Publication: A comparative analysis of ten milk samples with differential scanning calorimetry and Fourier transform infrared spectroscopy
| dc.contributor.author | Ertaş, Tahsin | |
| dc.contributor.author | Dinç, Bircan | |
| dc.contributor.author | Üstunsoy, Recep | |
| dc.contributor.author | Şen, Emine | |
| dc.contributor.institution | Adıyaman Üniversitesi | |
| dc.contributor.institution | Bahçeşehir Üniversitesi | |
| dc.contributor.institution | İstanbul Atlas Üniversitesi | |
| dc.contributor.institution | Altınbaş Üniversitesi | |
| dc.date.accessioned | 2025-09-20T19:55:32Z | |
| dc.date.issued | 2023 | |
| dc.date.submitted | 24.07.2023 | |
| dc.description.abstract | Milk proteins occupy a prominent place in the nutrition of adults and children. Generally, some commercial dairy contains proteins, lactose, other sugar derivatives, and additives. The propor- tions of the components that make up the milk are different in commercial milk. For this reason, analyzing milk correctly is essential for determining these contents. In this research, analyses of the milk were made by taking differential scanning calorimetry measurements (DSC), and Fourier transform infrared spectrophotometer (FTIR) measurements. Specific heat values and specific values of temperature peaks were examined for ten kinds of milk. DSC curves revealed triacyl- glycerol dissolution, lactose crystallization, and protein denaturation peaks. Wide variations were observed with the same fat content from 10 milk powders. Most characteristic peaks were not observed when the samples were re-measured after a year at -20°C. The powder samples were compared in terms of protein, fat, lactose content, whey protein casein, and caseinate contents according to differences in FTIR spectra. The FTIR results confirm the DSC curves for most of the analyzed milk types. | |
| dc.identifier.doi | 10.3153/FH23017 | |
| dc.identifier.endpage | 192 | |
| dc.identifier.issn | 2602-2834 | |
| dc.identifier.issue | 3 | |
| dc.identifier.startpage | 184 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14719/4550 | |
| dc.identifier.volume | 9 | |
| dc.language.iso | en | |
| dc.relation.journal | Food and Health | |
| dc.subject | Gıda Bilimi ve Teknolojisi | |
| dc.title | A comparative analysis of ten milk samples with differential scanning calorimetry and Fourier transform infrared spectroscopy | |
| dc.type | Research Article | |
| dcterms.references | Ali, A. H., Wei, W., Wang, X. (2020). Characterization of bovine and buffalo anhydrous milk fat fractions and infant formula fat: Application of differential scanning calorimetry, Fourier transform infrared spectroscopy and colour attributes. LWT-Food Science and Technology, 129, 109542. https://doi.org/10.1016/j.lwt.2020.109542,Anema, S., Pinder, D., Hunter, R., Hemar, Y. (2006). Ef- fects of storage temperature on the solubility of milk protein concentrate (MPC85). Food Hydrocolloids, 20(2-3), 386- 393. https://doi.org/10.1016/j.foodhyd.2005.03.015,Antony, B., Sharma, S., Mehta, B. M., Ratnam, K., Apar- nathi, K. D. (2018). Study of Fourier transforms near-infra- red (FT NIR) spectra of ghee (anhydrous milk fat). Internati- onal Journal of Dairy Technology, 71(2), 484-490. https://doi.org/10.1111/1471-0307.12450,Araki, K., Yagi, N., Ikemoto, Y., Yagi, H., Choong, C.-J., Hayakawa, H., Beck, G., Sumi, H., Fujimura, H., Mo- riwaki, T. (2015). Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson’s disease patients. Scientific Reports, 5(1), 1-8. https://doi.org/10.1038/srep17625,Balabin, R.M., Smirnov, S.V. (2011). Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: A quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder. Talanta, 85(1), 562-568. https://doi.org/10.1016/j.talanta.2011.04.026,Buckton, G., Yonemochi, E., Hammond, J., Moffat, A. (1998). The use of near infra-red spectroscopy to detect chan- ges in the form of amorphous and crystalline lactose. Inter- national Journal of Pharmaceutics, 168(2), 231-241. https://doi.org/10.1016/S0378-5173(98)00095-7,Buera, P., Schebor, C., Elizalde, B. (2005). Effects of car- bohydrate crystallization on stability of dehydrated foods and ingredient formulations. Journal of Food Engineering, 67(1- 2), 157-165. https://doi.org/10.1016/j.jfoodeng.2004.05.052,Chiu, M.H., Prenner, E.J. (2011). Differential scanning ca- lorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. Journal of Pharmacy and Bioallied Sciences, 3(1), 39. https://doi.org/10.4103/0975-7406.76463,Cordella, C., Antinelli, J.-F., Aurieres, C., Faucon, J.-P., Cabrol-Bass, D., Sbirrazzuoli, N. (2002). Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. Journal of Agricultural and Food Chemistry, 50(1), 203-208. https://doi.org/10.1021/jf010752s,Dutta, S., Hartkopf-Fröder, C., Witte, K., Brocke, R., Mann, U. (2013). Molecular characterization of fossil palynomorphs by transmission micro-FTIR spectroscopy: Implications for hydrocarbon source evaluation. Internatio- nal Journal of Coal Geology, 115, 13-23. https://doi.org/10.1016/j.coal.2013.04.003,Güven, M. (1998). Antimikrobiyal maddeler ve süt teknolo- jisinde kullanım olanakları. Gıda, 23(5), 365-369.,Haque, E., Bhandari, B.R., Gidley, M.J., Deeth, H.C., Møller, S.M., Whittaker, A.K. (2010). Protein conformati- onal modifications and kinetics of water− protein interactions in milk protein concentrate powder upon aging: effect on so- lubility. Journal of Agricultural and Food Chemistry, 58(13), 7748-7755. https://doi.org/10.1021/jf1007055,Herrington, B. (1934). Some physico-chemical properties of lactose: I. The spontaneous crystallization of supersaturated solutions of lactose. Journal of Dairy Science, 17(7), 501- 518. https://doi.org/10.3168/jds.S0022-0302(34)93265-3,Howard, K.M., Jati Kusuma, R., Baier, S.R., Friemel, T., Markham, L., Vanamala, J., Zempleni, J. (2015). Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. Journal of Agricultural and Food Chemistry, 63(2), 588-592. https://doi.org/10.1021/jf505526w,Jawaid, S., Talpur, F.N., Sherazi, S., Nizamani, S.M. Khaskheli, A.A. (2013). Rapid detection of melamine adul- teration in dairy milk by SB-ATR–Fourier transform infrared spectroscopy. Food Chemistry, 141(3), 3066-3071. https://doi.org/10.1016/j.foodchem.2013.05.106 Jouppila, K., Roos, Y. (1994). Glass transitions and crystal- lization in milk powders. Journal of Dairy Science, 77(10), 2907-2915. https://doi.org/10.3168/jds.S0022-0302(94)77231-3,Kaur, P., Singh, M., Birwal, P. (2021). Differential Scan- ning Calorimetry (DSC) for the Measurement of Food Ther- mal Characteristics and Its Relation to Composition and Structure. Techniques to Measure Food Safety and Quality, 283-328. https://doi.org/10.1007/978-3-030-68636-9_18,Kim, E.H.-J., Chen, X.D., Pearce, D. (2005). Melting cha- racteristics of fat present on the surface of industrial spray- dried dairy powders. Colloids and Surfaces B: Biointerfaces, 42(1), 1-8. https://doi.org/10.1016/j.colsurfb.2005.01.004,Koca, N., Kocaoglu-Vurma, N., Harper, W., Rodriguez- Saona, L. (2010). Application of temperature-controlled at- tenuated total reflectance-mid-infrared (ATR-MIR) spectros- copy for rapid estimation of butter adulteration. Food Che- mistry, 121(3), 778-782. https://doi.org/10.1016/j.foodchem.2009.12.083,Liu, H., Chaudhary, D. (2011). The moisture migration be- havior of plasticized starch biopolymer. Drying Technology, 29(3), 278-285. https://doi.org/10.1080/07373937.2010.489208,Morgan, F., Nouzille, C.A., Baechler, R., Vuataz, G., Raemy, A. (2005). Lactose crystallisation and early Maillard reaction in skim milk powder and whey protein concentrates. Le Lait, 85(4-5), 315-323. https://doi.org/10.1051/lait:2005017,Pellegrino, L. (1994). Influence of fat content on some heat- induced changes in milk and cream. Netherlands Milk and Dairy Journal, 48, 71-80.,Phosanam, A., Chandrapala, J., Huppertz, T., Adhikari, B., Zisu, B. (2020). Changes in physicochemical and surface characteristics in milk protein powders during storage. Drying Technology, 1-15. https://doi.org/10.1080/07373937.2020.1755978,Poonia, A., Jha, A., Sharma, R., Singh, H.B., Rai, A.K., Sharma, N. (2017). Detection of adulteration in milk: A re- view. International Journal of Dairy Technology, 70(1), 23-42. https://doi.org/10.1111/1471-0307.12274,Pugliese, A., Paciulli, M., Chiavaro, E., Mucchetti, G. (2019). Application of differential scanning calorimetry to freeze-dried milk and milk fractions. Journal of Thermal Analysis and Calorimetry, 137(2), 703-709. https://doi.org/10.1007/s10973-018-7971-7,Rachah, A., Reksen, O., Tafintseva, V., Stehr, F.J.M., Rukke, E.-O., Prestløkken, E., Martin, A., Kohler, A., Af- seth, N.K. (2021). Exploring dry-film ftir spectroscopy to characterize milk composition and subclinical ketosis throug- hout a cow’s lactation. Foods, 10(9), 2033. https://doi.org/10.3390/foods10092033,Raemy, A. (2003). Behavior of foods studied by thermal analysis: Introduction. Journal of Thermal Analysis and Ca- lorimetry, 71(1), 273-278. https://doi.org/10.1023/a:1022299124618,Rahman, M.S., Al-Hakmani, H., Al-Alawi, A., Al-Mar- hubi, I. (2012). Thermal characteristics of freeze-dried camel milk and its major components. Thermochimica Acta, 549, 116-123. https://doi.org/10.1016/j.tca.2012.09.005,Roos, Y., Karel, M. (1990). Differential scanning calori- metry study of phase transitions affecting the quality of dehydrated materials. Biotechnology Progress, 6(2), 159- 163. https://doi.org/10.1021/bp00002a011,Shrestha, A.K., Howes, T., Adhikari, B.P., Bhandari, B.R. (2007). Water sorption and glass transition properties of spray dried lactose hydrolysed skim milk powder. LWT-Food Science and Technology, 40(9), 1593-1600. https://doi.org/10.1016/j.lwt.2006.11.003,Slade, L., Levine, H., Reid, D.S. (1991). Beyond water acti- vity: recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science & Nutrition, 30(2-3), 115-360. https://doi.org/10.1080/10408399109527543,Smid, E.J., Gorris, L.G. (2020). Natural antimicrobials for food preservation. In Handbook of food preservation (pp. 283-298). CRC Press. https://doi.org/10.1201/9780429091483-21,Ten Grotenhuis, E., Van Aken, G., Van Malssen, K., Schenk, H. (1999). Polymorphism of milk fat studied by dif- ferential scanning calorimetry and real time X ray powder diffraction. Journal of the American Oil Chemists' Society, 76(9), 1031-1039. https://doi.org/10.1007/s11746-999-0201-5,Thomas, M., Scher, J., Desobry, S. (2004). Lactose/β-lac- toglobulin interaction during storage of model whey powders. Journal of Dairy Science, 87(5), 1158-1166. https://doi.org/10.3168/jds.S0022-0302(04)73264-6,Trachenko, K., Brazhkin, V. (2011). Heat capacity at the glass transition. Physical Review B, 83(1), 014201. https://doi.org/10.1103/PhysRevB.83.014201 Tsourouflis, S., Flink, J.M., Karel, M. (1976). Loss of structure in freeze dried carbohydrates solutions: effect of temperature, moisture content and composition. Journal of the Science of Food and Agriculture, 27(6), 509-519. https://doi.org/10.1002/jsfa.2740270604,Tunick, M.H., Thomas-Gahring, A., Van Hekken, D.L., Iandola, S.K., Singh, M., Qi, P.X., Ukuku, D.O., Mukho- padhyay, S., Onwulata, C.I., & Tomasula, P.M. (2016). Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity. Journal of Dairy Science, 99(3), 2372-2383. https://doi.org/10.3168/jds.2015-10256,Vuataz, G. (2002). The phase diagram of milk: a new tool for optimising the drying process. Le Lait, 82(4), 485-500. https://doi.org/10.1051/lait:2002026,Zouari, A., Lajnaf, R., Lopez, C., Schuck, P., Attia, H., Ayadi, M.A. (2021). Physicochemical, techno functional, and fat melting properties of spray dried camel and bovine milk powders. Journal of Food Science, 86(1), 103-111. https://doi.org/10.1111/1750-3841.15550 | |
| dspace.entity.type | Publication | |
| local.indexed.at | TRDizin |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- A comparative analysis of ten milk samples with differential scanning calorimetry and Fourier transform infrared spectroscopy.pdf
- Size:
- 1.17 MB
- Format:
- Adobe Portable Document Format
