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ABSTRACT 

 
SOLVING UNIVERSITY COURSE TIMETABLING PROBLEM USING 

GENETIC ALGORITMS 
 

Aydın, Mürüvvet Aslı 
 

Industrial Engineering 
 

Advisor: Assoc. Prof. Dr. Ahmet Beşkese 
 

June, 2008  37 pages 
 

The university course timetabling problem consists of allocating a number of courses 

to a limited set of resources such as rooms, timeslots, set of lecturers and group of 

students in such a way to satisfy predefined constraints. The constraints can be 

divided into two groups: hard constraints and soft constraints.  A timetable has to 

satisfy all hard constraints in order to be feasible and it should satisfy as much as 

possible soft constraints in order to be good quality. 

The university timetabling problem is in class of NP-hard problems. This means that 

the amount of time and work required solving this type of problems increases 

exponentially with the problem size. This makes these problems more difficult and 

time consuming. Therefore optimization techniques are used to solve them and 

produce optimal or near optimal feasible solutions instead of exact solutions. Genetic 

algorithms are considered as an efficient approach for solving this type of problems. 

Genetic algorithm is based on the principle of evolution first described by Charles 

Darwin and it tries to mimic some features of nature such as selection, crossover, 

mutation and replacement. Through these probabilistic operators, genetic algorithms 

choose the optimal solution among a set of alternate solutions which compete with 

each other. 

In this thesis, first a general description of genetic algorithms and theoretical 

background, Schema Theorem, which describes the reasons of efficiency of genetic 

algorithms are given. Then a real life university course timetabling problem is 

examined with data coming from Bahcesehir University, Faculty of Arts and 
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Sciences. A solution based on genetic algorithm is proposed for the problem. The 

genetic algorithm implementations are described and applied to the sample problem. 

Moreover, determination of the best parameter values, such as the population size, 

mutation and crossover rate, etc. is tried. We work on this problem by introducing 

modified genetic operators which do not allow violations of any hard constraints, as a 

result produce only feasible solutions. Therefore the aim of the genetic algorithm is to 

produce a good quality timetable. This gains us to get better solutions in a 

comparative short time. 

Keywords:  Genetic Algorithms, Metaheuristics, Timetabling, Constraints 
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ÖZET 

ÜNİVERSİTELERDE DERS PROGRAMI OLUŞTURMA PROBLEMİNİN 

GENETİK ALGORİTMA İLE ÇÖZÜMÜ 

Endüstri Mühendisliği 

Tez Danışmanı: Yrd. Doç. Dr. Ahmet Beşkese 

 

Haziran, 2008 

 

Üniversite ders programı oluşturma problemi, belli bir sayıdaki derslerin sınırlı 

sayıdaki sınıf, zaman dilimi ve öğretim elemanları gibi kaynaklara önceden 

belirlenmiş kısıtları sağlayacak şekilde dağıtılmasını içerir. Kısıtlar iki gruba ayrılır: 

Kati kısıtlar ve gevşek kısıtlar. Bir ders programının kabil olabilmesi için bütün kati 

kısıtları sağlaması gerekir. İyi kalitede olabilmesi için de mümkün olduğunca fazla 

gevşek kısıtları sağlamalıdır. 

Üniversite ders programı oluşturma problemi NP-zor problemler sınıfındadır. Bu şu 

demektir; bu tip soruları çözmede harcanan zaman ve yapılan iş, problemin 

büyüklüğü arttıkça eksponensiyel olarak artar. Bu da bu problemleri daha zor ve daha 

zaman alıcı yapar. Bu yüzden bunları çözmekte ve  tam sonuç bulmak yerine en iyi 

veya en iyiye en yakın çözümler üretmek için eniyileme teknikleri kullanılır. Genetik 

algoritmalar bu tip problemlerin çözümünde verimli bir method olarak düşünülür. 

Genetik algoritma, ilk kez Charles Darwin tarafından anlatılan evrim teorisini baz alır 

ve doğadaki seleksiyon, çaprazlama, mutasyon ve değiştirme gibi yapıları taklit 

etmeye çalışır. Bu olasılıksal operatörlerle, bibiriyle yarışan alternatif çözümler 

arasından en iyi çözümü seçer. 

Bu tezde, önce genetik algoritmanın genel tanımı ve genetik algoritmanın 

verimliliğinin sebeplerini açıklayan teorik altyapısı, Şema teoremi verilir. Daha sonra, 

Bahçeşehir Üniversitesi Fen Edebiyat Fakültesi verileriyle gerçek bir üniversite ders 

programlama problemi denenir. Bu probleme genetik algoritma tabanlı bir çözüm 

önerilir. Genetik algoritma uygulamaları anlatılır ve örnek probleme uygulanır. 

Ayrıca, popülasyon büyüklüğü, çaprazlama ve mutasyon oranları gibi parametrelerin 
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en iyi değerlerinin tespiti denenir. Bu problemde sonuç olarak sadece kabil ders 

programları üreten, modifiye edilmiş, kati kısıtların ihlaline izin vermeyen genetik 

operatörlerle çalıştık. Bu yüzden amaç sadece iyi kalitede ders programı üretmekti. Bu 

bize daha kısa sürede daha iyi sonuçlar elde etmeyi sağladı. 

Anahtar Kelimeler: Sezgisel Yöntemler, Zaman Tablolama, Genetik Algoritma, 

Kısıtlar 
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1. INTRODUCTION 

Timetabling is defined as “the allocation, subject to constraints, of given resources to 

objects being placed in space-time, in such a way as to satisfy as nearly as possible a set 

of desirable objectives “(Wren 1996, p53). A more common definition can be given as 

assigning a set of events (lectures, vehicles, public events, etc.) to limited set of 

resources over time in such a way to satisfy predefined constraints. These constraints 

can be categorized as hard constraints and soft constraints where hard constraints have 

higher priority to be satisfied than soft constraints.  

 There are various timetabling problems in real world such as allocation of events, 

activities, people, vehicles, etc. In most of the cases constructing a workable timetable is 

very difficult to achieve because the resources (time, place, people, etc.) are limited. So 

constructing an efficient timetable becomes a crucial problem for people.  

This study focuses on the timetabling problem that every educational institution faces 

with at the beginning of each academic semester. It is the problem of allocation of 

events (teaching sessions, exams, lab sessions, etc) within a given number of rooms and 

time periods. 

 The problem of educational timetabling can be arranged into two categories as course 

timetabling and exam timetabling. It is clear that there are a lot of similarities between 

these two. The main difference is that in exam timetabling problem, although it is not 

preferable, two or more exams can be scheduled in the same room, at the same time. 

However in the course timetabling problem, two different courses are not allowed to be 

scheduled in the same room, at the same time. Another crucial difference is flexibility of 

examination’s time. An exam can be scheduled at weekends or in the evenings while 

courses cannot. Moreover in exam timetabling problem conflicts are strict. Every 

student must take his/her examinations at its time. In addition to these, in exam 

timetabling each student should take at most one exam each day and also too many 

consecutive exams are not allowed.  

Course timetabling problem can also be divided into two: University timetabling and 

school timetabling. School timetables are more compact, meaning that there should be 
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no free periods between lessons. Students have same starting, finishing and lunch time 

which is not the case for university timetables. There are more programs, classes, 

lecturers and different group of students in university timetabling problem which makes 

the problem more complex.  

Timetabling problems has been proved to be in the class of NP-hard problems 

(Bardadym 1996). Here NP stands for “non-polynomial”.  What NP-hard means is that 

the amounts of work needed to solve this type of problems are increasing exponentially 

with the problem size. Therefore they cannot be solved in polynomial time. 

Solutions to timetabling problems have been proposed since the 1960s. Many 

procedures are used for constructing workable and attractive timetables. These 

approaches can be grouped into three categories: artificial intelligence, human-machine 

interaction and operations research (Lai et al. 2006). Details of different approaches 

which are tried to solve the timetabling problem are given at literature review part.  This 

research is focused on solving university course timetabling problem using Genetic 

Algorithms which is categorized as metaheuristic methods in operations research subset. 

To give a brief explanation, genetic algorithms are methods which use algorithms 

inspired by the processes of neo-Darwinian evolutionary theory. In a genetic algorithm 

each ‘chromosome’ represents a candidate solution to the problem. By evaluating and 

ordering the performance of a set of candidate solutions, ‘parents’ of new candidate 

solutions (‘children’) are chosen. Applying ‘mutation’ and ‘crossover’ operations to the 

children gains the population new candidate solutions with higher performance to get a 

better solution. These new set of candidates then evaluated, and then this cycle 

continues until a termination criteria is occurred. A termination criterion can be a 

predefined number of cycles or finding an adequate solution. More detailed information 

will be given at Chapter 3. 

The aim of this research is to describe and experimentally verify the Genetic Algorithm 

which is applicable to course timetabling problems. Moreover, with such an algorithm, 

we would like to tackle a real-life course timetabling problem for Bahcesehir 

University. This work was motivated to solve the timetabling problem and produce a 

solution fully acceptable by all users. 
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This thesis is organized as follows. Chapter 2 is literature review. Here various 

approaches to solving the university timetabling problem are given. Chapter 3 provides 

an overview of Genetic Algorithms. Here fundamentals of genetic algorithm and its 

theoretical aspects are told. Moreover a simple example demonstrating how genetic 

algorithms work is given.  Chapter 4 is the problem definition part. It defines the 

university course timetabling problem with all its goals, constraints and data acquisition. 

Chapter 5 describes the implementation of Genetic Algorithm to the data coming from 

Bahcesehir University. Chapter 6 presents the results of the sample case study. Chapter 

7 discusses the results of the implementation and finally concludes the thesis. 
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2. LITERATURE REVIEW 

As stated earlier in this study, timetabling problems are in the set of NP-hard problems. 

It means that, for scheduling C courses into T time slots, there are TC possible candidate 

timetables. Clearly, using the manual way to generate workable timetables is not 

preferable in such a case. Generating timetables through automatic methods then seems 

to be an attractive alternative to manual approach. This chapter concentrates on the 

evaluation of automated timetabling. 

Much of the literature on timetabling problems dates from the 1960s when first 

computers could be useful in timetabling. A wide variety of methods used to solve 

timetabling problems. There is not a strict discrimination to categorize these methods. 

Some resources classify a method into some group while other resources study that 

method in another group. This chapter reviews the literature on timetabling on the basis 

of the classification of Lai et al. (2006). They first classified the approaches to 

timetabling problem into three categories: artificial intelligence, human-machine 

interaction and operations research. Constraint programming (Deris et al.2000, Valouxis 

and  Housos 2003), Expert Systems (Solotorevsky et al. 1994, Gunsdhi et al. 1996, Isaai 

and Cassaigne 2001) and Neural Networks(Smith et al. 1995, Carrasco and Pato 2001) 

can be classified in artificial intelligence technologies. The human-machine interaction 

approaches are iterative processes. First the machine finds a solution then the user either 

accepts it or improves it through instructions. This iteration goes on until the user is 

satisfied or additional improvement is not possible. Human-machine interaction 

methods are used by Mulvey (1982) and Johnson (1993) for timetable construction. 

Operations research approaches also have been grouped into three categories: sequential 

methods, clustering methods and metaheuristic methods. This research wills attempt to 

solve the timetabling problem by Genetic Algorithm that can be categorized into 

operations research group and metaheuristics subgroup. 
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2.1 OPERATIONS RESEARCH APPROACHES TO TIMETABLING 

PROBLEMS 

2.1.1 Sequential methods 

In these methods, courses are first ordered according to the difficulty level of scheduling 

them and then assigned sequentially into valid time periods so that no courses in the 

period are in conflict with each other (Carter 1986). Graph coloring algorithm is the 

most common example of sequential methods.  

The graph coloring problem (GCP) is defined as to color the vertices of a graph 

G=(V,E), where V={v1,v2,...,vn} is the set of vertices and E the set of edges connecting 

the vertices such that no pair of vertices with a common edge is not in same color and 

also the number of colors used is minimum.  

Using graph coloring to solve small timetabling problems has a long history (Broder 

1964, Welsh and Powell 1967, Krarup and de Werra 1982, Asratian and de Werra 

2002). Simply, a timetabling problem can be converted to a graph coloring problem by 

constructing a graph considering each course/exam as a vertex, and considering the 

edges between any pair of vertices as pair of courses/exams that cannot be scheduled to 

the same timeslot. Each color represents a timeslot. If one can manage to color the 

graph with no more colors than available timeslots, a solution is found. A simple 

example of finding a solution to the timetabling problem with 10 courses/exams and 5 

available timeslots is given by Lewis (2007).  

However, it is noteworthy to indicate that, conversions to graph coloring problems adapt 

well when dealing with small-scale timetabling problems. When real world timetabling 

problems are considered, graph coloring method fails to be sufficient (Tripathy 1984). 

2.1.2 Clustering methods 

In these methods, first the courses which are satisfying hard constraints are split into 

groups and then the groups are assigned into timeslots using various optimization 

techniques to fulfill the soft constraints. One of the first papers describing this method is 

written by White and Chan (1979). The main disadvantage of these methods is that the 
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clusters of courses are formed and fixed at the beginning of the algorithm. This may 

result a timetable with poor quality. 

2.1.3 Metaheuristic methods 

Metaheuristic approaches have been widely developed and applied to university 

timetabling problems over the last two decades or so. Metaheuristic methods begin with 

some initial solutions and try to get better solutions by using search techniques. Other 

search techniques like local search, greedy algorithm are stuck in local optima and not 

able to find the global optima. Metaheuristic methods like simulated annealing, tabu 

search, ant colony systems and genetic algorithms can cope with this problem  although 

they cannot guarantee to find the best solution because of the nature of the problem 

type. These methods are reviewed as metaheuristic approaches in this study.  

Simulated annealing is said to be the oldest among the metaheuristic methods. It is an 

optimization method that inspires from physical cooling process of solids. The 

algorithm starts with an initial state which is selected randomly in search space as initial 

solution and a high initial temperature. As in all metaheuristic approaches, the aim in 

simulated annealing is improving the initial solution. Although the new solutions 

improving the initial solution are always accepted, the non-improving solutions are 

accepted with a certain probability. This probability of accepting a non-improving 

solution is calculated according to the current temperature of the system. So algorithm 

begins with a high probability of accepting non-improving solutions corresponding to 

high initial temperature and as the solids cools gradually, the temperature of the solid 

decreases therefore the probability of accepting non-improving solutions decreases. At 

low temperatures the algorithm accepts only improving solutions. It goes on until a 

stopping criterion is occurred or a satisfactory solution is reached. 

Step 1. Generate initial solution x. 
Step 2. Assign Temperature to Initial Temperature. 
Step 3. Generate candidate solution x’ from current solution x. 
Step 4. If fitness (x’) > fitness(x) then x = x’. 
Step 5. If fitness (x’) ≤ fitness(x) then calculate Acceptance Probability. 

5.1 If Acceptance Probability > random [0,1] then x = x’. 
Step 6. Update Temperature according to cooling schedule. 
Step 7. If termination condition is met finish, otherwise go to Step 3. 

Figure 2.1: Pseudocode for Simulated Annealing. 
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The analogy between minimizing the cost function of combinatorial optimization 

problems and annealing is identified by Kirkpatrick et al. (1983).  Afterwards, 

simulated annealing has been used to solve many types of combinatorial optimization 

problems including timetabling problems (Abramson 1991, Thompson and Dowsland 

1998, Azimi 2005) because it is easy to implement.  Main advantage of simulated 

annealing is its ability of escaping local optima by exploring other areas of the solution 

space. On the other hand, long running time is the disadvantage of this method. 

Tabu Search is another metaheuristic method. It starts from a random initial solution 

and successively moves to one of the neighbors of the current solution. The difference 

of tabu search from other metaheuristic approaches  is  based  on  the  notion  of  tabu  

list, which  is  a special  short  term  memory. That is composed of previously visited 

solutions that include prohibited moves. In fact, short term memory stores only some of 

the attributes of solutions instead of whole solution. So it gives no permission to revisite 

solutions and then avoids cycling and being stuck in local optima. During the local 

search only those moves that are not tabu will be examined if the tabu move does not 

satisfy the predefined aspiration criteria. These aspiration criteria are used because the 

attributes in the tabu list may also be shared by unvisited good quality solutions. A 

common aspiration criterion is better fitness, i.e. the tabu status of a move in the tabu 

list is overridden if the move produces a better solution. 

Step 1. Generate initial solution x. 
Step 2. Initialize the Tabu List. 
Step 3. While set of candidate solutions X’ is not complete. 
  Step 3.1 Generate candidate solution x’ from current solution x  
  Step 3.2 Add x’ to X’ only if x’ is not tabu or if at least one Aspiration Criterion is 
satisfied. 
Step 4. Select the best candidate solution x* in X’. 
Step 5. If fitness(x*) > fitness(x) then x = x*. 
Step 6. Update Tabu List and Aspiration Criteria  
Step 7. If termination condition met finish, otherwise go to Step 3. 

Figure 2.2 : Pseudocode for Tabu Search  

A short general description of tabu search and its applications is given by Glover and 

Laguna (1997). Hertz (1991) and Alvarez-valdes et al. (2002) use tabu search technique 

to solve the university course timetabling problems. 
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Ant colony systems are metaheuristic approaches introduced by Dorigo et al. (1991) 

and inspired from behavior of ants finding the shortest path from their nest to food 

sources. Ants can manage this by producing a special liquid called pheromone. They 

deposit it on the ground while they are walking. The ants, which choose the shortest 

path by chance at the beginning, arrive the nest quickly after visiting the food source. 

While the ants following the longer path are on the way of return, the quicker ants leave 

the nest for food second time. So the quantity of pheromone deposited on the shortest 

path is more than the longer ones. The pheromone on the longer paths starts to 

evaporate in time because they are not used. When an ant decides which path to follow, 

it most probably prefers the one with the higher amount of pheromone. Hence the 

shortest way will be chosen by the great majority of the ants in time. 

Step 1. Initialize pheromone values 
Step 2. Release each ant in the colony to construct an independent solution through 
components 
Step 3.Update pheromone values 
Step 4. If termination condition is met finish, otherwise go to Step 2 

Figure 2.3 : Pseudocode for Ant Colony System 

In Figure 2.3 pseudocode for ant colony system is given. The algorithm starts with the 

initialization of pheromone values. At each iteration of the algorithm, each ant is 

released to construct a new solution independently from other ants. Construction of the 

solution is performed by adding solution components to the partial solution constructed 

so far. These solutions are used to update the pheromone values. The algorithm 

continues until a stopping condition is met. 

Socha and Samples (2003) suggested how to implement ant colony systems to 

university timetabling problems. At each step, each of the ants constructs a complete 

timetable using heuristics and pheromone information. Timetables are then improved 

using a local-search procedure, and results are written back to the pheromone matrix to 

be used in the next iteration. And Azimi (2005) implements ant colony systems to the 

exam timetabling problem. He compares ant colony systems with tabu search, simulated 

annealing and genetic algorithms. He declares that the ant colony systems give the best 

solution. 
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Genetic algorithms are metaheuristic methods that try to find solutions to NP-hard 

problems through evolution. The main idea of genetic algorithms is to generate an initial 

population randomly and then evolve this population after a number of iterations. To do 

this, first the initial population is evaluated according to some criteria and then parents 

of the next generation are chosen with respect to the results of this evaluation. Then 

parents are mated to produce offsprings, namely the members of the next generation. 

This goes on until a stopping condition is met. 

Mutation and crossover are two crucial operators of genetic algorithm. Mutation refers 

for small variations in the genetic material of the offspring and its purpose is to 

diversify the next generation. On the other hand, crossover refers to recombination of 

two parents to produce offsprings and its purpose is to propagate good genetic material 

from parents to offspring.  

Step 1. Generate initial population.  
Step 2. Evaluate population.  
Step 3. Apply Crossover to create offspring.  
Step 4. Apply Mutation to offspring.  
Step 5. Select parents and offspring to form the new population for the next generation.  
Step 6. If termination condition is met finish, otherwise go to Step 2. 

Figure 2.4 : Pseudocode for Genetic Algorithm 

Genetic algorithms were first suggested by Holland (1975) in his of book Adaptation in 

Natural and Artificial Systems. Colorni et al. (1990) constructed the first successful 

timetable using genetic algorithm. Several researchers have used genetic algorithms to 

solve timetabling problems during the last few decades (Ergul 1996, Gen and Cheng 

1997, Syarif et al. 2002, Aytug et al. 2003, Chaudhry and Luo 2005). Irene et al. (2007) 

reviews the literature on approaches used in the timetabling problem and presents a 

comparison of 19 papers in their study. 

Genetic algorithms have several advantages when compared to other optimization 

techniques. First of all, genetic algorithms do multiple directional searches with a set of 

candidate solutions while other methods perform single directional searches. Moreover 

while other methods deal with decisions variables, genetic algorithms represent 

solutions in terms of coding. Domain knowledge is used only to code the problem and 

for establishing fitness function. 
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3. GENETIC ALGORITHMS: AN OVERVIEW 

Genetic Algorithm is an optimization method that is mainly based on Darwin’s theory 

of evolution and current knowledge of genetics. As in nature, genetic algorithms include 

concepts such as chromosomes, genes, mating, crossover, mutation, and evolution, too. 

So it is useful to remind some of this biological terminology that will be used. 

Biological Terms     Genetic Algorithm 
Chromosome      Solution (coding) 
Gens       Part of solution 
Alleles       Values of gene 
Phenotype       Decoded solution 
Genotype       Encoded solution 

Figure 3.1 : Explanation of biological terms in Genetic Algorithm 

All living organisms consist of cells which include chromosomes. A chromosome is 

formed by millions of genes each of which encodes a specific characteristic of the 

organism, such as blood type or eye colour in humans. Such characteristics are called 

phenotypes, for example, 0, A, B, AB for blood type or hazel, blue, brown for eye 

colour. The particular settings of genes are called genotype and values of the genes are 

called the alleles. An organism’s phenotype is formed by its genotype.  

In nature, most species are diploid meaning that their chromosomes are arrayed in pairs. 

Human beings are also diploid and they have 23 pairs of chromosomes in each body 

cell. During crossover, genes in each parent are exchanged between each pair of 

chromosomes to form a single chromosome, namely a gamete. Then one gamete from 

mother and one from father pair up to create a full set of diploid chromosomes for child. 

This explains how certain genotypes are inherited from a person to his/her child. 

Occasionally, some gene values change because of external effects. This kind of change 

in the gene value is called mutation.  

Individuals who are more adapted to the environmental conditions have higher 

probabilities for survival, therefore they have higher probabilities for producing their 

children. This also means that, the individuals and their genes which are better adapted 

most likely to tend to remain while those that are not adapted tend to become extinct as 

time passes. This natural process of survival of the fittest is called Darwinian evolution.  
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Over the last two decades, genetic algorithms have been extensively used as search and 

optimization methods in various problem domains such as sciences, engineering and 

management. Although they do not guarantee to find optimum solutions, they are 

successful in finding solutions with high acceptance. Their broad applicability and ease 

of use appeals the researchers to choose genetic algorithms. The term chromosome 

typically refers to a candidate solution to the given problem in genetic algorithms.   By 

analogy with biology, the chromosome is referred to as the genotype, the encoded 

solution, whereas the solution it represents is known as the phenotype, the decoded 

solution. Crossover consists of exchanging genetic material between two single 

chromosomes of parents. Mutation consists of replacing a randomly chosen gene with a 

randomly chosen new gene. In this chapter, the working principle of genetic algorithms 

is described and also a simple example of genetic algorithms is given. 

3.1 FUNDAMENTALS OF GENETIC ALGORITHMS 

3.1.1 Chromosome representation 

Designing chromosome structure is very crucial in genetic algorithms, because each 

chromosome embodies a solution and its representation affects the performance of 

algorithm. At the beginning of the genetic algorithm, the researcher decides how to 

design the chromosomes according to the problem type and which solution form will be 

adequate for the algorithm. There are two approaches in designing chromosome 

structure. First one of them is direct encoding which directly represents a solution by a 

chromosome. However, direct encoding is not always possible or efficient for each 

problem. In such a case, indirect encoding is used and now each chromosome is encode 

only the instructions of building a solution instead of the solution itself.  

Most conventional representation of a chromosome in direct encoding is a bit-string of 

characters in which each chromosome consists of a string of genes whose allele values 

are characters from the alphabet {0, 1}. And the length of the string differs according to 

the problem nature and the information that one wants to encode. For example, a bit 

string of length 10 might be used to encode  a single integer value in binary notation in 

one problem, on the other hand, the bits might encode the presence or absence of 10 

different factors (if it is present then code 1, if it is absent then code 0) in another. 
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However genes can be represented in the form of integers, reals, arrays, trees, matrix, 

graphs or any data type. In course timetabling problems, a chromosome is encoded as 

weekly timetable of set of courses and generally in the form of a matrix.  

3.1.2 Fitness of a solution 

Fitness function is a measure that evaluates the quality of the chromosome as a solution 

to a particular problem. The fitness function is problem specific. If the aim is 

minimizing a function, for instance think of a company tries to minimize its cost, then 

the fitness function is the cost itself. In most of the timetabling problems, quality of a 

chromosome is measured by number of constraints satisfied.  

3.1.3 Basic steps of genetic algorithm 

3.1.3.1 Initialization of the population 

 A set of candidate solutions are called population. At the beginning of the algorithm, to 

initialize the population, a predefined number of solutions are generated randomly. 

3.1.3.2 Selection 

 After the initial population is constructed, it is time to the process of choosing parents 

(chromosomes) for breeding, namely selection of parents. In genetic algorithm, 

selection is designed to use fitness function as a discriminator of the quality of solutions 

represented by the chromosomes in a population. Those with higher fitness value have a 

greater chance of being selected than those with lower fitness value.  

There are various selection methods in genetic algorithm. The standard selection 

method used is Roulette Wheel or in other words, Fitness Proportional selection. In this 

kind of selection method, expected number of times that a chromosome will be selected 

for breeding is calculated as chromosome’s fitness divided by the average fitness of the 

population. To implement this method, each chromosome is placed as a slice of a 

circular roulette wheel, the size of the slice is proportional to the chromosome's fitness. 

If there are N chromosomes in the population, the wheel is rotated N times. On each 

rotation, the chromosome shown by the wheel's marker is selected to be in the pool of 

parents for the next generation. So the selection is end up with N chromosomes, keeping 

initial number of chromosomes in the population.  Higher fitness value of chromosome 
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implies the larger slice on the roulette wheel, therefore the probability of being selected 

is higher. Note that one chromosome can be chosen more than once. 

Tournament Selection is another method for deciding which chromosome will be 

chosen. In this method, two chromosomes are chosen randomly in the population and 

then the one with the highest fitness between these two is selected as the parent. The 

two chromosomes are the return the original population and can be selected again.  

3.1.3.3 Recombination 

 After selection, chosen chromosomes are recombined to create new members of next 

generation. New members are expected to be better than their predecessors since 

selection for recombination gives more chance to the ones with higher fitness to be 

chosen. There are two main recombination operators in genetic algorithm: crossover and 

mutation.  

3.1.3.3.1 Crossover 

The idea of the crossover operation is mixing genetic material from two selected parent 

chromosomes to produce child chromosomes. If chromosomes are represented in bit-

strings, this is done as follows. First of all a crossover probability is defined. A random 

number in the interval [0, 1] is generated and compared with the crossover probability. 

If the crossover probability is greater than or equal to the random number then the 

crossover operator is applied. If the random number is greater than the crossover 

probability then crossover operator is not applied. Therefore both parents remain 

unchanged, so the children chromosomes are exact copies of their parents. The value of 

the crossover probability has great importance here. It can either be defined 

experimentally or can be defined by schema theorem principles (Goldberg 1989, 2002; 

Goldberg and Sastry, 2001) which will be explained later in this chapter. 

There are many methods used in designing crossover operator in literature. Although 

they can be changed by problem type, the most common used crossover operators are as 

follows: 

N-point Crossover: One-point and two-point crossovers are the simplest and widely 

used crossover methods. In one-point crossover, a number less than the length of 
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chromosome is selected randomly and represents crossover point. Then, the genetic 

material before the crossover point remains unchanged while the genetic material after 

the crossover point is exchanged between the parents. The idea of one-point crossover 

can be generalized to N-point crossover by using N crossover points rather than just one. 

For instance, in two-point crossover, two crossover points are selected randomly and the 

genetic material between crossover points is swapped. An example of two-point 

crossover method is given in Figure 3.2. 

 

 
Figure 3.2: Two-point Crossover 

 

Uniform Crossover: In uniform crossover each allele has the chance of exchanging 

with the gene of the other parent with the probability of predefined swapping 

probability. Most of the time 0.5 is taken as swapping probability value.  

Partially Matched Crossover (PMX): In partially matched crossover, two parents are 

randomly selected and two crossover points are generated randomly. Alleles within the 

two crossover points of a parent are exchanged with the alleles corresponding to those 

mapped by the other parent. Figure 3.3 illustrates an example of partially matched 

crossover. According to the example, firstly the genes between two crossover points are 

swapped between two parents. Then the first gene value in Parent 1 within the two 
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crossover points, 7, maps to 9 in Parent 2. Therefore, genes 7 and 9 are swapped in 

Parent 1. Similarly 8 and 2, also 4 and 1 are exchanged to create the offspring Offspring 

1. Corresponding changes are done in Parent 2 to create the offspring Offspring 2. 

 

Figure 3.3: Partially Matched Crossover 

3.1.3.3.2 Mutation 

In genetic algorithms, most chromosomes in the population seem like each other after a 

number of generations. What this means is that, no crucial changes in the population, 

therefore in the search space do not occur. To overcome this problem and add diversity 

to the population mutation operator is used. Mutation operator has the effect of creating 

a new chromosome which cannot be created by the ordinary crossover operator.  

 After crossover is applied and the offsprings are formed, they have a chance of being 

mutated. Mutation operators changes one or more gene values in a single chromosome. 

For the chromosomes represented in binary strings, the mutation operator works as 

follows. A number in the interval [0, 1] is generated randomly and compared to a 

predetermined mutation rate. Mutation rates used in literature are usually very small 

(e.g. 0.001). If the random number is greater than the mutation rate, mutation is not 

applied. If the mutation rate is greater than or equal to the random number, then the 

gene value is changed artificially from 0 to 1 or 1 to 0. (See Figure 3.4) 
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Figure 3.4: Mutation Operator 

3.1.3.4 Replacement 

After the new offsprings are created with crossover and mutation operators, it is time to 

form up the successor generation. Recall that parent chromosomes were selected 

according to their fitness, so it is expected that the offsprings increase the fitness of the 

population generation by generation. Through replacement, genetic algorithm decides 

whether offspring will survive or will become exist. Some of the most common 

replacement techniques are explained below.  

Complete Replacement 

 This technique deletes all the members of the predecessor population and replaces them 

with the same number of new chromosomes that have just been created.  

Steady-state  

In this technique, n old members are chosen in the population and replaced with n new 

members. The choice of the number n and the decision of which members to delete 

from the current population are important aspects of genetic algorithm.  

Replacement with elitism 

 This technique is same as complete replacement except that this time one or two 

chromosomes with the highest fitness are chosen to next generation. By this way, good 

solutions are preventing from become extinct. 
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3.2 A SIMPLE EXAMPLE OF GENETIC ALGORITHM 

The aim of this section is to show how basic components of genetic algorithm work 

through optimization of a function. The function is defined as  

1( ) sin( )f x x
x

=  

and drawn in Figure 3.5. The problem is to find a minimum for this function on the 

interval [0, 0.5], i.e. to find a x0 such that ( ) [ ]5.0,0)( 0 ∈∀≤ xxfxf . Actually, 

maximum or minimum values of a function can be calculated by the zeros of the first  

 

Figure 3.5: Graph of the function f(x) = xsin (1/x) 
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has infinitely many solutions. However we wish to construct a genetic algorithm to 

solve the above problem. 
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Representation:  

Binary vector is used to represent real values of x as a chromosome. A binary vector 

consists of 32-bits since the processor allows this number. This means that the length of 

the domain of variable x, which is 0.5 in our example, is divided 232-1 equal size ranges. 

So converting a binary string to a real number is completed as follows. First binary 

string of length 32 is converted from base 2 to base 10: 

x* = ( (b31b30....b0) )2 = 
10

31

0

2 ⎟
⎠

⎞
⎜
⎝

⎛∑
=

i

i
ib  

Then a corresponding real number is found by: 

5.0
12

1
32

*

−
= xx  where 0.5 is the length of the domain. 

For example, a chromosome (11110011110010101001011110100111) represents the 

number 0,476155032 in [0, 0.5] since 

=*x (11110011110010101001011110100111)2 = (4090140583)10 

and the real number is 

x = (4090140583) 
12

1
32 −

 0.5 = 0,476155032. 

One can easily see that (0000000000000000000000000000000) and 

(11111111111111111111111111111111) represent the boundaries of the domain, 0 and 

0.5, respectively. 

Initial population: 

We construct randomly 10 chromosomes of each is a binary vector of 32 bits as initial 

population.  The 10 chromosomes ci where 101 ≤≤ i and their corresponding real value 

xi on the interval [0, 0.5] is listed below. 

c1   = (01101110010010110001111111101001)   x1 = 0,21541691 

c2   = (11000000001100100111010011011111)   x2 = 0,37538495 
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c3   = (11110011110010101001011110100111)   x3  = 0,47615503 

c4   = (10001100010110101011110101110100)   x4  = 0,27412979 

c5   = (10010100101100110001000010100000)   x5  = 0,29042866 

c6   = (10000110110110000100100000000000)   x6  = 0,26336884 

c7   = (01100101000110110101101011110000)   x7  = 0,19747433 

c8   = (11010110010111110111001010110111)   x8   = 0,41869696 

c9   = (01011001000010001110001110010111)   x9   = 0,17389594 

c10 = (11001010100101001111100010101010)   x10 = 0,39566781 

 

Evaluation function: 

The evaluation function eval for chromosomes is equivalent to the original function f, 

namely eval(c) = f(x) where c represents the chromosomes and x represents the 

corresponding real value.  Evaluation function plays an important role because it is used 

to rate the potential solutions in terms of fitness. For instance, the fitness of the 

chromosomes in our population is as follows: 

eval ( c1 )   = f(x1) = -0,214885912 

eval ( c2)   = f(x2)  =  0,172565550 

eval ( c3 )   = f(x3) =  0,410983902 

eval ( c4)   = f(x4) = -0,132941257 

eval ( c5 )   = f(x5) = -0,086269622 

eval ( c6)   = f(x6)  = -0,160509512 

eval ( c7 )   = f(x7) = -0,185396112 

eval ( c8)   = f(x8)  =  0,286388252 

eval ( c9)   = f(x9)  = -0,088302975 

eval ( c10 ) = f(x10) =   0,228031778 

 

Clearly, the chromosome c1 is the fittest chromosome in the population since its 

evaluation returns the smallest value. Moreover c3 is the worst chromosome with the 

highest fitness value.  
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Genetic operators: 

In genetic algorithm there is two classical operators: crossover and mutation. To apply 

one point crossover the first two fittest chromosomes c1 and c7 are chosen. Also a 

random number, say 21 is selected for crossover point. That is, the chromosomes are 

split at the 21st gene, and then the parts are exchanged between the chromosomes as 

seen below: 

c1   = (011011100100101100011 | 11111101001) 

c7   = (011001010001101101011 | 01011110000) 

Then the resulting offsprings are: 

o1  = (01101110010010110001101011110000) 

o2  = (01100101000110110101111111101001) 

The corresponding real values and the fitness of these new chromosomes are calculated 

below: 

f(o1) = f(0,21541676) = -0,214885813  

 f(o2) = f(0,19747604) = -0,185400708 

The first offspring o1 has a better fitness value than its parents however the 

improvement can only be seen ninth decimal point. 

Then mutation is applied to the offsprings to get better chromosomes. For mutation, 6 

random genes are selected and then changed. The bit value ‘1’ is flipped to ‘0’ or vice 

versa. Assume that the alterations below are done: 

o1  = (01101110010010110001101011110000) 

o1m  = (01110010110010110001101011110110) 

          o2  = (01100101000110110101111111101001) 

o2m  = (01111001100110110101111111101111) 
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The corresponding real values and the fitness of these new chromosomes are calculated 

below: 

f(o1m) = f(0,22420582) = -0,217113164 

f(o2m) = f(0,23751354) = -0,208197846 
 

Note that, after mutation both mutated offsprings have better fitness value than not only 

from their parents but also the offsprings which are not mutated. Mutated offsprings act 

as parents for the next generation, thus each iterations starts with a better population. 

Here only one generation is illustrated and the solutions are promising. Genetic 

algorithm finds optimal or near-optimal solutions gradually by this way. 

3.3 THEORETICAL ASPECTS OF GENETIC ALGORITHM 

Although genetic algorithms are easy to describe and implement, understanding the way 

they work is quite difficult. Schema theorem, fundamental theorem of genetic 

algorithm, tries to explain how genetic algorithm can find optimal or near optimal 

solutions in a set of all possible solutions. In this section, schema theorem is briefly 

explained. 

First of all, a schema (or schemata) in other words “similarity template” should be 

defined for a better understanding of schema theorem. A schema can be basically 

defined as a pattern of chromosomes. For instance, think of a genetic algorithm where 

each chromosome is made up a string of five bits. And let 01010 and 01101 are given 

two chromosomes. A common expression for these chromosomes is “the chromosomes 

with first two bits are 01”. Thus 01* * * is a template, namely a schema defining these 

chromosomes. Here asterisks represent “do not cares” meaning that they can be either 0 

or 1. And 0’s and 1’s are called fixed bits. Therefore a schema is a pattern which uses 

the symbols {0, 1, *} to define a set of chromosomes. One can easily see that a schema 

represents 2n chromosomes in the population where n represents the number of asterisks 

in the schema. In our example, 01* * * represents eight chromosomes since there are 

three asterisks in the schema: {01000, 01100, 01110, 01111, 011101, 01010, 01011, 

01001}. Obviously * * * * *  represents whole population. 
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For a particular schema H, the length lH is defined as the difference of positions of the 

first and last fixed bits (namely 0’s and 1’s) of H. For instance, for the schema 01* * 

*10* * *, the first fixed bit (0) is in position 1 and the last fixed bit (0) is in position 7.  

So the schema H has length 7 − 1 = 6. And the order of H is the number of fixed 

positions and is shown as o(H). Since 01* * *10* * * has 4 fixed bits, it has order 4.  

Schema Theorem  

Let H be a schema and let mH(t) be the number of chromosomes correspond to H 

present in population at time t of an evolving Genetic Algorithm. Then the expectation 

of the number of chromosomes correspond to H in population at time t + 1, denoted 

mH(t+1), is given by the formula where FH(t) is the relative fitness of H which is 

defined to be the average fitness of all those chromosomes in the population belonging 

to H divided by the average fitness of all chromosomes in the population; pc is the 

crossover probability; pm is the mutation probability. 

 

 

Schema theorem explains which particular schema is likely to propagate through how 

the performance of genetic algorithm is affected by different choice of designs. For 

example, the theorem say that schemas with relative fitness (FH(t)) greater than 1are 

most likely to be represented in the next generation as a result of fitness proportional 

selection process. Moreover, schemas with a length lH close to length of the 

chromosome have less chance to survive because of crossover. And also schemas with 

many defined bits are also more likely to become extinct as a result of mutation 

operator. Finally, one can conclude that short length, low order schemas having fitness 

above the average are most likely sampled in successor generations. Such schemas are 

called building blocks and can be defined as partial solutions. A chromosome which has 

many building blocks will be near-optimal solution. 
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4. PROBLEM DEFINITION 

The university timetabling problem consists of a set of courses that are to be scheduled 

into a set of timeslots and a set of rooms and also consists of a set of constraints that are 

expected to be satisfied. Solving this problem is a complicated and long job and it needs 

to be identified in detail. In this section, all parts of a particular university course 

timetabling problem are defined step by step. 

4.1 GOALS: 

The main goal of creating a timetable is to provide faculty members and students with a 

schedule that is not only conflict-free but also has good quality. Different aspects of this 

goal in terms of faculty members, students, rooms are investigated as follows. From 

faculty members’ point of view, the resulting timetable should be conflict-free at first. 

Ideally, it should leave at least one day free for academic purposes. From students’ point 

of view, the timetable must be conflict-free for all groups of students. It should 

minimize idle hours between courses in a day, but it should give at least one hour break 

for lunch between 11:30 and 13:30. The consecutive courses should be in the nearby 

rooms. Finally, from rooms’ point of view, the student group size should fit the room’s 

capacity and two different courses should not be scheduled at the same time in a room. 

Moreover, each course should be scheduled in an appropriate room, such as a tutorial 

class or a lab.  

4.2 CONSTRAINTS: 

The goals described above are accomplished by means of predefined constraints. Thus, 

the timetabling problem aims to satisfy a set of constraints. These constraints are 

divided into two groups: hard constraints and soft constraints. Hard constraints are the 

strict ones therefore violation of them is not allowed. A timetable is called “feasible”, 

meaning that it can be used by the university it was made for, when all hard constraints 

are satisfied. However, satisfaction of all soft constraints is not necessary for a 

timetable, but the “quality” of a timetable increases by the number of soft constraints 

satisfied. Thus the main aim in course timetabling is constructing feasible timetables 

with high quality.  
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Hard constraints: 

Although the hard constraints used in academic institutions are problem specific, some 

hard constraints are common it most course timetabling problems. There is a list of 

widely used hard constraints (Pongcharoen et al. 2007).  

H1 : Students can only have one lecture at a time. 

H2 : A lecturer can only give one lecture at a time. 

H3 : A room  can only be used for one lecture at a time. 

H4 : Lecturers’ must be available at lecture times they are given. 

H5 : Specific room requirements (such as labs) are taken into consideration. 

H6 : The capacity of  rooms must match with student size. 

H7 : Two or more complementary blocks of a course cannot be scheduled in the same 
day. 

Soft constraints: 

Likewise hard constraints, soft constraints are also change by the academic institutions’ 

preferences. A list of soft constraints that should be satisfied in order the timetable to be 

considered of high quality is given below (Pongcharoen et al. 2007).   

S1 :  Lecturers should have at least one day free for academic studies. 

S2 : The timetables for rooms should be as compact as possible. 

S3 : The number of free periods in students’ timetables should be minimized. 

S4 : An hour lunch break should be scheduled between 12:00 and 15:00 

S5 : Students should have consecutive lectures in the same building. 

Burke and Petrovic (2002) pointed out that it is almost impossible to construct 

timetables satisfying all individual preferences. 

4.3 ACQUISITION OF DATA: 

In order to start construction of a timetable, all the necessary data must be available. A 

general course timetabling problem requires all information about resources ( including 
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the number of rooms, their size and type, availability of lecturers and the information 

about who taught what, the number of hours a lecturer taught in a week, etc.), 

educational program requirements (which group of student must take which courses). 

Some specific information such as lecturers’ preferences (one free day, morning or 

evening lessons, etc.), academic institution’s regulations (certain days can be allocated 

social activities).  

There are different sources for getting data. While most of the researchers use the 

unpublished data of their own academic institution, Burke and Petrovic (2002) used the 

data that are available online. 
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5. METHODOLOGY 

In order to solve the university course timetabling problem, an automated timetable 

construction based on genetic algorithm has been designed and implemented. To 

demonstrate our approach, a course timetabling problem in the Faculty of Arts and 

Sciences at Bahcesehir University is used. In this chapter, the details of the 

implementation of the proposed novel genetic algorithm for a real life course 

timetabling problem are described. 

5.1 CHROMOSOME REPRESENTATION 

The chromosome representation is one of the most significant parts in genetic 

algorithm, since every chromosome must represent all the information required for the 

construction of a whole timetable. Moreover chromosomes should be represented in 

such a way that is efficient for genetic operations such as crossover and mutation and 

fitness calculation.  

            DAYS 
HOURS       .   . MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY 

08:30-09:30 1 10 19 28 37 

09:30-10:30 2 11 20 29 38 

10:30-11:30 3 12 21 30 39 

11:30-12:30 4 13 22 31 40 

12:30-13:30 5 14 23 32 41 

13:30-14:30 6 15 24 33 42 

14:30-15:30 7 16 25 34 43 

15:30-16:30 8 17 26 35 44 

16:30-17:30 9 18 27 36 45 

 

Figure 5.1: The University Week 

In this study we are dealing with direct encoding where each chromosome represents a 

candidate solution. There are 5 working days from Monday to Friday and 9 hours each 

day (from 08:30 - 17:30) so there are totally 4595 =×  timeslots in a week (See  Figure 

5.1). We need to construct a weekly timetable for each room. So we design an array by 
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adding up the 45 timeslots of each room end to end as shown in Figure 5.2 and we 

called it as Rooms Timetable. To clarify, we can say that first 45 elements of the array 

correspond to the first room; second 45 elements from 46 to 90 correspond to second 

room and so on. Thus, this array is of size ×45 number of rooms. And also we have 

another array called Course List. The elements of this array are all courses given in a 

particular semester. Moreover elements also keep the information about the lecturer and 

duration of the course. A chromosome is represented by one dimensional, 1×m  array 

where m is the number of courses in the Course List. So each element of the 

chromosome has a relation with the same numbered element of the Course List. Each 

gene in a chromosome (each array element), say the chrm[i], holds the index value of 

the room timetable element where the ith course was scheduled to. 

 

Figure 5.2: Chromosome Representation 

For instance, the 2nd element of chromosome is 45, as seen in the Figure 5.2, since 

Course #2 was scheduled to the 45th element in the rooms’ table. This means that 

Course #2 is given on Friday, starts at 16:30 at Room #1. Some courses are two or three 

hours long, so each chromosome element denotes the beginning time of each course. 
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We understand who gives that course and how long it takes from the information 

embedded in the Course List element. 

5.2 FITNESS FUNCTION 

Fitness function measures the goodness of the chromosomes.  As the number of the 

constraints that a chromosome satisfied increases, so does the chromosome’s goodness. 

So the evaluation of the chromosomes and the selection of the constraints are the other 

important steps of genetic algorithm.  

In general, a fitness value for each chromosome is calculated with a reciprocal function 

of unsatisfied constraints. Some of most common used fitness functions are
x+1

1 , 
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1  (Bhatt and Sahajpal, 2004). We used  
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in our study as fitness function. Thus, each chromosome has a fitness value between (0, 

1] and if a chromosome satisfies all constraints it has 1 as fitness value. 

Timetabling problem differs from other optimization problems by the presence of both 

hard and soft constraints. Hard constraints that must be satisfied in order to keep our 

timetable feasible are listed below: 

• Lectures can be scheduled to only appropriate room (a lab or tutorial class) 

• No lecturer or student group can have more than one class at a time. 

• Room capacity and student group size must match. 

• A classroom can only be used for one lecture at a time. 

• Two or more complementary blocks of a course cannot be scheduled in the same 

day. 

And also soft constraints that can be violated but they should be satisfied in order to get 

a timetable with high quality are listed below: 

• Lecturers should have at least one day free for academic studies. 
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• The number of free periods between two consecutive lectures in students’ 

timetables should be minimized. 

• One hour lunch break should be scheduled between 12:00 and 15:00 

• No student group should have less than 2, more than 7 hours lecture in a day. 

 

Managing with both hard and soft constraints is an important aspect for timetabling 

problems. Lewis (2007) categorizes the metaheuristic algorithms into three groups 

according to their approach for dealing with the constraints.  

One-Stage Optimization Algorithms: Satisfaction of both the hard and soft constraints is 

taken into consideration simultaneously. (Carrasco and Pato 2001) 

Two-Stage Optimization Algorithms: Satisfaction of the soft constraints is only taken 

into consideration after a feasible timetable has been found. (Burke et al. 2003; Kostuch 

2005) 

Algorithms that allow Relaxations: Violations of the hard constraints are disallowed 

from the outset by relaxing some other feature of the problem. Attempts are then made 

to try and satisfy soft constraints, while also giving consideration to the task of 

eliminating these relaxations (Merlot et al. 2003). 

In our study we construct a two-stage optimization algorithm. Unlike the classical 

genetic algorithms, violation of hard constraints is not allowed in any evolution step of 

chromosomes, i.e. all chromosomes represent a feasible solution. And then the violation 

of soft constraints are tried to be minimized. Thus, fitness function only considers only 

the satisfaction of soft constraints. 

 

5.3 INITILIZATION OF THE POPULATION: 

The initialization procedure is another important issue in all genetic algorithms because 

it should create a random initial population which spread in the whole search space. 

Diversity of initial population gives algorithm the opportunity to search the whole space 

of possible solutions and not to stuck with the local optima. In our study, 100 

chromosomes are used for initial population and they are generated randomly. 
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5.4 SELECTION: 

After the evaluation of the chromosomes, some of the chromosomes are chosen in order 

to create the next generation. We did the selection in two stages. At first, we rank the 

chromosomes according to their fitness value and then we chose first 20 chromosomes 

for breeding. At the second stage, we chose randomly 40 chromosomes other than first 

20 chromosomes for breeding. The idea is preserving good genetic material by choosing 

the first 20 chromosomes, and adding diversity to the search by letting less fit 

chromosomes into the reproduction. 

5.5 GENETIC OPERATORS: 

Crossover: 

In our study two-point crossover is used to mix the genetic material of two parents to 

produce offsprings with a crossover probability of pc. The crossover procedure is 

described in the following: 

1. Randomly choose crossover points. 

2. Swap genetic material between two chromosomes. 

3. In the case of duplicates, randomly choose a free and feasible timeslot and insert 

there. 

Note that the important part of crossover procedure is coping with the duplicates. One 

or more genes in the changing part of the chromosomes can be seen twice in the 

resulting offspring. This means that two different courses start at the same time, at the 

same room. To overcome this conflict, we find a free timeslot and insert one of the 

conflicting courses there. Finally, we get a feasible offspring. 

Mutation: 

After we applied crossover to certain chromosomes, we also applied mutation with a 

low probability of mutation pm and by the mutation procedure which is described in the 

following: 

1. For each chromosome of which crossover applied before, run the following steps. 
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2. Generate a random number between 0 and 1. 

3. If this random number is less than the mutation probability, then choose a gene 

randomly and change it by a feasible timeslot. Here feasible timeslot means a timeslot 

which is free in the timetables of lecturers, student groups and also rooms at the same 

time. 

4. If this random number is greater than the mutation probability, then keep the 

chromosome un-mutated. 

Both crossover and mutation is applied under the condition of satisfying hard 

constraints, i.e. the resulting chromosomes are also feasible. 

 

 

Figure 5.3: Flow chart of Genetic Algorithm 

Replacement: 

In order to keep the best chromosomes in every generation, we used a simple 

replacement strategy. The best 20 chromosomes of each generation are copied to the 

next generation. Then select 60 chromosomes randomly from remaining 80 

chromosomes of the initial population and then replace with 60 offspring chromosomes 
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(20 of  these 60 offsprings are produced from best 20 chromosomes of the initial 

population and remaining 40 offsprings are produced from randomly selected 40 

chromosomes.). This replacement technique guarantees that the best chromosomes of 

each generation will be at least equal to the best chromosomes of the previous 

generation. 
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6. EXPERIMENTAL RESULTS 

To demonstrate the efficiency and performance of the genetic algorithm we constructed, 

several experiments were carried out with the data coming from Bahcesehir University 

Faculty of Arts and Sciences. The faculty has 5 departments and more than 364 

students. The model was tested with real data containing 114 courses to be scheduled 

into 45 timeslots and 12 rooms.  

In the first experiment, we have aimed to analyze the convergence of the genetic 

algorithm. The genetic algorithm increases sharply when generation number is between 

zero and a thousand, however after 5000 generations nearly the same fitness value is 

observed (See Figure 6.1). Although we reached 30000th generation, we did not get a 

solution with a fitness value of 1. It is almost impossible that generating timetables 

which satisfy all individual preferences. 

 

Figure 6.1: Fitness vs. Number of Generation 

In Figure 6.2, we present the evolution of proposed genetic algorithm with various 

probability values of genetic operators. Crossover and mutation probabilities, pc and pm 

respectively, used in experiments are given below: 
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Experiment# pc pm 

1 0,8 0 

2 0 0,8 

3 0,8 0,8 

4 0,8 0,5 
Table 6.1 Crossover and mutation probabilities used in experiments. 

The following results can be concluded from these experiments: From experiments #1 

and #2, we can conclude that we get better solutions with applying only mutation. 

However, if we take into consideration all experiments, convergence is higher in the 

experiments where both genetic operators are used, namely #3 and #4. Even though, we 

cannot conclude that the higher the probability of the genetic operator, the higher the 

convergence since experiment #4 has better fitness than experiment #3.  

 

 
Figure 6.2: Fitness Changing by Probability of Genetic Operators  

And finally, we want to analyze the population size effect on the convergence. We tried 

generations of size 100, 200, 400 and 800. The results can be seen in Figure 6.3. There 



35 
 

is not a uniform convergence related to the population size. Since population size does 

not affect the genetic algorithm, it is suggested to work with small population sizes in 

case of long running time. 

 

Figure 6.3: Fitness Changing by Population Size 

100 
200 
400 
800 
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7. CONCLUSION AND DISCUSSION 

In general, all metaheuristic search methods are guided with a random decision method. 

The genetic algorithm is an example for these methods. The genetic algorithm is a 

probabilistic guided random search since it guides its search based on probability. The 

major characteristics of the genetic algorithm are randomized search for the solution, 

crossover and mutation operations and also evolution of the solutions based on the 

fitness values. Although the method selects the search directions randomly, convergence 

of the method is satisfied by the genetic operators used in evolution steps.  

In this study, we focus on the university timetabling problem whose solution can be 

obtained with a genetic algorithm. The problem is regarded as scheduling a set of 

courses into a set of timeslots and a set of rooms without violating hard constraints and 

satisfying soft constraints as possible as much. The hard constraints must be satisfied in 

order to obtain a feasible solution. However, due to the random nature of the search and 

blindness of the genetic operators, traditional genetic algorithms severely violate these 

constraints many times during the evolution process.  This aspect of the operators also 

makes the convergence time of the algorithm too long.  We addressed this problem by 

introducing modified genetic operators which do not allow violations of any hard 

constraints, which in turn produce only feasible solutions. Since the proposed method 

deals with only feasible solutions, efficiency of our algorithm is much better than the 

classical genetic algorithm. 

Another problem with the genetic algorithm is the determination of the best parameter 

values, such as the population size, mutation rate, etc. It is also very hard to 

theoretically determine how the genetic operations affect the macroscopic behavior of 

genetic algorithms such as convergence of solutions. Thus, we try to determine 

sensitivity of the method to parameters experimentally.  

Both crossover and mutation operators are needed in order to prevent the search to be 

trapped in local minima. Higher probability values for these operators increase the 

efficiency of the algorithm. And also we realize that increasing the size of the 

population increases the convergence of the algorithm with respect to the generation 

number with the cost of high computation. 
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The advantages and disadvantages of genetic algorithms are not similar to local search 

methods. Some advantages include: self-guidance, flexibility, simple and 

straightforward computation, and easy implementation of parallelism. Disadvantages 

include the chance-dependent outcome and lengthy computation time, yet we may or 

may not obtain satisfactory solutions. One important consequence of this finding is the 

realization of applicability of hybrid systems, i.e., genetic algorithms embedded in other 

methods such as hill-climbing, fuzzy systems, and etc. This strategy may produce more 

acceptable results and generate practical solutions to the problem in a reasonable limit 

of time. 

Efficiency of the method can also be increased by accounting for blindness of the 

genetic operators. For example, mutation operations can be performed firstly on the 

genes which cause dissatisfaction of the soft constraints. 

The functionality of the method can be increased by providing a choice of several 

different good schedules from which the user may choose the best, or by allowing user 

to make manual adjustment on the timetable.  
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