Evaluation and improvement of feature selection techniques for cognitive state classification using fMRI data

dc.contributor.advisorAytekin, Tevfik
dc.contributor.authorÜlker, Ceyhun Can
dc.date.accessioned2024-09-27T10:22:31Z
dc.date.available2024-09-27T10:22:31Z
dc.date.issued2012-05
dc.description.abstractRecent research has shown that it is possible to classify cognitive states of human subjects based on fMRI (functional magnetic resonance imaging) data. One of the obstacles in classifying fMRI data is the problem of high dimensionality. A single fMRI snapshot consists of thousands of voxels and since a single experiment contains many fMRI snapshots, the dimensionality of an fMRI data instance easily surpasses the order of tens of thousands. So, feature selection methods become a must from both classification and running time performance points of view. To this end several feature selection methods are studied, either general or specific to fMRI data. So far, one of the best such methods, which is specific to fMRI data, is called the “active” method. In this work we combine genetic algorithms with the active method in order to improve the performance of feature selection. Specifically, we first reduce the feature dimension using the active method and search for informative features in that reduced space using genetic algorithms. We achieve similar levels of classification performance using much less number of voxels than active method offers.tr_TR
dc.description.abstractSon zamanlardaki araştırmalar insan deneklerin fMRI (fonksiyonel manyetik rezonans görüntüleme) verisini kullanarak bilişsel hal ayırt etmenin mümkün olduğunu göstermiştir. fMRI verisinin sınıflandırılmasını güçleştiren en büyük engellerden biri verinin yüksek boyutlu ve seyrek olmasıdır. Tek bir fMRI enstantanesi binlerce voxel bulundurabilir ve bir deney bir çok fMRI enstantanesi barındırdığından verinin boyutu kolaylıkla on binleri geçebilir. Şu halde ¨öznitelik seçimi yöntemlerinin kullanılması hem sınıflandırma hem de çalışma zamanı başarımları bakımlarından zorunluluk halini almıştır. Bu yüzden gerek genel gerekse fMRI verisine özgü bir çok öznitelik seçim yöntemi çalışılmıştır. Şimdiye kadarki en iyi yöntemlerden biri de “aktif” olarak adlandırılan fMRI verisine özgü öznitelik seçim yöntemidir. Bu çalışmada genetik algortima öznitelik seçimi başarımının arttırılmasını sağlamak için aktif yöntemi ile birleştirilmiştir. Özel olarak, öncelikle aktif yöntem kullanılarak öznitelik boyutunu azaltıp, sonra bu indirgenmiş uzayda genetik algoritma kullanılarak diğerlerinden daha çok bilgi taşıyan öznitelikler aranmıştır. Bu yöntem yardımıyla aktif yöntemi ile benzer başarı seviyesi, aktif yöntemin sunduğundan çok daha az sayıda voxel kullanılarak, sağlanabilmiştir.
dc.identifier.urihttps://hdl.handle.net/20.500.14719/1688
dc.language.isoentr_TR
dc.publisherBahçeşehir Üniversitesi Fen Bilimleri Enstitüsütr_TR
dc.subjectfMRItr_TR
dc.subjectFeature selectiontr_TR
dc.subjectVoxel selectiontr_TR
dc.subjectGenetic algorithmtr_TR
dc.subjectCognitive state predictiontr_TR
dc.subjectÖznitelik seçmetr_TR
dc.subjectVoksel seçmetr_TR
dc.subjectGenetik algoritmatr_TR
dc.subjectBilişsel hal tahminitr_TR
dc.titleEvaluation and improvement of feature selection techniques for cognitive state classification using fMRI datatr_TR
dc.typeThesistr_TR

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
134272.pdf
Size:
330.94 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections