T.C.
BAHCESEHIR UNIVERSITESI

NEW LOGIC ARCHITECTURES
FOR ROUND ROBIN ARBITRATION
AND THEIR AUTOMATIC RTL GENERATION

M.S. Thesis

ONUR BASKIRT

ISTANBUL, 2008

T.C.
BAHCESEHIR UNIVERSITESI

INSTITUTE OF SCIENCE

ELECTRICAL & ELECTRONICS ENGINEERING

NEW LOGIC ARCHITECTURES
FOR ROUND ROBIN ARBITRATION
AND THEIR AUTOMATIC RTL GENERATION

M.S. Thesis

ONUR BASKIiRT

Advisor: Dr. H. FATiH UGURDAG

ISTANBUL, 2008

T.C

BAHCESEHIR UNIVERSITESI

INSTITUTE OF SCIENCE
ELECTRICAL & ELECTRONICS ENGINEERING

Name of the thesis: New Logic Architectures

for Round Robin Arbitration

and Their Automatic RTL Generation
Name/Last Name of the Student: Onur BASKIRT
Date of Thesis Defense: June 6, 2008

The thesis has been approved by the Institute of Science.

Prof. Erol SEZER
Director

I certify that this thesis meets all the requirements as a thesis for the degree of Master
of Science.

Asst. Prof. Biilent BILIR
Program Coordinator

This is to certify that we have read this thesis and that we find it fully adequate in
scope, quality, and content as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Asst. Prof. H. Fatih UGURDAG

Asst. Prof. Sezer GOREN UGURDAG

Prof. Nizamettin AYDIN

Asst. Prof. Biilent BILIR

ACKNOWLEDGMENTS

It has been an adventurous journey. This journey is called “MS Thesis”. When I was a senior
at Bahcesehir University, [saw a course name in the elective course list in Spring semester.
That course was “EENG4050 VLSI Design”. Then, I picked that course and my journey
started at point. Thanks to EENG4050, I met Dr. H. Fatih Ugurdag and I entered the world of
digital design.

I would like to express enormous appreciation to my advisor, Dr. H. Fatih Ugurdag, for his
invaluable guidance throughout my long and adventurous MS journey. His many years of
digital circuit design experience in Silicon Valley has allowed him to focus on critical and
interesting issues of digital design problems. It has been a matchless privilege to be his
assistant, and without doubt the credibility and prestige of his name will continue to open
doors for me in the future. ACTreS project with Intersil in Silicon Valley, FPGA based GPF
card Project with Bogazi¢i University and MIT, and my STMicroelectronics employment is
an example of his prestige, credibility, and network. I also want to express my gratitude for
Dr. Sezer Goren Ugurdag. It was her connections that allow us to go to University of
California at Santa Cruz as a group (BUVLSI) for a three month research appointment in the

summer of 2006 for HDLtk project.

I would like to thank the members of my thesis committee for their valuable feedback. I
would like to thank Dr. Biilent Bilir for his insightful comments. Also, I would like to thank
Dr. Nizamettin Aydin, a member of BUVLSI.

For their help and invaluable friendship, my special thanks go to Aylin Saydag and Sait Can
Saydag. I will never forget my Orange County visit, their kindness and warmth. Additionally,

I am extremely grateful to Aylin and Sait for their help with proofreading of my thesis.

I would like to thank Erin¢ Topdemir, who was always there for me as a fellow graduate
student, as a colleague (teaching — research assistant), and more importantly as one of my best
friends. By the way I would like to thank Bahcesehir University supporting me as a graduate
assistant from 2005 to 2007. I also thank all of my ex-colleagues at Bahcesehir University.

iii

I sincerely appreciate everybody’s kindness and warmth at ST. They have truly created a
wonderful environment, and I am very pleased to be a member of this team. First, I would like
to thank my manager Fatma Ozdemir for her understanding and endless support. I want to
thank Levent Cetrez for his technical guidance and patience. I have learnt many things from
him. I thank my team leader Gorkem Canverdi and my teammate Levent Ergiin. Whenever |
got in trouble, they always helped me. I would like to express my graditute to Omer Yetik for
proofreading and his amazing impersonate talent. I am very thankful to Burak Akoguz for
technical suggestions and our enjoyable table tennis matches. I thank Erdal Oztiirk for
discussions on technical and more importantly non-technical issues. I also thank Baris Giiven,
Cagdas Sengel, Sinan Topg¢u, Orkun Saglamdemir, and the funniest colleague of all Sirma
Altay. There are so many people that deserve my appreciation for their friendship, support,
and help. If I had to explain why I have to thank each person, these acknowledgments would

have to be a chapter in this thesis.
Finally, I would like to thank my wonderful parents. Words cannot convey my appreciation of

their love. This thesis would not have been possible without their help. For their dedication to

my education, I dedicate this thesis to my parents.

v

ABSTRACT

NEW LOGIC ARCHITECTURES
FOR ROUND ROBIN ARBITRATION
AND THEIR AUTOMATIC RTL GENERATION

BASKIRT, Onur
Electrical & Electronics Engineering
Advisor: Asst. Prof. H. Fatih UGURDAG

June 2008, 72 pages

Resource arbitration is a major problem in communications and computer systems. One of the
most prevalent usage areas of arbitration is in computer networks. In gigabit and terabit
routers, the challenge is to design ultra high speed, cost effective, and fair arbitration
hardware to speed up packet forwarding. This issue is highly important for supporting high

quality multimedia services in next generation networks.

This thesis is focused on architectures for fast and area efficient round robin arbiters (RRA)
and their Register Transfer Level (RTL) design generation. One of the most notable works in
this area is the work of Pankaj Gupta and Nick McKeown at Stanford University — which we
call Stanford Round Robin Arbiter (STA_RRA). Although there have been further
enhancements on top of STA_RRA, we have seen that there is still room for improvement in

both speed and area departments.

This thesis work proposes two new RRA logic architectures with better speed or area metrics
than STA_RRA and its variants. One of the proposed RRA designs is focused on achieving
minimum area results, and the other one is designed for speed. The novelty of these designs is
in their use of parallel prefix tree (PPT) algorithms for thermometer encoding and priority
encoding operations. Synthesis of proposed arbiters and their rivals were carried out from 8
bits to 256 bits. Benchmarks of 256 bits arbiters show that our proposed architectures perform

better than their rivals by a factor of 42% in speed and 22% in area.

Keywords: Round Robin Arbiters, RTL Generation, Parallel Prefix Tree Algorithms

OZET

DEGISMEZ ZAMAN PAYLASIMLI iS-DUZENLEME iCIN YENI MIMARILER
VE BU MIMARILERIN OTOMATIK YTS URETECLERI

BASKIRT, Onur
Elektrik - Elektronik Miihendisligi
Tez Danismant: Yrd. Dog. Dr. H. Fatih UGURDAG

Haziran 2008, 72 sayfa

Islem isteklerinin siraya konulmasi (is-diizenleme), bilgisayar ve iletisim sistemlerinin 6nemli
problemlerinden birisidir. Is-diizenleme isleminin en ¢ok kullamldigi alanlardan birisi
bilgisayar aglaridir. Gigabit ve terabit yonlendirici tasariminin onemli ugraslarindan biri,
hizli, maliyeti diisiik ve adil is-diizenleyici donanimlar1 tasarlayarak paket yonlendirme
islemini hizlandirmaktir. Bu konu, yiiksek kaliteli, gelecek nesil, ¢oklu-ortam servislerinin

desteklenmesi icin son derece kritiktir.

Bu tezde, hizli ve alan acisindan verimli is-diizenleyici mimarilerine ve bunlarin Yazmag
Transfer Seviyesi (YTS) tasarim iireteglerine odaklanilmistir. Bu alanda en ¢ok dikkate deger
calisma Stanford Universitesi’nden Pankaj Gupta ve Nick McKeown’un calismasidir. Biz bu
calismaya STA_RRA adin1 verdik. Daha sonralart STA_RRA iizerinde iyilestirme ¢alismalari

yapilmasina ragmen, hala hiz ve alan agisindan ilerleme kaydedilebilecegini gordiik.

Bu tezde, STA_RRA ve degisik tiirevlerinden hiz ve alan agisindan daha iyi iki yeni is-
diizenleyici mimarisi onerilmektedir. Onerilen is-diizenleyici tasarimlarindan birisi minimum
alan sonuclarima odaklanirken, digeri hiz i¢in tasarlanmistir. Bu tasarimlardaki yenilik,
termometre kodlamasinda ve Oncelik kodlamasinda Paralel Prefiks Aga¢ yordamlarinin
kullanilmasidir. Onerilen ve rakip is-diizenleyiciler, 8 bit’ten 256 bit’e kadar sentezlenmistir.
Yapilan karsilastirma ¢alismalarinda, bizim is-diizenleyicilerimizin rakip is-diizenleyicilere

gore hiz acisindan 42% ve alan agisindan 22% oranla daha 1yi sonug¢ verdigi goriilmiistiir.

Anahtar Kelimeler: Degismez Zaman Paylasimli Is-diizenleyiciler, YTS Uretimi, Paralel

Prefiks Aga¢ Yordamlari

vi

TABLE OF CONTENTS

LIST OF TABLES ..oaeeeeeeeeeeercccrneeeeereessssssssssssssssssssssssssasssssssssssssssssssssssssssssssssassssssssssssssssnses ix
LIST OFFLIGUREScooiiirrrneeeeeeeececssssssesereeccsssssssssssssssesssssssssasssssesssssssssssssssssssssssssssssssasens X
LIST OF ABBREVIATIONS oouueeeteeeecessssssneeesesssessssssssses xii
1. INTRODUCTIONccceececrrrrrneeeeeccccssssssssseeesesssssssssssssssessssssssssssssssssssssssssssassssesssssssssssassses 1
2. PREVIOUS WORK ..uuuuuueeeerreeeeersssssnneeessess 7
2.1. STA_ RRA ARCHITECTURE....uuuueeeteeeeeercrrrreneseseessssssssssssssssssssssssssssssssasssssssssssssases 7
2.1.1. Simple Priority ENCOAErcccoviicirnenssencsssancsssancssnscssasscssassessasssssassssasssssans 10

2.1.2. Thermometer ENCOAEr.......ueeessessesssssssssssssssssssssees 12

2.1.3. N 10 LOGN ENCOUETcueeeeereeeeeeeeereeesereesseesesses 14

2.2. CHN_RRA _PPE_CONFLICT .uuuueeeeteeeerssssssneeesesesssssssssssssssssssssssssssssssasssssssssssassses 16
2.3. CHN_RRA_PPE_NONCONFLICTcccrvrrreeeeeeccccssssessesseeecssssssssssssssescsssssssssassass 18
2.4. LITERATURE SUMMARY ...oueeeeeeeeeeeeeeeeeeeeeeseeeesss 21

3. PROPOSED ARCHITECTURES........cccceevrrrrrnerereesssssssssassssesessssssssssssssssssssssssssnssssasssss 24
3.1.PPT_RRA_RS ARCHITECTURE........urrreeerrererssesssssaseseessssssssssesssssasssssssssssassses 24
3.1.1. OR BiNAry TTee ..cccccvueiciraricssanicssancsssanessasesssnsesssssessssssssssssssasssssasssssssssssasssssans 26

3.1.2. Parallel Prefix Tree Pre Thermo Encoder OVervieweeeeeeeeeeeeeeeeeeeeeeee 28

3.1.3. Brent Kung PPT_Pre_Thermo Architecturecccccceeeeecurcscnrccnncscnrcsnncsnns 30

3.1.4. Ladner Fisher PPT_Pre_Thermo ArchiteCtureccceeeeeeeneeeeeeceseeseessenes 31

3.1.5. Kogge Stone PPT_Pre_Thermo Architecturecceccceeceicscrnrcscnercsssnscsanns 33

3.1.6. Han Carlson PPT_Pre_Thermo ArchiteCtureeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 33

3.1.7. EdZe DeteCtOruueeiccscsnriccsssaneecssssssecssssssasssssassesssssssasssssassssssssssssssssssssssssnnnes 34

3.2. PPT_RRA_BT ARCHITECTUREcocverrreeerrerersssssssasessessssssssssssssssasssssssssssasssss 37
3.3. BOW-TIE ARCHITECTUREuuuuetttteeerrrrrrrnneeeresesssssssssasssssssssssssssssssssasssssssssssasssss 39
3.4. ENHANCEMENTS ON PREVIOUS WORKuuueeeeeeeeeeeeeeeeeeeeeeeeesesssssesssssssssssses 42
3.4.1. STA_RRA N2LOGN ATrChit@CtUIE eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeesesssssesssssssssssssesees 43

3.4.2. STA_PPT _RRA ATXCRItECIULIE ceuuuueeeeereeeeeeneeeeeceeseereesseeeesssssssssssssssssssssssssssssses 44

3.4.3. CHN_PPT_RRA_PPE_Conflict Archit@Cture.....eeeeeeeeeeeeeeereeeeeeeeescesessesssenes 45

3.4.4. CHN_PPT_RRA_PPE_NonConflict Architecture.........eeeeeeeeeeeeeeeeeeeeeeeeeeee 46

vii

4. AUTOMATIC RTL GENERATIONcoiinineienensansansacsanssessesssssessassassassassasssssssssses 47

4.1. STA_RRA GENERATIONcuuniirinrunsrnsnesanssesnssensansassansssssesssssassassassassassasssssssssses 47
4.2. CHN_RRA GENERATION....ccccosersursuecsuncsunssnssaessasssecssessasssessasssassssssssssassssssassassns 49
4.3. PPT_RRA GENERATIONcciininrinsensnnssanssnnsanssusssncssessasssessasssasssssssessassssssasssssas 50
4.4. BOW-TIE_RRA GENERATION.......coctnirrrensnnsensensunsansaessessessessassassassassassssansances 51
S. VERIFICATION AND SYNTHESIS METHODOLOGYccuueeerensensunsansaesaesacsnenns 53
S.1. VERIFICATION .ucioiinecsnncsnnssessaessnnsancssessasssassasssasssssssessassssssasssssssssssossassssssassssssns 53
S5.2. SYNTHESIS METHODOLOGY ...cucovienurisunsensunssensancssessasssnssacssassssssssssassssssasssassns 56
6. SYNTHESIS RESULTS ..couoininininrnnsinsnnsnessnssisssssssssssassassssssssssssssssssssssssassassssssssssssssss 59
7. CONCLUSION AND FUTURE WORKccounininrensnnsnnsanssessessessessassassasssssassssssssses 66
REFERENCES ...ucouiiniiniiinnninnesinssesssessesssessasssssssessasssessssssassssssssssasssassassssssssssasssasssassassssssss 68
VITA criiieninnnennnnnnssessasssssssesasssasssessasssssssssssessassssssassssssssssssssassssssassssssssssasssassssssassassssessaese 72

viii

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 3.1

LIST OF TABLES

: STA_RRA_N2N data fIOWueeeee e 9
¢ 8-bit Smple_PE truth table...........ccoiiiiiiiiiiiiiee e 10
: Truth table for tothermo blocK...........cooviiriiiiiiiiiiiecceeee 13
: Truth table for N2LOGN ENCOdercooiuiiiiiiiiiiiiiiiiiiceieeeeceeeneeee e 15
: RR bBIOCk’s truth tableccceiiiiiiiiiiiiiiieieeeeeee e 40

X

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4

Figure 1.5
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

Figure 3.10 :
Figure 3.11 :
Figure 3.12 :
Figure 3.13 :
Figure 3.14 :
Figure 3.15 :
Figure 3.16 :
Figure 3.17 :

LIST OF FIGURES

Block diagram of a conventional crossbar Switchcccooviiiiiiiiiiiiinniinn. 2
High level block diagram of the schedulerccccooovieiiiiiniiieiieceeeiees 3
HOL blocking problem without VOQs and with VOQSc.cccccvveeviieenieennne 4
Block diagram of a scheduler/arbiter based on RGA/RG maximal size
matching algorithmcoooiiiiiiiiiii e 4
32X32 Network switch architeCtureccceeevueeniiniieinieiiieieeeeeeeeeeeen 5
STA_RRA_N2N archit@€CTUTIEccoevviiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee s 9
Thermometer @NCOAINEceevuiiiriiiiiiieiiiee ettt et e e 12
N2LOGN encoder OPEration..........c.eeerueeerieerniieerireeeiieesiteesreeesireeesineesieeens 14
CHN_RRA_PPE_CONFLICT architecture...........ccocueemeerieenienieeienieeieene 16
Iterative SChedUlingcoviuiiiiiiiieiieee e e 17
CHN_RRA_PPE_CONFLICT architecture’s timing paths..........c.cccccveeenneen. 17
CHN_RRA_PPE_NONCONFLICT architecture..........ccccceeevueeenveeenveennnenn. 19
Proposed CHN_RRA_PPE_NONCONFLICT architectureccccccocveeuneenee 20
Optimized CHN_RRA_PPE_NONCONFLICT architecture......................... 20
PPT _RRA_RS ArChiteCIUIE .ccvvveneeeee e e e e e e e e 25
OR_BT with OR gates and OR_BT with NOR-NAND gates..........ccccceuueene. 27
8-bit and 16-bit NOR-NAND OR_BT.....c.cccceriiniiiiniiniiieeeeeeeeeeeee 27
CMOS OR gate and CMOS NOR gate........ccoocuieeiiiiiieeiiiiieeeeiiieeeeiieee e 28
CMOS AND gate and CMOS NAND gate.........coeevviiieeeniiieeeeiiieeeeiieee e 28
Taxonomy Of PPT tOPOIOZIEScccueiiiiiiiiiiiiiiieeiieeeeete e 29
PPT_Pre_Thermo eXamplecccceeeriieiiiiiniiieiiieeeiieeeiteesiee et 30
BK_PPT _Pre Thermo StIUCTUIEoevuueeeeiiee e eeeeeee et e e et eeeeanaeeeeees 31
LE PPT Pre_Thermo SIIUCHULEuuueiieeeeeeieeee ettt e e et e e eveaeeeeees 32
Equivalence of NOR—NAND—INV PPT and OR PPTccccceniinnnne. 32
KS_PPT_Pre_Thermo StruCture...........ccccveevueenieeiieenieiieenieeieesre e 33
HC_PPT _Pre_ Thermo SIIUCTULEccoeeevueieee et eeeeeeeeeeeeeeeeeeaeneaes 34
Edge detector’s top level block diagram..........ccceeeveeeiveenciiieniiieeniee e 34
Edge detection eXamples........ooc.eeiviiiiiiiiiiiieiiee ettt 35
Edge detection architecture is constructed by AND—INYV gates................... 35
Edge detector OPtMIZAtIONeeevieeiieeeiiieeiieeeiieeeieeeeieeesreeesereeeseaeeeeneeas 36
Optimized edge dtECIOTcevuiiieiieeeiieecee et et re e e ae e e 36

Figure 3.18 :
Figure 3.19 :
Figure 3.20 :
Figure 3.21 :
Figure 3.22 :
Figure 3.23 :
Figure 3.24 :
Figure 3.25 :
Figure 3.26 :
Figure 3.27 :
Figure 3.28 :

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

PPT _RRA_ BT QrChItECIULE evvveeeeeeeeeeeeeeeee et e e e e e e e 37
PPT_RRA_BT architecture with simplified multiplexer..............cccceecvvrenneenn. 38
BOW-TIE_RRA high level architecture............ccocceeeviiiieniiiiniiiiiieeieeeeeene 39
BOW-TIE_RRA’s building bloCkS........cccccueeriiiiiiiiiiiiiiniieiiiceecceeeee 40
RR block’s all pOSSIDIE STALESccvveeriieeiiieeiiieeiieeeeeeeieeeeiee e e esaee e 41
GUNIT BIOCK ..ttt sttt st e 42
STA_RRA_N2LOGN archit€Cture...........cocceeruerueenieinieenieeieenieeeenieeneenee 43
710 1eqUESt EXAMPIE ..cneviiiiiiiiiiieiiieeete ettt 44
STA_PPT _RRA ArChiteCtUIE c.covvvveeeee et e e e e eeeeenens 44
CHN_PPT_RRA_PPE_Conflict archit€Ctureuuuueeeeeeeeeeeeeeeeeeeeeeeeeennn. 45
CHN_PPT_RRA_PPE_NonConflict architeCtureccccevcveeenveeesveennnenn. 46
STA_RRA GENETALIONeeeuiiiiiiiiieiiieeiiieeeite ettt ettt e e ireeeiteesiaeesiaee s 48
CHN_RRA_PPE_Conflict generationccceeeruveeeiuieesiieeenieeenreeesveeeeneens 49
CHN_RRA_PPE_NonConflict (*OPTIMIZED) generation.......................... 50
PPT_RRA_RS ENeration..........ccoocueiiiiiiiiiiiiiiieiieeeiieeeiteesee et 51
PPT_RRA_BT ZENETationccovuiiiiiiiiiiieiiieeeiieeeieeeeite et 51
BOW-TIE ZENEIatioN........cceeeruiieriieeiiieeiiieeiieeeiteeeieeesieeesseeeseseeensneeeeneeas 52
Verification StrAtE@Y........eeeeuieeriiieeriieeiieeerieeerteeeiteeeieeeeaeeesreeesereeensaeeeeneens 54
Synthesis MethodOlOZYcovuiiiiiiiiiiiiiie e 57
8 Bit RRAS Synthesis r€SUILS.......c.ueiiiuiiiiiiiiiiiieeiiceiteeee e 59
16 Bit RRAS Synthesis TeSUILS.......cueierieeriiiieeiieeeiie et 60
32 Bit RRAS SyNthesis r@SUILS.......c.ueeeiiiieiiiiieeiiieeiee ettt 61
64 Bit RRAS Synthesis reSUlLs..........coouiiiriiiiiniiiiiiieeieeeeeeeee e 62
128 Bit RRAS Synthesis re€Sults........coooueeriiiiiiiiiiniieiniieeieeeeeeeee e 63
256 Bit RRAS Synthesis reSultS........ceccuiieeiiieniiiieiiie et 64
Synthesis results at first positive or zero slackcccovevveiieeniiieeniieenieeeee. 65

Xi

LIST OF ABBREVIATIONS

Round Robin Arbiter

Stanford Round Robin Arbiter

Chinese Round Robin Arbiter
Programmable Priority Encoder

Binary Tree Search

Parallel Round Robin Arbiter

Improved Parallel Round Robin Arbiter
Switch Arbiter

Ping Pong Arbiter

Parallel Prefix Tree Round Robin Arbiter
Parallel Prefix Tree Round Robin Arbiter Resource Sharing
Parallel Prefix Tree Round Robin Arbiter Best Timing
Resource Sharing

Round Robin

Grant Unit

Virtual Output Queue

OR Binary Tree

Simple Priority Encoder

Thermometer Encoder

Han Carlson

Brent Kung

Kogge Stone

Ladner Fisher

Complementary Metal Oxide Semiconductor
Set Max Area

Compile Incremental

Map Effort High

No Constraint

xii

RRA
STA_RRA
CHN_RRA
PPE

BTS

PRRA
IPRRA

SA

PPA
PPT_RRA
PPT_RRA_RS
PPT_RRA_BT
RS

RR

GUNIT
vVOQ
OR_BT
Smple_PE
tothermo
HC

BK

KS

LF

CMOS
SMA

CI

MEH

NC

1. INTRODUCTION

As chip manufacturing technology shrinks toward sub-nanometers, a chip die will
comprise more and more of processing blocks. Interconnection, communication, and
utilization of shared resources of these blocks are getting more complicated for
System-on-Chip (SoC). This complex structure introduces an important challenge to
the designer: fast and fault-free on-chip communication. When processing blocks
access a shared resource simultaneously, arbitration of these clients has to be
ensured. Priority encoders (PE) and arbiters are widely used to allow only one block
to access a shared resource. Priority encoding scheme always selects the highest
precedence as defined by a priority sequence. As a result of this static scheme,
unfairness is revealed. This unfairness is also called starvation. Conversely,
programmable priority encoder (PPE) provides a non-static scheme to alter the
priority sequence during an operation. These are the core functional blocks of round
robin arbiters (RRA). If an arbiter is designed in round-robin fashion, the priority of
the system is altered in every cycle, and round-robin arbiter selects the highest
priority starting from the last selected request. This technique almost always

guarantees fairness.

RRAs are widely used in network switches and routers. Network switches and
routers consist of crossbar switches as the internal switching fabric, as shown in
Figure 1.1. A crossbar switch comprises of three macro blocks: Input FIFO buffer,

arbiter/scheduler, and a crossbar fabric core.

Switch scheduling algorithms are important aspects to implement high speed
network switches. These algorithms are implemented in schedulers/arbiters. A
scheduling algorithm selects input packets and generates proper control signals for
crossbar fabric to set up conflict free paths between input ports and output ports.
Then, the crossbar core transfers the requests or packets according to granted control
signals. Hence, in order to ensure high speed and fairness, a crossbar switch requires

an intelligent, centralized, and conflict free scheduler/arbiter algorithm.

NxlogN

) _ scheduler
reqeust

Tt

grant — NxlogN

1 TI0H Y v & <
t T 1T+ X-bar
\:D_’ Fabric

input

FIFO ++++

output

~
™

Scheduling
arbitration
(Round-
Robin)

Packet
Propagation
(mux-tree)

Figure 1.1: Block diagram of a conventional crossbar switch

Most crossbar schedulers are implemented in round robin fashion to prevent
starvation of input ports. For example, a well-known design is applied in Stanford
University’s Tiny Tera prototype. The scheduler combines iSLIP unicast scheduling
algorithm and mRRM multicast scheduling algorithm. The resulting algorithm is
almost identical to the ESLIP algorithm. A brief overview of this algorithm is
explained in the following paragraph and a high level block diagram of the scheduler

is shown in Figure 1.2. This scheduling algorithm consists of three steps; Request,

Grant, and Accept (RGA).

1. Request: Each unmatched input sends a request to the destination output as

pointed out by the queued cell. In this step requests or packets are just

transferred to grant arbiters.

2. Grant: Each unmatched output acknowledges one of the requests is received.

Round-robin schedule starting from the highest priority element.

3. Accept: Each input accepts one of the received grants to establish the

connection. Round-robin schedule starting from the highest priority element.

* Request Grant Aqeept
- RO |\ | GO [N/ A0 -
New N/ Decision
Request WA AT
' / ey _/"' Py \;\
- R Gt |\ /| A1
. R31 G31 A31
Request Grant Accept
ngueg Arbiters Agbiters

Figure 1.2: High level block diagram of the scheduler

In order to assuage the Head-of-Line (HOL) blocking problem Virtual Output
Queues (VOQs) are employed as request queues. When a single FIFO input queue is
used for each input port, HOL blocking problem occurs. A request/packet at the end
of the queue is blocked from being destined to its corresponding output port because
of port connection, and thus the entire FIFO is blocked. HOL problem is eliminated

by using separate input queues for each input-output port pair.

HOL blocking problem and its solution is shown in Figure 1.3. “For this example,
assume that input port 1 is granted when output port contentions occur. Each
numbered rectangle in Figure 1.3 corresponds to a packet with the destination
specified by the number. Thus, the packet numbered ‘1’ indicates that this packet is
destined to output port 1. Without VOQs case, packet 1 in the queue at input port O
is blocked by packet 0 located at the head of the queue, even though output port 1 is
available at this point. Therefore, only packet O is sent to output port 1 in the current
cycle. To remove HOL blocking, multiple VOQs are placed at input ports. In the
VOQs case, packet 1 at VOQ (0, 1) is forwarded to output port 1 simultaneously as
packet 0 at VOQ (1, 0) is delivered to output port 0. Consequently, multiple packets

can be delivered to the appropriate unique destinations by employing VOQs.” (Shin
2003, pp.23)

Without VOQs With VOQs
VOG0 (0, 0)
. output port 0
input port 0 l:::—h- n ':___, ol
/! ~ —f‘ —.output port 0
/ input port I.".'__ _,.- \ VO (0, 1) a
. — / Y
input port 1 Ii’)—- | : | Q '_bnutpui port 1 . \
Vo201, 0 \
) [('
meutpot T/ x\ voan. 1) \”E:Tput port 1

Figure 1.3: HOL blocking problem without VOQs and with VOQs

Detailed block diagram of scheduler based on RGA maximal size matching
algorithm is shown in Figure 1.4 and 32X32 network switch example is shown in
Figure 1.5. These figures show the scheduler blocks and how it works in a network

switch/crossbar switch.

Grant/Request Accept/Grant
arbiters arbiters

0 0

State memory and update logic
Decision registers

Requests from VOQs

Figure 1.4: Block diagram of a scheduler/arbiter based on RGA/RG maximal
size matching algorithm

Network Switch (32x32)

VOQ(0,0)
fﬂ:m—n—: » oufput port O
: !
input port 0——»{_ j : /
T VOQ0,31) - Crosshar
Smy -/ Switch
et W Fabric

/ (32x32)x32

(I II.'
* Dulpul |:||:||-t 31

1T
- / !) x %
input port 3t+——»{ .
"‘\Qcmaﬁ —_—
— 1 —* [gramio, 0-31)

32 (32x32 arbiter)s

grani[31, 0-31)

¥

-
-

'_..
reqiat,)

Figure 1.5: 32X32 Network switch architecture

Gupta’s and McKeown’s work combines the request and grant steps of the
scheduler. The decision feedback information is provided by accept arbiters. This
feedback information performs as a pointer. The scheduler uses this information to
mask off requests from already matched inputs and outputs in successive iterations,

and starts round robin schedule from the highest priority element.

A comprehensive explanation of pipelined implementation of the scheduler is
explained in Gupta’s and McKeown’s paper. This thesis is not focused on

scheduling algorithms so details of algorithms are omitted.

In this thesis, two new round-robin arbiter logic architectures are proposed by taking
parallel prefix tree algorithms into consideration. Register Transfer Level (RTL)
generators, Application Specific Integrated Circuit (ASIC) synthesis, and

benchmarks of all RRA architectures are represented.

A brief overview of the previous work is provided in Chapter 2. Conventional RRA
design and its macro blocks, most recent architectures based on conventional design,

and other round robin arbitration schemes are represented. Chapter 3 introduces

hardware implementation and breakthrough of related work. In this chapter, a new
macro block is embedded into the rival architectures to strengthen them. Verilog
hardware description language (HDL) register transfer level (RTL) code generators
of all architectures are explained in chapter 4. In Chapter 5, verification and
synthesis techniques are represented in detail. Synthesis results are illustrated in

Chapter 6. Chapter 7 presents some concluding remarks.

2. PREVIOUS WORK

A well-known fast crossbar scheduler design is implemented by Pankaj Gupta and
Nick McKeown from Stanford University. They published their arbiter architecture
in 1999. This design is called conventional round robin arbiter or conventional round
robin scheduler in many research papers. In this thesis, this architecture is called
Stanford Round Robin Arbiter (STA_RRA). Seven years later, Gao Xiaopeng,
Zhang Zhe, and Long Xiang tried to enhance the conventional round robin scheduler
design. They proposed two different architectures: PPE_Conflict and
PPE_NonConflict. These two architecture names are modified as
CHN_RRA_PPE Conflict and CHN_RRA_PPE NonConflict. This work is
explained in Sections 2.2 and 2.3 in detail. A brief overview of other RRA

architectures in literature is represented in Section 2.4.

2.1. STA_RRA ARCHITECTURE

Top level block diagram of STA_RRA architecture is shown in Figure 2.1. It is
comprised of the following macro blocks: Simple Priority Encoder (Smpl_PE),
Simple Priority Thermo Encoder (Smpl_PE_thermo), thermometer encoder
(tothermo), and n to logoN (N2LOGN) encoder for update path. A simplified

multiplexer is also used to select the appropriate Priority Encoder’s (PE) grant.

Data flow of the architecture is explained as follows. When a new request is asserted
from request queues, and the feedback information of priority pointer is forwarded
from thermometer encoder, these two signals go into an AND gate to mask off new
requests with respect to priority pointer or accepted request in the previous iteration.
This new/masked request is connected to Smpl PE_thermo block. This block is

identical to Smpl_PE. Its function is to perform fixed priority encoding.

In PEs, each of the requester has a fixed priority and PE gives its grant to the active
requester which has the highest priority. This is a static and unfair scheme. It always
gives the shared resource’s usage authority to the most powerful requester or in other

words, the highest priority requester. The highest priority requester depends on

7

priority direction and your preference. You can change priority direction by flipping
your architecture scheme horizontally. In some research work, Least Significant Bit
(LSB) is selected as highest priority requester. For example, Gupta and McKeown
selected LSB as the highest priority requester. However, in this thesis, Most
Significant Bit (MSB) is selected as the highest priority requester for all
architectures. For instance, if the request vector is declared as req[N-1:0], req[N-1] is
defined as the highest priority. If req[N-1] is active, grant[N-1] gets the grant. Else,

if req[N-2] is active, grant[N-2] is asserted, and so on.

Smple_PE_thermo block has two outputs which are grant (Gnt_smpl_PE_thermo)
and any (anyGnt_smpl_PE_thermo). Gnt_smpl_PE_thermo is the output of priority
encoding operation. anyGnt_smpl_PE_thermo bit is the OR of Smple_PE_thermo
block’s all inputs. This bit gives us information on whether there is any unmatched
request in at least one bit position or not. On the other hand, unmasked request
moves to Smpl_PE. This block performs priority encoding operation and outputs its
grant (Gnt_smpl_PE) as well. anyGnt_smpl_PE_thermo is inverted and ANDed with
Gnt_smpl_PE. Therefore, if an unmatched request exists from the previous iteration,
anyGnt_smpl_PE_thermo disables Gnt_smpl PE. As a matter of fact
anyGnt_smpl_PE_thermo is used as a multiplexer select; Gnt_smpl_PE and
Gnt_smpl_PE_thermo are this multiplexer’s inputs. In some papers this operation is
shown as carried on by a normal multiplexer rather than a simplified multiplexer.
Pankaj and McKeown simplified this block in order to reduce the loading on the

select signal by half.

Final output is obtained by OR operation of Gnt_smpl_PE_thermo and
Gnt_smpl_PE_masked. Final output of this iteration should be forwarded to
tothermo block for next iteration. The next iteration uses the previous iteration’s
final output as a priority pointer. This pointer is generated by tothermo block. This
block executes thermometer encoding operation. Thermometer encoding masks all
accepted requesters of previous iterations. Then, tothermo’s output and a new
request is ANDed to mask off the new request’s accepted bit positions. All iterations

are performed in this way.

Priority Direction is Right to Left ———»
Req
Y n
logn 1 P_enc tothermo
P_thermo t n
[Yy
AND
n ¥ New_Req
Y
Smpl_PE_thermo Smpl_PE
1 Gnt_smpl_PE
n
logn .+ Encoder_out anyGnt_smpl_PE_thermo
Y
n Y
N2LOGN .
Encoder
A 4
Gnt_smpl_PE_thermo lGnt_smpl_PE_maslc ed
n OR
Simplified_Mux
(Calied as Mux_Red)
Gnt

Figure 2.1: STA_RRA_N2N architecture
(Stanford Round Robin Arbiter N to N Smpl_PEs)

According to top level block diagram and signal flow description, a sample test case

1s shown for 8 bits STA_RRA in Table 2.1.

Table 2.1: STA_RRA_N2N data flow

Initial Iteration

P_thermo - 00000000 Gnt_smpl_PE > 00100000

Request -> 00101001 Gnt_smpl_PE_masked -> 00100000

New_Req -> 00000000 Gnt > 00100000
Gnt_smpl_PE_thermo -> 00000000 Encoder out > 101
anyGnt_smpl_PE_thermo -> 0 P.enc - 101

Second lteration

P_thermo -> 00011111 Gnt_smpl_PE > 10000000

Request -> 10100101 Gnt_smpl_PE_masked -> 00000000

New_Req -> 00000101 Gnt -> 00000100
Gnt_smpl_PE_thermo -> 00000100 Encoder out > 010
anyGnt_smpl_PE_thermo -> 1 P.enc - 010

2.1.1. Simple Priority Encoder (Smpl_PE and Smpl_PE_thermo)

Detailed definition of simple priority encoding is described in the previous section.
This encoding is a fixed and static encoding that always grants the highest priority

requester. Its truth table is shown in Table 2.2.

Table 2.2: 8-bit Smple_PE truth table

out[7 | out[6 | out[5 | out[4 | out[3 | out[2 | out[1 | out[O
in[7] | in[6] | in[5] | in[4] | in[3] | in[2] | in[1] | in[O]]]]]]]]]
1 X X X X X X X 1 0 0 0 0 0 0 0
0 1 X X X X X X 0 1 0 0 0 0 0 0
0 0 1 X X X X X 0 0 1 0 0 0 0 0
0 0 0 1 X X X X 0 0 0 1 0 0 0 0
0 0 0 0 1 X X X 0 0 0 0 1 0 0 0
0 0 0 0 0 1 X X 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 X 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

From table 2.2, following equation list for 8-bit Smpl PE can be derived.

out [0] = ~in[7]1&~1in[6]&~in[5]&~1in[4]&~in[3]1&~1in[2]&~in[1]1&in[0];
out[l] = ~in[7]&~in[6]&~in[5]&~in[4]&~in[3]&~in[2]&in[1l];

out[2] = ~in[7]&~in[6]&~in[5]&~in[4]&~in[3]&in[2];

out [3] = ~in[7]&~in[6]&~in[5]&~1in[4]&in[3];

out[4] = ~in[7]1&~1in[6]&~in[5]&in[4];

out [5] = ~in[7]&~1in[6]&in[5];

out[6] = ~in[7]&in[6];

out[7] = in[7];

This implementation has some drawbacks. When we feed this code into a synthesis
tool, a ripple carry chain is inferred. This scheme produces significant timing
problems and it is not area efficient. Hence, Smpl_PE should be implemented in a

better way.

In order to eliminate the aforementioned drawbacks, we applied two techniques and
optimized Smpl_PE. This optimization also strengthened our rivals’ ASIC synthesis
results. In these optimizations, binary tree algorithm/technique is used to reduce the
logic level of the architecture. Also, a smart pre-computation/factoring method

reduced the area dramatically. These two modifications can be explained as follows.

10

Firstly, all HDL files are coded with respect to binary tree fashion. This
implementation model lowers the logic depth from n to log,N. The sample HDL

code for this implementation is shown below.

wire temp_0_7_6 = ~reql[7] & ~reql6];
wire temp_0_5_4 = ~reql[b] & ~reql4];
wire temp_0_7_4 = temp_0_7_6 & temp_0_5_4;

2 = ~req[3] & ~reql2];
0 = ~reqll] & reqlO];
0 = temp_0_3_2 & temp_0_1_0;

wire temp_0_3_
wire temp
wire temp_0_

wire temp_0_7_0 = temp_0_7_4 & temp_0_3_0;

assign out[0] = temp_0_7_0;

The code snippet above is written for first grant bit’s computation. This bit’s
computed values such as temp_0_7_6, temp_0_5_4, temp_0_7_4, etc... are used for
computation of other grant bit positions. These pre-computed values are used with
binary tree methodology. Eventually, design’s area cost is alleviated and timing is

improved. This implementation technique’s HDL code snippet is shown below.

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 1
wire temp_1_1 0 = temp_0_7_4 & temp_0_3_2;
wire temp_1_1 1 = reqll];

wire temp_1_2_0 temp_1_1_0 & temp_1_1_1;

assign out[l] = temp_1_2_0;

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 2
wire pre_temp_2_3_2 = ~req[3] & reqgl2];

wire temp_2_1 0 = temp_0_7_4 & pre_temp_2_3_2;
assign out[2] = temp_2_1_ 0;

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 3
wire temp_3_1 0 = temp_0_7_4 & reql3];

assign out[3] = temp_3_1_0;

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 4
wire pre_temp_4_5_4 = ~req[5] & reql4d];

wire temp_4_1 0 = temp_0_7_6 & pre_temp_4_5_4;

assign out[4] = temp_4_1 0;

11

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 5
wire temp_5_1 0 = temp_0_7_6 & reql5];

assign out[5] = temp_5_1_0;

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 6
wire pre_temp_6_7_6 = ~req[7] & reqglo6];
wire temp_6_1_0 = pre_temp_6_7_6;

assign out[6] = temp_6_1_0;

- FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 7
wire temp_7_1_0 = reql7];

assign out[7] = temp_7_1_0;
2.1.2. Thermometer Encoder (tothermo)

Thermometer encoding performs logoN-bit to n-bit transformation. Its equation can

be defined in this way:

out[index] =1 if and only if index < value(in) forall 0<i<n (2.1)

This transformation works similarly to a normal thermometer operation. It takes
logoN-bit input and increases thermometer level according to this input value. For
example, 8-bit thermometer encoder takes 3-bit wide input vector and outputs an 8-
bit wide vector. In a way, this output vector designates the level number of a
thermometer. Its indicator level starts from O and ends up at 7. If thermometer
encoder gets 101 as an input vector, it produces five piece of logic 1. In short, it
transforms input 101 to 00011111 as an output. This operation is clearly shown in

Figure 2.2.

input ouput
101 em— tothermo T
loagn-hit n-hit

Figure 2.2: Thermometer encoding

12

Truth table for 3-bit to 8-bit thermometer encoding block is shown in Table 2.3.

Table 2.3: Truth table for tothermo block

in [2:0] out[7:0]
000 00000000
001 00000001
010 00000011
011 00000111
100 00001111
101 00011111
110 00111111
111 01111111

This transformation’s equations are shown below.

out7 = 0

out6 = in2.inl.in0
out5 = in2.inl

out4 = in2. (inl+in0)
out3 = in2

out2 = in2+inl.in0
outl = in2+inl

out0 = in2+inl+in0

This algorithm is used to generate thermometer encoder code for any number of n.
We designed STA_RRA arbiter’s thermometer encoder with respect to this
algorithm. Algorithm’s code snippet shows that each output bit is either ORed or
ANDed not greater than logoN bit width. This is also stated in Gupta’s and
McKeown’s work. This algorithm’s parameterized Verilog HDL code snippet is as
follows.

parameter log_n = 3;
parameter n=(l<<log_n);

always @ (thermo_in) begin
pow2 = {(log_n){1'b0}};
thermo_out = {(n){1'b0}};

tmp = 0;
pow2[0] = 1'bl;
thermo_out [0] = 1'b0;
for(i = 0; i < log_n; 1 = i+l) begin
for(j = 0; j < pow2; j = j+1) begin
tmp = thermo_out[j];
thermo_out[j] = tmp | thermo_in[i];
thermo_out [j+pow2] = tmp & thermo_in[i];
end
pPow2 = pow2 + Pow2;
end

end

13

The purpose of thermometer encoding is to mask off new request bit positions which

are previously accepted. This is also explained is Section 2.1 in detail.

2.1.3. N to LOGN Encoder (N2LOGN Encoder)

STA_RRA architecture outputs n-bit grant output. This grant output is also used to

generate priority pointer for the next iteration. Typically, STA_RRA’s grant vector

is one-hot —only one bit position is high for each arbitration iteration. The active bit

position shows us the accepted requester. Therefore, in the next iteration, priority

precedence must start from this bit position.

In previous sections we mentioned that priority pointer generation is accomplished

by thermometer encoder macro block. However, this block takes log,N-bit input,

then executes thermometer encoding algorithm in order to output n-bit priority

pointer. For this reason, there must be a logic block between the thermometer

encoder block and the grant output of STA_RAA. This block’s core function is to

convert n bit grant vector to log,N bit vector.

Simply put, the N2LOGN encoder block outputs the active bit’s index value of its n-

bit one-hot input vector. In other words, the N2LOGN encoder states the accepted

bit-position — or accepted requester’s index to thermometer encoder. Its log,N bit

output is taken by thermometer encoder. N2LOGN block’s operation is shown in

Figure 2.3.

in[7] in[6] in[5] in[4] in[3] in[2] in[1] in[0]
0 0 1 L] 0 0 0 0

> NZLOGN >
ENCODER

out[2] out[1] out[0]
1 0 1

Figure 2.3: N2LOGN encoder operation

Gupta’s and McKeown’s work did not consist of priority pointer feedback

information part. Furthermore, we did not find any explanation about this macro

block’s implementation from other research work. In some papers this block is stated

as “encode” or “binary_enc”. Therefore, we implemented this block by taking into

14

consideration the binary tree structure. This is the best way to reduce logic depth and

to speed up timing.

Truth table of N2LOGN encoder is shown in Table 2.4.

Table 2.4: Truth table for N2LOGN Encoder

out[2] out[1] out[0] input bit positions
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
0 0 4
0 1 5
1 0 6
1 1 7

According to Table 2.4 following equations are derived:

out [0] = in[1] | in[3] | in[5] | in[7]
out[1l] = in[2] | in[3] | in[6] | in[7]
out[2] = in[4] | in[5] | in[6] | in[7]

In order to reduce the logic depth and timing bottleneck, these equations are coded in
binary tree style. Verilog HDL code snippet below is an example of N2LOGN

encoder implementation.

wire out_0_0 = in[1]]in[3];
wire out_0_1 = in[5]|in[7];
wire out_1_0 = in[2]]in[3];
wire out_1_1 = in[6]|in[7];
wire out_2_0 = in[4]|in[5];
wire out_2_1 = in[6]|in[7];

//output [0] assignments
wire out_0_Otol = out_0_0 | out_0_1;

//output [1] assignments
wire out_1 _0Otol = out_1_0 | out_1_1;

//output [2] assignments
wire out_2_0Otol = out_2 0 | out_2_ 1;

assign out[0] = out_0_0tol;
assign out[l] = out_1_0tol;
assign out[2] = out_2_0tol;

15

2.2. CHN_RRA_PPE_CONFLICT

This round robin arbiter architecture is generated by three Chinese researchers: Gao
Xiaopeng, Zhang Zhe, and Long Xiang. Therefore, we used CHN prefix for this
architecture. They proposed two different arbitration schemes. These architectures
are similar to STA_RRA architecture. One of the proposed round robin arbitration
architectures is PPE_CONFLICT. Consequently, this design is called
CHN_RRA_PPE_CONFLICT, as shown in Figure 2.4. In this design, the round
robin arbiter architecture is divided into two paths. These are grant path and update
path. Grant path is shown from request to grant. On the other hand, update path is a

feedback path that forwards the priority pointer for next iteration.

Priority Direction is Right to Left ——»

Req T

P_Thermo {'n n

T :

n + Req_High

Y

n # Thermo_out
| Zero? Grant
| Path

Y A

. tothermo 1 3 1 L I
[Valid_Sel

]
]
]
]
]
el | e |
]
]
]

|
|
|
|
|
|
|
|
|
|
|
L n,

]

]

N 1" Valid_Req |

logn ¢ Encoder_out Y]

Smpl_PE]

N2LOGN]
Encoder n

} PPE_Conflict]

]

]

Y]

Gnt S

Figure 2.4: CHN_RRA_PPE_CONFLICT architecture
(Chinese Round Robin Programmable Priority Encoder Conflict)

16

In conflicting virtual channel routers, arbiters work in an iterative way. Arbiters
located at inputs and outputs perform Grant and Accept operations in a single clock
cycle alternatively (in introduction section Request-Grant-Accept (RGA) pipeline is
explained). Results of these two operations are dependent on each other, as shown in
Figure 2.5. Grant/Update paths should be executed in two clock cycles. Therefore,
the critical path in this scheme is the grant path; as the update path can be executed
in parallel with respect to grant path. For this reason tothermo block is moved from

grant path to update path.

| Grant Accept | Grant Accept |

Grant Path{Q) Update Path(Q) ° Grant Path{O) Update Path{O)
Grant Path {1} Update Path (I}

Figure 2.5: Iterative scheduling

CHN_RRA_PPE_CONFLICT architecture is divided into two timing paths as grant
path and update path. Timing Path 1 is equals grant path; which is critical path for
Conflicting VCR. Combo Logic 2’s delay is equal to update path’s delay. Timing
Path 2 is comprised of both grant and update paths. In order to minimize the clock

cycle, timing balance of grant and update paths is very crucial for Conflicting VCRs.

Input — Request

.........
.....

'-._\

Combo I';,o‘ic 2

b

Timing Path 1

Quput — Grant

Figure 2.6: CHN_RRA_PPE_CONFLICT architecture’s timing paths

17

One of the distinct points is the location of flip-flops. Flops are located after
thermometer encoder. If their bit width is broadened, this may cause a negative
effect on area. Also, flops can be located between N2LOGN encoder and
thermometer encoder. Thus, sequential logic area can be lowered. On the other hand,
this modification destabilizes timing balance between grant path and update path,

and also maximizes the iteration cycle of arbitration.

In CHN_RRA_PPE_CONFLICT architecture Resource Sharing (RS) technique is
implemented to reduce the combinational area cost. Only one Smpl_PE is used
rather than two Smple_PEs. When masking operation is done from AND gate, the
resulting output (Req_High) and request go to multiplexer’s inputs. Then, the valid
request is chosen by multiplexer select (Valid_Req). Valid_Req is just the bitwise
OR of Req_High’s all bits. The selected output is forwarded to Smpl_PE for final

grant operation.

2.3. CHN_RRA_PPE_NONCONFLICT

This architecture is designed for non-conflicting VCRs. We called this design:
CHN_RRA_PPE_NONCONFLICT, as shown in Figure 2.7. In non-conflicting
VCRs, scheduling operation takes one cycle, and it is carried out by arbiters which
are located at outputs. In a pipelined router, PPEs at outputs execute the arbitration
cycle by cycle. Hence, priority pointer has to be ensured before next iteration start-
up. PPE must succeed grant and update operations in a single clock cycle. Thus,

critical path of PPE comprises both the grant and update paths.

In this architecture, grant and update operations are accomplished in parallel.
Grant/Update path is also a timing path for synthesis tool. When we implement this
architecture’s ASIC synthesis, design compiler (DC) accepts grant/update path as a
timing path. This design architecture is more realistic with respect to digital design
timing concepts. Therewithal, its timing results should be better than
CHN_RRA_PPE_CONFLICT architecture. On the other hand, RS technique is
applied to increase the design’s area efficiency. This design consists of only one

Smple_PE rather than two Smpl_PEs. RS methodology is described in the previous

18

section in detail. The drawback of RS technique is to increase the critical path of the
grant/update path. “Zero?” block is just a binary OR tree and it adds extra logoN

stages and decelerates timing of PPE.

Priority Direction is Right to Left ———»

i 1
I
P_Thermo { n n |
PPE_NonConflict :
Yy |
Aﬂﬂ I
I
n ' Req_High |
e
| o
Zera? 3
E«E CD S g
Y \ | 55
[1 1 0 5y
L1 | &
Valid_Sel |
n ¢ Valid_Req |
., v ¥ |
tothermo Smpl_PE I
I
I
n I
v |
Gnt |

Figure 2.7: CHN_RRA_PPE_NONCONFLICT architecture
(Chinese Round Robin Programmable Priority Encoder NonConflict)

Maybe the most conspicuous point in this architecture is the tothermo block because
this thermometer encoder performs n-to-n conversion. In their implementation, this
tothermo block combines Smple_PE, N2LLONG encoder, and the tothermo block of
PPE design. Actually, this implementation decreases the speed of the architecture.
Hence, we implemented this block in a different way. We used one of the Parallel
Prefix Tree (PPT) algorithms — Han Carlson (HC) tree. We used OR gates in HC
tree’s nodes, then finally we shifted tree’s output to the right by one. One bit right
shifting is just a wiring modification; it does not contain any logic element. In

essence , this method is one of the core novelties for our proposed designs.

19

Priority Direction is Right to Left ———»

e i

|

P_Thermo .{' n n |

PPE_NonConflict :

Yy |

o) |

n ¥ Req_High |
¥ | o]
Zero? | -‘-_.23;
[Fror | ZE
v 3 | 55
[} 1 N [1 =
o

Valid_Sel |

n t valid_Req |

; Y |

Smpl_PE |

|

|

n |

|

i L]
Gnt

Figure 2.8: Proposed CHN_RRA_PPE_NONCONFLICT architecture

Priority Direction is Right to Left ——»

e =

|

P_Thermo .{'n n |

PPE_NonConflict :

Yy |

) I

n _Req_High |
Y | @
2
Zero? | = =k
FLOP 8 S
) Y | =0
A 1 N 1 0 | E
o

Valid_Sel |

n " Valid_Req |

n v |

n

Smpl_PE |

PPT_Pre_Thermo |

|

{1'b0, ppt| out1[n-1:1]} 0 |

" |

L
Y

Gnt

Figure 2.9: Optimized CHN_RRA_PPE_NONCONFLICT architecture

20

We applied this technique in this architecture to make our rival stronger. This
technique is area efficient and a fast technique, which is much better than the
combination of Smpl_PE — N2LOGN Encoder — tothermo blocks. This obvious
improvement can be understood when we compare Figure 2.8 and Figure 2.9. You
can easily see that the combination of Smpl_PE — N2LOGN Encoder — tothermo
blocks significantly increases the area and slows down the speed of the RRA. This
methodology is not proposing a novelty. Moreover, combinational path from request
to flops’ input is longer than CHN_RRA_PPE_CONFLICT architecture. However,
if our PPT technique is applied rather than the Smpl_PE — N2LOGN Encoder —
tothermo combination, area and timing results can be improved dramatically. Hence,
in this thesis we applied our technique for this architecture to make our rival
stronger. This ensures a fair benchmark. In Figure 2.9 PPT_Pre_Thermo block
contains a HC tree and its nodes are comprise OR gates. Details of our novel

approach and architecture will be described in later chapters.

2.4. LITERATURE SUMMARY

In literature there are many round robin arbitration algorithms and several design
work are proposed. On the algorithm side, PIM, iSLIP, DDRM, FIRM, SSR, and
PPA are the examples of the most practical scheduling algorithms. They are all
iterative algorithms that approximate a maximum matching by finding a maximal
size matching. They comprise of three or two steps/iterations, which were mentioned
in previous sections. These steps are Request—Grant—Accept (RGA) or Request—
Grant (RG). This algorithms’ main goal is to ensure fairness. Also, round robin

arbiter designs are carried out with respect to this criterion.

The most notable round robin architecture — STA_RAA is proposed by Gupta and

McKeown which we explained in previous sections.
Some researchers have proposed modified version of STA_RRA. One of them is

published by Savin C.E., McSmythurs T., and Czilli J. in 2004. They used Binary

Tree Search (BTS) technique to minimize the area and maximize the speed. Their

21

proposed architecture has (logoN + 4) logic level, (nlog;N + 7n - 6) combinational

gate count and n-bit flop.

Other STA_RRA modifications are proposed by Gao X., Zhang Z., and Long X. in
2006 which we called CHN_RRA. Their proposed RRA architectures are depicted in
former sections. Detailed synthesis results of their architecture’s are given in

Chapter 6.

On top of STA_RRA and its variants, different design architectures are proposed.
The most recognized ones are Ping Pong Arbiter (PPA), Switch Arbiter (SA),
Parallel Round Robin Arbiter (PRRA) and Improved Parallel Round Robin Arbiter
(IPRRA).

PPA architecture is proposed by Chao H.J., Lam C.H., and Guo X. in 1999. PPA has
O(ogyN) level tree structure and O(log,N) gate delay. This round robin arbiter
architecture performs the round robin arbitration rule if and only if all requests are
available in each cell slot. If there are less than N request available, at that time
unfairness occurs. We can examine this situation according the following example.
This example is also mentioned in PPRA—IPPRA paper. Assume that N/2 + 1 input
ports repeatedly serve requests in a pattern. Under this condition, one input port’s
request is captured by one-half of the tree. At the same time, the other half-of the
tree captures the remaining input ports’ requests. As a result of this situation, this
round robin arbiter grants the one input port more than N/2 times more than each of
the remaining N/2 input ports. This example demonstrates the unfairness of PPA
design. Also, we can claim that PPA’s scheduling algorithm performance is worse

than iSLIP and mRRM, which are the algorithms of STA_RAA.

Other round robin arbiter design — Switch Arbiter (SA) is proposed by Shin E.S.,
Mooney V.J. III, and Riley G.F. in 2002. This architecture is designed with the same
concept of PPA. This architecture is formed by a tree structure composed of 4x4 SA
nodes. These nodes comprise of a flop, 4 PE, a 4-bit ring counter, five 4-input OR
gates, and four 2-input AND gates. Some of the research work such as PPRA—
IPPRA paper states and benchmarks that SA architecture is faster than the other

22

architectures. On the other side, architectural complexity and unfairness for non-
uniformly distributed requests are its drawbacks. For example, in a 64X64 SA: if
request signals (req[0] to req[31]) are asserted from the top half of the tree and only
one request — req [32] is asserted from the bottom half of the tree, then req [32] is
granted thirty-two times while each of 32 request signals (req[0]-req[31]) are granted
only once in sixty-four consecutive cycles. This unfairness is as the same as PPA

architecture’s unfairness.

The most recent and remarkable round robin arbiter architectures are PRRA and
IPRRA. These architectures are presented by Zheng S. Q. and Yang M. in January
2007. The proposed architectures are constructed by a recursive binary tree structure.
The hardware implementation of these architectures is based on simple binary tree
search algorithm. They claimed that IPRRA achieved 30.8% timing improvement

and 66.9% area improvement over PPE design.

23

3. PROPOSED ARCHITECTURES

In this chapter, three different RRA architectures are represented. One of the RRA
architectures has a similar appearance as a BOW-TIE, and it is entirely different than
STA_RRA architecture. It was inspired by a Silicon Valley engineer who decided to
stay anonymous. This architecture is still in its development phase; it should be
enhanced in the future. The other two proposed RRA architectures are based on
STA_RRA architecture. However, in these architectures we constructed a new block
which executes pre-thermometer encoding and pre-priority encoding operations.
Hence, critical path is shortened by using this new logic block. In the following

sections details of proposed RRA architectures are explained.

3.1. PPT_RRA_RS ARCHITECTURE

The full name of this architecture is Parallel Prefix Tree Round Robin Arbiter
Resource Sharing and we simply called it PPT_RRA_RS. This architecture is
applied for eliminating the area cost of the RRA. In order to diminish RRA’s area,
we used Resource Sharing (RS) method. This architecture has one PPT_Pre_Thermo
block rather than two Smple_PE’s, as shown Figure 3.1. This block is constructed by
Parallel Prefix Tree (PPT) topologies. In this work, we used four different PPT
topologies. These are Ladner Fisher (LF), Kogge Stone (KS), Han Carlson (HC),
and Brent Kung (BK) topologies. These tree structures have internal nodes for each
stage and any operations which have associative property could be used in these
nodes. In order to accomplish pre-thermometer encoding operation, OR gate is
placed in these nodes. The resulting structure performs pre-thermometer encoding
operation. If this block’s output is shifted right by one unit, actual thermometer
encoder output can be obtained. 1-bit right shifting is just a wiring operation and it
does not contain any logic elements. At this level, we have obtained “shifted
pre_thermo_out” and “pre_thermo_out” signals. These two signals are routed to
Edge Detector (ED) block to generate grant output of the RRA architecture. ED
block has one level logic depth; this decreases the critical path of the architecture.
ED’s function is to output the final grant output by using “pre_thermo_out” and

“shifted pre_thermo_out” signals. In fact the shifted signal is used as a priority

24

pointer for next iterations. This architecture is used as the same scheduling algorithm
as STA_RAA. Therefore, fairness criterion is better with respect to that of PPA and
SA architectures which are proposed in literature formerly. This structure is better
than our rivals with respect to the area criterion. Especially, BK topology for
PPT_Pre_Thermo block provides significant area reduction. Also, this architecture
has a competent speed performance. Its ASIC synthesis results and comparison
against its rivals are represented in next chapters. Building blocks of PPT_RRA_RS
such as OR Binary Tree (OR_BT), PPT_Pre_Thermo, and ED are explained in next

sections.

Priority Direction is Right to Left ——»
Req

FLOP

" Mux_out
Y

PPT_Pre_Thermo

N 1 Pre_thermo_out

{1'b0, Pre_thermo_out[n-1:1]} .4 'n n_ Pre_thermo_out

v

Edge Detactor

"{
Gnt
Figure 3.1: PPT_RRA_RS architecture

25

3.1.1. OR Binary Tree (OR_BT)

OR_BT block performs OR operation. It gets masked request (Masked_req) as an
input and it outputs a select signal for multiplexer to select appropriate signal for

PPT Pre_Thermo block.

One bit right shifted version of PPT_Pre_Thermo signal is just a priority pointer
(Mask_ptr) and it masks the matched requester in an ongoing iteration. In the next
iteration, priority pointer is ANDed with a new request to mask matched bit
positions for new request signal. This masking operation’s output is called as
Masked_req. It contains information on whether or not there is any unmatched
requester available with respect to previous iterations or not. If all bit positions of
Masked_req are zero, OR_BT block’s output will be ‘0’. This comprises of two

different meanings:

1- New request signal does not want to grant an unmatched requester. This means
that unmatched bit positions with respect to previous iterations are Zzero.

However some matched bit positions are active/one.

2- New request signal does not want to grant any of the requester. This means that

all bit positions of new request are zero.

On the other hand, if a Masked_req signal has one or more active bits, at this time
we can conclude that the new request signal wants to grant unmatched requesters,

and OR_BT block outputs ‘1°.

OR_BT block is playing a key role to simplify RRA architecture’s area. It controls
the multiplexer and routes Masked_req or new request signals to PPT_Pre_Thermo
block. For this reason, this architecture uses only one block rather that two
Smple_PEs. This technique is called Resource Sharing (RS). Thus, we put RS prefix

for this architecture’s name.

26

OR_BT block is implemented by using NOR, NAND, and OR gates. This
transformation is represented in Figure 3.2. For N bit input, stage number is
calculated by log,N. If stage number is odd, last stage must contain OR gate. On the
other hand, if stage number is even last stage must contain NAND gate. It is shown

in Figure 3.3.

((alb)&(c|d) =(a&b)&(c&d) = (a|b) | (c|d)
Figure 3.2: OR_BT with OR gates and OR_BT with NOR-NAND gates

8 BIT OR_BT

Figure 3.3: 8-bit and 16-bit NOR-NAND OR_BT

The reason for using these gates is to minimize the area cost. In Complementary
Metal Oxide Semiconductor (CMOS) technology NOR and NAND gates are more
area efficient than OR and AND gates. OR and AND gates have extra inverter part

27

that effects area efficiency negatively. This negative effect is represented in Figure

3.4 and Figure 3.5.

CMOS OR gate CMOS NOR gate
vdd vdd
Ql Ql
[
— —
Q. Qs Q-
= e]
- Q, +— Output
Q_:_._L('l - 4 5 Output
— 3 4
input, L L= F |;:—L'
Input,) »—_F:
Inputg .
= Inputg §
«—NOR gate —»<— Inverter —» ==
Figure 3.4: CMOS OR gate and CMOS NOR gate
CMOS AND gaie
CMOS NAND gate
i vdd
Ql V—EQZ VS. Q o Q
= B e — oL =
— — =
- e .
1 Q; t+— Output
o 1 ": |_ Output
Input | :
npWa &= - Input, i 2
Q | —
Inputy] Inputg 2 il
-<— NAND gate ——=— Inverter —

Figure 3.5: CMOS AND gate and CMOS NAND gate

3.1.2. Parallel Prefix Tree Pre Thermo Encoder (PPT_Pre_Thermo) Overview

Our proposed architecture’s novelty is based on this logic block. PPT_Pre_Thermo
block is constructed by PPT topologies. There are four well-known PPT topologies
in literature. These are LF, KS, HC, and BK topologies. All of these topologies are
implemented via our RTL generator in this work. Also, any of the PPT topology
could be applied in this block. PPT topologies’ taxonomy and their drawbacks

among each other are stated by David L. Harris in 2003, as shown in Figure 3.6. In

28

this work, highest priority requester is selected as MSB bit rather than LSB bit.
Hence, all topologies are flipped horizontally. Priority direction depends on our

preference.

HLOGIC LEVELS)

D
D

/| CARLSON

| GARLSON

@
LADMER-
FISCHER

(D

t (WIRE TRACKS)

<

LADNER
FISCHER
|

F{FANOUT)

Figure 3.6: Taxonomy of PPT topologies

The function of this block is to prepare an output for thermometer encoding and
priority encoding. If its output is 1-bit shifted to the right, this operation gives us
thermometer encoder output (priority pointer). This shifting operation does not
consist of any logic elements. It only modifies wiring connections. Moreover, if
PPT_Pre_Thermo output is forwarded to ED block, ED block performs an edge

detection operation to output RRA’s grant. This edge detection operation has only

29

one level logic depth. Essentially, combination of PPT_Pre_Thermo block and ED
block forms the Smpl PE block. Also, one of the superior advantages of
PPT_Pre_Thermo is any-bit computation. PPT_Pre_Thermo block’s output LSB bit
is equal to the OR of all its inputs. Thus, any-bit equals to this block’s output’s LSB.
Operations of PPT_Pre_Thermo are divided into three parts: pre-tothermo
computation, pre-Smpl_PE computation, and any-bit computation. So, it can be seen
that this new macro block performs multiple operation at the same time. This makes

our architecture exceptional with respect to our rivals.

In order to show this blocks functionality, a test scenario is shown in Figure 3.7. In

that figure inputs and outputs of the 16-bit PPT_Pre_Thermo are illustrated.

—{] =
—] =
— | =
—{] =
—] -
—] -
—{] =
—] =
—] =
—{] =

ALELLE.

16-Bit PPT_Pre_Thermo

e

1 1

Figure 3.7: PPT_Pre_Thermo example

All PPT topologies which are implemented in this new block are explained in the

following sections.

3.1.3. Brent Kung PPT_Pre_Thermo (BK_PPT_Pre_Thermo) Architecture

BK_PPT_Pre_Thermo topology is shown in Figure 3.8. In this topology’s nodes,
mostly NOR—NAND—INV gates are used rather than OR gate, as explained in
OR_BT section. OR gates are used only in the last stages. For N-bit input,
BK_PPT_Pre_Thermo architecture’s logic level is equal to (2* logoN -1). On the
other hand its gate count is fewer than other PPT topologies. BK_PPT_Pre_Thermo

topology is a more useful tree for implementing area -efficient designs.

30

Implementation of NOR—NAND—INV—OR method for different N-bit input
brings a variation for inverter placements. Therefore, the designer has to locate
inverters attentively. This topology is coded via our RTL generator, and that

generator considers these kinds of variations.

16-Bit BK _PPT_Pre_Thermo 8-Bit BK_PPT_Pre_Thermo

I
I
I
I
@ NOR GATES (O NAND GATES () OR GATES W INVERTERS

Figure 3.8: BK_PPT_Pre_Thermo structure

3.1.4. Ladner Fisher PPT_Pre_Thermo (LF_PPT_Pre_Thermo) Architecture

The number of stages is reduced by modifying the structure of the PPT graph. The
minimum number of stages for PPT is logoN. For n=32, the stage number is equal to
logoN=5. On the other hand, higher fan-out is the major drawback for this tree, as

pstage_number 4 4 this can

shown in Figure 3.9. For each stage, fan-out is equal to
cause a negative effect on timing and area. In order to drive multiple cells, bigger

driving cell are used. Unfortunately, those bigger cells can have increased area.

LF_PPT_Pre_Thermo is implemented with NOR—NAND—INV—OR technique
too. RTL code for this tree is generated by our RTL generator. Inverter placement
varies with respect to the total stage number. For example, when stage number is
odd, at last stage no inverter is used. On the other hand, when stage number is even,
we have to put inverters at the last stage to construct a functional PPT_Pre_Thermo

block. Also, in Figure 3.10, equivalence of LF_PPT_Pre_Thermo is constructed by

31

OR gates, and LF_PPT_Pre_Thermo is constructed by NOR—NAND—INV—OR

gates is shown.

16-Bit LF_PPT_Pre_Thermo 8-Bit LF_PPT_Pre_Thermo

@ NOR GATES (O NAND GATES () OR GATES Y INVERTERS

Figure 3.9: LF_PPT_Pre_Thermo structure

out[3] out[2] out[1] out[d] out[3] out[2] out[1] out[D]
out[d] = a out[i] = a

out2] = (alb) out[2] = (alb)

outfi] = (falb) & T) = (falb} | ¢) out[1] = ((alb) |)

outf0] = ((albj&(cid)) = ({alb) | (c|d)) outf0] = {{ajb)] (c|d)

Figure 3.10: Equivalence of NOR—NAND—INYV PPT and OR PPT

In our architectures, all of the topologies are constructed using NOR—NAND—
INV—OR gates rather than only OR gates. This transformation ensures smaller area
results. For example, in Figure 3.10 OR PPT structure has 4 OR gates and each OR
gate has extra inverter part in CMOS technology. On the other hand, NOR—
NAND—INYV tree has 2 NOR, 2 NAND gates, and these gates do not contain any
inverters. However, extra 2 inverters are added to ensure the functionality of

PPT_Pre_Thermo. Even then, with this technique we save 2 inverters for 4-bit PPT

32

structure. For large input bit width, this cost reduction effects the RRA’s area

significantly.

3.1.5. Kogge Stone PPT_Pre_Thermo (KS_PPT_Pre_Thermo) Architecture

KS_PPT_Pre_Thermo uses log,N as similar as LF_PPT_Pre_Thermo. Also, it has
low fan-in and fan-out requirement. However, this structure’s main drawback is
wiring tracks. It has a higher number of lateral wires with longer span which may
need extra buffering, thus bringing extra delay. In order to accomplish further
improvements on timing and area, it is constructed by NOR—NAND—INV—OR
gates too. Its structure is shown in Figure 3.11. Its HDL code is generated via our

RTL generator.

16-Bit KS_PPT_Pre_Thermo 8-Bit KS_PPT_Pre_Thermo

@ NOR GATES (O) NAND GATES () OR GATES W INVERTERS

Figure 3.11: KS_PPT_Pre_Thermo structure

3.1.6. Han Carlson PPT_Pre_Thermo (HC_PPT_Pre_Thermo) Architecture

HC_PPT_Pre_Thermo structure is a hybrid structure which combines stages from
KS and BK structures, as shown in Figure 3.12. For n-bit input, its stage number is
equal to (log;N+1). Its wires have shorter span than KS, this is an advantage against
KS structure. This structure is implemented by NOR—NAND—INV—OR gates
and its HDL code is generated by our RTL generator. Inverter locations vary with

respect to odd or even stage numbers too.

33

16-Bit HC_PPT_Pre_Thermo 8-Bit HC_PPT_Pre_Thermo

@ NOR GATES (O NAND GATES () OR GATES Y INVERTERS

Figure 3.12: HC_PPT_Pre_Thermo structure

3.1.7. Edge Detector (ED)

Edge detector is used to compute RRA’s grant, as shown in Figure 3.13. It has two
inputs; PPT_Pre_thermo’s output and its 1-bit right shifted version. It has one output
which is grant of RRA. ED block is the last block before RRA’s output and it is
bounded with PPT_Pre_Thermo block. It has one level logic depth and this
extremely decreases the critical path of the RRA. Combination of PPT_Pre_Thermo
and ED performs simple priority encoding operation. Smple_PE operation’s logic
level almost depends on PPT_Pre_Thermo block. ED has a negligible effect on this

operation’s logic level.

PPT_Pre_Thermo

shifted = {1'b0, Pre_thermo_out[n-1:1]} +n n & Pre_thermo_out

‘ Edge Detector

v

Grant

Grant = (~shifted) & (Pre_thermo_out)

Figure 3.13: Edge detector’s top level block diagram

34

Its main function is capturing 0 = 1 transition. Examples of this functionality are

shown in Figure 3.14.

0001 = Pre_thermo_out 01 x x = Pre_thermo_out
0000 - shifted 001 x - shifted
.Y .Y
2 2
E 000 1= Pre_thermo_out ﬁ 01 x x = Pre_thermo_out
7] @
E. & 1111 ~shifted E. & 110 x > ~shifted
T !
000 1= Grant 010 0= Grant

Figure 3.14: Edge detection examples

First, this architecture is implemented with AND—INYV gates, as shown in Figure

3.15.

shifted = {1'b0, Pre_thermo_out[n-1:1]}

4 3
1]
IH
T $. g
() o~ — |
]] 5 2
o o o -
2, o & o = o =
E E = E 5 E =
cal = nl 5 ol o nl
Y E EI o EI E ..'EI o
=
2 E o E o E o E
- 2 o 2 o 2 o 2
I ~ I *
[2H] o [=H] [}
| = - | = -
o o o o

Grant /|'4

Figure 3.15: Edge detection architecture is constructed by AND—INYV gates

35

Then, we optimized this structure with NOR—INV gates. Thus, this block’s area

efficiency is improved. This optimization and the new architecture are shown in

Figures 3.16 and 3.17, respectively.

a b out
0 0 0
0 1 1
1 0 0
1 1 0

VS.

out=a &b
(out) =(a" &b) =(a|b’)

((out)’y =out=(a|b’)y=a &b

AND gate is replaced with NOR gate

Figure 3.16: Edge detector optimization

shifted = {1'b0, Pre_thermo_out[n-1:1]}

4 o
]
'
4 o
}(-1
3
—_ — X]
™, o, L o
s s 5 =1
2 o § o T o E
rry prery =] rry
=1 = = =1
° % ° § ° E °
k J E EI E EI g EI E
[=]
25 £ ¢ £ 5 £ s
- £ o - & - e c
| |] i
g = g g
o o o o

Grant 4’4

Figure 3.17: Optimized edge detector

36

3.2. PPT_RRA_BT ARCHITECTURE

This architecture is proposed to achieve maximum speed. Thus, we called this
architecture Parallel Prefix Tree Round Robin Arbiter Best Timing (PPT_RRA_BT),
as shown in Figure 3.18. When we compare PPT_RRA_BT architecture with
PPT_RRA_RS architecture, we see that PPT_RRA_BT architecture uses two
PPT Pre Thermo blocks. However, it does not consist of OR_BT block. In
PPT_RRA_RS architecture, OR_BT is in critical path so this block adds extra delay
to input—output path. This problem is eliminated by using two PPT_Pre_Thermo
blocks. Therefore, logic level is decreased by factor in log2N. On the other hand,
OR_BT gate count is smaller than most of the PPT_Pre_Thermo architecture, so this
effects area negatively in some cases. This architecture is very similar to STA_RRA
but its PPT_Pre_Thermo block performs pre-thermometer encoding and priority
encoding operations to remove negative effects of Smpl_PE, tothermo, and

N2LOGN encoder blocks.

Priority Direction is Right to Left ——»

Req
n

Mask_ptr.{ n

A

AND

ELOP n 1 Masked_req]
'Y
PPT_Pre_Thermo PPT_Pre_Thermo
n " Masked_pre_thermo_out n
Pre_thermo_out
1 Mux 0
any
A" Mux_out
{1'b0, Pre_thermo_out[n-1:1]} .{'n Nt Pre_thermo_out
n

Yy

Edge Detector

"{
Gnt

Figure 3.18: PPT_RRA_BT architecture

37

In Figure 3.19, we replaced the multiplexer with a simplified multiplexer which is
used in STA_RRA too. This modification lessens the area cost. This architecture’s

logic level is shown as follows.

AND Gate = 1 level

PPT_Pre_Thermo - BK:(2* logoN -1) — KS:logoN — LF:log,N — HC:(logoN +1)
Simplified Mux - 2 levels

ED - 1 level

Total Logic Level = 4 + Logic level of PPT_Pre_Thermo Block

Priority Direction is Right to Left ——=

Req
n
Mask_ptr .t n
Yy
AND
‘:FL 0:’P n .+ Masked_req i
F A
PPT_Pre_Thermo PPT_Pre_Thermo

s R "y
any Pre_thermo_out
M.

asked_pre_thermo_out

Qan

n

Simplified_Mux

{1'b0, Pre_thermo_out[n-1:1]} 'n n " Pre_thermo_out

n

]

‘ Edge Detector ‘

" {
Gnt

Figure 3.19: PPT_RRA_BT architecture with simplified multiplexer

Details of the sub blocks such as PPT PRE _Thermo and ED are described in

Section 3.1.

38

3.3. BOW-TIE ARCHITECTURE

This architecture is generated with respect to a Silicon Valley engineer’s idea who
wants to stay anonymous. As you can see in Figure 3.20, this is comprised of two
macro blocks. These are Round Robin Arbiter Macro Block (RR BLOCK) and Grant
Unit Macro Block (GUNIT BLOCK).

BOW-TIE Arbiter Top Module

input output

n-bits n-bits

RR BLOCK
GUNIT BLOCK

1-bit

<

Y
d014

n-bits n-bits

Figure 3.20: BOW-TIE_RRA high level architecture

RR blocks perform two bit round robin arbitration operation. It has six inputs and
five outputs. Its inputs are request (reql, req0), pointer (ptrl, ptr0), and high-low
(HL1, HLO). New incoming packets/requests are represented as request. Previous
iteration’s grant is called a pointer, and high-low represents the location of the
pointer. If HL is one, it means that the pointer is located at the top of the request.

Otherwise, its value is equal to zero and the pointer is located under the request.

RR blocks’ outputs are divided into two categories; first category is previous grants
(pgntl, pgnt 0) and second category is request—pointer—high-low (req-ptr-HL).
Previous grants are forwarded directly to GUNIT blocks for final output/grant
generation. On the other side, req-ptr-HL outputs are routed to next level RR blocks
and these RR blocks are used them as input. These connections are shown in Figure

3.21.

39

4-bit BOW-TIE Arbiter Top Module

req[3] N

ptr(3] pant1[0](1] N
HL[:] 3 . tg » out[3]
r:;:{z} . pgnto[0][1 . » out[2]
. i i@mm
3 =
req[1] t0[1][0] e
pr{1] N
HL[] = > out(1]
req[0] > 5 .
ptr[0] . = out[0]
HL[0]
, flop’s
i L enable
r
4 bit = 4bit
o *
o

Figure 3.21: BOW-TIE_RRA’s building blocks

Last level’s RR block’s “output req” signal is as the same as any of the STA_RRA.
It enables or disables the flop with respect to new incoming request. If there is no
request asserted for a new iteration, then last level’s RR block’s “output req” signal
is equal to zero. Thus, the flop will be disabled and next iteration priority pointer

will be equal to zero. This prevents the conflicts when no request is asserted.

Table 3.1: RR block’s truth table

in in0 out_int | ptrireq

left input right input pgnts_ next HL/ptr/req

reql | ptrl | HL1 regd | ptld | HLO pgnt1 | pgntd| HL | ptr | req

1 0 H H 1] ® X 1] 1] ® ® 1]
2 o o % 1 a M a 1 X a 1
3 o o X 1 1 0#1 a 1 0 1 1
4 o 1 X 1 X X a 1 1 1 1
g 1 o % a a M 1 a ® a 1
B 1 o X a 1 ¥ 1 a a 1 1
7 1 o X 1 a X 1 a X a 1
g 1 o X 1 1 a 1 a a 1 1
g 1 o X 1 1 1 a 1 1 1 1
] 1 1 o a X M 1 a a 1 1
1 1 1 o 1 X ¥ a 1 1 1 1
12| 1 1 1 X X X 1 a 1 1 1

40

1 [E— 1
req(1] 0 ————» L P9 . 0 outinyz|[e0l" O L PE s 0 outinti2]
ptr(1] X ————— ptrf1] 0 ——————»
—————— 0] | req[1 [0] | req[1
i 0 req[0] | req[1] W X 1 reql0] | req[1]
- = ———0
- X ptr[0] | ptr [1] =1 ptr[0] | ptr [1]
00— 0] 1 ———>
req[o] 0 > X out_int[0] reafo] 1 > x out_int[0]
ptr[0] X ———————>| ptrf)] 0 ———»
HLOL X Ta out_int{1]] [y x —— Tnﬂ out_int[1]
1
req(t] ————»| | Pt L6 eutinz | [T O > pant 0 out_int[2]
] > ptf1] 1 ————
—_——— 0] | req[1
Wi x 1 reqlo] | reql1] . 1 real0] | rea(1]
9 |——+1 optolptr1] 94 ——1 ptojiptrp]
_— . L
req[0] 1 »0/1 out_int[o] reafo] 1 1 out_int[0]
ptro] 1 > pr[0] X ———————»
ML 0/1 Tp1 out_int[1] HLIO] X) 1 out_int[1]
t1 t1
realt] 1 —————» pgn 1 out_intgz] | [°Al 1 ———— pan 1 outinti2]
ptr[1] 0 ———————» ptr(1] 0 ————
0 1 — 0 1
— ————>1 req[0] | req[1] WL X 1 req[0]] req[1]
3 [0 optio]|ptr[1] I3 ——1 pto]|ptr[]
0) ————» 0] Q ——
reqo] 0 » X out_int[o] realo] 0 % x out_int[o]
ptr[0)] 0 —————»f pte[p] 1 ———»
out_int[1 out_int[1
HLO] X ———— pani0 0 outintti]f Iy jo) x ——»| pgnto 0 outintfl]
t1 t1
realt] 1 —————» pgn 1 out_intgz] | [°Al 1 ———— pan 1 outinti2]
ptr[1] 0 ———————» ptr(1] 0 ————
0 1 — 0 1
— ————>1 req[0] | req[1] WL X 1 req[0]] req[1]
3 [0 optio]|ptr[1] I3 ——1 pto]|ptr[]
0 1 ————» 01—
req(o] 1 » X out_int[o] realo] 1 %0 out_int[o]
ptr[0)] 0 —————»f pte[p] 1 ———»
out_int[1 out_int[1
HL[O] X ———————>| g 0 outiinttt]] Ly @ ———— P 0 outint1]
t1 t1
reat] 1 —————» L P9 a0 outimyz| [1> Ll 1 out intf2]
ptr(1] 0 ———————» ptr(1] 1 ——
I 0 1 — 0 1
I 1 req[0] | req[1] _— 1 reql0] | req[1]
3 ———»1 pteo] | ptr [1] 2 1 ptioliptr[]
0] 1 ————» 0] 0 ————*
req(o] 1 »1 out_int[0] reaf0] 0 0 out_int[o]
ptr[o)] 1 —————»f ptr{0] X —————»
—_— out_int[1 —_— out_int[1
HLD] 1 ————> pgni0 1 outintit)f Jpipo) x ——» i 0 out_intf1]
1 PE— 1
req[t] 1 —————»| RO 0 out_int2 | [1 L 1 out_iny2]
ptr(1] 1 ————— ptr(1] | ———————
—» 0] | req[1 [0] | req[1
Ky 0 1 req[0] | reql1] w1 1 req[0] | reql1]
3 ——1 ptprn] 3 ——1 ptopren]
0] 1 —» 0 X —————»
req[o] 1 »1 out int[o] real0] x %1 out_int[0]
ptr[0] X —————¥ ptr[0] X ———————»
WL 1 outsimti]| fppop x —— 0 outint(1]

pgnto

pgnto

41

Figure 3.22: RR block’s all possible states

The core blocks of this architecture are the RR blocks. Actually, they are working as
small RRAs because they perform two-bit round robin arbitration and they produce
any, pointer, and high-low outputs for next level RRA blocks. Their truth table is
shown in Table 3.1. Also, all possible input—output combinations of RR blocks are
shown in Figure 3.22. Essentially, RR blocks are slightly complex blocks, this
effects this architecture’s timing and especially area performance in a negative
manner. If these blocks are designed in a simple way, this architecture’s

performance could be increased immensely.

GUNIT blocks are very simple blocks, as shown in Figure 3.23. It gets three inputs
and produces the final outputs of the BOW-TIE_RRA. All RR blocks’ pgnt signals
are forwarded to GUNIT blocks and they are ANDed to output the final grant output.

This routing is clearly seen in Figure 3.21.

GUNIT

pgnt1 —— out1

vy Y

— out0

—
—

\i

pgnt0

Figure 3.23: GUNIT block

3.4. ENHANCEMENTS ON PREVIOUS WORK

In order to enhance STA_RRA and CHN_RRA architectures we replaced Optimized
Smple_PE blocks with Han Carlson PPT_Pre_Thermo (HC_PPT_Pre_Thermo)-ED
combination. In this manner, we can see the effects of HC_PPT Pre_thermo—ED on

RRAs performance.

Furthermore, we tried to use N2LOGN Smple_PE encoder to eliminate the
N2LOGN encoder block for STA_RRA, as shown Figure 3.24. This new
architecture is called STA_RAA_N2LOGN. All of these architectures are described

in next sections.

42

3.4.1. STA_RRA_N2LOGN Architecture

This architecture’s Smple_PE and Smpl_PE_Thermo blocks take n-bit inputs and
output log,N bit outputs as shown in Figure 3.24. Therefore, there is no need to use
N2LOGN Encoder block before tothermo block. Thus, area efficiency and timing
performance can be increased with respect to well-known STA_RRA_N2N

architecture.

Priority Direction is Right to Left ——————»

Req
n
P_thermo_from_flop ' n
Yy
AND
FLOP I n . New_Req \
Smpl_PE_Thermo Smpl_PE
legn { Gnt_smpl_PE_thermo logn
Gnt_smpl_PE
1 o' omux °
anyGnt_smpl_PE_thermo
legn,{ P_enc 1
v anyGnt_smpl_PE
tothermo
P_thermo ' n
n

~P_thermo n n {P_thermo, 1'b1}

>
Z
(=]

Gnt

Figure 3.24: STA_RRA_N2LOGN architecture

After the tothermo block an edge detection operation is accomplished by AND gate.
Also, final output is ANDed with Smpl_PE’s any bit to eliminate the conflicts when
zero requests are asserted. For example, a request which has 1’b0 value for each bit
position is asserted for new iteration. In this iteration, RRA’s output’s all bit

positions to be 1’b0. If we do not use final AND gate, RRA’s output’s LSB will be

43

I’bl. This example is illustrated in Figure 3.25. In order to eliminate this problem,

that AND gate is placed at the end of the critical path.

Without using final AND gate With using final AND gate
Request ->00000000 Request 200000000
~P_thermo 211111111 ~P_thermo >11111111
{P_thermo,1'b1} 500000001 {P_thermo,1'b1} 500000001
~P_thermo & {P_thermo,1'b1} >00000001 ~P_thermo & {P_thermo,1'b1} 00000001
Gnt = P_thermo & {P_thermo,1'b1} 200000001 Gnt = (8'b0 & (P_thermo & {P_thermo,1'b1})) > 00000000

Figure 3.25: Zero request example

N2LOGN Smpl_PE’s are implemented recursively with binary tree technique. These
blocks have order of logsN logic level and this is better than ripple carry Smpl_PE.

3.4.2. STA_PPT RRA Architecture

Priority Direction is Right to Left ——»

Req
¥ n
logn,{ P_enc i tothermo 2
P_thermo .’ n

[[rop]

4 Yy

Smpl_PE_Thermo M . New_Req Smple_PE

.g. Y

(] PPT_Pre_Thermo1 | | PPT_Pre_Thermo2

3

] ppt_outi N n ¢ {1'b0, ppt_outi[n-1:1]} | ppt_outz n n " {1'b0, ppt_opt2[n-1:1]}

Y

o
(=]
3

Y r
Edge Detectori Edge Detector2
NZLOGN 1 Gnt_smpl_PE
Encoder anyGnt_smpl_PE_thermo

il

AND
n
n
Gnt_smpl_PE_thermo Gnt_smpl_PE_masked
OR
Simplified_Mux
{Called as Mux_Red)
n
L
Gnt

Figure 3.26: STA_PPT_RRA architecture

44

This architecture is almost as the same as STA_RRA_N2N architecture. Only
difference is in Smpl_PE blocks. In this architecture HC_PPT_Pre_Thermo— ED
blocks combination is used rather than Optimized Smpl_PE blocks. This architecture

is shown in Figure 3.26.

3.4.3. CHN PPT RRA_PPE_ Conflict Architecture

In this architecture HC_PPT_Pre_Thermo— ED blocks combination is used rather
than Optimized Smpl_PE block. This architecture is shown in Figure 3.27. This is
the only difference from the original CHN_RRA_PPE_Conflict architecture.

Priority Direction is Right to Left ——»
Req

P_Thermo 4" n n

Yy

= |

1

n ¥ Req_High
n ¥ Thermo_out Y
Zero?
¥ Y
tothermo 1 1 0
A Valid_Sel
n } Valid_Req
logn, Encoder_out Smpl_PE
PPT_Pre_Thermo
M2LOGN ppt_out n n.t {1'b0, ppt_out[n-1:1]}
Encoder f ¥
I Edge Detector
PPE_Conflict
n
Y
Gnt

Figure 3.27: CHN_PPT_RRA_PPE_Conflict architecture

45

3.4.4. CHN PPT RRA_PPE NonConflict Architecture

In this architecture HC_PPT Pre_Thermo— ED blocks combination is used rather
than Optimized Smpl_PE block too. This architecture is shown in Figure 3.28. This
is the only difference from the original CHN_RRA_PPE_NonConflict architecture.

Priority Direction is Right to Left ——»

Req
P_Thermo . n n
A J
n . Req_High
Y
Zero?
[roe]
L Y
A 1 1 0
Valid_Sel
N Valid_Regq
n To_Thermo l J. Smpl_PE
PPT_Pre_Thermo1 I PPT_Pre_Thermo2
10, t2[n-1:1
N {1'b0, ppt_out1[n-1:1[} ppt_outz n“. n F{ pet_outZn-1:1]
Edge Detector
PPE_NonConflict
n

\J
Gnt

Figure 3.28: CHN_PPT_RRA_PPE_NonConflict architecture

4. AUTOMATIC RTL GENERATION

Register Transfer Level (RTL) coding is an HDL coding technique in which the
behavior of a design is defined in terms of transfer of data between hardware

registers, and logical operations performed on those signals.

Automatic RTL code generation has a very important role in this work. All RRA
architectures have to be compared against each other from 8-bit input to 256-bit
input variations. It is easy to write 8 Bit RRA’s HDL code. On the other hand, if we
try to write 256-bit RRA code, we would get into huge trouble. We probably lose
consistency and make a lot of syntax and instantiation errors during writing up 128-
bit or 256-bit RRA’s Verilog HDL code. It is very cumbersome and tough to write
256-bit RRA code. In addition, it takes too much time. In order to get rid of these
problems we tried to automate this process. We used PHP language and wrote
scripts that automatically generate Verilog HDL code of RRA architectures with
respect to their input bit widths. Those scripts take only one argument, which is the
input bit width of the RRA. Then, scripts automatically generate all necessary
Verilog HDL files for a specific RRA. Automatic RTL code generation task is the
one of the most coercive tasks for this thesis and details of all generators are

described in the next sections.

4.1. STA_RRA GENERATION

There are three different types of STA_RRA generators are coded. These are
STA_RRA_N2N generator which is shown in figure 4.1., STA_RRA_N2LOGN
generator, and STA_RRA_PPT generator. All generators perform the same task.
They take an argument which is the input bit width of architecture, then generate

Verilog HDL files, and finally put all generated files to a specific folder.

Generated Verilog HDL files of STA_RRA_N2N generator are shown in Figure 4.1.

47

STA_RRA Generator

wrapper.v
thermo_enc.v
(tothermo)
rr_arbiter.v GENERATE Verilog files and
MOVE them specified folder.
ntologn.v
smpl_pe.v
TestBench.v

smpl_pe_thermo.v

Figure 4.1: STA_RRA generation

wrapper.v is used for iterative synthesis. It is just a wrapper for top level design. It
has two n-bit flops at its input and output ports. These flops are necessary to create

timing path from request to grant of RRA.

rr_arbiter.v is top level block of RRA. It instantiates other blocks and performs

RRA operation. Simplified multiplexer code is in this Verilog HDL file.

smpl_pe.v and smpl_pe_thermo.v is optimized simple priority encoder code. This
priority encoder’s Verilog code is generated with regard to binary tree and pre-
computation/factoring techniques which are explained in Section 2.1.1. “Any bit” of

smpl_pe_themro.v is generated with binary tree technique.

thermo_enc.v executes thermometer encoding and its algorithm is represented in
Pankaj’s and McKeown’s work. Hence, we did not try to optimize this logic. Also,
its Verilog HDL code is written in a parameterized fashion, so generation of this

block became easier than the other blocks.

ntologn.v is generated with respect to binary tree technique as described in Section

2.1.3

testbecnh.v is the verification code of RRA which is used for RTL and gate level

verifications.

48

In STA_RRA_N2LOGN architecture normal multiplexer is used rather than
simplified multiplexer and N2LOGN encoder block generation is removed. Its
architecture, which is shown in Figure 3.24 is taken into consideration when writing

its RTL generator script.

Also, STA_RRA_PPT architecture generated with respect to Figure 3.26.

4.2. CHN_RRA GENERATION

There are four different generators written for CHN_RRA architectures. One of the
generators is written for CHN_RAA_PPE_Conflict which is shown in Figure 4.2. It
generates necessary Verilog HDL files and moves them into a specific folder.
Smpl_PE, N2LOGN, tothermo, wrapper, and testbench modules are the same for
STA_RRA and this architecture. The other generator 1is written for
CHN_PPT_RAA_PPE_Conflict architecture with respect to Figure 3.27. In that
architecture the difference is the HC_PPT_ Pre Thermo block plus ED block

generation.

CHN_RRA_PPE_CONFLICT Generator
wrapper.v
tothermo.v
rr_arbiter.v GENERATE Verilog files and
MOVE them specified folder.
ntologn.v »@
mux.v
TestBench.v
smpl_pe.v

Figure 4.2: CHN_RRA_PPE_Conflict generation

CHN_RRA_PPE_NonConflict generation is shown is Figure 4.3 and its variant
CHN_PPT_RRA_PPE_NonConflict architecture is generated according to Figure
3.28. In the original version of these architectures, combinations of “Smpl_PE +
N2LOGN Encoder + tothermo” blocks are used to construct the N2N thermometer

encoder block. This is not an efficient way to construct N2N thermometer encoder.

49

Thus, we used HC_PPT_Pre_thermo block to optimize N2N thermometer encoder

block.

CHN_RRA_PPE_NONCONFLICT Generator

wrapper.v OR2.v

rr_arbiter.v NR2.v

GENERATE Verilog files and

MOVE them specified folder. »@
PPT_Pre_Thermo.v ND2.v

smpl_pe.v V.v

mux.v TestBench.v

Figure 4.3: CHN_RRA_PPE_NonConflict (*OPTIMIZED) generation

4.3. PPT_RRA GENERATION

Nine different generators are written for PPT_RRA_RS and PPT_RRA_BT
architectures, which are shown in Figures 4.4 and 4.5, respectively. All PPT
algorithms’ generators are written for PPT_Pre_Thermo Block. This is one of the
most difficult tasks of this thesis. LF, BK, HC, and KS PPT_Pre Thermo blocks are
generated with respect to figures which are shown in chapter 3. In top-level module
all of the sub-modules are instantiated and connected. Testbench code is same for all
generators because they are performing the same RRA algorithm. Also, wrapper is

the same for all architectures as well.

50

PPT_RRA_RS Generator

or_bt.v
wrapper.v

OR2.v

rr_arbiter.v

GENERATE Verilog files and

NR2.v MOVE them specified folder.
PPT_Pre_Thermo.v

(KS or BK or LD or HC)

ND2.v
edge_detector.v
IV.v
mux.v TestBench.v

Figure 4.4: PPT_RRA_RS generation

PPT_RRA_BT Generator

wrapper.v OR2.v

rr_arbiter.v NR2.v
GENERATE Verilog files and

MOVE them specified folder. »@
PPT_Pre_Thermo.v ND2.v

(KS or BK or LD or HC)

edge_detector.v V.v

mux.v TestBench.v

Figure 4.5: PPT_RRA_BT generation

4.4. BOW-TIE_RRA GENERATION

BOW-TIE_RRA architecture generation is accomplished with respect to all figures
in Section 3.3. RR blocks’ functionality is captured from Table 3.1 and its generator
is written by using those equations. Also, GUNIT module is a very small module
that it is generated easily. GUNIT modules are instantiated in gunit_n.v and RR
modules are instantiated in rr_n.v. Eventually, GUNIT macro block and RR macro

block are instantiated in bow-tie.v top level module. This architecture’s generator

51

outputs the same wrapper.v and testbecnh.v files as the other generators. This

generator is shown in Figure 4.6.

BOW-TIE Generator
wrapper.v
rr_n.v
bow_tie_n.v GENERATE Verilog files and
MOVE them specified folder.
rr.v
gunit.v
TestBench.v
gunit_n.v

Figure 4.6: BOW-TIE generation

52

S. VERIFICATION AND SYNTHESIS METHODOLOGY

All RRA architectures’ Verilog HDL codes are generated via their RTL generators.
After this generation operation, all RTL codes are verified by RTL simulation. Then,
verified RTL code is synthesized to get gate level netlist. There are many options in
synthesis work. Different constraints could be applied to our design to get best

synthesis results. All of these issues are covered in the following sections.

5.1. VERIFICATION

In verification task, we have to verify our RTL code’s functionality first. Our
design’s RTL code is tested with behavioral test model. Behavioral test model
performs our design functionality so RTL simulation is also called functional
verification. The test model is written with a very high level of abstraction to fulfill
the functionality of the RRA algorithm. This behavioral model, or in other words
functional test model is in a module which is called testbench. We instantiate our
RTL design into that testbench and apply the same test vectors to both our RTL
design and behavioral test model. Eventually, outputs of these two blocks are
compared for verification. In this way we check our RRA RTL design’s
functionality. If RTL verification phase is passed without any problem, then that
RTL code could be synthesized by DC. After synthesis, we get gate level netlist
regarding to our technology library. We have to verify this gate level netlist’
functionality too, so gate level verification process is started. Verilog HDL code of
technology library, gate level netlist, and test model are used to accomplish the gate
level functional verification. Testbench instantiates gate level netlist to compare its
functionality with that of the behavioral test model. After these phases our RTL
design and gate level design are verified. Verification process is shown in Figure

5.1. This figure is valid for both RTL and gate level verification tasks.
In this thesis, the test model is written with respect to STA_RRA arbitration

algorithm, which is the combination of i{SLIP and mRRR algorithms, and it is almost

identical to ESLIP algorithm, which is described in the introduction section. This

53

behavioral test model is coded with a high level of abstraction and it is used for

verification of all RRA architectures.

Random / TESTBENCH
/ Test Vector
Stimulator /
OUR DESIGN TEST MODEL
RTL Code or Gate Level Netlist Behavioral TestBench Code

|

Monitor the Final Results.
PASSED! or FAILED!

Figure 5.1: Verification strategy

Testbench code for 8 bit RRA is shown below.

module rr_arbiter_tb ();

//Datatype Declerations
reg clk, rst;

reg arbitrate;

reg [7:0] req;

reg [7:0] tb_out;

reg [3:0] ptr;

reg flag;

wire [7:0] design_out;
integer i, k, m, down, up;

//Instatiations
rr_arbiter rr_arbiter_ins (.clk(clk), .rst(rst), .req(req),
.gnt (design_out));

//Decleration of Initial Values
initial begin

clk = 0;

#5 rst = 1;

#15 rst = 0;
end

54

//Toggle clock every 10 nanoseconds
always begin
#10 clk = ~clk;
end

//Test Vectors (Inputs) Declerations
always @ (posedge clk) begin
if (rst) begin
ptr <= 4'ds8;
req <= 8'b0;
tb_out <= 8'b0;
arbitrate <= 1'b0;
end
else begin
req <= $random;
arbitrate <= ~arbitrate;
end
end

//Test Model
always @(arbitrate) begin:RR_ARBITER

if (req == 8'b0) begin
tb_out = 8'b0;
ptr = 4'd8;
end
else begin
flag = 0;
if (ptr != 3'b0) begin

for (i=(ptr-1); i>=0; i=i-1) begin
if (reg[i]==1'bl) begin

th_out[i] = 1'bl;

ptr = i;

for (down=(i-1); down>=0; down=down-1)
tb_out [down] = 1'bO0;

end

for (up=(i+1l); up<8; up=up+l) begin
tb_out[upl=1'b0;

end
flag = 1;
disable RR_ARBITER;
end
end
end
if (flag == 1'b0) begin

for (k=7; k>=ptr; k=k-1) begin
if (reglk]l==1'bl) begin
tb_out[k] = 1'bl;
ptr = k;
for (m=(k-1); m>=0; m=m-1) begin
thb_out[m] = 1'b0;
end
disable RR_ARBITER;
end
end
end
end
end

55

begin

//Control and Monitoring Part
always @(posedge clk) begin
#2 //Wait 2ns for correct comparison
if (design_out == tb_out) begin
Sdisplay ("Time = %d\t req = %$b\t design_output = %b\t
testmodel_output = $b\t —--> CORRECT", S$time, req,
design_out, tb_out);
end
else begin
Sdisplay ("Time = %d\t req = %$b\t design_output = %b\t
testmodel_output = $b\t --> ERROR", $time, req,
design_out, tb_out);
$finish;
end
end

endmodule

5.2. SYNTHESIS METHODOLOGY

The synthesis task is done by DC. It calculates timing results according to timing
paths. Timing path is a path that starts from a flop’s clock trigger and ends at another
flop’s input. The timing paths are taken into account when writing timing
constraints. In order to write timing constraints for RRA design, we have to put that
design into a wrapper. The wrapper has flops at its input and output ports. RRA
design also comprises of a flop to keep priority pointer. Therefore, we can create two
timing paths from flop1’s clk input to flop2’s input and flop1’s clk input to flop3’s
input. These two timing paths and other two timing paths are shown in Figure 5.2.
Critical path of the design depends on combinational logic blocks which are located
in these timing paths. If a timing path contains more combinational logic blocks, its
delay will be bigger than the other timing paths. This path is called the critical path.

Any design’s speed is calculated with its critical path’s timing.

A wrapper structure is ideal to create timing constraints for all RRA designs. We
created a clock period in our synthesis scripts iteratively and tried to find in which
clock period a positive slack occurs. We started with an over-constrained clock
period value, but for each synthesis iteration we increased the clock period by one
nanosecond to reach positive slack results. Positive slack means that our design
meets the timing constraint. There are no timing violations when we see positive

slack at the end of synthesis.

56

Area result is reported for RRA design. If we report area for wrapper, area result
contains input and output flops in wrapper block. Wrapper block is not our actual

design so area result must be reported with respect to RRA design.

Wrapper (Report For TIMING)
Design - Round Robin Arbiter
(Report For AREA) ...
-_____....-.---r' H‘-‘L-‘
g _—_:__: -_-_- ‘___ - '--.,__h_"n\
Fl'Up1 — .-"__-F_.—-—- ":_"H‘_ rmiEmmEEE R R RS G Gy .____‘?-“‘H\ * FIGF}E
-'_"_:..-. - ; Ji
- 3 Y o
J'IE: - '-,_\‘- Flop :__'____,._.-r"" N
“1“1“_"_":&
CLK

Figure 5.2: Synthesis methodology

We run several synthesis tasks to find the best timing and area constraint. Synthesis
tasks are done with no constraint (NC), set_max_Area 0 (SMAQO), and SMAO +
compile incremental —map effort high (CI_MEH) constraints. After all synthesis
results we compare synthesis constraints to use the best one. Eventually we use the
constraints below in our synthesis scripts.

Timing constraint
create_clock —-name clk -period 6 clk

Area constraint
set_max_area 0

Compile the design incrementally with high effort
compile -incremental mapping -map_effort high

Report area results
current_design rr_arbiter
report_area

Report timing results

current_design wrapper

report_timing

In this work many RRA designs are synthesized. This task is notably time
consuming. In order to shorten the synthesis task time, we automated synthesis with

PERL scripts. Two PERL scripts are written for synthesis. One of them does the

57

synthesis task and the other one uses this script and accomplishes all RRA designs’
synthesis tasks. These scripts are called core synthesis script and regression script.

They are explained as follows.

Core Synthesis Script does the following tasks:

- Creates folders for synthesis scripts and results.

- Reads sample synthesis scripts and create new ones for iterative synthesis. In this
part clock period is increased by one nanosecond from start point to end point.
These points could be defined in the script. If you want to do synthesis from 6 to

20 you can easily set these points in the script.
- Invokes DC and runs all scripts and keeps their logs.
- Moves synthesis scripts and synthesis results into related folders.
- Modifies synthesis results, wraps and writes them into a related folder.
- Captures slack and total cell area values from modified result file.

- Writes total cell area and slack values to excel file.

Regression Script synthesizes all RRA designs by using specific synthesis script for
each RRA designs. This script automatically synthesizes all synthesis tasks. Sample

code snippet for this script is shown below.

Spathl="C:/workspace/CHN_RRA/PPE_Conflict/8Bits";
Spath2="C:/workspace/PPT_RRA/LF_RRA_BT/8Bits";
Spath3="C:/workspace/STA_RRA/STA_RRA_N2N/8Bits";

print ("\n\nS$pathl --> This path's synthesis is started!!!\n\n");
chdir ($pathl) || die "Can't chdir: $!";

system ("perl RRA_Syn_ CHN.pl");

print ("\n\n$pathl --> This path's synthesis is finished!!!\n\n");

print ("\n\nS$path2 --> This path's synthesis is started!!!\n\n");
chdir ($path2) || die "Can't chdir: $!";

system ("perl RRA_Syn LF_PPT.pl");

print ("\n\nS$path2 --> This path's synthesis is finished!!!\n\n");

print ("\n\nS$path3 --> This path's synthesis is started!!!\n\n");
chdir ($path3) || die "Can't chdir: $!";

system ("perl RRA_Syn_ STA N2N.pl");

print ("\n\nS$path3 —--> This path's synthesis is finished!!!\n\n");

58

6. SYNTHESIS RESULTS

All of the synthesis is performed with Synopsys DC with Isi_10k technology library.
Detailed iterative synthesis results from 8-bits to 256-bits and synthesis results at

first positive or zero slack are shown in this chaper.

Round Robin Arbiters TIMING Comparison for 8Bit [nput

CHH
, cun | CHIL | CHN Lop HC_BT

Time | STA | STA | STA | oo | PPE | PPE | | by or | Bk RS | HC_BT | Simple | HC_RS | KS_BT | KS_RS | LF_BT | LF_RS |BOWTIE

(ns) | men | PPT |uzLoen|. - |conflict| mHon |. i P

PPT |Conflict
PPT

5 25| 288 2ps| 43| =sj2| 2po8| 2g8| 7| 283 g8 24| 07| 35| 38| 27| 298| 278
7 Az ags| aps| 33| aze| aps| ags| 05| ams| ogs] oze| a7 oge| 2oe| g7 ps| a7
) a9 og| ops| s aae] 02l og| opm| ogs o 07| aa7] ope| Az o| 0| 73
5 o| o1s| opz| gz age| om| oo| ops| opr| ozs| ops| g1 opz o] o4 opt| opz
10 011 o02] ops| o3| g8 o8] ooe| ogs o o2 123 ops| o013 o] 048] om 0,1
11 025 048] oa1| op2| -o42] o1s] o0a3] as8] a7 12 223 opz| 413 o4 148 op3a| oge
12 175 008 0g] opa| o001 145 o049 248 o1 22| sz3| ogs| 23] og| 248 os1| ops
13 275| o7e| 1m2| oza| opt| 28] 1as| sas| am 32| az3| 18] s3] 1@| 3g8] ops| ogs
14 375 174 282 o021| oo| 315 2a9] a4ss| 13¢| a2] 523 2a8| 413] 213] 4a8| 1g8| 186
15 475 274| 3az| as1| 013] 41s] sas] sas| 23| s2] e23] sas| sa3] a31a] sas| 288|286
16 575 374|482 255 o74| 515 4aa] ess| 33| e2] 7aa| ass| e13] 419] eas| 3ps| ase
17 575 474| s82| 355|169 615 s49] ras| 43| 72| 623 sas| 713|513 74s| 4ps| 486
18 775 s574| e@z| ass| 2e9| 7as| eas] sas| s3] s2] 923 eas| s13] e13] sas| sps| see
13 875 674 78| 555 a3g9| s1s| 7as] ess| ea3e| s2| 1023 vas| e13| 7as] eas| eps| ese
20 a7s| 774| 882|655 4g9] 91s| sao| toss] 73e| 102] 1123 sas| 1043] s19] to4s] 7ee| 7ae

Mote: Green RRA's are our architectures, orange and blue ones are rival architectures and their modifications.

Round Robin Arbiter AREA Comparison for 8Bit Input

CHIl
. chn | CHIL | CHIE oo HC_BT
Time | STA | STA | STA | g, | PPE | PPE | o | b br | b R | HC BT |simple | HC_RS | KS_BT | KS_RS | LF BT | LF RS |BOWTE
(ns) | m2u | PPT |uzLocn| o |conflict| Nom | <l P
PPT |Conflict
PPT

5 180] 18s| 25| oe6| oe2| 238 oea| 1me| =213| 19a| 10| oor| za0| 209 eme| 21| am
7 79| 18s| 231| 46| 243] 237 o44| o204| 213| ooo| 183|207 ooe| 211] 2za| 212 440
B 170 87| 232 oa1| 25| 2a8| 247| 185|218 174|158 08| 477|173 169|202 468
5 67| 18a| 18| oa1| 2s6| 73| 1@s| 1sa| 211| 154] 148| 198| 1e1| 87| 156| 206|404
I 138 153|182 oos| o2s4| q1e1| 1s2| 83| A4ss| 153 14s| 180| 1e0| 1se| 1ss| as7| aar
1 32| 1a7| d7s| 1se| o2ar| 1s2| 1es| 1s3| 148 153| 145| 1a8| 1e0| 1s0] 15| 47| avs
12 133 148 73| 1es| o211| 1s2| 1e1| 1s3| 144| 153] 145| 124| 1e0| 148] 15s| 145 aes
13 133] 148] 17r3| 80| 77| 152|161 153| 144| 153] 145] 1a4| 1e0] 148] 155|145 s6z
14 133 148 73| s8] 1m| 152|181 1s3| 144| 153] 145] 124| 1e0| 148] 1ss| 145 ez
15 133] 146] 173| 156] 66| 152] 181| 1s53| 144| 153] 145| 144| 160|148 15| 145 a6z
15 133] 146] 173| 1se| 1e8| 152] 161 153| 144| 153|145 144| 1e0] 148 155|145 =62
17 133] 148 73| 156|166 152|181 1s53| 144| 153] 145| 124| 1e0| 148] 15s5| 145 ez
15 133] 146] 173| 156] 66| 152] 181| 1s53| 144| 153] 145| 144| 160|148 15| 145 a6z
19 133] 148] 173| 156] 66| 152|181 1s53| 144| 153] 145| 124| 1e0| 148] 155|145 a6z
20 133] 148 173| 1s6| 1es| 1s2| 1e1| 1s3| 144| 153] 145| 124| 1e0] 148] 155|145 ez

Mote: Green RRA'S are our architectures, orange and biug ones are rival architectures and their modificstions.

Figure 6.1: 8 Bit RRAs synthesis results

59

Round Robin Arbiters TIMING Comparison for 16 Bit Input

CHH
Time | sta | sta | STA CHl .C::'E' gzz PPE HC_BT
N2LOG | PPE . Hon | BK_BT | BK_RS | HC_BT |Simple | HC_RS | KS_BT | KS_RS | LF_BT | LF_RS [BOWTIE
(ns} HZ2H PPT " Conflict Conflict| Hon Conflict Mux
PPT |Conflict PPT
5] -4 63 -5,11 -3,88 -7.43 8.3 -4,02 -4.47 -2,39 -4,58 -2,39 =21 -4.8 =227 -4.48 -2,33 -4,38 -4.91
7 353 41| 276 643 73 -a02| -sar] 432 azr] a2s A1 ERI R T R T 42
3 263 08| 78| S48 63| 204 313 n3a| 277 024| na2 28| o2z 248|027 239 A
g 79| 2p8| g7 446 53 08| 98] om| Az 0 0 14 o2 a4s] om| s 203
10 ng2| 1,05 o] 3221 -434| 0as| 099 02 093 0,11 opz| -ngz 004| 046 002|047 134
11 002 om 0,04 24| am 0,01 o] omn ol o036 o N o os i s
12 0,m 0,06 ooz 153 25 i] 0,02 0,03 006 0,03 0,24 0 007 0 055 002 0
13 094 o047 o043| -oe2] ap2] ops] oo 037| op2l ogr| 263|002 o075 oo4 0g| oo7| o
14 0,35 0 0,05 008 -002 0,32 013 0,06 o 0,56 353 03 059 0,04 16 023 008
15 ngal op8| og2| o4z o] o84 113 108] 048] 1m8| 453|093 189] o47| o034 o049 o0p3
16 214 0,33 025 0,15 0,03 027 0,46 206 0,13 2 B6 553 056 259 137 154 1,04 049
17 34| 133 oa2| o043 op2| 127 146] s08| o49] 3gs| 63| 128 359 o78| 254 o0@s| 140
18 a4 2330 112] o024 03] opgs| oss| 408] oss] ams| 7e3| oss| 48] 178] s8] 137|240
19 s14| 333 212| os4| o027 1p/s| 15| s08| 148] sEs| 863|165 ss9| 27| 439 o7s| s34
20 64| 433 a312] o7o| ogr| 427 285 eo0s| oas| egs| os3| 265] ess| a7e| s8] 178 440
Mote: Green RRA's are our architectures orange and blue ones are rival architectures and their mocifications.
Round Robin Arhiter AREA Comparison for 16 Bit Input
CHH CHH cHin
Time S5TA STA STA CHHl PPE PPE PPE H.C_BT
H2LOG | PPE - Hon | BK_BT | BK_RS | HC_BT |Simple | HC_RS | KS_BT | KS_RS | LF_BT | LF_RS [BOWTIE
(ns} HZ2H PPT " Conflict Conflict| Hon Conflict Mux
PPT |Conflict PPT
5] 412 409 515 16 519 =10 544 393 405 403 425 411 496 409 415 425 920
7 411 409 435 16 570 05 544 414 425 421 429 411 523 409 440 425 906
g 410 390 501 =10 570 493 481 400 425 421 405 411 a0 403 435 430 865
9 393 390 507 12 569 445 452 361 45 349 322 391 374 403 352 393 &74
10 372 411 441 a42 535 425 483 320 374 326 31 352 352 364 327 385 77
11 378 409 422 457 547 346 417 316 3T 326 311 363 352 329 326 332 &7g
12 307 329 414 533 479 327 357 315 321 325 30 314 351 315 325 304 &S00
13 259 318 390 12 600 37 342 315 307 325 309 300 351 310 324 299 791
14 290 3 383 400 564 321 339 S 295 325 309 287 3 309 324 287 756
15 285 309 374 378 420 32 339 315 292 325 309 297 351 309 323 296 751
16 293 S 378 353 385 320 338 S 292 325 309 286 351 309 323 285 746
17 293 319 377 342 375 320 335 315 291 325 309 296 351 308 323 294 746
18 293 5 v 338 359 Skl 337 Sk 29 325 309 285 33 308 323 284 746
19 293 319 377 339 356 314 337 315 291 325 309 295 351 308 323 293 746
20 293 315 37T 337 336 320 337 315 290 325 309 285 351 308 323 283 46

Mote: Green RRA's are our architectures orange and blue ones are rival architectures and their mocifications.

Figure 6.2: 16 Bit RRAs synthesis results

60

Round Robin Arbiters TIMING Comparison for 32Bit Input

CHHl
, cun | CHU | CHIL Lo HC_BT
Time | STA | STA | STA | poo | PPE | PPE | o | oy or | Bk RS |HC BT |Simple |HC_RS | kS BT | KS RS | LF BT | LF_RS |[BOWTIE
(ns) | m2n | PPT [n2Loen| o |Conflict| Hon | o P
PPT |Conflict
PPT
& 655 657 -s26] -a7s| -03a] ssa] sze| ave| 4] 32| 2me] mns| 21| sgs] ogr| 62| ana
7 sa1| sg2] 42| as| 933] -ape| azel 27e| sa4] 243 ape| spa| 204 sas 2| =2 6ga
a 473 -am| 32| 7e4| 83| as0] age| a7s] a0 4] og4] sar] 2] a8 4] 42] 548
[358 381 2| m@s| 734] 2m| 27al ogs] a3 o024 o] am| ops] 283 o] 288 -as2
10 28] 27| 0p| sgs] 634 a2a] ams] ome| 22s] op2[om| 22| om| ps| om| 224] 3
11 87| g6 03] 4ss] s3] 03¢] 03] oo2] ogs] og9] ops] pos] 048] ogs] om| aa] a2
12 55| 0@ ops| as] s om i 01| -osa] o43] n0a3s o] o043] om 01 o] 183
13 [o] ops] 13| s om o| o2 0 05| 038 0| o0z2| ops] aar NEEE
14 oo om| om| 2pe] 2se] oa7[ope] og| om| 1as] 18] ome| 22 om| oar i i
15 ooz oo4] om| ag| s om| og2a] 13 o] 21s8] 1me| o4 220 05| o0s3] o018 i
16 o] o008 i o] 0gs] oo7] ogs| 23s] oos]| 35 122] oss| 322] oge| ogr| om| oo
17 017 oas] oaz2[o1 o] ome| ogz3] =mas| o014 41s] 1ge] oazs] e22] ome| 218 01| ops
18 024 002 02| ooz om| o3s| ogzl 047 o4s] soe| sza] oga] mae 16 aps| o7r[om
18 114 o7z oss] ops] om| om| 1a2 03] o43] 408] B2 1me[414 26| ag7] 029 i
20 ogs] o1 o03s] o16] ope| osm2| ea 13] op3] o@s| 7o) 2me] os3 ag] am7] op3 1
Mote: Green RRA's are our architectures orange and blue ones are rival architectures and their modifications.
Round Robin Arhiter AREA Comparison for 32Bit Input
cin | can | MM
Time | STA | STA | STA g:z GLE || CLE :EIEI BK_BT | BK_RS | HC_BT :.ﬁ.‘.?.z HC_RS | KS_BT | KS_RS | LF_BT | LF_RS |BOWTIE
(ns) | men | PPT |u2LoGH| o Conflict] Non | o
PPT |Conflict
PPT
& a52] o04] 024 11em| 1240] qovr| qose] 7ss| aav| ees| ave| 92¢] sen| mze| oes| sas| 1res
7 41 oa1| o24| 11| 1248] og2] qose] vss| eav| eme| omt o24] oa2] asza| san| &3s| 17oe
a gon| om4| qo24] 1130] 1248[qoms[qoes| 7 e S oa0] oas| e2a] es2| m42[1Emt
[onz] oza] qosa| 11e0] 1zs1| qoes[qovm| 7ss] am sez] &s2] ooa| 1oms| ose| avs| gwo| 1vve
10 ae4] o4s| qosa| 1116] 12s1 qose| qoms| v gon| 7o gos] o6| 7as| es0| wve| meo| 47a0
11 aro] man| o1e| 1135 124s] ozv| 1oes| esa| ses| mes| ms3a] sso] wveo| mes[mov| s14] 1am
12 gaz| o0 soa| 1138] 1173] sas| oseo| eea| mes| es2| ess| aza| 7e4| mos| ea 878] 1751
13 75| m2s ms3] 1om4] 117a] vse| ves| mea] we2| eeo| ms2| ees| 7e2] mev| m7r| e 17e2
14 san| 727 ao] 1ovz] 2]] 643] fza] men| 47| mas| ve3] es0| em2| ms1] 1663
15 Gan] &79 ao] 1112] 11s7] ear| ws| ee3] eoa| men| e g17] 783] &a1 676) B30] 1624
16 I an4| 1oes| 11e0] eva] wo| mea] ses| eao] mes[e10| 7es] mea] evo[sov| a7
17 T 773 sar| ma| em| 643 son| men| 47| m12| 7e3| ea0| 64| m26| 1553
15 626] BAD ve6] mom| ava] eea| vov] mea] sea| eeo| mev| eos| 7es]| mea] m72[e2d| 152
18 617] 66 7o) 7ea] soo| ees| vov] me3] ses| eeo| mer| eor| 7ea| men] em 621] 1514
20 619] Ass 751 733 7ev| eva] wov] ees] =ma| eva] ear] eov[ve2[men| a7 607] 1514

Mote: Green RRA's are our architectures orange and blue ones are rival architectures and their modifications.

Figure 6.3: 32 Bit RRAs synthesis results

61

Round Robin Arbiters TIMING Comparison for 64Bit Input
CHH
, can | SHI| CHE oo HC_BT
Time | STA | STA | STA | o, | PPE | PPE |\ | o g7 | Bk RS |HC BT |simple |HC_RS | KS_BT | KS_RS | LF_BT | LF RS |BOWTIE
(ns) | men | PPT InzLogH| o |Conflict| Hon | to o
PPT |Conflict PPT
& 857 -am| &po| amav| asas] 722 var] 43a] sg2| ses| ags| 7er| aze| ga| as] 7ed] 0n
7 79| 7ea] | azav| 2ms] ets| 6e7] v e 29 22| Ees| 27e] 61| 2rv| 65| -apn
8 646) sas| -ags| 107 1p2| sa3s| sg2| 26| es2| 1e7] age| ses| ags| sa| age| =54 e
[s54] 60a] aos] opd] ao07] 444] ape] a20] se] 0gr] oge| asr| oze| a2 opr| ame] m
10 s07| am| 28| ss3| gms| a2s| st osr| a3 0 N o] 318 o] 3g7| &0s
11 353 4o8] 3] 82| as1] -2os| 28 o] g o0zl om| 27| opa| 218] om| 252 sgs
12 259] -2@2] ap7| 7os| wge| 33| g om| ase| ooe 01| a7 o ags] om| g 41a
13 A39] 189 o] s45] | 044] 72 o 25 og7 ol 7] ox| ogs] om| ogr] o7
14 053] 084 o] s13] 5s ol om| om| 045 om| op2 o] om| om| ops o] 227
15 00 o o] -434] ags] om ol om o] 048] op4] om| ops] ops] opa N EE
16 om| om| om| 323 -3gs o ops| oo 0] o2 03 ol ogr| o007 ozs| oo3| o
17 002 ope] opos] 204 273 om| oor] ops[om] ope] 1s3] ops] ops] ops 06 002 i
18 oza| o] o026 o8] 1] oo om| ope| oo7] og| 27s] opa| 04| o3s] oss] oo3 [
18 0,08 o] om| o047 op7] oo2] ops| oos] ops| om] azs| o#] opge| o043 ogi o2 om2
20 003 om| 026 i o] ops[ood] ogs[ots] i oas| opa[1me] ops] 12| ods] o003
Mote: Green RRA's are our architectures, orange and blue ones are rival architectures and their modifications.
Round Robin Arhiter AREA Comparison for 64Bit Input
cHi
, can | SHI| CHE oo HC_BT
Time | STA | STA | STA | oo | PPE | PPE | o o g7 | gy ps |He BT |simple |HC_RS | KS_BT | KS_RS | LF BT | LF RS |BOWTE
(ns) | men | PPT InzLogH| o Conflict| HNon | to e
PPT |Conflict
PPT
& 1977] tar2] 2178 22m3] o21ma| 2mie| test| 1eos[teos| tera] 1722| qeve| oom7| avee| s 712 sdes
7 1o71] 1o03] oosa| 2zm2| 2157 2130 tmes| teov| 1s71| a713[47s1| qevo| ooe| q7e3| 1s4n| q7os| s4s0
a 1946] 1886|2100 2203 21s2| 1mes| tmi2| 1smms| 1s7a| awi2[1me1]| qevo| oods] 7Sz 1vee]| a723[s4an
[1648] 1@e6] 2100|2208 21e1| 1ova[tsos| tm3s[1gen| amie] tevo] em| 2071 a7s2| 17as| tEme[mee
10 1674 1978|2154 2217 21a1| 1mes[tsen| 1m2s[1e3s| teeo| 1se1| qeos| 1sas| qe| 1em1] 1ses| 3sio
11 1e96] 1912] 2125] 2214[223a] ami7[tmis| 1soo[teom| t446] 14| tss2{ 4ves] e[1sas] qsso| s4re
12 1955 18a1| oeo8| o2om2| oeo4| 1957 a7ez| 13sa| 157a| 1436] 137s| 1544 1ese| qear| 144 1eos| 3s0s
13 1667 1av4| oov2| 2zms| 2ess| 1wiv| teso| 1aoo[1s7e| t43s[1emi| qse| tess| eis| 1443] 1sse| 3so4
14 1871 1ga0| 1sea| 2007 oeoa| 1mis| teen| 12o8[1s1a] 143s| 1372|1443 1ese| qa1e| 1as2| 14ss| asia
15 1631 t1a01] 7es| 21e4] 21e1| 1ete] 1ss| 12me[13es] aza[aami| sz amr] aeir| 1408|1334 s4vs
16 1478| 1saz| aea| 2a1| 2e0a| 1emo| 1sis| a7 12e1| q43a] aar1| 274 1esa| qaee| 1408] 1ze4 dem
17 1401 1420] qsva| 2o41| 2124] 1ams| temt| 12me[1218] 432[1mes| qze2{ tes2] t4o0[1407] q2es[sove
18 1368| 13g6| 15e@| 2218 2osa| 1427 1e@1| 1z2e6] 1203] 143z[1367|1256 1esz| 13es| 1403|1268 @aw
18 1364 1304|1607 2125) onsn| 1e3s| qem| 12me[t2m1] 432[1me7| t2se| tes2] qavo| 14ne] 1248 3es
20 1341 1448] 1gsa] 1me2| ies4| 1a18] 1em4] 12o6[tvmm| 432[1mem| sy tes2] qavs| 1ame| 1246] som

Mote: Green RRA's are our architectures, orange and blue ones are rival architectures and their modifications.

Figure 6.4: 64 Bit RRAs synthesis results

62

Round Robin Arbiters TIMING Comparison for 128Bit Input

CHH
, chn | CHU | CHI oo HC_BT
Time | STA | STA | STA | oo | PPE | PPE | oo | o oo | Bk ps |HC BT |Simple | HC RS | KS_BT | KS_RS | LF_BT | LF_RS |BOWTIE
(ns) | m2n | PPT |n2LOGN| o (Conflict| Hon | o
PPT |Conflict
PPT
B 048] 09| s12] ae0s| qs9s] s7s] el set] qo73] am| -am| sss| -ags| g02] ap7| aq9] a3z
7 o7s| -aga| 7as| 15s3] 47| 7s9| 7es| 4ss| oes| a74| s8] 7oe| sge| so2| arr] as| g7
B 546 824 e20] 13ge| 415 s49] eg] 43| s36| 289 27| 6os] 2o eor| 2rs] 7as| 1094
q 7@3| 7ea| s27| 273 a3p08| s7s| sg] 2ss| 7a7| as9| e8| soe| 194] s7e] 74| eq| oo4
10 623 632 -4p04| 23| 203 4s9] 12| ae4| 64| o8] 077 4s6| 0p4] -a7e| os9] sa7| 504
11 4| sg| a19] 1oas] 073 s44| 3] o039 &5 0 Y R 0| 43| 799
12 48] -aa7| 28] age| n2s[2a 3 o -444] om| om| 28] om[2@ 0| 32| &a7
13 a68| -3ga| 28| a3 934 s3] ag] om| 374 oos] o02] 1me] ooz as| ops] 28] =573
14 235 282 ops| 7av| -a3s| os7| 0@ 0| -214] o008 o017 K o1 om| oo a4 sa2
15 57 73 o] Ea2] s 0| o0 o2 4| oos| oo7 0| 014 ol om| o3| 393
16 0g6] 089 o] sg4] =pa] ops o] oo 094 o1 oz2 i o1 oo2] ops 0| 328
17 i i o] 444] sa2] om] ops] ops o 015 o oo 01| o003 i 0| -1g9
15 i i o] 333 am ol oo ooz ol oz om| ops] om] o] oas] oo 147
19 ol om 007 247| 28s| oor] oo oge 0| os5] o004 ogs| 037 0| o01s| ogps] 018
20 o] om oo4] 174 257 opz]l om] ops] oo9 1] oos] oos] ogs] ops| oa3] oo 0
Mote: Green RRA's are our architectures orange and blue ones are rival architectures and their modifications.
Round Robin Arbiter AREA Comparison for 128Bit Input
CHH
, chn | CHU | CHI oo HC_BT
Time | STA | STA | STA | oo | PPE | PPE | oo | o oo | Bk ps |HC BT |Simple | HC RS | KS_BT | KS_RS | LF_BT | LF_RS |BOWTIE
(ns) | m2n | PPT |n2LOGN| o (Conflict| Hon | o
PPT |Conflict
PPT
& sggs| aven| aoms| azes| geva| ssos| geeg| siz2s] mi9s| savs| sesv| seee| 42e0] me2e] avw| ss0s| eoes
7 3060] 3571| 43s7| 4oss| soss| seeon| 4e07] sooe| s192] soi4| seos| se2e| 4zm| mees| aes7| as3g| eam2
B 3g72| ao74| ans3| 4soe| 4vrd| aman| ges7| 3zas| mi7e| ses;r| seis| avea| 427s| amos| aves| sese| eoe2
q 3717| sge0| a130| aszs| geon| as7o| gess| s110| smis| se2v| sese| aves| 4zev| mess| avee| ae00] eods
10 4033] 3oa0| am3| 4ses| 4525 a43s| 4ms7| soeo| smer| smis| avio| soo7| 4307 mese| avs1| asos| eoes
11 3007] ss10] 4240] 4se6| sted| aee0| gem| m1oe| smis2| sero| mis2| ssos| aoseo| aeio| adz0| se0s| eods
12 zo28] 3o20] 4200| eoms| 4so2| emsn| 43o3| 2een| soos| m113] oose| zass| avse| mss7| ases| sem0| esvs
13 3675] s504| a201| 4d42| 4s30| am7| gess| oese| sooe| sooo| 2em| s3es| ass7| ass2| azee| asoo| mood
14 sgs2| soz4| aoo2| soe1| 4eo2| amse| 4572 oeie| s11s| sooo| 2eve| sa1o| asse| asv2| wies| aoo0] esgs
15 a612] sgo0] 3e41| 4see| dors| aves| 4met| oeiz| soos| 2oos| 2em| soes| assa| asee| soer| se2s| eoos
16 ag2| s7a| 3sar| 4sss| som2| 3s2e| smos| oeoo| 2o4v| 2omo| 2ees| oceve| ases| soos| soom| 2ois| eona
17 3480|3404 3265 44s0| dsen| 33| smos| oeoo| 2oie| 20o0| 2ees| 2eo7| aseo| zomi| 2oms| 27s3| eoes
18 3215|177 3220 4ms1| 4e0a| sos0| si3e| oeoo| 2ges| 2omo| 2ees| 2sm1| ases| zeeo| 2oso| zevr| emis
19 2037| aos3| sed| azve| 4sz2| soo1| s3] oeos| 2446 2o0o7| 2ees| 2so0m| ases| zese| 2057 2e40| eved
20 2006] so05| 31s6| 4em1| 4e4n| 2o7a| mi32| oeos| 2309| 2oms| 2oee| 2sos| ases| zemi| 2047 zean| eers

Mote: Green RRA's are our architectures orange and blue ones are rival architectures and their modifications.

Figure 6.5: 128 Bit RRAs synthesis results

63

Round Robin Arbiters TIMING Comparison for 2568it Input

CHH
- STA CHN EHN EHN PPE HC_BT
Time | sTA STA | v2Los | pPE | FPE [FPE Mon | BK_BT |BK_RS | HC_BT | Simple |HC_RS | HS_EBT |KS_RS | LF_ET | LF_RS |EOWTIE
(s} | MENRRT T oot SOTit) MOn et M
PFT [Conflict
FFT
10 -8 66 -8.12 587 1476|1457 -G08 -6.,45 -2,61 -2.483 -0.88 -1.38 -6.76 -1.62 -5.07 =178 5,88 1226
11 =738 =714 -5,15(-13.92] -13.63 -5,88 -5,53 -1,32 =725 o] -0.42 =576 -0.7 5,14 -0.69 489 11,15
12 G564 621 307 1284| 1268 -461 -449) 027 624 0,13 a -4.8 u] -4.14 u] -3.88 -9.85
12 -5.61 -5.09 274 1104 1162 242 255 o) 572 008 1] 281 u] -2.14 u] -2.20 -9,11
14 -4,45 -4,12 -1 86(-10,66| -1055 2.7 -2, G i) -4 0,01 0,01 277 0,04 -2,11 u] -2,48 -8.26
15 -3.81 3.8 -1.7| 1003 -0.585 -1.68 -1, Gl 0,01 =377 0,01 0,08 1.7 0,01 =111 0,02 -1,33 -8.26
16 =276 -2,.39 [u] -3.86 -3.57 04| -0.59 i) =274 0,15 0,14 -0.8 0.2 0.1 u] -0.62 =73
17 -1.4 -1,33 [u] -3.45 748 [u] [u] 0,02 -1.37 0,89 0,03 [u] 0,07 [u] [u] [u] -4.71
12 074 044 u] -5.54 5.5 u] u] 0] 042 1.89 0,02 0,01 022 0.0 0.04 u] -6
19 [u] [u] u] 5.7 5,42 u] 0,01 0,01 o 2,80 0,08 0,01 0,02 0,04 u] u] -2.6
20 u] u] u] 5,01 -4.7 u] 0,06 i) i) 061 0,35 0,04 0,07 0,01 0,01 0,01 -1.38
21 u] u] u] -3.88 3587 u] 0,01 0,02 i) 161 0,58 u] 017 u] 0,01 0,01 -0.56
22 [u] 0,01 0,01 2.7 2,38 0,03 0,05 0,02 i) 261 0.57 0,03 0,05 0,02 0,31 0,13 o]
232 0,03 a 0,02 -1.75 1,79 0.01 0,02 a a 361 0,55 0,03 0,11 0.07 u] u] 0,01
24 u] 0.04 0.0z 067 0.21 0,02 0.0z 0,16 0.1 461 055 0,21 0,56 u] 0.04 0,05 1]
25 0,01 0,08 0,24 [u] [u] 0,01 0,0 1,16 0,01 & 61 1,81 0,11 1,66 0,07 0,16 0,02 0,1
26 0,02 0,04 0,18 u] u] 0,01 0,02 2,16 0,04 661 271 0,08 2,56 0,02 0,28 0,02 o.0s
27 0,08 0,25 0,01 0,02 u] 0,04 0,03 3,16 0,01 761 0,39 0,11 3.56 0,05 0.2 0,06 008
28 0,01 0,02 0.2 0,01 [u] 0,03 0,04 0,05 i) G361 0,02 0,13 [u] 0,12 0,32 0,01 0,07
29 u] 0,02 0,14 u] 0.0z .01 .07 0,37 005 261 0,02 0,12 0,04 0.21 0,16 u] 002
20 0,08 0,23 u] 0,08 u] 0,08 u] 0,48 004 1051 0,04 0,12 0,34 0,12 0,07 0,02 0,05
MNate: Green RRA'z are aur architectures, arange and blue ones are rival architectures and their madifications.
Round Robin Arbiter AREA Comparison for 25680t Input
CHN
- STA CHN EHN EHN PPE HC_BT
Time S E1E NZLOG | FFE PPE PPE Mom | EK_BT |BK_RS | HC_ET [Si m_ple HC_RS | KS_ET (KS_RS | LF_ET | LF_RS | EOWTIE
(s) | M2 PR ot | Corlist] Men o i Mue
FFT [Cornflict
FPT
10 2129 2145 8280 2877 2000 242 2140 G202 6236 6002 7202 6220 g9322 T34 TEEY BE7S| 12693
11 2306 8285 8172 2038 Q067 8382 2342 G368 GE06 falatoie] 7158 G Q092 GG20 TETE GS05| 12676
12 G238 5289 521 8823 5915 8510 3136 GG 6595 5196 6477 G167 5402 GG30 G923 G351 13673
12 G282 2199 5657 701 2093 2791 5013 5703 6237 5045 G036 5158 7313 GOS6 G353 G529] 13729
14 2077 2120 2264| F67 Qo7 2375| 7OIF| S350 6107|504 G002 5200 TE42 G7e4| G201 G504 13724
15 7919 2074 701 a7r3g Q066 8522 TO36 5250 5050 S04 5002 6738 FE3I5 G725 GEEE GIE6| 12686
16 7297 8127 8180 2595 Q338 240z TaTZ G244 G144| a0 G039 G156 TE3Z G733 G402 G426| 12665
17 5192 8111 7385 5594 317 7353 T096 G238 G105 5041 5989 G031 TE2E G215 G457 S967| 13769
18 Tra3 S069 F236 Q120 123 7315 G794) 5236 5399 5041 G203 5538 FE25 G175 G397 5592 13862
19 TE42 Fo02 G562 2200 Q077 G574 6567] S233| S50F[S0M 5205 5356 TE26 5276 G199 S405| 13242
20 G277 6522 5450 arae Qo7 6442 6495) S427| S054| 5040 5022 5202 Fee0 G050 G120 5437 13220
21 G522 6358 6510 2240 Q145 G205 G533 G232 A4914(&040 5000 5328 FE25 &970 6132 40| 12578
2z G216 G2a0 6357 2885 aryi G179 G520 G231 4282 S040 5237 8367 TE2d S066 G141 G382| 12908
23 G196 G221 G281 a704 Q039 G148 G476 G231 4331 G040 5989 5283 TE23 S964 G126 5356| 12871
24 G063 G188 G264 &vI2 2569 G136 6471 5231 4774 5040 5034 5271 TE23 G029 G110 5345] 12820
25 G152 6104 G262 7977 2552 GOOS| 6405) 5231 4795 5040 5024 5320 TE22 5062 GO0 5342 12612
26 5209 6179 6259 Fr01 FEE0 6105 G47F 5231 4780 5040 5084 5271 FE232 s078 [u]=xc} 533I6| 12376
27 G173 G208 6208 7404 7020 6137 Ggz G231 47TE S040 5035 G266 TE23 a972 G069 5340 12288
28 S945 G201 G284 7187 G295 6155 GE3 G230 4768 G040 5986 5284 TE23 5970 G055 5323 12307
20 G176 G214 G287 G310 G235 G144| G472 G230 4770 5040 5987 5281 FE22 5961 G055 5327 12273
30 G142 G227 G206 G217 G226 G170| 6476) S230(4762(5S040 5022 5279 7622 5265 G056 5315| 12267

MNote: Green RRA's are our architectures, orange and blue ones are rival architectures and their modifications.

Figure 6.6: 256 Bit RRAs synthesis results

64

S9

Rivals Chir Othver Archs. FProposed Arbiters
Bitwicith Criterion STA CH"-P_PE ﬁ:.':a':.': powrie | STA BK_BT | BK_RS | HC_BT | HC_RS | KS_BT | KS_RS | LF.BT | LF_RS
H2ZH Conflict lict LOGH2H
5 Area 176 186 173 a7 196 165 155 174 160 177 157 169 157
Timirng] 11] 10] g 10 8 10 g 9 a 10
- Area 452 400 346 S00 441 361 321 349 363 374 529 352 332
Titming 12 14 11 12 10 g9 12 g 11 4 11 9 11
- Ares 1409 1096 893 1663 899 7 625 701 920 785 805 &75 875
Timing 14 16 12 14 12 10 14 10 12 10 12 q 12
- Area 1631 1842 17149 3276 2072 1500 1385 16E0 1443 1835 1416 1631 1485
Timing 15 20 14 17 13 11 15 10 14 10 14 10 14
128 Area 3480 4631 3786 G475 3641 2862 2918 3679 3285 3980 3364 3420 2915
Timing 17 =20 nz 15 20 15 12 17 11 15 11 15 11 16
o Area TE4E 7977 7353 12805 8160 5703 5397 5639 G031 G402 6215 GO23 S967
Timirg 14 25 17 22 16 13 19 11 17 12 17 12 17

Figure 6.7: Synthesis results at first positive or zero slack

7. CONCLUSION AND FUTURE WORK

In this thesis, we proposed two RRA architectures PPT_RRA_RS and
PPT_RRA_BT. We also described another new architecture — BOW-TIE_RRA
which is still under development. We optimized and implemented our rival
architectures. Various modifications and optimizations are applied on these
architectures to strengthen them. Then, all RRA architectures are verified and
synthesized. According to synthesis results we proved that our proposed designs are
area efficient and faster than the rival architectures. The fastest architecture is
HC_PPT _RRA_BT and the most area efficient one is BK_PPT RRA_RS with

respect to 256-bit synthesis results. These results are simplified as follows.

According to 256-bit synthesis results, our new architectures achieve 22% area
improvement and 42% timing improvement over optimized STA_RRA_N2N which
is the well-known RRA design in literature. We optimized Smpl_PE block which is
described in Chapter 2.

Two CHN_RRA designs were published in 2006. The authors tried to enhance the
STA_RRA architecture. However, their architectures had some drawbacks. We
applied some optimizations on their work. These optimizations are explained in
Chapter 2. When we compared our proposed architectures’ synthesis results against
CHN_RRAS’ results for 256-bit, we saw that we outperform them by factor in 35%

for speed and 23% for area.

Savin C.E., McSmythurs T., and Czilli J. published BTS_RRA in 2004. In their
paper, they represented that their architecture has (log;N + 4) logic level, (nlog,N +
7n - 6) combinational gate count and it has n-bit flop. Our proposed architecture for
best timing (with Ladner Fisher Pre_Thermo block — LF_PPT_RRA_BT) has
(log,N + 4) logic level too. However, its gate count is equal to (nlogoN + 4n) + n-bit

flop. Thus, our proposed architecture’s gate count is better than BTS_RRA.

The most recent work was carried out by Zheng S. Q. and Yang M. in January 2007.
They proposed two architectures: PRRA and IPRRA. They indicated that [PRRA

66

achieved 30.8% timing improvement and 66.9% area improvement over PPE design
which is the core block of STA_RRA. Our proposed design for best timing achieved
42% timing improvement over STA_RRA, which is better than both IPPRA and
PPRA.

Other two different architectures SA and PPA use different algorithms and they
cannot ensure the fairness for non-uniformly distributed requests. Thus, we did not

implement these architectures for comparison.

In summary, PPT_RRA_BT and PPT_RRA_RS architectures both achieve
important improvements in area and speed departments compared with former RRA
architectures. Due to their performance results, these architectures will play
important roles for high-speed switches, routers, and the systems where arbitration is

required for various purposes.

It is possible to enhance the area and timing results of BOW-TIE_RRA architecture.
It consists of complex RR Blocks. So, in the future we will work on to reduce the
RR Blocks’ complexity of that architecture. Also, unimplemented RRA architectures

will be implemented for area and timing comparison.

67

REFERENCES

Books

Koren, 1., 2001. Computer Arithmetic Algorithms, 2nd edition, A K Peters Ltd.

Synopsys, Inc.,2007. Design Compiler 1 Student Guide, v2007.03

Synopsys, Inc.,2008. Prime Time 1 Student Guide, v2006.06

68

Periodical Publications

Gupta, P. & McKeown, N., 1999. Designing and implementing a fast crossbar
scheduler, Micro IEEE, 19 (1), pp. 20 — 28.

Chao, H.J., Lam, C.H. & Guo, X., 1999. A fast arbitration scheme for terabit packet
switches, Global Telecommunications Conference, 1999. GLOBECOM '99,
pp. 1236 — 1243,

Shin, E.S., Mooney, V.J. Il & Riley, G.F., 2002. Round-robin Arbiter Design and
Generation, [5th International Symposium on System Synthesis,

pp. 243 — 248.

Lee, K., Lee, S.-J. & Yoo, H.-J., 2003. A high-speed and lightweight on-chip
crossbar switch scheduler for on-chip interconnection networks, ESSCIRC
'03. Proceedings of the 29th European Solid-State Circuits Conference,
pp. 453 — 456

Yoghigoe, K., Christensen, K.J. & Roginsky, A., 2003. Design of a high-speed
overlapped round robin (ORR) arbiter, 28th Annual IEEE International
Conference on Local Computer Networks, pp. 638 — 639.

Savin, C.E., McSmythurs, T. & Czilli, J., 2004. Binary tree search architecture for
efficient implementation of round robin arbiters, (ICASSP '04). IEEE

International Conference on Acoustics, Speech, and Signal Processing, 6 (5),

pp- V —333.
Gao, X., Zhang Z. & Long X., 2006. Round Robin Arbiters for Virtual Channel

Router, IMACS Multiconference on Computational Engineering in Systems

Applications, pp. 1610 — 1614.

69

SiQ.Z. & Mei Y., 2007. Algorithm-Hardware Codesign of Fast Parallel Round
Robin Arbiters, IEEE Transactions on Parallel and Distributed Systems, 18
(1), pp. 84 —95.

Harris, D. 2003. A taxonomy of parallel prefix Networks, Conference Record of the

Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, pp.
2213 - 2217.

70

Other Publications

Shin, E.S., 2003. Automated Generation of Round-Robin Arbitration and Crossbar
Switch Logic. PhD Thesis. Georgia Institute of Technology, School of

Electrical and Computer Engineering.

Weber, M. 2001. Arbiters: Design Ideas and Coding Styles, SNUG Boston, Silicon

Logic Engineering, Inc.

Kuphaldt T. R., CMOS Gate Circuitry [online],
http://www.allaboutcircuits.com/vol_4/chpt_3/7.html, [citied 2 May 2008]

71

VITA

Name Surname

Address

Birth Place / Year
Languages
Elementary School :
High School

BS

MS

Name of Institute
Name of Program :

Publications

Work Experience

: Onur BASKIRT

: STMicroelectronics Elektronik Arastirma ve Gelistirme A.S.

Biiyiikdere Cad. ITU Ayazaga Kampiisii
Koru Yolu ARI2 B Blok Ofis No: 3—1 34469
Maslak, Sariyer — ISTANBUL

: Kars / 1982

: Turkish (native) — English

Ahmet Pasa Elementary School — 1994

: N. M. Baldoktii Anatolian High School — 2000
: Bahcesehir University — 2005
: Bahcesehir University — 2008

: Institute of Science

Electrical & Electronics Engineering

: H.F. Ugurdag, Y. Sahin, O. Baskirt, S. Dedeoglu, S. Goren,

Y.S. Kocak, “Population-based FPGA Solution to Mastermind
Game,” Proceedings of the IEEE/NASA Adaptive Hardware
and Systems Conference, Istanbul, June 2006.

L. Eren, O. Baskirt, and M. J. Devaney, “Rule Based Motor
Fault Detection,” Proceedings of the IEEE Instrumentation
and Measurement Technology Conference, Ottawa, May
2005.

. STMicroelectronics

Connectivity Division — Digital IC Design Engineer
September 2007 — Ongoing

University of California, Santa Cruz
School of Engineering — Visiting Researcher
June 2006 — August 2006

Bahgesehir University

EE Engineering Department — Teaching & Research Asst.
September 2005 — August 2007

72

