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ABSTRACT 
 

NEW LOGIC ARCHITECTURES  

FOR ROUND ROBIN ARBITRATION 

AND THEIR AUTOMATIC RTL GENERATION 

 

BAŞKİRT, Onur 
 

Electrical & Electronics Engineering 
 

Advisor: Asst. Prof. H.  Fatih UĞURDAĞ 
 

June 2008, 72 pages 
 

Resource arbitration is a major problem in communications and computer systems. One of the 

most prevalent usage areas of arbitration is in computer networks. In gigabit and terabit 

routers, the challenge is to design ultra high speed, cost effective, and fair arbitration 

hardware to speed up packet forwarding. This issue is highly important for supporting high 

quality multimedia services in next generation networks. 

 

This thesis is focused on architectures for fast and area efficient round robin arbiters (RRA) 

and their Register Transfer Level (RTL) design generation. One of the most notable works in 

this area is the work of Pankaj Gupta and Nick McKeown at Stanford University — which we 

call Stanford Round Robin Arbiter (STA_RRA). Although there have been further 

enhancements on top of STA_RRA, we have seen that there is still room for improvement in 

both speed and area departments. 

 

This thesis work proposes two new RRA logic architectures with better speed or area metrics 

than STA_RRA and its variants. One of the proposed RRA designs is focused on achieving 

minimum area results, and the other one is designed for speed. The novelty of these designs is 

in their use of parallel prefix tree (PPT) algorithms for thermometer encoding and priority 

encoding operations. Synthesis of proposed arbiters and their rivals were carried out from 8 

bits to 256 bits. Benchmarks of 256 bits arbiters show that our proposed architectures perform 

better than their rivals by a factor of 42% in speed and 22% in area.  

 

Keywords: Round Robin Arbiters, RTL Generation, Parallel Prefix Tree Algorithms 
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ÖZET 
 

DEĞİŞMEZ ZAMAN PAYLAŞIMLI İŞ-DÜZENLEME İÇİN YENİ MİMARİLER 

VE BU MİMARİLERİN OTOMATİK YTS ÜRETEÇLERİ 
 

BAŞKİRT, Onur 
 

Elektrik - Elektronik Mühendisliği 
 

Tez Danışmanı: Yrd. Doç. Dr. H. Fatih UĞURDAĞ 
 

Haziran 2008, 72 sayfa 
 

İşlem isteklerinin sıraya konulması (iş-düzenleme), bilgisayar ve iletişim sistemlerinin önemli 

problemlerinden birisidir. İş-düzenleme işleminin en çok kullanıldığı alanlardan birisi 

bilgisayar ağlarıdır. Gigabit ve terabit yönlendirici tasarımının önemli uğraşlarından biri, 

hızlı, maliyeti düşük ve adil iş-düzenleyici donanımları tasarlayarak paket yönlendirme 

işlemini hızlandırmaktır. Bu konu, yüksek kaliteli, gelecek nesil, çoklu-ortam servislerinin 

desteklenmesi için son derece kritiktir.   

 

Bu tezde, hızlı ve alan açısından verimli iş-düzenleyici mimarilerine ve bunların Yazmaç 

Transfer Seviyesi (YTS) tasarım üreteçlerine odaklanılmıştır. Bu alanda en çok dikkate değer 

çalışma Stanford Üniversitesi’nden Pankaj Gupta ve Nick McKeown’un çalışmasıdır. Biz bu 

çalışmaya STA_RRA adını verdik. Daha sonraları STA_RRA üzerinde iyileştirme çalışmaları 

yapılmasına rağmen, hala hız ve alan açısından ilerleme kaydedilebileceğini gördük.   

 

Bu tezde, STA_RRA ve değişik türevlerinden hız ve alan açışından daha iyi iki yeni iş-

düzenleyici mimarisi önerilmektedir. Önerilen iş-düzenleyici tasarımlarından birisi minimum 

alan sonuçlarına odaklanırken, diğeri hız için tasarlanmıştır. Bu tasarımlardaki yenilik, 

termometre kodlamasında ve öncelik kodlamasında Paralel Prefiks Ağaç yordamlarının 

kullanılmasıdır. Önerilen ve rakip iş-düzenleyiciler, 8 bit’ten 256 bit’e kadar sentezlenmiştir. 

Yapılan karşılaştırma çalışmalarında, bizim iş-düzenleyicilerimizin rakip iş-düzenleyicilere 

göre hız açısından 42% ve alan açısından 22% oranla daha iyi sonuç verdiği görülmüştür. 

 

Anahtar Kelimeler: Değişmez Zaman Paylaşımlı İş-düzenleyiciler, YTS Üretimi, Paralel 

Prefiks Ağaç Yordamları  
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1. INTRODUCTION 

 

As chip manufacturing technology shrinks toward sub-nanometers, a chip die will 

comprise more and more of processing blocks. Interconnection, communication, and 

utilization of shared resources of these blocks are getting more complicated for 

System-on-Chip (SoC). This complex structure introduces an important challenge to 

the designer: fast and fault-free on-chip communication. When processing blocks 

access a shared resource simultaneously, arbitration of these clients has to be 

ensured. Priority encoders (PE) and arbiters are widely used to allow only one block 

to access a shared resource. Priority encoding scheme always selects the highest 

precedence as defined by a priority sequence. As a result of this static scheme, 

unfairness is revealed. This unfairness is also called starvation. Conversely, 

programmable priority encoder (PPE) provides a non-static scheme to alter the 

priority sequence during an operation. These are the core functional blocks of round 

robin arbiters (RRA). If an arbiter is designed in round-robin fashion, the priority of 

the system is altered in every cycle, and round-robin arbiter selects the highest 

priority starting from the last selected request. This technique almost always 

guarantees fairness. 

 

RRAs are widely used in network switches and routers. Network switches and 

routers consist of crossbar switches as the internal switching fabric, as shown in 

Figure 1.1. A crossbar switch comprises of three macro blocks: Input FIFO buffer, 

arbiter/scheduler, and a crossbar fabric core.   

 

Switch scheduling algorithms are important aspects to implement high speed 

network switches. These algorithms are implemented in schedulers/arbiters. A 

scheduling algorithm selects input packets and generates proper control signals for 

crossbar fabric to set up conflict free paths between input ports and output ports. 

Then, the crossbar core transfers the requests or packets according to granted control 

signals.  Hence, in order to ensure high speed and fairness, a crossbar switch requires 

an intelligent, centralized, and conflict free scheduler/arbiter algorithm. 
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Figure 1.1:  Block diagram of a conventional crossbar switch 

 

Most crossbar schedulers are implemented in round robin fashion to prevent 

starvation of input ports. For example, a well-known design is applied in Stanford 

University’s Tiny Tera prototype. The scheduler combines iSLIP unicast scheduling 

algorithm and mRRM multicast scheduling algorithm. The resulting algorithm is 

almost identical to the ESLIP algorithm. A brief overview of this algorithm is 

explained in the following paragraph and a high level block diagram of the scheduler 

is shown in Figure 1.2. This scheduling algorithm consists of three steps; Request, 

Grant, and Accept (RGA). 

 

1. Request: Each unmatched input sends a request to the destination output as 

pointed out by the queued cell. In this step requests or packets are just 

transferred to grant arbiters. 

 

2. Grant: Each unmatched output acknowledges one of the requests is received. 

Round-robin schedule starting from the highest priority element. 

 

3. Accept: Each input accepts one of the received grants to establish the 

connection. Round-robin schedule starting from the highest priority element. 
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Figure 1.2:  High level block diagram of the scheduler 

 

In order to assuage the Head-of-Line (HOL) blocking problem Virtual Output 

Queues (VOQs) are employed as request queues. When a single FIFO input queue is 

used for each input port, HOL blocking problem occurs. A request/packet at the end 

of the queue is blocked from being destined to its corresponding output port because 

of port connection, and thus the entire FIFO is blocked. HOL problem is eliminated 

by using separate input queues for each input-output port pair. 

 

HOL blocking problem and its solution is shown in Figure 1.3. “For this example, 

assume that input port 1 is granted when output port contentions occur. Each 

numbered rectangle in Figure 1.3 corresponds to a packet with the destination 

specified by the number. Thus, the packet numbered ‘1’ indicates that this packet is 

destined to output port 1. Without VOQs case, packet 1 in the queue at input port 0 

is blocked by packet 0 located at the head of the queue, even though output port 1 is 

available at this point. Therefore, only packet 0 is sent to output port 1 in the current 

cycle. To remove HOL blocking, multiple VOQs are placed at input ports. In the 

VOQs case, packet 1 at VOQ (0, 1) is forwarded to output port 1 simultaneously as 

packet 0 at VOQ (1, 0) is delivered to output port 0. Consequently, multiple packets 
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can be delivered to the appropriate unique destinations by employing VOQs.” (Shin 

2003, pp.23) 

 

 
Figure 1.3:  HOL blocking problem without VOQs and with VOQs 

 

Detailed block diagram of scheduler based on RGA maximal size matching 

algorithm is shown in Figure 1.4 and 32X32 network switch example is shown in 

Figure 1.5. These figures show the scheduler blocks and how it works in a network 

switch/crossbar switch. 

  

 
Figure 1.4: Block diagram of a scheduler/arbiter based on RGA/RG maximal 

size matching algorithm 
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Figure 1.5:  32X32 Network switch architecture 

 

Gupta’s and McKeown’s work combines the request and grant steps of the 

scheduler. The decision feedback information is provided by accept arbiters. This 

feedback information performs as a pointer. The scheduler uses this information to 

mask off requests from already matched inputs and outputs in successive iterations, 

and starts round robin schedule from the highest priority element.  

 

A comprehensive explanation of pipelined implementation of the scheduler is 

explained in Gupta’s and McKeown’s paper. This thesis is not focused on 

scheduling algorithms so details of algorithms are omitted.    

 

In this thesis, two new round-robin arbiter logic architectures are proposed by taking 

parallel prefix tree algorithms into consideration. Register Transfer Level (RTL) 

generators, Application Specific Integrated Circuit (ASIC) synthesis, and 

benchmarks of all RRA architectures are represented. 

 

A brief overview of the previous work is provided in Chapter 2. Conventional RRA 

design and its macro blocks, most recent architectures based on conventional design, 

and other round robin arbitration schemes are represented. Chapter 3 introduces 
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hardware implementation and breakthrough of related work. In this chapter, a new 

macro block is embedded into the rival architectures to strengthen them. Verilog 

hardware description language (HDL) register transfer level (RTL) code generators 

of all architectures are explained in chapter 4. In Chapter 5, verification and 

synthesis techniques are represented in detail. Synthesis results are illustrated in 

Chapter 6. Chapter 7 presents some concluding remarks. 
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2. PREVIOUS WORK 

 

A well-known fast crossbar scheduler design is implemented by Pankaj Gupta and 

Nick McKeown from Stanford University. They published their arbiter architecture 

in 1999. This design is called conventional round robin arbiter or conventional round 

robin scheduler in many research papers. In this thesis, this architecture is called 

Stanford Round Robin Arbiter (STA_RRA). Seven years later, Gao Xiaopeng, 

Zhang Zhe, and Long Xiang tried to enhance the conventional round robin scheduler 

design. They proposed two different architectures: PPE_Conflict and 

PPE_NonConflict. These two architecture names are modified as 

CHN_RRA_PPE_Conflict and CHN_RRA_PPE_NonConflict. This work is 

explained in Sections 2.2 and 2.3 in detail. A brief overview of other RRA 

architectures in literature is represented in Section 2.4. 

 

2.1. STA_RRA ARCHITECTURE 

 

Top level block diagram of STA_RRA architecture is shown in Figure 2.1. It is 

comprised of the following macro blocks: Simple Priority Encoder (Smpl_PE), 

Simple Priority Thermo Encoder (Smpl_PE_thermo), thermometer encoder 

(tothermo), and n to log2N (N2LOGN) encoder for update path. A simplified 

multiplexer is also used to select the appropriate Priority Encoder’s (PE) grant.  

 

Data flow of the architecture is explained as follows. When a new request is asserted 

from request queues, and the feedback information of priority pointer is forwarded 

from thermometer encoder, these two signals go into an AND gate to mask off new 

requests with respect to priority pointer or accepted request in the previous iteration. 

This new/masked request is connected to Smpl_PE_thermo block. This block is 

identical to Smpl_PE. Its function is to perform fixed priority encoding. 

 

In PEs, each of the requester has a fixed priority and PE gives its grant to the active 

requester which has the highest priority. This is a static and unfair scheme. It always 

gives the shared resource’s usage authority to the most powerful requester or in other 

words, the highest priority requester. The highest priority requester depends on 
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priority direction and your preference. You can change priority direction by flipping 

your architecture scheme horizontally. In some research work, Least Significant Bit 

(LSB) is selected as highest priority requester. For example, Gupta and McKeown 

selected LSB as the highest priority requester. However, in this thesis, Most 

Significant Bit (MSB) is selected as the highest priority requester for all 

architectures. For instance, if the request vector is declared as req[N-1:0], req[N-1] is 

defined  as the highest priority. If req[N-1] is active, grant[N-1]  gets the grant. Else, 

if req[N-2] is active, grant[N-2] is asserted, and so on. 

 

Smple_PE_thermo block has two outputs which are grant (Gnt_smpl_PE_thermo) 

and any (anyGnt_smpl_PE_thermo). Gnt_smpl_PE_thermo is the output of priority 

encoding operation. anyGnt_smpl_PE_thermo bit is the OR of Smple_PE_thermo 

block’s all inputs. This bit gives us information on whether there is any unmatched 

request in at least one bit position or not. On the other hand, unmasked request 

moves to Smpl_PE. This block performs priority encoding operation and outputs its 

grant (Gnt_smpl_PE) as well. anyGnt_smpl_PE_thermo is inverted and ANDed with 

Gnt_smpl_PE. Therefore, if an unmatched request exists from the previous iteration, 

anyGnt_smpl_PE_thermo disables Gnt_smpl_PE. As a matter of fact 

anyGnt_smpl_PE_thermo is used as a multiplexer select; Gnt_smpl_PE and 

Gnt_smpl_PE_thermo are this multiplexer’s inputs. In some papers this operation is 

shown as carried on by a normal multiplexer rather than a simplified multiplexer. 

Pankaj and McKeown simplified this block in order to reduce the loading on the 

select signal by half.  

 

Final output is obtained by OR operation of Gnt_smpl_PE_thermo and 

Gnt_smpl_PE_masked. Final output of this iteration should be forwarded to 

tothermo block for next iteration. The next iteration uses the previous iteration’s 

final output as a priority pointer. This pointer is generated by tothermo block. This 

block executes thermometer encoding operation. Thermometer encoding masks all 

accepted requesters of previous iterations. Then, tothermo’s output and a new 

request is ANDed to mask off the new request’s accepted bit positions. All iterations 

are performed in this way.  
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Figure 2.1: STA_RRA_N2N architecture  

(Stanford Round Robin Arbiter N to N Smpl_PEs) 
 

According to top level block diagram and signal flow description, a sample test case 

is shown for 8 bits STA_RRA in Table 2.1. 

 
Table 2.1: STA_RRA_N2N data flow 

Initial Iteration 

P_thermo � 00000000 Gnt_smpl_PE � 00100000 

Request � 00101001 Gnt_smpl_PE_masked � 00100000 

New_Req � 00000000 Gnt � 00100000 

Gnt_smpl_PE_thermo � 00000000 Encoder_out � 101 

anyGnt_smpl_PE_thermo � 0 

 

P_enc � 101 

Second Iteration 

P_thermo � 00011111 Gnt_smpl_PE � 10000000 

Request � 10100101 Gnt_smpl_PE_masked � 00000000 

New_Req � 00000101 Gnt � 00000100 

Gnt_smpl_PE_thermo � 00000100 Encoder_out � 010 

anyGnt_smpl_PE_thermo � 1 

 

P_enc � 010 
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2.1.1. Simple Priority Encoder (Smpl_PE and Smpl_PE_thermo) 

 
Detailed definition of simple priority encoding is described in the previous section. 

This encoding is a fixed and static encoding that always grants the highest priority 

requester. Its truth table is shown in Table 2.2.  

  
Table 2.2: 8-bit Smple_PE truth table 

in[7] in[6] in[5] in[4] in[3] in[2] in[1] in[0] 
out[7

] 
out[6

] 
out[5

] 
out[4

] 
out[3

] 
out[2

] 
out[1

] 
out[0

] 

1 x x x x x x x 1 0 0 0 0 0 0 0 

0 1 x x x x x x 0 1 0 0 0 0 0 0 

0 0 1 x x x x x 0 0 1 0 0 0 0 0 

0 0 0 1 x x x x 0 0 0 1 0 0 0 0 

0 0 0 0 1 x x x 0 0 0 0 1 0 0 0 

0 0 0 0 0 1 x x 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 x 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

From table 2.2, following equation list for 8-bit Smpl_PE can be derived. 
 

out[0] = ~in[7]&~in[6]&~in[5]&~in[4]&~in[3]&~in[2]&~in[1]&in[0]; 

out[1] = ~in[7]&~in[6]&~in[5]&~in[4]&~in[3]&~in[2]&in[1]; 

out[2] = ~in[7]&~in[6]&~in[5]&~in[4]&~in[3]&in[2]; 

out[3] = ~in[7]&~in[6]&~in[5]&~in[4]&in[3]; 

out[4] = ~in[7]&~in[6]&~in[5]&in[4]; 

out[5] = ~in[7]&~in[6]&in[5]; 

out[6] = ~in[7]&in[6]; 

out[7] = in[7]; 

 

This implementation has some drawbacks. When we feed this code into a synthesis 

tool, a ripple carry chain is inferred. This scheme produces significant timing 

problems and it is not area efficient. Hence, Smpl_PE should be implemented in a 

better way. 

 

In order to eliminate the aforementioned drawbacks, we applied two techniques and 

optimized Smpl_PE. This optimization also strengthened our rivals’ ASIC synthesis 

results. In these optimizations, binary tree algorithm/technique is used to reduce the 

logic level of the architecture. Also, a smart pre-computation/factoring method 

reduced the area dramatically. These two modifications can be explained as follows.   
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Firstly, all HDL files are coded with respect to binary tree fashion. This 

implementation model lowers the logic depth from n to log2N. The sample HDL 

code for this implementation is shown below. 

 

wire temp_0_7_6 = ~req[7] & ~req[6]; 

wire temp_0_5_4 = ~req[5] & ~req[4]; 

wire temp_0_7_4 = temp_0_7_6  & temp_0_5_4; 

 

wire temp_0_3_2 = ~req[3] & ~req[2]; 

wire temp_0_1_0 = ~req[1] & req[0]; 

wire temp_0_3_0 = temp_0_3_2  & temp_0_1_0; 

 

wire temp_0_7_0 = temp_0_7_4  & temp_0_3_0; 

 

assign out[0] = temp_0_7_0; 

 

The code snippet above is written for first grant bit’s computation. This bit’s 

computed values such as temp_0_7_6, temp_0_5_4, temp_0_7_4, etc… are used for 

computation of other grant bit positions. These pre-computed values are used with 

binary tree methodology. Eventually, design’s area cost is alleviated and timing is 

improved. This implementation technique’s HDL code snippet is shown below. 

 

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 1 

wire temp_1_1_0 = temp_0_7_4 & temp_0_3_2; 

wire temp_1_1_1 = req[1]; 

 

wire temp_1_2_0 = temp_1_1_0 & temp_1_1_1; 

 

assign out[1] = temp_1_2_0; 

 

 

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 2 

wire pre_temp_2_3_2 = ~req[3] & req[2]; 

wire temp_2_1_0 = temp_0_7_4 & pre_temp_2_3_2; 

 

assign out[2] = temp_2_1_0; 

 

 

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 3 

wire temp_3_1_0 = temp_0_7_4 & req[3]; 

 

assign out[3] = temp_3_1_0; 

 

 

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 4 

wire pre_temp_4_5_4 = ~req[5] & req[4]; 

wire temp_4_1_0 = temp_0_7_6 & pre_temp_4_5_4; 

 

assign out[4] = temp_4_1_0; 
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//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 5 

wire temp_5_1_0 = temp_0_7_6 & req[5]; 

 

assign out[5] = temp_5_1_0; 

 

 

//FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 6 

wire pre_temp_6_7_6 = ~req[7] & req[6]; 

wire temp_6_1_0 = pre_temp_6_7_6; 

 

assign out[6] = temp_6_1_0; 

 

 

� FIND PRECOMPUTED VALUES and USE THEM FOR INDEX 7 

wire temp_7_1_0 = req[7]; 

 

assign out[7] = temp_7_1_0; 

 

2.1.2. Thermometer Encoder (tothermo) 

 
Thermometer encoding performs log2N-bit to n-bit transformation. Its equation can 

be defined in this way: 

 
[ ] 1=indexout  if and only if )(invalueindex <  for all ni <≤0    (2.1) 

 
This transformation works similarly to a normal thermometer operation. It takes 

log2N-bit input and increases thermometer level according to this input value. For 

example, 8-bit thermometer encoder takes 3-bit wide input vector and outputs an 8-

bit wide vector. In a way, this output vector designates the level number of a 

thermometer. Its indicator level starts from 0 and ends up at 7. If thermometer 

encoder gets 101 as an input vector, it produces five piece of logic 1. In short, it 

transforms input 101 to 00011111 as an output. This operation is clearly shown in 

Figure 2.2. 

  

 
Figure 2.2: Thermometer encoding 
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Truth table for 3-bit to 8-bit thermometer encoding block is shown in Table 2.3.  

  
Table 2.3: Truth table for tothermo block 

in [2:0] out[7:0] 

000 00000000 

001 00000001 

010 00000011 

011 00000111 

100 00001111 

101 00011111 

110 00111111 

111 01111111 

 

This transformation’s equations are shown below. 

 
out7 = 0 

out6 = in2.in1.in0 

out5 = in2.in1 

out4 = in2.(in1+in0) 

out3 = in2 

out2 = in2+in1.in0 

out1 = in2+in1 

out0 = in2+in1+in0 

 

This algorithm is used to generate thermometer encoder code for any number of n. 

We designed STA_RRA arbiter’s thermometer encoder with respect to this 

algorithm. Algorithm’s code snippet shows that each output bit is either ORed or 

ANDed not greater than log2N bit width. This is also stated in Gupta’s and 

McKeown’s work. This algorithm’s parameterized Verilog HDL code snippet is as 

follows. 

 

parameter log_n = 3; 

parameter n=(1<<log_n); 

 

always @(thermo_in) begin 

  pow2 = {(log_n){1'b0}}; 

  thermo_out = {(n){1'b0}}; 

  tmp = 0; 

  pow2[0] = 1'b1; 

  thermo_out[0] = 1'b0; 

  for(i = 0; i < log_n; i = i+1) begin 

    for(j = 0; j < pow2; j = j+1) begin 

      tmp = thermo_out[j]; 

      thermo_out[j] = tmp | thermo_in[i]; 

      thermo_out[j+pow2] = tmp & thermo_in[i]; 

    end 

    pow2 = pow2 + pow2; 

  end 

end 
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The purpose of thermometer encoding is to mask off new request bit positions which 

are previously accepted. This is also explained is Section 2.1 in detail. 

 

2.1.3. N to LOGN Encoder (N2LOGN Encoder) 

 
STA_RRA architecture outputs n-bit grant output. This grant output is also used to 

generate priority pointer for the next iteration. Typically, STA_RRA’s grant vector 

is one-hot –only one bit position is high for each arbitration iteration. The active bit 

position shows us the accepted requester. Therefore, in the next iteration, priority 

precedence must start from this bit position. 

 

In previous sections we mentioned that priority pointer generation is accomplished 

by thermometer encoder macro block. However, this block takes log2N-bit input, 

then executes thermometer encoding algorithm in order to output n-bit priority 

pointer. For this reason, there must be a logic block between the thermometer 

encoder block and the grant output of STA_RAA. This block’s core function is to 

convert n bit grant vector to log2N bit vector.  

 

Simply put, the N2LOGN encoder block outputs the active bit’s index value of its n-

bit one-hot input vector. In other words, the N2LOGN encoder states the accepted 

bit-position – or accepted requester’s index to thermometer encoder. Its log2N bit 

output is taken by thermometer encoder. N2LOGN block’s operation is shown in 

Figure 2.3. 

 

 
Figure 2.3: N2LOGN encoder operation 

 

Gupta’s and McKeown’s work did not consist of priority pointer feedback 

information part. Furthermore, we did not find any explanation about this macro 

block’s implementation from other research work. In some papers this block is stated 

as “encode” or “binary_enc”. Therefore, we implemented this block by taking into 
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consideration the binary tree structure. This is the best way to reduce logic depth and 

to speed up timing.   

 

Truth table of N2LOGN encoder is shown in Table 2.4. 

 
Table 2.4: Truth table for N2LOGN Encoder 
out[2] out[1] out[0] input bit positions 

0 0 0 0 

0 0 1 1 

0 1 0 2 

0 1 1 3 

1 0 0 4 

1 0 1 5 

1 1 0 6 

1 1 1 7 

 

According to Table 2.4 following equations are derived: 

 
out[0] = in[1] | in[3] | in[5] | in[7] 

out[1] = in[2] | in[3] | in[6] | in[7] 

out[2] = in[4] | in[5] | in[6] | in[7] 

 
In order to reduce the logic depth and timing bottleneck, these equations are coded in 

binary tree style. Verilog HDL code snippet below is an example of N2LOGN 

encoder implementation.   

 
wire out_0_0 = in[1]|in[3]; 

wire out_0_1 = in[5]|in[7]; 

 

wire out_1_0 = in[2]|in[3]; 

wire out_1_1 = in[6]|in[7]; 

 

wire out_2_0 = in[4]|in[5]; 

wire out_2_1 = in[6]|in[7]; 

 

//output[0] assignments 

wire out_0_0to1 = out_0_0 | out_0_1; 

 

//output[1] assignments 

wire out_1_0to1 = out_1_0 | out_1_1; 

 

//output[2] assignments 

wire out_2_0to1 = out_2_0 | out_2_1; 

 

assign out[0] =  out_0_0to1; 

assign out[1] =  out_1_0to1; 

assign out[2] =  out_2_0to1; 
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2.2. CHN_RRA_PPE_CONFLICT 

 

This round robin arbiter architecture is generated by three Chinese researchers: Gao 

Xiaopeng, Zhang Zhe, and Long Xiang. Therefore, we used CHN prefix for this 

architecture. They proposed two different arbitration schemes. These architectures 

are similar to STA_RRA architecture. One of the proposed round robin arbitration 

architectures is PPE_CONFLICT. Consequently, this design is called 

CHN_RRA_PPE_CONFLICT, as shown in Figure 2.4. In this design, the round 

robin arbiter architecture is divided into two paths. These are grant path and update 

path. Grant path is shown from request to grant. On the other hand, update path is a 

feedback path that forwards the priority pointer for next iteration.  

 

 
Figure 2.4: CHN_RRA_PPE_CONFLICT architecture  

(Chinese Round Robin Programmable Priority Encoder Conflict) 
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In conflicting virtual channel routers, arbiters work in an iterative way. Arbiters 

located at inputs and outputs perform Grant and Accept operations in a single clock 

cycle alternatively (in introduction section Request-Grant-Accept (RGA) pipeline is 

explained). Results of these two operations are dependent on each other, as shown in 

Figure 2.5. Grant/Update paths should be executed in two clock cycles. Therefore, 

the critical path in this scheme is the grant path; as the update path can be executed 

in parallel with respect to grant path. For this reason tothermo block is moved from 

grant path to update path.  

 

 
Figure 2.5: Iterative scheduling 

 

CHN_RRA_PPE_CONFLICT architecture is divided into two timing paths as grant 

path and update path. Timing Path 1 is equals grant path; which is critical path for 

Conflicting VCR. Combo Logic 2’s delay is equal to update path’s delay. Timing 

Path 2 is comprised of both grant and update paths. In order to minimize the clock 

cycle, timing balance of grant and update paths is very crucial for Conflicting VCRs. 

 

 
Figure 2.6: CHN_RRA_PPE_CONFLICT architecture’s timing paths 
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One of the distinct points is the location of flip-flops. Flops are located after 

thermometer encoder. If their bit width is broadened, this may cause a negative 

effect on area. Also, flops can be located between N2LOGN encoder and 

thermometer encoder. Thus, sequential logic area can be lowered. On the other hand, 

this modification destabilizes timing balance between grant path and update path, 

and also maximizes the iteration cycle of arbitration.  

 

In CHN_RRA_PPE_CONFLICT architecture Resource Sharing (RS) technique is 

implemented to reduce the combinational area cost. Only one Smpl_PE is used 

rather than two Smple_PEs. When masking operation is done from AND gate, the 

resulting output (Req_High) and request go to multiplexer’s inputs. Then, the valid 

request is chosen by multiplexer select (Valid_Req). Valid_Req is just the bitwise 

OR of Req_High’s all bits. The selected output is forwarded to Smpl_PE for final 

grant operation. 

 

2.3. CHN_RRA_PPE_NONCONFLICT 

 

This architecture is designed for non-conflicting VCRs. We called this design: 

CHN_RRA_PPE_NONCONFLICT, as shown in Figure 2.7. In non-conflicting 

VCRs, scheduling operation takes one cycle, and it is carried out by arbiters which 

are located at outputs. In a pipelined router, PPEs at outputs execute the arbitration 

cycle by cycle. Hence, priority pointer has to be ensured before next iteration start-

up. PPE must succeed grant and update operations in a single clock cycle. Thus, 

critical path of PPE comprises both the grant and update paths.  

 

In this architecture, grant and update operations are accomplished in parallel. 

Grant/Update path is also a timing path for synthesis tool. When we implement this 

architecture’s ASIC synthesis, design compiler (DC) accepts grant/update path as a 

timing path. This design architecture is more realistic with respect to digital design 

timing concepts. Therewithal, its timing results should be better than 

CHN_RRA_PPE_CONFLICT architecture. On the other hand, RS technique is 

applied to increase the design’s area efficiency. This design consists of only one 

Smple_PE rather than two Smpl_PEs. RS methodology is described in the previous 
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section in detail. The drawback of RS technique is to increase the critical path of the 

grant/update path. “Zero?” block is just a binary OR tree and it adds extra log2N 

stages and decelerates timing of PPE.  

 

 
Figure 2.7: CHN_RRA_PPE_NONCONFLICT architecture  

(Chinese Round Robin Programmable Priority Encoder NonConflict) 
 

Maybe the most conspicuous point in this architecture is the tothermo block because 

this thermometer encoder performs n-to-n conversion. In their implementation, this 

tothermo block combines Smple_PE, N2LONG encoder, and the tothermo block of 

PPE design. Actually, this implementation decreases the speed of the architecture. 

Hence, we implemented this block in a different way. We used one of the Parallel 

Prefix Tree (PPT) algorithms — Han Carlson (HC) tree. We used OR gates in HC 

tree’s nodes, then finally we shifted tree’s output to the right by one. One bit right 

shifting is just a wiring modification; it does not contain any logic element. In 

essence , this method is one of the core novelties for our proposed designs.  

 



 20 

 
Figure 2.8: Proposed CHN_RRA_PPE_NONCONFLICT architecture 

 

 
Figure 2.9: Optimized CHN_RRA_PPE_NONCONFLICT architecture 
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We applied this technique in this architecture to make our rival stronger. This 

technique is area efficient and a fast technique, which is much better than the 

combination of Smpl_PE — N2LOGN Encoder — tothermo blocks. This obvious 

improvement can be understood when we compare Figure 2.8 and Figure 2.9. You 

can easily see that the combination of Smpl_PE — N2LOGN Encoder — tothermo 

blocks significantly increases the area and slows down the speed of the RRA. This 

methodology is not proposing a novelty. Moreover, combinational path from request 

to flops’ input is longer than CHN_RRA_PPE_CONFLICT architecture. However, 

if our PPT technique is applied rather than the Smpl_PE — N2LOGN Encoder — 

tothermo combination, area and timing results can be improved dramatically. Hence, 

in this thesis we applied our technique for this architecture to make our rival 

stronger. This ensures a fair benchmark. In Figure 2.9 PPT_Pre_Thermo block 

contains a HC tree and its nodes are comprise OR gates. Details of our novel 

approach and architecture will be described in later chapters. 

 

2.4. LITERATURE SUMMARY 

 
In literature there are many round robin arbitration algorithms and several design 

work are proposed. On the algorithm side, PIM, iSLIP, DDRM, FIRM, SSR, and 

PPA are the examples of the most practical scheduling algorithms. They are all 

iterative algorithms that approximate a maximum matching by finding a maximal 

size matching. They comprise of three or two steps/iterations, which were mentioned 

in previous sections. These steps are Request—Grant—Accept (RGA) or Request—

Grant (RG). This algorithms’ main goal is to ensure fairness. Also, round robin 

arbiter designs are carried out with respect to this criterion. 

 

The most notable round robin architecture — STA_RAA is proposed by Gupta and 

McKeown which we explained in previous sections. 

 

Some researchers have proposed modified version of STA_RRA. One of them is 

published by Savin C.E., McSmythurs T., and Czilli J. in 2004. They used Binary 

Tree Search (BTS) technique to minimize the area and maximize the speed. Their 
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proposed architecture has (log2N + 4) logic level, (nlog2N + 7n - 6) combinational 

gate count and n-bit flop.  

 

Other STA_RRA modifications are proposed by Gao X., Zhang Z., and Long X. in 

2006 which we called CHN_RRA. Their proposed RRA architectures are depicted in 

former sections. Detailed synthesis results of their architecture’s are given in 

Chapter 6.  

 

On top of STA_RRA and its variants, different design architectures are proposed. 

The most recognized ones are Ping Pong Arbiter (PPA), Switch Arbiter (SA), 

Parallel Round Robin Arbiter (PRRA) and Improved Parallel Round Robin Arbiter 

(IPRRA).  

 

PPA architecture is proposed by Chao H.J., Lam C.H., and Guo X. in 1999. PPA has 

O(log2N) level tree structure and O(log2N) gate delay. This round robin arbiter 

architecture performs the round robin arbitration rule if and only if all requests are 

available in each cell slot. If there are less than N request available, at that time 

unfairness occurs. We can examine this situation according the following example. 

This example is also mentioned in PPRA—IPPRA paper. Assume that N/2 + 1 input 

ports repeatedly serve requests in a pattern. Under this condition, one input port’s 

request is captured by one-half of the tree. At the same time, the other half-of the 

tree captures the remaining input ports’ requests. As a result of this situation, this 

round robin arbiter grants the one input port more than N/2 times more than each of 

the remaining N/2 input ports. This example demonstrates the unfairness of PPA 

design. Also, we can claim that PPA’s scheduling algorithm performance is worse 

than iSLIP and mRRM, which are the algorithms of STA_RAA. 

 

Other round robin arbiter design — Switch Arbiter (SA) is proposed by Shin E.S., 

Mooney V.J. III, and Riley G.F. in 2002. This architecture is designed with the same 

concept of PPA. This architecture is formed by a tree structure composed of 4x4 SA 

nodes. These nodes comprise of a flop, 4 PE, a 4-bit ring counter, five 4-input OR 

gates, and four 2-input AND gates. Some of the research work such as PPRA—

IPPRA paper states and benchmarks that SA architecture is faster than the other 
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architectures. On the other side, architectural complexity and unfairness for non-

uniformly distributed requests are its drawbacks. For example, in a 64X64 SA: if 

request signals (req[0] to req[31]) are asserted from the top half of the tree and only 

one request — req [32] is asserted from the bottom half of the tree, then req [32] is 

granted thirty-two times while each of 32 request signals (req[0]-req[31]) are granted 

only once in sixty-four consecutive cycles. This unfairness is as the same as PPA 

architecture’s unfairness. 

 

The most recent and remarkable round robin arbiter architectures are PRRA and 

IPRRA. These architectures are presented by Zheng S. Q. and Yang M. in January 

2007. The proposed architectures are constructed by a recursive binary tree structure. 

The hardware implementation of these architectures is based on simple binary tree 

search algorithm. They claimed that IPRRA achieved 30.8% timing improvement 

and 66.9% area improvement over PPE design. 
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3. PROPOSED ARCHITECTURES 

 

In this chapter, three different RRA architectures are represented. One of the RRA 

architectures has a similar appearance as a BOW-TIE, and it is entirely different than 

STA_RRA architecture. It was inspired by a Silicon Valley engineer who decided to 

stay anonymous. This architecture is still in its development phase; it should be 

enhanced in the future. The other two proposed RRA architectures are based on 

STA_RRA architecture. However, in these architectures we constructed a new block 

which executes pre-thermometer encoding and pre-priority encoding operations. 

Hence, critical path is shortened by using this new logic block. In the following 

sections details of proposed RRA architectures are explained.  

 

3.1. PPT_RRA_RS ARCHITECTURE 

 

The full name of this architecture is Parallel Prefix Tree Round Robin Arbiter 

Resource Sharing and we simply called it PPT_RRA_RS. This architecture is 

applied for eliminating the area cost of the RRA. In order to diminish RRA’s area, 

we used Resource Sharing (RS) method. This architecture has one PPT_Pre_Thermo 

block rather than two Smple_PE’s, as shown Figure 3.1. This block is constructed by 

Parallel Prefix Tree (PPT) topologies. In this work, we used four different PPT 

topologies. These are Ladner Fisher (LF), Kogge Stone (KS), Han Carlson (HC), 

and Brent Kung (BK) topologies. These tree structures have internal nodes for each 

stage and any operations which have associative property could be used in these 

nodes. In order to accomplish pre-thermometer encoding operation, OR gate is 

placed in these nodes. The resulting structure performs pre-thermometer encoding 

operation. If this block’s output is shifted right by one unit, actual thermometer 

encoder output can be obtained. 1-bit right shifting is just a wiring operation and it 

does not contain any logic elements. At this level, we have obtained “shifted 

pre_thermo_out” and “pre_thermo_out” signals. These two signals are routed to 

Edge Detector (ED) block to generate grant output of the RRA architecture. ED 

block has one level logic depth; this decreases the critical path of the architecture. 

ED’s function is to output the final grant output by using “pre_thermo_out” and 

“shifted pre_thermo_out” signals. In fact the shifted signal is used as a priority 
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pointer for next iterations. This architecture is used as the same scheduling algorithm 

as STA_RAA. Therefore, fairness criterion is better with respect to that of PPA and 

SA architectures which are proposed in literature formerly. This structure is better 

than our rivals with respect to the area criterion. Especially, BK topology for 

PPT_Pre_Thermo block provides significant area reduction.  Also, this architecture 

has a competent speed performance. Its ASIC synthesis results and comparison 

against its rivals are represented in next chapters. Building blocks of PPT_RRA_RS 

such as OR Binary Tree (OR_BT), PPT_Pre_Thermo, and ED are explained in next 

sections. 

 

 
Figure 3.1: PPT_RRA_RS architecture 
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3.1.1. OR Binary Tree (OR_BT)  

 
OR_BT block performs OR operation. It gets masked request (Masked_req) as an 

input and it outputs a select signal for multiplexer to select appropriate signal for 

PPT_Pre_Thermo block. 

 

One bit right shifted version of PPT_Pre_Thermo signal is just a priority pointer 

(Mask_ptr) and it masks the matched requester in an ongoing iteration. In the next 

iteration, priority pointer is ANDed with a new request to mask matched bit 

positions for new request signal. This masking operation’s output is called as 

Masked_req. It contains information on whether or not there is any unmatched 

requester available with respect to previous iterations or not. If all bit positions of 

Masked_req are zero, OR_BT block’s output will be ‘0’.  This comprises of two 

different meanings: 

 

1- New request signal does not want to grant an unmatched requester. This means 

that unmatched bit positions with respect to previous iterations are zero. 

However some matched bit positions are active/one.  

 

2- New request signal does not want to grant any of the requester. This means that 

all bit positions of new request are zero. 

 

On the other hand, if a Masked_req signal has one or more active bits, at this time 

we can conclude that the new request signal wants to grant unmatched requesters, 

and OR_BT block outputs ‘1’.  

 

OR_BT block is playing a key role to simplify RRA architecture’s area. It controls 

the multiplexer and routes Masked_req or new request signals to PPT_Pre_Thermo 

block.  For this reason, this architecture uses only one block rather that two 

Smple_PEs. This technique is called Resource Sharing (RS). Thus, we put RS prefix 

for this architecture’s name. 
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OR_BT block is implemented by using NOR, NAND, and OR gates. This 

transformation is represented in Figure 3.2. For N bit input, stage number is 

calculated by log2N. If stage number is odd, last stage must contain OR gate. On the 

other hand, if stage number is even last stage must contain NAND gate. It is shown 

in Figure 3.3. 

 

 
Figure 3.2: OR_BT with OR gates and OR_BT with NOR-NAND gates 

 

 
Figure 3.3: 8-bit and 16-bit NOR-NAND OR_BT 

 

The reason for using these gates is to minimize the area cost. In Complementary 

Metal Oxide Semiconductor (CMOS) technology NOR and NAND gates are more 

area efficient than OR and AND gates. OR and AND gates have extra inverter part 
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that effects area efficiency negatively. This negative effect is represented in Figure 

3.4 and Figure 3.5.  

 

 
Figure 3.4: CMOS OR gate and CMOS NOR gate 

 

 
Figure 3.5: CMOS AND gate and CMOS NAND gate 

  

3.1.2. Parallel Prefix Tree Pre Thermo Encoder (PPT_Pre_Thermo) Overview 

 
Our proposed architecture’s novelty is based on this logic block. PPT_Pre_Thermo 

block is constructed by PPT topologies. There are four well-known PPT topologies 

in literature. These are LF, KS, HC, and BK topologies. All of these topologies are 

implemented via our RTL generator in this work. Also, any of the PPT topology 

could be applied in this block. PPT topologies’ taxonomy and their drawbacks 

among each other are stated by David L. Harris in 2003, as shown in Figure 3.6. In 
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this work, highest priority requester is selected as MSB bit rather than LSB bit. 

Hence, all topologies are flipped horizontally. Priority direction depends on our 

preference.                                          

 

 
Figure 3.6: Taxonomy of PPT topologies 

 

The function of this block is to prepare an output for thermometer encoding and 

priority encoding. If its output is 1-bit shifted to the right, this operation gives us 

thermometer encoder output (priority pointer). This shifting operation does not 

consist of any logic elements. It only modifies wiring connections. Moreover, if 

PPT_Pre_Thermo output is forwarded to ED block, ED block performs an edge 

detection operation to output RRA’s grant. This edge detection operation has only 
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one level logic depth. Essentially, combination of PPT_Pre_Thermo block and ED 

block forms the Smpl_PE block. Also, one of the superior advantages of 

PPT_Pre_Thermo is any-bit computation. PPT_Pre_Thermo block’s output LSB bit 

is equal to the OR of all its inputs. Thus, any-bit equals to this block’s output’s LSB. 

Operations of PPT_Pre_Thermo are divided into three parts: pre-tothermo 

computation, pre-Smpl_PE computation, and any-bit computation. So, it can be seen 

that this new macro block performs multiple operation at the same time. This makes 

our architecture exceptional with respect to our rivals. 

 

In order to show this blocks functionality, a test scenario is shown in Figure 3.7. In 

that figure inputs and outputs of the 16-bit PPT_Pre_Thermo are illustrated. 

 

 
Figure 3.7: PPT_Pre_Thermo example 

 

All PPT topologies which are implemented in this new block are explained in the 

following sections. 

 

3.1.3. Brent Kung PPT_Pre_Thermo (BK_PPT_Pre_Thermo) Architecture 

 
BK_PPT_Pre_Thermo topology is shown in Figure 3.8. In this topology’s nodes, 

mostly NOR—NAND—INV gates are used rather than OR gate, as explained in 

OR_BT section. OR gates are used only in the last stages. For N-bit input, 

BK_PPT_Pre_Thermo architecture’s logic level is equal to (2* log2N -1). On the 

other hand its gate count is fewer than other PPT topologies. BK_PPT_Pre_Thermo 

topology is a more useful tree for implementing area efficient designs. 
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Implementation of NOR—NAND—INV—OR method for different N-bit input 

brings a variation for inverter placements. Therefore, the designer has to locate 

inverters attentively. This topology is coded via our RTL generator, and that 

generator considers these kinds of variations. 

   

 
Figure 3.8: BK_PPT_Pre_Thermo structure 

 

3.1.4. Ladner Fisher PPT_Pre_Thermo (LF_PPT_Pre_Thermo) Architecture 

 
The number of stages is reduced by modifying the structure of the PPT graph. The 

minimum number of stages for PPT is log2N. For n=32, the stage number is equal to 

log2N=5. On the other hand, higher fan-out is the major drawback for this tree, as 

shown in Figure 3.9. For each stage, fan-out is equal to 2stage_number, and this can 

cause a negative effect on timing and area. In order to drive multiple cells, bigger 

driving cell are used. Unfortunately, those bigger cells can have increased area.  

 

LF_PPT_Pre_Thermo is implemented with NOR—NAND—INV—OR technique 

too. RTL code for this tree is generated by our RTL generator. Inverter placement 

varies with respect to the total stage number. For example, when stage number is 

odd, at last stage no inverter is used. On the other hand, when stage number is even, 

we have to put inverters at the last stage to construct a functional PPT_Pre_Thermo 

block. Also, in Figure 3.10, equivalence of LF_PPT_Pre_Thermo is constructed by 



 32 

OR gates, and LF_PPT_Pre_Thermo is constructed by NOR—NAND—INV—OR 

gates is shown. 

 

 
Figure 3.9: LF_PPT_Pre_Thermo structure 

 

 
Figure 3.10: Equivalence of NOR—NAND—INV PPT and OR PPT 

 

In our architectures, all of the topologies are constructed using NOR—NAND—

INV—OR gates rather than only OR gates. This transformation ensures smaller area 

results. For example, in Figure 3.10 OR PPT structure has 4 OR gates and each OR 

gate has extra inverter part in CMOS technology. On the other hand, NOR—

NAND—INV tree has 2 NOR, 2 NAND gates, and these gates do not contain any 

inverters. However, extra 2 inverters are added to ensure the functionality of 

PPT_Pre_Thermo. Even then, with this technique we save 2 inverters for 4-bit PPT 
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structure. For large input bit width, this cost reduction effects the RRA’s area 

significantly. 

 
3.1.5. Kogge Stone PPT_Pre_Thermo (KS_PPT_Pre_Thermo) Architecture 

 
KS_PPT_Pre_Thermo uses log2N as similar as LF_PPT_Pre_Thermo. Also, it has 

low fan-in and fan-out requirement. However, this structure’s main drawback is 

wiring tracks. It has a higher number of lateral wires with longer span which may 

need extra buffering, thus bringing extra delay. In order to accomplish further 

improvements on timing and area, it is constructed by NOR—NAND—INV—OR 

gates too. Its structure is shown in Figure 3.11. Its HDL code is generated via our 

RTL generator. 

 

 
Figure 3.11: KS_PPT_Pre_Thermo structure 

  

3.1.6. Han Carlson PPT_Pre_Thermo (HC_PPT_Pre_Thermo) Architecture 

 
HC_PPT_Pre_Thermo structure is a hybrid structure which combines stages from 

KS and BK structures, as shown in Figure 3.12. For n-bit input, its stage number is 

equal to (log2N+1). Its wires have shorter span than KS, this is an advantage against 

KS structure. This structure is implemented by NOR—NAND—INV—OR gates 

and its HDL code is generated by our RTL generator. Inverter locations vary with 

respect to odd or even stage numbers too. 
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Figure 3.12: HC_PPT_Pre_Thermo structure 

  

3.1.7. Edge Detector (ED)  

 
Edge detector is used to compute RRA’s grant, as shown in Figure 3.13. It has two 

inputs; PPT_Pre_thermo’s output and its 1-bit right shifted version. It has one output 

which is grant of RRA. ED block is the last block before RRA’s output and it is 

bounded with PPT_Pre_Thermo block. It has one level logic depth and this 

extremely decreases the critical path of the RRA. Combination of PPT_Pre_Thermo 

and ED performs simple priority encoding operation. Smple_PE operation’s logic 

level almost depends on PPT_Pre_Thermo block. ED has a negligible effect on this 

operation’s logic level. 

 

 
Figure 3.13: Edge detector’s top level block diagram 



 35 

Its main function is capturing 0 � 1 transition. Examples of this functionality are 

shown in Figure 3.14.  

 

 
Figure 3.14: Edge detection examples 

 

First, this architecture is implemented with AND—INV gates, as shown in Figure 

3.15.  

 

 
Figure 3.15: Edge detection architecture is constructed by AND—INV gates 
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Then, we optimized this structure with NOR—INV gates. Thus, this block’s area 

efficiency is improved. This optimization and the new architecture are shown in 

Figures 3.16 and 3.17, respectively. 

 

 
Figure 3.16: Edge detector optimization 

 

 
Figure 3.17: Optimized edge detector 
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3.2. PPT_RRA_BT ARCHITECTURE 

 

This architecture is proposed to achieve maximum speed. Thus, we called this 

architecture Parallel Prefix Tree Round Robin Arbiter Best Timing (PPT_RRA_BT), 

as shown in Figure 3.18. When we compare PPT_RRA_BT architecture with 

PPT_RRA_RS architecture, we see that PPT_RRA_BT architecture uses two 

PPT_Pre_Thermo blocks. However, it does not consist of OR_BT block. In 

PPT_RRA_RS architecture, OR_BT is in critical path so this block adds extra delay 

to input—output path. This problem is eliminated by using two PPT_Pre_Thermo 

blocks. Therefore, logic level is decreased by factor in log2N. On the other hand, 

OR_BT gate count is smaller than most of the PPT_Pre_Thermo architecture, so this 

effects area negatively in some cases. This architecture is very similar to STA_RRA 

but its PPT_Pre_Thermo block performs pre-thermometer encoding and priority 

encoding operations to remove negative effects of Smpl_PE, tothermo, and 

N2LOGN encoder blocks.  

 

 
Figure 3.18: PPT_RRA_BT architecture 
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In Figure 3.19, we replaced the multiplexer with a simplified multiplexer which is 

used in STA_RRA too. This modification lessens the area cost. This architecture’s 

logic level is shown as follows. 

 

AND Gate � 1 level 

PPT_Pre_Thermo � BK:(2* log2N -1) — KS:log2N — LF:log2N — HC:(log2N +1) 

Simplified Mux � 2 levels 

ED � 1 level 

Total Logic Level � 4 + Logic level of PPT_Pre_Thermo Block 

 

 
Figure 3.19: PPT_RRA_BT architecture with simplified multiplexer 

 

Details of the sub blocks such as PPT_PRE_Thermo and ED are described in 

Section 3.1. 
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3.3. BOW-TIE ARCHITECTURE 

 

This architecture is generated with respect to a Silicon Valley engineer’s idea who 

wants to stay anonymous. As you can see in Figure 3.20, this is comprised of two 

macro blocks. These are Round Robin Arbiter Macro Block (RR BLOCK) and Grant 

Unit Macro Block (GUNIT BLOCK).  

 

 
Figure 3.20: BOW-TIE_RRA high level architecture 

 

RR blocks perform two bit round robin arbitration operation. It has six inputs and 

five outputs.  Its inputs are request (req1, req0), pointer (ptr1, ptr0), and high-low 

(HL1, HL0). New incoming packets/requests are represented as request. Previous 

iteration’s grant is called a pointer, and high-low represents the location of the 

pointer. If HL is one, it means that the pointer is located at the top of the request. 

Otherwise, its value is equal to zero and the pointer is located under the request.  

 

RR blocks’ outputs are divided into two categories; first category is previous grants 

(pgnt1, pgnt 0) and second category is request—pointer—high-low (req-ptr-HL). 

Previous grants are forwarded directly to GUNIT blocks for final output/grant 

generation. On the other side, req-ptr-HL outputs are routed to next level RR blocks 

and these RR blocks are used them as input. These connections are shown in Figure 

3.21. 
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Figure 3.21: BOW-TIE_RRA’s building blocks 

 
Last level’s RR block’s “output req” signal is as the same as any of the STA_RRA. 

It enables or disables the flop with respect to new incoming request. If there is no 

request asserted for a new iteration, then last level’s RR block’s “output req” signal 

is equal to zero. Thus, the flop will be disabled and next iteration priority pointer 

will be equal to zero. This prevents the conflicts when no request is asserted. 

 
Table 3.1: RR block’s truth table 
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Figure 3.22: RR block’s all possible states 
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The core blocks of this architecture are the RR blocks. Actually, they are working as 

small RRAs because they perform two-bit round robin arbitration and they produce 

any, pointer, and high-low outputs for next level RRA blocks. Their truth table is 

shown in Table 3.1. Also, all possible input—output combinations of RR blocks are 

shown in Figure 3.22. Essentially, RR blocks are slightly complex blocks, this 

effects this architecture’s timing and especially area performance in a negative 

manner. If these blocks are designed in a simple way, this architecture’s 

performance could be increased immensely.   

 

GUNIT blocks are very simple blocks, as shown in Figure 3.23. It gets three inputs 

and produces the final outputs of the BOW-TIE_RRA. All RR blocks’ pgnt signals 

are forwarded to GUNIT blocks and they are ANDed to output the final grant output. 

This routing is clearly seen in Figure 3.21. 

 

 
Figure 3.23: GUNIT block 

  

3.4. ENHANCEMENTS ON PREVIOUS WORK 

 

In order to enhance STA_RRA and CHN_RRA architectures we replaced Optimized 

Smple_PE blocks with Han Carlson PPT_Pre_Thermo (HC_PPT_Pre_Thermo)–ED 

combination. In this manner, we can see the effects of HC_PPT_Pre_thermo–ED on 

RRAs performance.  

 

Furthermore, we tried to use N2LOGN Smple_PE encoder to eliminate the 

N2LOGN encoder block for STA_RRA, as shown Figure 3.24. This new 

architecture is called STA_RAA_N2LOGN. All of these architectures are described 

in next sections. 
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3.4.1. STA_RRA_N2LOGN Architecture 

 
This architecture’s Smple_PE and Smpl_PE_Thermo blocks take n-bit inputs and 

output log2N bit outputs as shown in Figure 3.24. Therefore, there is no need to use 

N2LOGN Encoder block before tothermo block. Thus, area efficiency and timing 

performance can be increased with respect to well-known STA_RRA_N2N 

architecture.  

 

 
Figure 3.24: STA_RRA_N2LOGN architecture 

 

After the tothermo block an edge detection operation is accomplished by AND gate. 

Also, final output is ANDed with Smpl_PE’s any bit to eliminate the conflicts when 

zero requests are asserted. For example, a request which has 1’b0 value for each bit 

position is asserted for new iteration. In this iteration, RRA’s output’s all bit 

positions to be 1’b0. If we do not use final AND gate, RRA’s output’s LSB will be 
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1’b1. This example is illustrated in Figure 3.25. In order to eliminate this problem, 

that AND gate is placed at the end of the critical path.  

 

 
Figure 3.25: Zero request example 

 

N2LOGN Smpl_PE’s are implemented recursively with binary tree technique. These 

blocks have order of log2N logic level and this is better than ripple carry Smpl_PE.  

 

3.4.2. STA_PPT_RRA Architecture 

  

 
Figure 3.26: STA_PPT_RRA architecture 
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This architecture is almost as the same as STA_RRA_N2N architecture. Only 

difference is in Smpl_PE blocks. In this architecture HC_PPT_Pre_Thermo— ED 

blocks combination is used rather than Optimized Smpl_PE blocks. This architecture 

is shown in Figure 3.26. 

 

3.4.3. CHN_PPT_RRA_PPE_Conflict Architecture 

 
In this architecture HC_PPT_Pre_Thermo— ED blocks combination is used rather 

than Optimized Smpl_PE block. This architecture is shown in Figure 3.27. This is 

the only difference from the original CHN_RRA_PPE_Conflict architecture. 

 

 
Figure 3.27: CHN_PPT_RRA_PPE_Conflict architecture 
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3.4.4. CHN_PPT_RRA_PPE_NonConflict Architecture 

 
In this architecture HC_PPT_Pre_Thermo— ED blocks combination is used rather 

than Optimized Smpl_PE block too. This architecture is shown in Figure 3.28. This 

is the only difference from the original CHN_RRA_PPE_NonConflict architecture. 

 

 
Figure 3.28: CHN_PPT_RRA_PPE_NonConflict architecture 
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4. AUTOMATIC RTL GENERATION 

 

Register Transfer Level (RTL) coding is an HDL coding technique in which the 

behavior of a design is defined in terms of transfer of data between hardware 

registers, and logical operations performed on those signals.  

 

Automatic RTL code generation has a very important role in this work. All RRA 

architectures have to be compared against each other from 8-bit input to 256-bit 

input variations. It is easy to write 8 Bit RRA’s HDL code. On the other hand, if we 

try to write 256-bit RRA code, we would get into huge trouble. We probably lose 

consistency and make a lot of syntax and instantiation errors during writing up 128-

bit or 256-bit RRA’s Verilog HDL code. It is very cumbersome and tough to write 

256-bit RRA code. In addition, it takes too much time. In order to get rid of these 

problems we tried to automate this process. We used PHP language and wrote 

scripts that automatically generate Verilog HDL code of RRA architectures with 

respect to their input bit widths. Those scripts take only one argument, which is the 

input bit width of the RRA. Then, scripts automatically generate all necessary 

Verilog HDL files for a specific RRA. Automatic RTL code generation task is the 

one of the most coercive tasks for this thesis and details of all generators are 

described in the next sections. 

 

4.1. STA_RRA GENERATION 

 

There are three different types of STA_RRA generators are coded. These are 

STA_RRA_N2N generator which is shown in figure 4.1., STA_RRA_N2LOGN 

generator, and STA_RRA_PPT generator. All generators perform the same task. 

They take an argument which is the input bit width of architecture, then generate 

Verilog HDL files, and finally put all generated files to a specific folder. 

 

Generated Verilog HDL files of STA_RRA_N2N generator are shown in Figure 4.1.  
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Figure 4.1: STA_RRA generation 

 

wrapper.v is used for iterative synthesis. It is just a wrapper for top level design. It 

has two n-bit flops at its input and output ports. These flops are necessary to create 

timing path from request to grant of RRA.  

 

rr_arbiter.v is top level block of RRA. It instantiates other blocks and performs 

RRA operation. Simplified multiplexer code is in this Verilog HDL file. 

 

smpl_pe.v and smpl_pe_thermo.v is optimized simple priority encoder code. This 

priority encoder’s Verilog code is generated with regard to binary tree and pre-

computation/factoring techniques which are explained in Section 2.1.1. “Any bit” of 

smpl_pe_themro.v is generated with binary tree technique. 

 

thermo_enc.v executes thermometer encoding and its algorithm is represented in 

Pankaj’s and McKeown’s work. Hence, we did not try to optimize this logic. Also, 

its Verilog HDL code is written in a parameterized fashion, so generation of this 

block became easier than the other blocks. 

 

ntologn.v is generated with respect to binary tree technique as described in Section 

2.1.3 

 

testbecnh.v is the verification code of RRA which is used for RTL and gate level 

verifications. 
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In STA_RRA_N2LOGN architecture normal multiplexer is used rather than 

simplified multiplexer and N2LOGN encoder block generation is removed. Its 

architecture, which is shown in Figure 3.24 is taken into consideration when writing 

its RTL generator script.  

 

Also, STA_RRA_PPT architecture generated with respect to Figure 3.26. 

 

4.2. CHN_RRA GENERATION 

 

There are four different generators written for CHN_RRA architectures. One of the 

generators is written for CHN_RAA_PPE_Conflict which is shown in Figure 4.2. It 

generates necessary Verilog HDL files and moves them into a specific folder. 

Smpl_PE, N2LOGN, tothermo, wrapper, and testbench modules are the same for 

STA_RRA and this architecture. The other generator is written for 

CHN_PPT_RAA_PPE_Conflict architecture with respect to Figure 3.27. In that 

architecture the difference is the HC_PPT_Pre_Thermo block plus ED block 

generation. 

 

 
Figure 4.2: CHN_RRA_PPE_Conflict generation 

 

CHN_RRA_PPE_NonConflict generation is shown is Figure 4.3 and its variant 

CHN_PPT_RRA_PPE_NonConflict architecture is generated according to Figure 

3.28. In the original version of these architectures, combinations of “Smpl_PE + 

N2LOGN Encoder + tothermo” blocks are used to construct the N2N thermometer 

encoder block. This is not an efficient way to construct N2N thermometer encoder. 
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Thus, we used HC_PPT_Pre_thermo block to optimize N2N thermometer encoder 

block. 

 

 
Figure 4.3: CHN_RRA_PPE_NonConflict (*OPTIMIZED) generation 

 

4.3. PPT_RRA GENERATION 

 

Nine different generators are written for PPT_RRA_RS and PPT_RRA_BT 

architectures, which are shown in Figures 4.4 and 4.5, respectively. All PPT 

algorithms’ generators are written for PPT_Pre_Thermo Block. This is one of the 

most difficult tasks of this thesis. LF, BK, HC, and KS PPT_Pre_Thermo blocks are 

generated with respect to figures which are shown in chapter 3. In top-level module 

all of the sub-modules are instantiated and connected. Testbench code is same for all 

generators because they are performing the same RRA algorithm. Also, wrapper is 

the same for all architectures as well.  
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Figure 4.4: PPT_RRA_RS generation 

 
 

 
Figure 4.5: PPT_RRA_BT generation 

 

4.4. BOW-TIE_RRA GENERATION 

 

BOW-TIE_RRA architecture generation is accomplished with respect to all figures 

in Section 3.3. RR blocks’ functionality is captured from Table 3.1 and its generator 

is written by using those equations. Also, GUNIT module is a very small module 

that it is generated easily. GUNIT modules are instantiated in gunit_n.v and RR 

modules are instantiated in rr_n.v. Eventually, GUNIT macro block and RR macro 

block are instantiated in bow-tie.v top level module. This architecture’s generator 
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outputs the same wrapper.v and testbecnh.v files as the other generators. This 

generator is shown in Figure 4.6. 

 

 
Figure 4.6: BOW-TIE generation 
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5. VERIFICATION AND SYNTHESIS METHODOLOGY 

  

All RRA architectures’ Verilog HDL codes are generated via their RTL generators. 

After this generation operation, all RTL codes are verified by RTL simulation. Then, 

verified RTL code is synthesized to get gate level netlist. There are many options in 

synthesis work. Different constraints could be applied to our design to get best 

synthesis results. All of these issues are covered in the following sections. 

 

5.1. VERIFICATION 

 

In verification task, we have to verify our RTL code’s functionality first. Our 

design’s RTL code is tested with behavioral test model. Behavioral test model 

performs our design functionality so RTL simulation is also called functional 

verification. The test model is written with a very high level of abstraction to fulfill 

the functionality of the RRA algorithm. This behavioral model, or in other words 

functional test model is in a module which is called testbench. We instantiate our 

RTL design into that testbench and apply the same test vectors to both our RTL 

design and behavioral test model. Eventually, outputs of these two blocks are 

compared for verification. In this way we check our RRA RTL design’s 

functionality. If RTL verification phase is passed without any problem, then that 

RTL code could be synthesized by DC. After synthesis, we get gate level netlist 

regarding to our technology library. We have to verify this gate level netlist’ 

functionality too, so gate level verification process is started. Verilog HDL code of 

technology library, gate level netlist, and test model are used to accomplish the gate 

level functional verification. Testbench instantiates gate level netlist to compare its 

functionality with that of the behavioral test model. After these phases our RTL 

design and gate level design are verified. Verification process is shown in Figure 

5.1. This figure is valid for both RTL and gate level verification tasks.  

 

In this thesis, the test model is written with respect to STA_RRA arbitration 

algorithm, which is the combination of iSLIP and mRRR algorithms, and it is almost 

identical to ESLIP algorithm, which is described in the introduction section. This 
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behavioral test model is coded with a high level of abstraction and it is used for 

verification of all RRA architectures. 

 

 
Figure 5.1: Verification strategy 

 

Testbench code for 8 bit RRA is shown below. 

 

module rr_arbiter_tb ();  

     

    //Datatype Declerations 

    reg clk, rst; 

    reg arbitrate; 

    reg [7:0] req; 

    reg [7:0] tb_out; 

    reg [3:0] ptr; 

    reg flag; 

    wire [7:0] design_out; 

    integer i, k, m, down, up; 

     

     

    //Instatiations 

rr_arbiter rr_arbiter_ins (.clk(clk), .rst(rst), .req(req),   

.gnt(design_out)); 

     

    //Decleration of Initial Values 

    initial begin 

        clk = 0; 

        #5 rst = 1; 

        #15 rst = 0; 

    end 
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//Toggle clock every 10 nanoseconds 

    always begin 

        #10 clk = ~clk; 

    end 

     

 

//Test Vectors (Inputs) Declerations 

    always @(posedge clk) begin 

        if (rst) begin 

            ptr <= 4'd8; 

            req <= 8'b0; 

            tb_out <= 8'b0; 

            arbitrate <= 1'b0; 

        end 

        else begin 

           req <= $random; 

           arbitrate <= ~arbitrate; 

        end 

    end 

         

    

//Test Model 

    always @(arbitrate) begin:RR_ARBITER 

       if (req == 8'b0) begin 

          tb_out = 8'b0; 

          ptr = 4'd8; 

       end 

       else begin 

          flag = 0; 

          if (ptr != 3'b0) begin 

             for (i=(ptr-1); i>=0; i=i-1) begin 

                 if (req[i]==1'b1) begin 

                     tb_out[i] = 1'b1; 

                     ptr = i; 

                     for (down=(i-1); down>=0; down=down-1) begin 

                         tb_out[down] = 1'b0; 

                     end 

                     for (up=(i+1); up<8; up=up+1) begin 

                         tb_out[up]=1'b0; 

                     end 

                     flag = 1; 

                     disable RR_ARBITER; 

                 end 

             end 

          end 

          if (flag == 1'b0) begin 

              for (k=7; k>=ptr; k=k-1) begin 

                  if(req[k]==1'b1) begin 

                      tb_out[k] = 1'b1; 

                      ptr = k; 

                      for (m=(k-1); m>=0; m=m-1) begin 

                          tb_out[m] = 1'b0; 

                      end 

                      disable RR_ARBITER; 

                  end 

              end 

          end 

       end 

    end 
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//Control and Monitoring Part 

    always @(posedge clk) begin 

        #2 //Wait 2ns for correct comparison 

        if (design_out == tb_out) begin 

            $display ("Time = %d\t req = %b\t design_output = %b\t  

testmodel_output = %b\t --> CORRECT", $time, req, 

design_out, tb_out); 

        end 

        else begin 

            $display ("Time = %d\t req = %b\t design_output = %b\t  

testmodel_output = %b\t --> ERROR", $time, req, 

design_out, tb_out); 

            $finish; 

        end 

    end    

    

endmodule 

 

5.2. SYNTHESIS METHODOLOGY 

 

The synthesis task is done by DC. It calculates timing results according to timing 

paths. Timing path is a path that starts from a flop’s clock trigger and ends at another 

flop’s input. The timing paths are taken into account when writing timing 

constraints.  In order to write timing constraints for RRA design, we have to put that 

design into a wrapper. The wrapper has flops at its input and output ports. RRA 

design also comprises of a flop to keep priority pointer. Therefore, we can create two 

timing paths from flop1’s clk input to flop2’s input and flop1’s clk input to flop3’s 

input. These two timing paths and other two timing paths are shown in Figure 5.2. 

Critical path of the design depends on combinational logic blocks which are located 

in these timing paths. If a timing path contains more combinational logic blocks, its 

delay will be bigger than the other timing paths. This path is called the critical path. 

Any design’s speed is calculated with its critical path’s timing.  

 

A wrapper structure is ideal to create timing constraints for all RRA designs. We 

created a clock period in our synthesis scripts iteratively and tried to find in which 

clock period a positive slack occurs. We started with an over-constrained clock 

period value, but for each synthesis iteration we increased the clock period by one 

nanosecond to reach positive slack results. Positive slack means that our design 

meets the timing constraint. There are no timing violations when we see positive 

slack at the end of synthesis. 
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Area result is reported for RRA design. If we report area for wrapper, area result 

contains input and output flops in wrapper block. Wrapper block is not our actual 

design so area result must be reported with respect to RRA design. 

 

 
Figure 5.2: Synthesis methodology 

 

We run several synthesis tasks to find the best timing and area constraint. Synthesis 

tasks are done with no constraint (NC), set_max_Area 0 (SMA0), and SMA0 + 

compile incremental –map effort high (CI_MEH) constraints. After all synthesis 

results we compare synthesis constraints to use the best one. Eventually we use the 

constraints below in our synthesis scripts. 

 

# Timing constraint 

create_clock -name clk -period 6 clk 

 

# Area constraint 

set_max_area 0 

 

# Compile the design incrementally with high effort 

compile -incremental_mapping -map_effort high 

 

# Report area results 

current_design rr_arbiter  

report_area 

 

# Report timing results 

current_design wrapper  

report_timing 

 

In this work many RRA designs are synthesized. This task is notably time 

consuming. In order to shorten the synthesis task time, we automated synthesis with 

PERL scripts. Two PERL scripts are written for synthesis. One of them does the 
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synthesis task and the other one uses this script and accomplishes all RRA designs’ 

synthesis tasks. These scripts are called core synthesis script and regression script. 

They are explained as follows. 

 

Core Synthesis Script does the following tasks: 

- Creates folders for synthesis scripts and results.                           

- Reads sample synthesis scripts and create new ones for iterative synthesis. In this 

part clock period is increased by one nanosecond from start point to end point.  

 These points could be defined in the script. If you want to do synthesis from 6 to 

20 you can easily set these points in the script.                          

- Invokes DC and runs all scripts and keeps their logs.                                        

- Moves synthesis scripts and synthesis results into related folders.           

- Modifies synthesis results, wraps and writes them into a related folder.     

- Captures slack and total cell area values from modified result file.          

- Writes total cell area and slack values to excel file.    

 

Regression Script synthesizes all RRA designs by using specific synthesis script for 

each RRA designs. This script automatically synthesizes all synthesis tasks. Sample 

code snippet for this script is shown below. 

 
$path1="C:/workspace/CHN_RRA/PPE_Conflict/8Bits"; 

$path2="C:/workspace/PPT_RRA/LF_RRA_BT/8Bits"; 

$path3="C:/workspace/STA_RRA/STA_RRA_N2N/8Bits"; 

 

print ("\n\n$path1 --> This path's synthesis is started!!!\n\n"); 

chdir($path1) || die "Can't chdir: $!"; 

system ("perl RRA_Syn_CHN.pl"); 

print ("\n\n$path1 --> This path's synthesis is finished!!!\n\n"); 

 

print ("\n\n$path2 --> This path's synthesis is started!!!\n\n"); 

chdir($path2) || die "Can't chdir: $!"; 

system ("perl RRA_Syn_LF_PPT.pl"); 

print ("\n\n$path2 --> This path's synthesis is finished!!!\n\n"); 

 

print ("\n\n$path3 --> This path's synthesis is started!!!\n\n"); 

chdir($path3) || die "Can't chdir: $!"; 

system ("perl RRA_Syn_STA_N2N.pl"); 

print ("\n\n$path3 --> This path's synthesis is finished!!!\n\n"); 
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6. SYNTHESIS RESULTS 

 

All of the synthesis is performed with Synopsys DC with lsi_10k technology library. 

Detailed iterative synthesis results from 8-bits to 256-bits and synthesis results at 

first positive or zero slack are shown in this chaper. 

 

 
Figure 6.1: 8 Bit RRAs synthesis results 
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Figure 6.2: 16 Bit RRAs synthesis results 
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Figure 6.3: 32 Bit RRAs synthesis results 
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Figure 6.4: 64 Bit RRAs synthesis results 
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Figure 6.5: 128 Bit RRAs synthesis results 
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Figure 6.6: 256 Bit RRAs synthesis results 
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Figure 6.7: Synthesis results at first positive or zero slack 
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7. CONCLUSION AND FUTURE WORK 

 

In this thesis, we proposed two RRA architectures PPT_RRA_RS and 

PPT_RRA_BT. We also described another new architecture – BOW-TIE_RRA 

which is still under development. We optimized and implemented our rival 

architectures. Various modifications and optimizations are applied on these 

architectures to strengthen them. Then, all RRA architectures are verified and 

synthesized. According to synthesis results we proved that our proposed designs are 

area efficient and faster than the rival architectures. The fastest architecture is 

HC_PPT_RRA_BT and the most area efficient one is BK_PPT_RRA_RS with 

respect to 256-bit synthesis results. These results are simplified as follows. 

 

According to 256-bit synthesis results, our new architectures achieve 22% area 

improvement and 42% timing improvement over optimized STA_RRA_N2N which 

is the well-known RRA design in literature. We optimized Smpl_PE block which is 

described in Chapter 2.  

 

Two CHN_RRA designs were published in 2006. The authors tried to enhance the 

STA_RRA architecture. However, their architectures had some drawbacks. We 

applied some optimizations on their work. These optimizations are explained in 

Chapter 2. When we compared our proposed architectures’ synthesis results against 

CHN_RRAs’ results for 256-bit, we saw that we outperform them by factor in 35% 

for speed and 23% for area. 

 

Savin C.E., McSmythurs T., and Czilli J. published BTS_RRA in 2004. In their 

paper, they represented that their architecture has (log2N + 4) logic level, (nlog2N + 

7n - 6) combinational gate count and it has n-bit flop. Our proposed architecture for 

best timing (with Ladner Fisher Pre_Thermo block — LF_PPT_RRA_BT) has 

(log2N + 4) logic level too. However, its gate count is equal to (nlog2N + 4n) + n-bit 

flop. Thus, our proposed architecture’s gate count is better than BTS_RRA. 

 

The most recent work was carried out by Zheng S. Q. and Yang M. in January 2007. 

They proposed two architectures: PRRA and IPRRA. They indicated that IPRRA 



 67 

achieved 30.8% timing improvement and 66.9% area improvement over PPE design 

which is the core block of STA_RRA. Our proposed design for best timing achieved 

42% timing improvement over STA_RRA, which is better than both IPPRA and 

PPRA. 

 

Other two different architectures SA and PPA use different algorithms and they 

cannot ensure the fairness for non-uniformly distributed requests. Thus, we did not 

implement these architectures for comparison. 

 

In summary, PPT_RRA_BT and PPT_RRA_RS architectures both achieve 

important improvements in area and speed departments compared with former RRA 

architectures. Due to their performance results, these architectures will play 

important roles for high-speed switches, routers, and the systems where arbitration is 

required for various purposes. 

 

It is possible to enhance the area and timing results of BOW-TIE_RRA architecture. 

It consists of complex RR Blocks. So, in the future we will work on to reduce the 

RR Blocks’ complexity of that architecture. Also, unimplemented RRA architectures 

will be implemented for area and timing comparison. 
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