Publication:
Aort kapakçığının çok-kesitli bilgisayarlı tomografi görüntülerinden model-bağimsiz otomatik bölütlenmesi

dc.contributor.authorÇubuk, Rahmi
dc.contributor.authorHarmankaya, İbrahim
dc.contributor.authorOksuz, İlkay
dc.contributor.authorUnay, Devrim
dc.contributor.authorÇelik, Levent
dc.contributor.authorKadıpaşaoğlu, Kamuran
dc.contributor.institutionMALTEPE ÜNİVERSİTESİ
dc.contributor.institutionBAHÇEŞEHİR ÜNİVERSİTESİ
dc.contributor.institutionBAHÇEŞEHİR ÜNİVERSİTESİ
dc.contributor.institutionİZMİR DEMOKRASİ ÜNİVERSİTESİ
dc.contributor.institutionÖzel Kuruluş
dc.contributor.institutionYILDIZ TEKNİK ÜNİVERSİTESİ
dc.date.accessioned2025-09-20T19:58:21Z
dc.date.issued2021
dc.date.submitted18.06.2021
dc.description.abstractBir veya birden fazla kalp kapakçığının etkilenebildiği kapakçık hastalıklarının etkin tedavisi için bu kapakçıkların onarılması ya da değiştirilmesini gereklidir. Kapakçıkların 2B/3B statik görüntülerinden elde edilecek bilgiyi tamamlayıcı bilgi içeren hastaya-özgü ve dinamik bir model bu girişimsel tedavi rehberlik edebilir. Bu amaçla bu çalışmada yeni bir otomatik model-bağımsız aort kapakçığı bölütleme yöntemi önerilmiş ve yöntemin doğruluğu aort kapakçığının kapalı anına ait geleneksel kontrastlı EKG-güdümlü çok-kesitli BT verisinden elde edilen uzman işaretlemeleri ile ölçülmüştür. Yöntemin başarısı 19 gerçek veride detaylı olarak değerlendirilmiş ve Hessian temelli sonucun üzerine bölge büyütme yaklaşımının performansının umut vadettiği ama bunun yanı sıra problemin zorluğunu göstermiştir.
dc.identifier.doi10.5505/pajes.2020.26817
dc.identifier.endpage128
dc.identifier.issn2147-5881
dc.identifier.issue2
dc.identifier.startpage122
dc.identifier.urihttps://hdl.handle.net/20.500.14719/4982
dc.identifier.volume27
dc.language.isoen
dc.relation.journalPamukkale Üniversitesi Mühendislik Bilimleri Dergisi
dc.subjectMikroskopi
dc.subjectMühendislik
dc.subjectBiyotıp
dc.subjectMühendislik
dc.subjectMakine
dc.subjectKalp ve Kalp Damar Sistemi
dc.subjectRadyoloji
dc.subjectNükleer Tıp
dc.subjectTıbbi Görüntüleme
dc.titleAort kapakçığının çok-kesitli bilgisayarlı tomografi görüntülerinden model-bağimsiz otomatik bölütlenmesi
dc.typeResearch Article
dcterms.references[1] Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J. “Executive summary: heart disease and stroke statistics-2010 update”. Circulation, 121(7), 948-954, 2010.,[2] Bouvier E, Logeart D, Sablayrolles JL, Feignoux J, Scheublé C, Touche T, Thabut G, Cohen-Solal A. “Diagnosis of aortic valvular stenosis by multislice cardiac computed tomography”. European Heart Journal, 27(24), 3033-3038, 2006.,[3] Feuchtner GM, Dichtl W, Friedrich GJ, Frick M, Alber HF, Schachner T, Bonatti JO, Mallouhi A, Frede T, Pachinger O, Nedden DZ, Mueller S. “Multislice computed tomography for detection of patients with aortic valve stenosis and quantification of severity”. Journal of the American College of Cardiology, 47(7), 1410-1417, 2006.,[4] Frangi AF, Niessen WJ, Viergever MA. “Three-Dimensional modeling for functional analysis of cardiac images: A review”. IEEE Transactions on Medical Imaging, 20(1), 2-25, 2001.,[5] Frangi AF, Rueckert D, Duncan JS, “Three-Dimensional cardiovascular image analysis”. IEEE Transactions on Medical Imaging, 21(9), 1005-1010, 2002.,[6] Payer C, Štern D, Bischof H, Urschler M. “Multi-label whole heart segmentation using CNNs and anatomical label configurations”. Lecture Notes in Computer Science, 10663, 190-198, 2018.,[7] Xu Z, Wu Z, Feng J. “CFUN: Combining faster R-CNN and U-net network for efficient whole heart segmentation”.arXiv, 2018. https://arxiv.org/pdf/1812.04914.pdf .,[8] Zheng Y, John M, Liao R, Nottling A, Boese J, Kempfert J, Walther T, Brockmann G, Comaniciu D. “Automatic aorta segmentation and valve landmark detection in C-Arm CT for transcatheter aortic valve implantation”. IEEE Transactions on Medical Imaging, 31(12), 2307-2321, 2012.,[9] Queirós S, Papachristidis A, Morais P, Theodoropoulos K, Fonseca J, Monaghan M, Vilaça J, D'hooge J. “Fully automatic 3-D-TEE segmentation for the planning of transcatheter aortic valve implantation”. IEEE Transactions on Biomedical Engineering, 64(8), 1711-1720, 2017.,[10] Elattar MA, Wiegerinck E, Planken R, Vanbavel E, van Assen H, Baan J, Marquering H. “Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation”. Medical and Biological Engineering and Computing, 52(7), 611-618, 2014.,[11] Lorenzo-Valdés M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D. “Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm”. Lecture Notes in Computer Science, 2878, 440-450, 2003.,[12] Fritz D, Rinck D, Unterhinninghofen R, Dillmann R, Scheuering M. “Automatic segmentation of the left ventricle and computation of diagnostic parameters using regiongrowing and a statistical model”. Proceedings of SPIE Medical Imaging, 5747, 1844-1851, 2005.,[13] Ecabert O, Peters J, Weese J. “Modeling shape variability for full heart segmentation in cardiac computed-tomography images”. Proceedings of SPIE Medical Imaging, 6144, 1-8, 2006.,[14] Lynch M, Ghita O, Whelan PF. “Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge”. Computerized Medical Imaging and Graphics, 30(4), 255-262, 2006.,[15] Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D. “Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features”. IEEE Transactions on Medical Imaging, 27(11), 1668-1681, 2008.,[16] Lin X. Model-Based Strategies for Automated Segmentation of Cardiac Magnetic Resonance İmages.PhD Thesis, University of Auckland, New Zealand, 2008.,[17] Dong B, Guo Y, Wang B, Gu L. “Aortic valve segmentation from ultrasound images based on shape constraint CV model”. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 3-7 July 2013.,[18] Pouch AM, Wang H, Takebe M, Jackson B, Sehgal C, Gorman III J, Gorman R, Yushkevich P. “Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images”. Lecture Notes in Computer Science, 8149, 485-492, 2013.,[19] Ionasec RI, Georgescu B, Gassner E, Vogt S, Kutter O, Scheuering M, Navab N, Comaniciu D. “Dynamic model driven quantitative and visual evaluation of the aortic valve from 4D CT”. Lecture Notes in Computer Science, 5241, 686-694, 2008.,[20] Ionasec RI, Voigt I, Georgescu B, Wang Y, Houle H, Higuera F, Navab N, Comaniciu D. “Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE”. IEEE Transactions on Medical Imaging, 29(9), 1636-1651, 2010.,[21] Weese J, Peters J, Meyer C, Wächter I, Kneser R, Lehmann H, Ecabert O, Barschdorf H, Hanna R, Weber FM, Dössel O, Lorenz C. “The generation of patient-specific heart models for diagnosis and interventions”. Lecture Notes in Computer Science, 6364, 25-35, 2010.,[22] Grbic S, Ionasec R, Vitanovski D, Voigt I, Wang Y, Georgescu B, Navab N, Comaniciu D. “Complete valvular heart apparatus model from 4D cardiac CT”. Medical Image Analysis, 16(5), 1003-1014, 2012.,[23] Laissy JP, Messika-Zeitoun D, Serfaty JM, Sebban V, Schouman-Claeys E, Iung B, Vahanian A. “Comprehensive evaluation of preoperative patients with aortic valve stenosis: Usefulness of cardiac multidetector computed tomography”. Heart, 93(9), 1121-1125, 2007.,[24] Liang L, Kong F, Martin C, Pham T, Wang Q, Duncan J, Sun W. “Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images”. International Journal for Numerical Methods in Biomedical Engineering, 33(5), 1-13, 2017.,[25] Segars WP, Mendonca S, Sturgeon G, Tsui BMW. “Enhanced 4D heart model based on high resolution dual source gated cardiac CT images”. IEEE Nuclear Science Symposium Conference Record, Honolulu, Hawaii, 28 October-3 November 2007.,[26] Boulnois JL, Pechoux T. “Non-invasive cardiac output monitoring by aortic blood flow measurement with the Dynemo 3000”. Journal of Clinical Monitoring and Computing, 16(2), 127-140, 2000.,[27] Frangi AF, Niessen WJ, Vincken KL, Viergever MA. “Multiscale vessel enhancement filtering”. Lecture Notes in Computer Science, 1496, 130-137, 1998.
dspace.entity.typePublication
local.indexed.atTRDizin

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Model-Free automatic segmentation of the aortic valve in multislice computed tomography images.pdf
Size:
884.62 KB
Format:
Adobe Portable Document Format