution is calculated according to the current temperature of the system. So algorithm

begins with a high probability of accepting non-improving solutions corresponding to

high initial temperature and as the solids cools gradually, the temperature of the solid

decreases therefore the probability of accepting non-improving solutions decreases. At

low temperatures the algorithm accepts only improving solutions. It goes on until a

stopping criterion is occurred or a satisfactory solution is reached.

Step 1. Generate initial solution x.
Step 2. Assign Temperature to Initial Temperature.
Step 3. Generate candidate solution x’ from current solution x.
Step 4. If fitness (x’) > fitness(x) then x = x’.
Step 5. If fitness (x’) ≤ fitness(x) then calculate Acceptance Probability.

5.1 If Acceptance Probability > random [0,1] then x = x’.
Step 6. Update Temperature according to cooling schedule.
Step 7. If termination condition is met finish, otherwise go to Step 3.

Figure 2.1: Pseudocode for Simulated Annealing.

7

The analogy between minimizing the cost function of combinatorial optimization

problems and annealing is identified by Kirkpatrick et al. (1983). Afterwards,

simulated annealing has been used to solve many types of combinatorial optimization

problems including timetabling problems (Abramson 1991, Thompson and Dowsland

1998, Azimi 2005) because it is easy to implement. Main advantage of simulated

annealing is its ability of escaping local optima by exploring other areas of the solution

space. On the other hand, long running time is the disadvantage of this method.

Tabu Search is another metaheuristic method. It starts from a random initial solution

and successively moves to one of the neighbors of the current solution. The difference

of tabu search from other metaheuristic approaches is based on the notion of tabu

list, which is a special short term memory. That is composed of previously visited

solutions that include prohibited moves. In fact, short term memory stores only some of

the attributes of solutions instead of whole solution. So it gives no permission to revisite

solutions and then avoids cycling and being stuck in local optima. During the local

search only those moves that are not tabu will be examined if the tabu move does not

satisfy the predefined aspiration criteria. These aspiration criteria are used because the

attributes in the tabu list may also be shared by unvisited good quality solutions. A

common aspiration criterion is better fitness, i.e. the tabu status of a move in the tabu

list is overridden if the move produces a better solution.

Step 1. Generate initial solution x.
Step 2. Initialize the Tabu List.
Step 3. While set of candidate solutions X’ is not complete.
 Step 3.1 Generate candidate solution x’ from current solution x
 Step 3.2 Add x’ to X’ only if x’ is not tabu or if at least one Aspiration Criterion is
satisfied.
Step 4. Select the best candidate solution x* in X’.
Step 5. If fitness(x*) > fitness(x) then x = x*.
Step 6. Update Tabu List and Aspiration Criteria
Step 7. If termination condition met finish, otherwise go to Step 3.

Figure 2.2 : Pseudocode for Tabu Search

A short general description of tabu search and its applications is given by Glover and

Laguna (1997). Hertz (1991) and Alvarez-valdes et al. (2002) use tabu search technique

to solve the university course timetabling problems.

8

Ant colony systems are metaheuristic approaches introduced by Dorigo et al. (1991)

and inspired from behavior of ants finding the shortest path from their nest to food

sources. Ants can manage this by producing a special liquid called pheromone. They

deposit it on the ground while they are walking. The ants, which choose the shortest

path by chance at the beginning, arrive the nest quickly after visiting the food source.

While the ants following the longer path are on the way of return, the quicker ants leave

the nest for food second time. So the quantity of pheromone deposited on the shortest

path is more than the longer ones. The pheromone on the longer paths starts to

evaporate in time because they are not used. When an ant decides which path to follow,

it most probably prefers the one with the higher amount of pheromone. Hence the

shortest way will be chosen by the great majority of the ants in time.

Step 1. Initialize pheromone values
Step 2. Release each ant in the colony to construct an independent solution through
components
Step 3.Update pheromone values
Step 4. If termination condition is met finish, otherwise go to Step 2

Figure 2.3 : Pseudocode for Ant Colony System

In Figure 2.3 pseudocode for ant colony system is given. The algorithm starts with the

initialization of pheromone values. At each iteration of the algorithm, each ant is

released to construct a new solution independently from other ants. Construction of the

solution is performed by adding solution components to the partial solution constructed

so far. These solutions are used to update the pheromone values. The algorithm

continues until a stopping condition is met.

Socha and Samples (2003) suggested how to implement ant colony systems to

university timetabling problems. At each step, each of the ants constructs a complete

timetable using heuristics and pheromone information. Timetables are then improved

using a local-search procedure, and results are written back to the pheromone matrix to

be used in the next iteration. And Azimi (2005) implements ant colony systems to the

exam timetabling problem. He compares ant colony systems with tabu search, simulated

annealing and genetic algorithms. He declares that the ant colony systems give the best

solution.

9

Genetic algorithms are metaheuristic methods that try to find solutions to NP-hard

problems through evolution. The main idea of genetic algorithms is to generate an initial

population randomly and then evolve this population after a number of iterations. To do

this, first the initial population is evaluated according to some criteria and then parents

of the next generation are chosen with respect to the results of this evaluation. Then

parents are mated to produce offsprings, namely the members of the next generation.

This goes on until a stopping condition is met.

Mutation and crossover are two crucial operators of genetic algorithm. Mutation refers

for small variations in the genetic material of the offspring and its purpose is to

diversify the next generation. On the other hand, crossover refers to recombination of

two parents to produce offsprings and its purpose is to propagate good genetic material

from parents to offspring.

Step 1. Generate initial population.
Step 2. Evaluate population.
Step 3. Apply Crossover to create offspring.
Step 4. Apply Mutation to offspring.
Step 5. Select parents and offspring to form the new population for the next generation.
Step 6. If termination condition is met finish, otherwise go to Step 2.

Figure 2.4 : Pseudocode for Genetic Algorithm

Genetic algorithms were first suggested by Holland (1975) in his of book Adaptation in

Natural and Artificial Systems. Colorni et al. (1990) constructed the first successful

timetable using genetic algorithm. Several researchers have used genetic algorithms to

solve timetabling problems during the last few decades (Ergul 1996, Gen and Cheng

1997, Syarif et al. 2002, Aytug et al. 2003, Chaudhry and Luo 2005). Irene et al. (2007)

reviews the literature on approaches used in the timetabling problem and presents a

comparison of 19 papers in their study.

Genetic algorithms have several advantages when compared to other optimization

techniques. First of all, genetic algorithms do multiple directional searches with a set of

candidate solutions while other methods perform single directional searches. Moreover

while other methods deal with decisions variables, genetic algorithms represent

solutions in terms of coding. Domain knowledge is used only to code the problem and

for establishing fitness function.

10

3. GENETIC ALGORITHMS: AN OVERVIEW

Genetic Algorithm is an optimization method that is mainly based on Darwin’s theory

of evolution and current knowledge of genetics. As in nature, genetic algorithms include

concepts such as chromosomes, genes, mating, crossover, mutation, and evolution, too.

So it is useful to remind some of this biological terminology that will be used.

Biological Terms Genetic Algorithm
Chromosome Solution (coding)
Gens Part of solution
Alleles Values of gene
Phenotype Decoded solution
Genotype Encoded solution

Figure 3.1 : Explanation of biological terms in Genetic Algorithm

All living organisms consist of cells which include chromosomes. A chromosome is

formed by millions of genes each of which encodes a specific characteristic of the

organism, such as blood type or eye colour in humans. Such characteristics are called

phenotypes, for example, 0, A, B, AB for blood type or hazel, blue, brown for eye

colour. The particular settings of genes are called genotype and values of the genes are

called the alleles. An organism’s phenotype is formed by its genotype.

In nature, most species are diploid meaning that their chromosomes are arrayed in pairs.

Human beings are also diploid and they have 23 pairs of chromosomes in each body

cell. During crossover, genes in each parent are exchanged between each pair of

chromosomes to form a single chromosome, namely a gamete. Then one gamete from

mother and one from father pair up to create a full set of diploid chromosomes for child.

This explains how certain genotypes are inherited from a person to his/her child.

Occasionally, some gene values change because of external effects. This kind of change

in the gene value is called mutation.

Individuals who are more adapted to the environmental conditions have higher

probabilities for survival, therefore they have higher probabilities for producing their

children. This also means that, the individuals and their genes which are better adapted

most likely to tend to remain while those that are not adapted tend to become extinct as

time passes. This natural process of survival of the fittest is called Darwinian evolution.

11

Over the last two decades, genetic algorithms have been extensively used as search and

optimization methods in various problem domains such as sciences, engineering and

management. Although they do not guarantee to find optimum solutions, they are

successful in finding solutions with high acceptance. Their broad applicability and ease

of use appeals the researchers to choose genetic algorithms. The term chromosome

typically refers to a candidate solution to the given problem in genetic algorithms. By

analogy with biology, the chromosome is referred to as the genotype, the encoded

solution, whereas the solution it represents is known as the phenotype, the decoded

solution. Crossover consists of exchanging genetic material between two single

chromosomes of parents. Mutation consists of replacing a randomly chosen gene with a

randomly chosen new gene. In this chapter, the working principle of genetic algorithms

is described and also a simple example of genetic algorithms is given.

3.1 FUNDAMENTALS OF GENETIC ALGORITHMS

3.1.1 Chromosome representation

Designing chromosome structure is very crucial in genetic algorithms, because each

chromosome embodies a solution and its representation affects the performance of

algorithm. At the beginning of the genetic algorithm, the researcher decides how to

design the chromosomes according to the problem type and which solution form will be

adequate for the algorithm. There are two approaches in designing chromosome

structure. First one of them is direct encoding which directly represents a solution by a

chromosome. However, direct encoding is not always possible or efficient for each

problem. In such a case, indirect encoding is used and now each chromosome is encode

only the instructions of building a solution instead of the solution itself.

Most conventional representation of a chromosome in direct encoding is a bit-string of

characters in which each chromosome consists of a string of genes whose allele values

are characters from the alphabet {0, 1}. And the length of the string differs according to

the problem nature and the information that one wants to encode. For example, a bit

string of length 10 might be used to encode a single integer value in binary notation in

one problem, on the other hand, the bits might encode the presence or absence of 10

different factors (if it is present then code 1, if it is absent then code 0) in another.

12

However genes can be represented in the form of integers, reals, arrays, trees, matrix,

graphs or any data type. In course timetabling problems, a chromosome is encoded as

weekly timetable of set of courses and generally in the form of a matrix.

3.1.2 Fitness of a solution

Fitness function is a measure that evaluates the quality of the chromosome as a solution

to a particular problem. The fitness function is problem specific. If the aim is

minimizing a function, for instance think of a company tries to minimize its cost, then

the fitness function is the cost itself. In most of the timetabling problems, quality of a

chromosome is measured by number of constraints satisfied.

3.1.3 Basic steps of genetic algorithm

3.1.3.1 Initialization of the population

 A set of candidate solutions are called population. At the beginning of the algorithm, to

initialize the population, a predefined number of solutions are generated randomly.

3.1.3.2 Selection

 After the initial population is constructed, it is time to the process of choosing parents

(chromosomes) for breeding, namely selection of parents. In genetic algorithm,

selection is designed to use fitness function as a discriminator of the quality of solutions

represented by the chromosomes in a population. Those with higher fitness value have a

greater chance of being selected than those with lower fitness value.

There are various selection methods in genetic algorithm. The standard selection

method used is Roulette Wheel or in other words, Fitness Proportional selection. In this

kind of selection method, expected number of times that a chromosome will be selected

for breeding is calculated as chromosome’s fitness divided by the average fitness of the

population. To implement this method, each chromosome is placed as a slice of a

circular roulette wheel, the size of the slice is proportional to the chromosome's fitness.

If there are N chromosomes in the population, the wheel is rotated N times. On each

rotation, the chromosome shown by the wheel's marker is selected to be in the pool of

parents for the next generation. So the selection is end up with N chromosomes, keeping

initial number of chromosomes in the population. Higher fitness value of chromosome

13

implies the larger slice on the roulette wheel, therefore the probability of being selected

is higher. Note that one chromosome can be chosen more than once.

Tournament Selection is another method for deciding which chromosome will be

chosen. In this method, two chromosomes are chosen randomly in the population and

then the one with the highest fitness between these two is selected as the parent. The

two chromosomes are the return the original population and can be selected again.

3.1.3.3 Recombination

 After selection, chosen chromosomes are recombined to create new members of next

generation. New members are expected to be better than their predecessors since

selection for recombination gives more chance to the ones with higher fitness to be

chosen. There are two main recombination operators in genetic algorithm: crossover and

mutation.

3.1.3.3.1 Crossover

The idea of the crossover operation is mixing genetic material from two selected parent

chromosomes to produce child chromosomes. If chromosomes are represented in bit-

strings, this is done as follows. First of all a crossover probability is defined. A random

number in the interval [0, 1] is generated and compared with the crossover probability.

If the crossover probability is greater than or equal to the random number then the

crossover operator is applied. If the random number is greater than the crossover

probability then crossover operator is not applied. Therefore both parents remain

unchanged, so the children chromosomes are exact copies of their parents. The value of

the crossover probability has great importance here. It can either be defined

experimentally or can be defined by schema theorem principles (Goldberg 1989, 2002;

Goldberg and Sastry, 2001) which will be explained later in this chapter.

There are many methods used in designing crossover operator in literature. Although

they can be changed by problem type, the most common used crossover operators are as

follows:

N-point Crossover: One-point and two-point crossovers are the simplest and widely

used crossover methods. In one-point crossover, a number less than the length of

14

chromosome is selected randomly and represents crossover point. Then, the genetic

material before the crossover point remains unchanged while the genetic material after

the crossover point is exchanged between the parents. The idea of one-point crossover

can be generalized to N-point crossover by using N crossover points rather than just one.

For instance, in two-point crossover, two crossover points are selected randomly and the

genetic material between crossover points is swapped. An example of two-point

crossover method is given in Figure 3.2.

Figure 3.2: Two-point Crossover

Uniform Crossover: In uniform crossover each allele has the chance of exchanging

with the gene of the other parent with the probability of predefined swapping

probability. Most of the time 0.5 is taken as swapping probability value.

Partially Matched Crossover (PMX): In partially matched crossover, two parents are

randomly selected and two crossover points are generated randomly. Alleles within the

two crossover points of a parent are exchanged with the alleles corresponding to those

mapped by the other parent. Figure 3.3 illustrates an example of partially matched

crossover. According to the example, firstly the genes between two crossover points are

swapped between two parents. Then the first gene value in Parent 1 within the two

15

crossover points, 7, maps to 9 in Parent 2. Therefore, genes 7 and 9 are swapped in

Parent 1. Similarly 8 and 2, also 4 and 1 are exchanged to create the offspring Offspring

1. Corresponding changes are done in Parent 2 to create the offspring Offspring 2.

Figure 3.3: Partially Matched Crossover

3.1.3.3.2 Mutation

In genetic algorithms, most chromosomes in the population seem like each other after a

number of generations. What this means is that, no crucial changes in the population,

therefore in the search space do not occur. To overcome this problem and add diversity

to the population mutation operator is used. Mutation operator has the effect of creating

a new chromosome which cannot be created by the ordinary crossover operator.

 After crossover is applied and the offsprings are formed, they have a chance of being

mutated. Mutation operators changes one or more gene values in a single chromosome.

For the chromosomes represented in binary strings, the mutation operator works as

follows. A number in the interval [0, 1] is generated randomly and compared to a

predetermined mutation rate. Mutation rates used in literature are usually very small

(e.g. 0.001). If the random number is greater than the mutation rate, mutation is not

applied. If the mutation rate is greater than or equal to the random number, then the

gene value is changed artificially from 0 to 1 or 1 to 0. (See Figure 3.4)

16

Figure 3.4: Mutation Operator

3.1.3.4 Replacement

After the new offsprings are created with crossover and mutation operators, it is time to

form up the successor generation. Recall that parent chromosomes were selected

according to their fitness, so it is expected that the offsprings increase the fitness of the

population generation by generation. Through replacement, genetic algorithm decides

whether offspring will survive or will become exist. Some of the most common

replacement techniques are explained below.

Complete Replacement

 This technique deletes all the members of the predecessor population and replaces them

with the same number of new chromosomes that have just been created.

Steady-state

In this technique, n old members are chosen in the population and replaced with n new

members. The choice of the number n and the decision of which members to delete

from the current population are important aspects of genetic algorithm.

Replacement with elitism

 This technique is same as complete replacement except that this time one or two

chromosomes with the highest fitness are chosen to next generation. By this way, good

solutions are preventing from become extinct.

17

3.2 A SIMPLE EXAMPLE OF GENETIC ALGORITHM

The aim of this section is to show how basic components of genetic algorithm work

through optimization of a function. The function is defined as

1() sin()f x x
x

=

and drawn in Figure 3.5. The problem is to find a minimum for this function on the

interval [0, 0.5], i.e. to find a x0 such that () []5.0,0)(0 ∈∀≤ xxfxf . Actually,

maximum or minimum values of a function can be calculated by the zeros of the first

Figure 3.5: Graph of the function f(x) = xsin (1/x)

derivative where () 0

1cos
1sin' =

⎟
⎠
⎞

⎜
⎝
⎛

−⎟
⎠
⎞

⎜
⎝
⎛=

x
x

x
xf . The formula equals to 11tan =⎟

⎠
⎞

⎜
⎝
⎛

x
x and

has infinitely many solutions. However we wish to construct a genetic algorithm to

solve the above problem.

18

Representation:

Binary vector is used to represent real values of x as a chromosome. A binary vector

consists of 32-bits since the processor allows this number. This means that the length of

the domain of variable x, which is 0.5 in our example, is divided 232-1 equal size ranges.

So converting a binary string to a real number is completed as follows. First binary

string of length 32 is converted from base 2 to base 10:

x* = ((b31b30....b0))2 =
10

31

0

2 ⎟
⎠

⎞
⎜
⎝

⎛∑
=

i

i
ib

Then a corresponding real number is found by:

5.0
12

1
32

*

−
= xx where 0.5 is the length of the domain.

For example, a chromosome (11110011110010101001011110100111) represents the

number 0,476155032 in [0, 0.5] since

=*x (11110011110010101001011110100111)2 = (4090140583)10

and the real number is

x = (4090140583)
12

1
32 −

 0.5 = 0,476155032.

One can easily see that (0000000000000000000000000000000) and

(11111111111111111111111111111111) represent the boundaries of the domain, 0 and

0.5, respectively.

Initial population:

We construct randomly 10 chromosomes of each is a binary vector of 32 bits as initial

population. The 10 chromosomes ci where 101 ≤≤ i and their corresponding real value

xi on the interval [0, 0.5] is listed below.

c1 = (01101110010010110001111111101001) x1 = 0,21541691

c2 = (11000000001100100111010011011111) x2 = 0,37538495

19

c3 = (11110011110010101001011110100111) x3 = 0,47615503

c4 = (10001100010110101011110101110100) x4 = 0,27412979

c5 = (10010100101100110001000010100000) x5 = 0,29042866

c6 = (10000110110110000100100000000000) x6 = 0,26336884

c7 = (01100101000110110101101011110000) x7 = 0,19747433

c8 = (11010110010111110111001010110111) x8 = 0,41869696

c9 = (01011001000010001110001110010111) x9 = 0,17389594

c10 = (11001010100101001111100010101010) x10 = 0,39566781

Evaluation function:

The evaluation function eval for chromosomes is equivalent to the original function f,

namely eval(c) = f(x) where c represents the chromosomes and x represents the

corresponding real value. Evaluation function plays an important role because it is used

to rate the potential solutions in terms of fitness. For instance, the fitness of the

chromosomes in our population is as follows:

eval (c1) = f(x1) = -0,214885912

eval (c2) = f(x2) = 0,172565550

eval (c3) = f(x3) = 0,410983902

eval (c4) = f(x4) = -0,132941257

eval (c5) = f(x5) = -0,086269622

eval (c6) = f(x6) = -0,160509512

eval (c7) = f(x7) = -0,185396112

eval (c8) = f(x8) = 0,286388252

eval (c9) = f(x9) = -0,088302975

eval (c10) = f(x10) = 0,228031778

Clearly, the chromosome c1 is the fittest chromosome in the population since its

evaluation returns the smallest value. Moreover c3 is the worst chromosome with the

highest fitness value.

20

Genetic operators:

In genetic algorithm there is two classical operators: crossover and mutation. To apply

one point crossover the first two fittest chromosomes c1 and c7 are chosen. Also a

random number, say 21 is selected for crossover point. That is, the chromosomes are

split at the 21st gene, and then the parts are exchanged between the chromosomes as

seen below:

c1 = (011011100100101100011 | 11111101001)

c7 = (011001010001101101011 | 01011110000)

Then the resulting offsprings are:

o1 = (01101110010010110001101011110000)

o2 = (01100101000110110101111111101001)

The corresponding real values and the fitness of these new chromosomes are calculated

below:

f(o1) = f(0,21541676) = -0,214885813

 f(o2) = f(0,19747604) = -0,185400708

The first offspring o1 has a better fitness value than its parents however the

improvement can only be seen ninth decimal point.

Then mutation is applied to the offsprings to get better chromosomes. For mutation, 6

random genes are selected and then changed. The bit value ‘1’ is flipped to ‘0’ or vice

versa. Assume that the alterations below are done:

o1 = (01101110010010110001101011110000)

o1m = (01110010110010110001101011110110)

 o2 = (01100101000110110101111111101001)

o2m = (01111001100110110101111111101111)

21

The corresponding real values and the fitness of these new chromosomes are calculated

below:

f(o1m) = f(0,22420582) = -0,217113164

f(o2m) = f(0,23751354) = -0,208197846

Note that, after mutation both mutated offsprings have better fitness value than not only

from their parents but also the offsprings which are not mutated. Mutated offsprings act

as parents for the next generation, thus each iterations starts with a better population.

Here only one generation is illustrated and the solutions are promising. Genetic

algorithm finds optimal or near-optimal solutions gradually by this way.

3.3 THEORETICAL ASPECTS OF GENETIC ALGORITHM

Although genetic algorithms are easy to describe and implement, understanding the way

they work is quite difficult. Schema theorem, fundamental theorem of genetic

algorithm, tries to explain how genetic algorithm can find optimal or near optimal

solutions in a set of all possible solutions. In this section, schema theorem is briefly

explained.

First of all, a schema (or schemata) in other words “similarity template” should be

defined for a better understanding of schema theorem. A schema can be basically

defined as a pattern of chromosomes. For instance, think of a genetic algorithm where

each chromosome is made up a string of five bits. And let 01010 and 01101 are given

two chromosomes. A common expression for these chromosomes is “the chromosomes

with first two bits are 01”. Thus 01* * * is a template, namely a schema defining these

chromosomes. Here asterisks represent “do not cares” meaning that they can be either 0

or 1. And 0’s and 1’s are called fixed bits. Therefore a schema is a pattern which uses

the symbols {0, 1, *} to define a set of chromosomes. One can easily see that a schema

represents 2n chromosomes in the population where n represents the number of asterisks

in the schema. In our example, 01* * * represents eight chromosomes since there are

three asterisks in the schema: {01000, 01100, 01110, 01111, 011101, 01010, 01011,

01001}. Obviously * * * * * represents whole population.

22

For a particular schema H, the length lH is defined as the difference of positions of the

first and last fixed bits (namely 0’s and 1’s) of H. For instance, for the schema 01* *

10 * *, the first fixed bit (0) is in position 1 and the last fixed bit (0) is in position 7.

So the schema H has length 7 − 1 = 6. And the order of H is the number of fixed

positions and is shown as o(H). Since 01* * *10* * * has 4 fixed bits, it has order 4.

Schema Theorem

Let H be a schema and let mH(t) be the number of chromosomes correspond to H

present in population at time t of an evolving Genetic Algorithm. Then the expectation

of the number of chromosomes correspond to H in population at time t + 1, denoted

mH(t+1), is given by the formula where FH(t) is the relative fitness of H which is

defined to be the average fitness of all those chromosomes in the population belonging

to H divided by the average fitness of all chromosomes in the population; pc is the

crossover probability; pm is the mutation probability.

Schema theorem explains which particular schema is likely to propagate through how

the performance of genetic algorithm is affected by different choice of designs. For

example, the theorem say that schemas with relative fitness (FH(t)) greater than 1are

most likely to be represented in the next generation as a result of fitness proportional

selection process. Moreover, schemas with a length lH close to length of the

chromosome have less chance to survive because of crossover. And also schemas with

many defined bits are also more likely to become extinct as a result of mutation

operator. Finally, one can conclude that short length, low order schemas having fitness

above the average are most likely sampled in successor generations. Such schemas are

called building blocks and can be defined as partial solutions. A chromosome which has

many building blocks will be near-optimal solution.

() [])()1(
1

1)()1(oH
m

H
cH p

l
lptmHtFtmH −⎥⎦

⎤
⎢⎣
⎡

−
−≥+

23

4. PROBLEM DEFINITION

The university timetabling problem consists of a set of courses that are to be scheduled

into a set of timeslots and a set of rooms and also consists of a set of constraints that are

expected to be satisfied. Solving this problem is a complicated and long job and it needs

to be identified in detail. In this section, all parts of a particular university course

timetabling problem are defined step by step.

4.1 GOALS:

The main goal of creating a timetable is to provide faculty members and students with a

schedule that is not only conflict-free but also has good quality. Different aspects of this

goal in terms of faculty members, students, rooms are investigated as follows. From

faculty members’ point of view, the resulting timetable should be conflict-free at first.

Ideally, it should leave at least one day free for academic purposes. From students’ point

of view, the timetable must be conflict-free for all groups of students. It should

minimize idle hours between courses in a day, but it should give at least one hour break

for lunch between 11:30 and 13:30. The consecutive courses should be in the nearby

rooms. Finally, from rooms’ point of view, the student group size should fit the room’s

capacity and two different courses should not be scheduled at the same time in a room.

Moreover, each course should be scheduled in an appropriate room, such as a tutorial

class or a lab.

4.2 CONSTRAINTS:

The goals described above are accomplished by means of predefined constraints. Thus,

the timetabling problem aims to satisfy a set of constraints. These constraints are

divided into two groups: hard constraints and soft constraints. Hard constraints are the

strict ones therefore violation of them is not allowed. A timetable is called “feasible”,

meaning that it can be used by the university it was made for, when all hard constraints

are satisfied. However, satisfaction of all soft constraints is not necessary for a

timetable, but the “quality” of a timetable increases by the number of soft constraints

satisfied. Thus the main aim in course timetabling is constructing feasible timetables

with high quality.

24

Hard constraints:

Although the hard constraints used in academic institutions are problem specific, some

hard constraints are common it most course timetabling problems. There is a list of

widely used hard constraints (Pongcharoen et al. 2007).

H1 : Students can only have one lecture at a time.

H2 : A lecturer can only give one lecture at a time.

H3 : A room can only be used for one lecture at a time.

H4 : Lecturers’ must be available at lecture times they are given.

H5 : Specific room requirements (such as labs) are taken into consideration.

H6 : The capacity of rooms must match with student size.

H7 : Two or more complementary blocks of a course cannot be scheduled in the same
day.

Soft constraints:

Likewise hard constraints, soft constraints are also change by the academic institutions’

preferences. A list of soft constraints that should be satisfied in order the timetable to be

considered of high quality is given below (Pongcharoen et al. 2007).

S1 : Lecturers should have at least one day free for academic studies.

S2 : The timetables for rooms should be as compact as possible.

S3 : The number of free periods in students’ timetables should be minimized.

S4 : An hour lunch break should be scheduled between 12:00 and 15:00

S5 : Students should have consecutive lectures in the same building.

Burke and Petrovic (2002) pointed out that it is almost impossible to construct

timetables satisfying all individual preferences.

4.3 ACQUISITION OF DATA:

In order to start construction of a timetable, all the necessary data must be available. A

general course timetabling problem requires all information about resources (including

25

the number of rooms, their size and type, availability of lecturers and the information

about who taught what, the number of hours a lecturer taught in a week, etc.),

educational program requirements (which group of student must take which courses).

Some specific information such as lecturers’ preferences (one free day, morning or

evening lessons, etc.), academic institution’s regulations (certain days can be allocated

social activities).

There are different sources for getting data. While most of the researchers use the

unpublished data of their own academic institution, Burke and Petrovic (2002) used the

data that are available online.

26

5. METHODOLOGY

In order to solve the university course timetabling problem, an automated timetable

construction based on genetic algorithm has been designed and implemented. To

demonstrate our approach, a course timetabling problem in the Faculty of Arts and

Sciences at Bahcesehir University is used. In this chapter, the details of the

implementation of the proposed novel genetic algorithm for a real life course

timetabling problem are described.

5.1 CHROMOSOME REPRESENTATION

The chromosome representation is one of the most significant parts in genetic

algorithm, since every chromosome must represent all the information required for the

construction of a whole timetable. Moreover chromosomes should be represented in

such a way that is efficient for genetic operations such as crossover and mutation and

fitness calculation.

 DAYS
HOURS . . MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

08:30-09:30 1 10 19 28 37

09:30-10:30 2 11 20 29 38

10:30-11:30 3 12 21 30 39

11:30-12:30 4 13 22 31 40

12:30-13:30 5 14 23 32 41

13:30-14:30 6 15 24 33 42

14:30-15:30 7 16 25 34 43

15:30-16:30 8 17 26 35 44

16:30-17:30 9 18 27 36 45

Figure 5.1: The University Week

In this study we are dealing with direct encoding where each chromosome represents a

candidate solution. There are 5 working days from Monday to Friday and 9 hours each

day (from 08:30 - 17:30) so there are totally 4595 =× timeslots in a week (See Figure

5.1). We need to construct a weekly timetable for each room. So we design an array by

27

adding up the 45 timeslots of each room end to end as shown in Figure 5.2 and we

called it as Rooms Timetable. To clarify, we can say that first 45 elements of the array

correspond to the first room; second 45 elements from 46 to 90 correspond to second

room and so on. Thus, this array is of size ×45 number of rooms. And also we have

another array called Course List. The elements of this array are all courses given in a

particular semester. Moreover elements also keep the information about the lecturer and

duration of the course. A chromosome is represented by one dimensional, 1×m array

where m is the number of courses in the Course List. So each element of the

chromosome has a relation with the same numbered element of the Course List. Each

gene in a chromosome (each array element), say the chrm[i], holds the index value of

the room timetable element where the ith course was scheduled to.

Figure 5.2: Chromosome Representation

For instance, the 2nd element of chromosome is 45, as seen in the Figure 5.2, since

Course #2 was scheduled to the 45th element in the rooms’ table. This means that

Course #2 is given on Friday, starts at 16:30 at Room #1. Some courses are two or three

hours long, so each chromosome element denotes the beginning time of each course.

28

We understand who gives that course and how long it takes from the information

embedded in the Course List element.

5.2 FITNESS FUNCTION

Fitness function measures the goodness of the chromosomes. As the number of the

constraints that a chromosome satisfied increases, so does the chromosome’s goodness.

So the evaluation of the chromosomes and the selection of the constraints are the other

important steps of genetic algorithm.

In general, a fitness value for each chromosome is calculated with a reciprocal function

of unsatisfied constraints. Some of most common used fitness functions are
x+1

1 ,

21
1
x+

 and
x+1

1 (Bhatt and Sahajpal, 2004). We used

∑
∑−

sconstrasoftofnumber
violatedsconstrasoftofnumber
int

int
1

in our study as fitness function. Thus, each chromosome has a fitness value between (0,

1] and if a chromosome satisfies all constraints it has 1 as fitness value.

Timetabling problem differs from other optimization problems by the presence of both

hard and soft constraints. Hard constraints that must be satisfied in order to keep our

timetable feasible are listed below:

• Lectures can be scheduled to only appropriate room (a lab or tutorial class)

• No lecturer or student group can have more than one class at a time.

• Room capacity and student group size must match.

• A classroom can only be used for one lecture at a time.

• Two or more complementary blocks of a course cannot be scheduled in the same

day.

And also soft constraints that can be violated but they should be satisfied in order to get

a timetable with high quality are listed below:

• Lecturers should have at least one day free for academic studies.

29

• The number of free periods between two consecutive lectures in students’

timetables should be minimized.

• One hour lunch break should be scheduled between 12:00 and 15:00

• No student group should have less than 2, more than 7 hours lecture in a day.

Managing with both hard and soft constraints is an important aspect for timetabling

problems. Lewis (2007) categorizes the metaheuristic algorithms into three groups

according to their approach for dealing with the constraints.

One-Stage Optimization Algorithms: Satisfaction of both the hard and soft constraints is

taken into consideration simultaneously. (Carrasco and Pato 2001)

Two-Stage Optimization Algorithms: Satisfaction of the soft constraints is only taken

into consideration after a feasible timetable has been found. (Burke et al. 2003; Kostuch

2005)

Algorithms that allow Relaxations: Violations of the hard constraints are disallowed

from the outset by relaxing some other feature of the problem. Attempts are then made

to try and satisfy soft constraints, while also giving consideration to the task of

eliminating these relaxations (Merlot et al. 2003).

In our study we construct a two-stage optimization algorithm. Unlike the classical

genetic algorithms, violation of hard constraints is not allowed in any evolution step of

chromosomes, i.e. all chromosomes represent a feasible solution. And then the violation

of soft constraints are tried to be minimized. Thus, fitness function only considers only

the satisfaction of soft constraints.

5.3 INITILIZATION OF THE POPULATION:

The initialization procedure is another important issue in all genetic algorithms because

it should create a random initial population which spread in the whole search space.

Diversity of initial population gives algorithm the opportunity to search the whole space

of possible solutions and not to stuck with the local optima. In our study, 100

chromosomes are used for initial population and they are generated randomly.

30

5.4 SELECTION:

After the evaluation of the chromosomes, some of the chromosomes are chosen in order

to create the next generation. We did the selection in two stages. At first, we rank the

chromosomes according to their fitness value and then we chose first 20 chromosomes

for breeding. At the second stage, we chose randomly 40 chromosomes other than first

20 chromosomes for breeding. The idea is preserving good genetic material by choosing

the first 20 chromosomes, and adding diversity to the search by letting less fit

chromosomes into the reproduction.

5.5 GENETIC OPERATORS:

Crossover:

In our study two-point crossover is used to mix the genetic material of two parents to

produce offsprings with a crossover probability of pc. The crossover procedure is

described in the following:

1. Randomly choose crossover points.

2. Swap genetic material between two chromosomes.

3. In the case of duplicates, randomly choose a free and feasible timeslot and insert

there.

Note that the important part of crossover procedure is coping with the duplicates. One

or more genes in the changing part of the chromosomes can be seen twice in the

resulting offspring. This means that two different courses start at the same time, at the

same room. To overcome this conflict, we find a free timeslot and insert one of the

conflicting courses there. Finally, we get a feasible offspring.

Mutation:

After we applied crossover to certain chromosomes, we also applied mutation with a

low probability of mutation pm and by the mutation procedure which is described in the

following:

1. For each chromosome of which crossover applied before, run the following steps.

31

2. Generate a random number between 0 and 1.

3. If this random number is less than the mutation probability, then choose a gene

randomly and change it by a feasible timeslot. Here feasible timeslot means a timeslot

which is free in the timetables of lecturers, student groups and also rooms at the same

time.

4. If this random number is greater than the mutation probability, then keep the

chromosome un-mutated.

Both crossover and mutation is applied under the condition of satisfying hard

constraints, i.e. the resulting chromosomes are also feasible.

Figure 5.3: Flow chart of Genetic Algorithm

Replacement:

In order to keep the best chromosomes in every generation, we used a simple

replacement strategy. The best 20 chromosomes of each generation are copied to the

next generation. Then select 60 chromosomes randomly from remaining 80

chromosomes of the initial population and then replace with 60 offspring chromosomes

32

(20 of these 60 offsprings are produced from best 20 chromosomes of the initial

population and remaining 40 offsprings are produced from randomly selected 40

chromosomes.). This replacement technique guarantees that the best chromosomes of

each generation will be at least equal to the best chromosomes of the previous

generation.

33

6. EXPERIMENTAL RESULTS

To demonstrate the efficiency and performance of the genetic algorithm we constructed,

several experiments were carried out with the data coming from Bahcesehir University

Faculty of Arts and Sciences. The faculty has 5 departments and more than 364

students. The model was tested with real data containing 114 courses to be scheduled

into 45 timeslots and 12 rooms.

In the first experiment, we have aimed to analyze the convergence of the genetic

algorithm. The genetic algorithm increases sharply when generation number is between

zero and a thousand, however after 5000 generations nearly the same fitness value is

observed (See Figure 6.1). Although we reached 30000th generation, we did not get a

solution with a fitness value of 1. It is almost impossible that generating timetables

which satisfy all individual preferences.

Figure 6.1: Fitness vs. Number of Generation

In Figure 6.2, we present the evolution of proposed genetic algorithm with various

probability values of genetic operators. Crossover and mutation probabilities, pc and pm

respectively, used in experiments are given below:

34

Experiment# pc pm

1 0,8 0

2 0 0,8

3 0,8 0,8

4 0,8 0,5
Table 6.1 Crossover and mutation probabilities used in experiments.

The following results can be concluded from these experiments: From experiments #1

and #2, we can conclude that we get better solutions with applying only mutation.

However, if we take into consideration all experiments, convergence is higher in the

experiments where both genetic operators are used, namely #3 and #4. Even though, we

cannot conclude that the higher the probability of the genetic operator, the higher the

convergence since experiment #4 has better fitness than experiment #3.

Figure 6.2: Fitness Changing by Probability of Genetic Operators

And finally, we want to analyze the population size effect on the convergence. We tried

generations of size 100, 200, 400 and 800. The results can be seen in Figure 6.3. There

35

is not a uniform convergence related to the population size. Since population size does

not affect the genetic algorithm, it is suggested to work with small population sizes in

case of long running time.

Figure 6.3: Fitness Changing by Population Size

100
200
400
800

36

7. CONCLUSION AND DISCUSSION

In general, all metaheuristic search methods are guided with a random decision method.

The genetic algorithm is an example for these methods. The genetic algorithm is a

probabilistic guided random search since it guides its search based on probability. The

major characteristics of the genetic algorithm are randomized search for the solution,

crossover and mutation operations and also evolution of the solutions based on the

fitness values. Although the method selects the search directions randomly, convergence

of the method is satisfied by the genetic operators used in evolution steps.

In this study, we focus on the university timetabling problem whose solution can be

obtained with a genetic algorithm. The problem is regarded as scheduling a set of

courses into a set of timeslots and a set of rooms without violating hard constraints and

satisfying soft constraints as possible as much. The hard constraints must be satisfied in

order to obtain a feasible solution. However, due to the random nature of the search and

blindness of the genetic operators, traditional genetic algorithms severely violate these

constraints many times during the evolution process. This aspect of the operators also

makes the convergence time of the algorithm too long. We addressed this problem by

introducing modified genetic operators which do not allow violations of any hard

constraints, which in turn produce only feasible solutions. Since the proposed method

deals with only feasible solutions, efficiency of our algorithm is much better than the

classical genetic algorithm.

Another problem with the genetic algorithm is the determination of the best parameter

values, such as the population size, mutation rate, etc. It is also very hard to

theoretically determine how the genetic operations affect the macroscopic behavior of

genetic algorithms such as convergence of solutions. Thus, we try to determine

sensitivity of the method to parameters experimentally.

Both crossover and mutation operators are needed in order to prevent the search to be

trapped in local minima. Higher probability values for these operators increase the

efficiency of the algorithm. And also we realize that increasing the size of the

population increases the convergence of the algorithm with respect to the generation

number with the cost of high computation.

37

The advantages and disadvantages of genetic algorithms are not similar to local search

methods. Some advantages include: self-guidance, flexibility, simple and

straightforward computation, and easy implementation of parallelism. Disadvantages

include the chance-dependent outcome and lengthy computation time, yet we may or

may not obtain satisfactory solutions. One important consequence of this finding is the

realization of applicability of hybrid systems, i.e., genetic algorithms embedded in other

methods such as hill-climbing, fuzzy systems, and etc. This strategy may produce more

acceptable results and generate practical solutions to the problem in a reasonable limit

of time.

Efficiency of the method can also be increased by accounting for blindness of the

genetic operators. For example, mutation operations can be performed firstly on the

genes which cause dissatisfaction of the soft constraints.

The functionality of the method can be increased by providing a choice of several

different good schedules from which the user may choose the best, or by allowing user

to make manual adjustment on the timetable.

38

REFERENCES

Abramson, D., 1991. Constructing schools timetables using simulated annealing:
sequential and parallel algorithms, Management Science, vol.1, No: 37,pp. 98-113.

Alvarez-Valdes, R., Crespo, E., Tamarit, J.M., 2002. Design and implementation of a
course scheduling system using tabu search. European Journal of Operational Research
137 (3), 512–523.

Asratian, A.S., de Werra, D., 2002. A generalised class–teacher model for some
timetabling problems. European Journal of Operational Research 143 (3), 531–542.

Aytug, H., Khouja, M., Vergara, F.E., 2003. Use of genetic algorithms to solve
production and operations management problems: A review. International Journal of
Production Research 41 (17), 3955–4009.

Azimi, Z.N., 2005. Hybrid heuristics for examination timetabling problem. Applied
Mathematics and Computation 163 (2), 705–733.

Bardadym, V.A., 1996. Computer-aided school and university timetabling: The new
wave. In: Burke, E., Ross, P. (Eds.),Practice and Theory of Automated Timetabling,
Lecture Notes in Computer Science, vol. 1153. Springer, Berlin, pp.22–45.

Belligiannis, G., Moschopoulos, C.N., Kaperonis, G.P., Likothanassis, S.D., 2006.
Applying evolutionary computation to the school timetabling problem: The Greek Case.
Computers and Operations Research 35, 1265-1280.

Bhatt, V., Sahajpal, R., 2004. Lecture Timetabling Using hybrid Genetic Algorithms.
ICISIP 2004. 29-34.

Broder, S., Final Examination Scheduling, Comm. of the ACM 7, 494-498.

Burke, E.K., Petrovic, S.,2002. Recent research directions in automated timetabling.
European Journal of Operational Research 140 (2), 266-280.

Burke, E., Bykov,Y., Newall,J. P. and Petrovic, S. , 2003, A Time-Defined Approach to
Course Timetabling, Yugoslav Journal of Operations Research (YUJOR), vol. 13, pp.
139-151.

Carrasco, M.P., Pato, M.V., 2001. A potts neural network heuristic for the class/teacher
timetabling problem, in: Proceedings of the 4th Metaheuristics International
Conference, pp. 139–142.

Carrasco M, Pato M., 2004, Metaheuristics: computer decision-making, chapter A Potts
neural network heuristic for the class/teacher timetabling problem. Kluwer, Norwell, pp
173–186

Carter, M. W., 1986, A Survey of Practical Applications of Examination Timetabling
Algorithms. Operations Research 34 193-202.

39

Carter, M.W., Laporte, G., 1996. Recent developments in practical examination
timetabling. In: Burke, E., Ross, P.(Eds.), Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science, vol.1153. Springer, Berlin, pp. 3-21

Chaudhry, S.S., Luo,W., 2005. Application of genetic algorithms in production and
operation management: A review. International Journal of Production Research 43 (19),
4083–4101.

Colorni, A., Dorigo, M., Maniezzo, V. 1990, Genetic Algorithms and highly
constrained problems: The timetable case. In G.Goos and J. Hartmanis editors.Parallel
problem solving from nature. Pp 55-59.Springer Verlag

Davis, L. (Ed) 1991, Handbook of Genetic Algorithms. New York: Van Nostrand
Reinhold.

Deris, S., Omatu,S. and Ohta, H., 2000. Timetable planning using the constraint-based
reasoning. Computers and Operations Research, 27:819-840.

Dorigo, M., Maniezzo,V., Colorni, A., 1991, Positive feedback as a search
strategy,Technical Report 91-016,Dipartimen to di Elettronica,Politecn ico di Milano,
IT.

Ergul, A., 1996. GA based examination scheduling experience at Middle East Technical
University. In: Burke, E., Ross, P. (Eds.), Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science, vol. 1153. Springer, Berlin, pp. 212–
226.

Gen, M., Cheng, R., 1997. Genetic Algorithms and Engineering Design. Wiley, New
York.

Glibovets, N.N., Medvid, S.A., 2003, Genetic Algorithms Used to Solve Scheduling
Problems, Cybernetics and Systems Analysis,Vol. 39, No.1, 81-90.

Glover, F. , Laguna,M., 1997, Tabu Search, Kluwer Academic Publishers.

Gunsdhi, H., Anand,V.J. and Yong ,Y.W. , 1996 Automated timetabling using an
object-oriented scheduler. Expert System with Applications, 10(2):243-256.

Head, C., Shaban, S., 2005. A Heuristic approach to simultaneous course/student
timetabling. Computers and Operations Research 34, 919-933.

Hertz, A., 1991, Tabu search for large scale timetabling problems, European Journal of
Operational Research, vol. 54, pp. 39-47.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Anna Arbor.

Irene, S., Safaai, D., Hashim, M., Zaiton, S., 2007. Approaches used in Solving
Timetabling Problem: A Review. Postgraduate Annual Research Seminar.

40

Isaai, M.T. and Cassaigne, N.P., 2001. Predictive and reactive approaches to the train-
scheduling problem: A knowledge management perspective. IEEE Transactions on
Systems, Man, and Cybernetics -Part C: Applications and Reviews, 31(4):476—484.

Johnson, D., 1993. A database approach to course timetabling. Journal of the
Operational Research Society, 44(5):425-433.

Karova,M. , 2004. Solving Timetabling Problems Using Genetic Algorithms, 27th
International Spring Seminer on Electronics Technology, 96-98.

Kanoh, H. , Sakamoto, Y. , 2004. Interactıve Timetabling System Using Knowledge-
Based Genetic Algorithms. IEEE International Conference on Systems, Man and
Cybernetics, 5852-5857

Kirkpatrick, S. Gelatt, C.D. and Vecchi, M.P. (1983). Optimization by Simulated
Annealing, Science, 220, 671-380.

Kostuch,P., 2005, The University Course Timetabling Problem with a 3-Phase
Approach, in Practice and Theory of Automated Timetabling (PATAT) V, vol. 3616,
Lecture Notes in Computer Science, E. Burke and M. Trick, Eds. Berlin: Springer-
Verlag, pp. 109-125.

Krarup, J., and de Werra, D., 1982, Chromatic Optimisation: Limitations, Objectives,
Uses, References, Euro. J. Oper. Res. 11, 1-19.

 Lai, L., Hsueh, N., Huang, L., Chen, T., 2006, An artificial Intelligence Approach to
Course Timetabling, Proceedings of the 18th IEEE International Conference on Tools
with Artificial Intelligence.

Lewis, R., 2007. A survey of metaheuristic-based techniques for university timetabling
problems, Springer –Verlag, 167-190.

Merlot,L., Boland ,N., Hughes , B., and Stuckey ,P., 2003, A Hybrid Algorithm for the
Examination Timetabling Problem, in The Practice and Theory of Automated

Timetabling (PATAT) IV vol. 2740, Lecture Notes in Computer Science, E. Burke and
P. D. Causmaeker, Eds. Berlin: Springer-Verlag, pp. 207-231.

Mulvey, J.M., 1982, A classroom/time assignment model.European Journal of
Operational Research, 9:64-70.

Pongcharoen, P., Promtet W., Yendaree, P., Hicks,C., 2007, Stochastic Optimisation
Timetabling Tool for University course scheduling, International Journal of Production
Economics.

Schmidt, G., and Strohlein, T., 1980, Timetable Construction--an Annotated
Bibliography, The Computer Journal 23, 307-316.

41

Smith, K.A. , Abramson, D. and Duke, D. , , 1995. Hopfield neural networks for
timetabling: formulations, methods, and comparative results. Computer and Industrial
Engineering, 44:283--305.

 Socha, K. and Samples, M., 2003. Ant Algorithms for the University Course
Timetabling Problem with Regard to the State-of-the-Art, in Evolutionary Computation
in Combinatorial Optimization (EvoCOP 2003), vol. 2611, Lecture Notes in Computer
Science. Berlin: Springer-Verlag, pp. 334-345.

Solotorevsky G., Gudes E., Meisels A., 1994. RAPS: a rule-based language for
specifying resource allocation and timetabling problems. IEEE Transactions on
Knowledge and Data Engineering.

Syarif, A., Yun, Y., Gen, M., 2002. Study on multi-stage logistic chain network: A
spanning tree-based genetic algorithm approach. Computers & Industrial Engineering
43 (1–2), 299–314.

Thompson, J.M., Dowsland, K.A., 1996. General cooling schedules for a simulated
annealing based timetabling system. In: Burke, E., Ross, P. (Eds.), Practice and Theory
of Automated Timetabling, Lecture Notes in Computer Science, vol. 1153. Springer,
Berlin, pp. 345–363.

Tripathy, A., 1984, School Timetabling, A case in large binary integer linear
programming, Management Science, vol.30,pp.1473-1489.

Welsh, D. J. A., and Powell, M. B., 1967, An Upper Bound for the Chromatic Number
of a Graph and its Application to Timetabling Problems, The Computer Journal 10 , 85-
86.

White,G. M., Chan, P.W. , 1979 Towards the Construction Of Optimal Examination
Timetables. INFOR 17 219-229.

Wren, A., 1996. Scheduling, timetabling and rostering – a special relationship? In
Lecture Notes in Computer Science: Practice and Theory of Automated Timetabling, E.
Burke and P. Ross, editors. Springer, Berlin,Germany, volume 1153, pages 46–75.

Valouxis, C. and Housos, E., 2003. Constraint programming approach for school
timetabling.Computers and Operations Research, 30:1555-1572.

Voss, S. Martello, S. Osman, I.H. and Roucairol C. (eds.), 1999. Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academic
Publishers

42

VITAE

Name and Surname : Mürüvvet Aslı AYDIN

Adress : Bahçeşehir Üniversitesi Fen Edebiyat Fakültesi Çırağan Cd.

Osmanpaşa Mektebi Sk. No: 4 – 6 34349 Beşiktaş / İstanbul /

Türkiye

Birth Place / Year : Isparta – 1980

Languages : Turkish (native) - English

Elementary School : Isparta Anatolian Trade High School-1995

High School : Isparta Süleyman Demirel Science School-1997

 Isparta Ş.A.İ.K. High School-1998

BSc : Boğaziçi University - 2003

MSc : Bahçeşehir University - 2008

Name of Institute : Institute of Sciences

Name of Program : Industrial Engineering

Work Experience : Department of Mathematics and Computer Sciences at

Bahcesehir University, Faculty of Art and Sciences ,Teaching

Assistant (June 2005 – Recent)

Ugur Education, SAT Team Member (January 2005-April 2005)

Department of Mathematics and Computer Sciences at Kültür

University, Faculty of Art and Sciences ,Teaching Assistant

(October 2003 – January 2005)

