Publication:
A discrete fractional gabor expansion for time frequency signal analysis

dc.contributor.authorAkan, Aydın
dc.contributor.authorÇekiç, Yalçın
dc.contributor.authorChaparro, Luis F.
dc.contributor.institutionİSTANBUL ÜNİVERSİTESİ
dc.contributor.institutionBAHÇEŞEHİR ÜNİVERSİTESİ
dc.contributor.institutionYabancı Kurumlar
dc.date.accessioned2025-09-20T20:04:35Z
dc.date.issued2002
dc.date.submitted29.07.2022
dc.description.abstractIn this work, we present a discrete fractional Gabor representation on a general, non-rectangular time-frequency lattice. The traditional Gabor expansion represents a signal in terms of time and frequency shifted basis functions, called Gabor logons. This constant-bandwidth analysis uses a fixed, and rectangular time-frequency plane tiling. Many of the practical signals require a more flexible, non-rectangular time-frequency lattice for a compact representation. The proposed fractional Gabor method uses a set of basis functions that are related to the fractional Fourier basis and generate a non-rectangular tiling. Simulation results are presented to illustrate the performance of our method.
dc.identifier.endpage487
dc.identifier.issn1303-0914
dc.identifier.issue2
dc.identifier.startpage483
dc.identifier.urihttps://hdl.handle.net/20.500.14719/6044
dc.identifier.volume2
dc.language.isoen
dc.relation.journalIstanbul University Journal of Electrical and Electronics Engineering
dc.subjectMühendislik
dc.subjectElektrik ve Elektronik
dc.titleA discrete fractional gabor expansion for time frequency signal analysis
dc.typeResearch Article
dcterms.references[1] Cohen, L., Time-Frequency Analysis. Prentice Hall, Englewood Cliffs, NJ, 1995.,[2] Gabor, D., Theory of Communication, J. IEE, Vol. 93, pp. 429-459, 1946.,[3] Wexler, J., and Raz, S., Discrete Gabor Expansions, Signal Processing}, Vol. 21, No. 3, pp. 207-220, Nov. 1990.,[4] Jones, D.L., and Parks, T.W., “A High Resolution Data--Adaptive Time--Frequency Representation”, IEEE Trans. on Signal Proc., Vol. 38, No. 12, pp. 2127-2135, Dec. 1990.,[5] Jones, D.L., and Baraniuk, R.G., “A Simple Scheme For Adapting Time--Frequency Representations,” IEEE Trans. on Signal Proc., Vol. 42, No. 12, pp. 3530-3535, Dec. 1994.,[6] Baraniuk, R.G., and Jones, D.L. “Shear Madness: New Orthonormal Bases and Frames Using Chirp Functions,” IEEE Trans. on Signal Proc., Vol. 41, No. 12, pp. 3543--3549, Dec. 1993.,[7] Bultan A., A “Four--Parameter Atomic Decomposition of Chirplets,” IEEE Tans. on Signal Proc., Vol. 47 pp. 731--745, 1999.,[8] Akan, A., and Chaparro, L.F., “Evolutionary Chirp Representation of Nonstationary Signals via Gabor Transform,” Signal Processing, Vol. 81, No. 11, pp. 2429-2436, Nov. 2001.,[9] Akan, A., and Chaparro, L.F., “Multi--window Gabor Expansion for Evolutionary Spectral Analysis,” Signal Processing, Vol. 63, pp. 249--262, Dec. 1997.,[10] Bastiaans, M.J., and van Leest, A.J., “From the Rectangular to the Quincunx Gabor Lattice via Fractional Fourier Trasformation,''IEEE Signal Proc. Letters, Vol. 5, No. 8, pp. 203-205,1998.,[11] Pei, S.C., Yeh, M.H., and Luo, T.L., “Fractional Fourier Series Expansion for Finite Signals and Dual Extension to Discrete--Time Fractional Fourier Transform,” IEEE Trans. on Signal Proc., Vol. 47, No. 10, pp. 2883-2888, Oct. 1999.,[12] Almeida, L.B., “The Fractional Fourier Transform and Time-Frequency Representations,'' IEEE Trans. on Signal Proc., Vol. 42, No. 11, pp. 3084-3091, Nov. 1994.,[13] Ozaktas, H.M., Barshan, B., Mendlovic,D., and Onural, L., “Convolution, Filtering and Multiplexing in Fractional Fourier Domains and their Relation to Chirp and Wavelet Transforms,” J. Opt. Soc. Am. A, Vol. 11, no. 2, pp. 547-559, 1994.,[14] Kutay, M.A., Ozaktas, H.M., Arikan, O., and Onural, L., “Optimal Filtering in Fractional Fourier Domains,” IEEE Trans. on Signal Proc., Vol. 45, no. 5, pp. 1129-1142, May 1997.,[15] Ozaktas, H.M., Arikan, O., Kutay, M.A., and Bozdagi, G., “Digital Computation of the Fractional Fourier Transform,” IEEE Trans. on Signal Proc., Vol. 44, no. 9, pp. 2141-2150, Sep. 1996.,[16] Candan C., Kutay, M.A., and Ozaktas, H.M., “The Discrete Fractional Fourier Transform,” IEEE Proc. ICASSP-99, pp. 1713-1716, 1999.
dspace.entity.typePublication
local.indexed.atTRDizin

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A discrete fractional gabor expansion for time frequency signal analysis.pdf
Size:
86.27 KB
Format:
Adobe Portable Document Format